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Abstract

Studies of bond return predictability find a puzzling disparity between strong statistical
evidence of return predictability and the failure to convert return forecasts into economic
gains. We show that resolving this puzzle requires accounting for important features of bond
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comprising the Fama and Bliss (1987) forward spread, the Cochrane and Piazzesi (2005) com-
bination of forward rates and the Ludvigson and Ng (2009) macro factor generates notable
gains in out-of-sample forecast accuracy compared with a model based on the expectations
hypothesis. Such gains in predictive accuracy translate into higher risk-adjusted portfolio
returns after accounting for estimation error and model uncertainty. Consistent with models
featuring unspanned macro factors, our forecasts of future bond excess returns are strongly
negatively correlated with survey forecasts of short rates.
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1 Introduction

Treasury bonds play an important role in many investors’ portfolios so an understanding of

the risk and return dynamics for this asset class is of central economic importance.1 Some

studies document significant in-sample predictability of Treasury bond excess returns for 2-5 year

maturities by means of variables such as forward spreads (Fama and Bliss, 1987), yield spreads

(Campbell and Shiller, 1991), a linear combination of forward rates (Cochrane and Piazzesi,

2005) and factors extracted from a cross-section of macroeconomic variables (Ludvigson and

Ng, 2009).

While empirical studies provide statistical evidence in support of bond return predictability,

there is so far little evidence that such predictability could have been used in real time to improve

investors’ economic utility. Thornton and Valente (2012) find that forward spread predictors,

when used to guide the investment decisions of an investor with mean-variance preferences,

do not lead to higher out-of-sample Sharpe ratios or higher economic utility compared with

investments based on a no-predictability expectations hypothesis (EH) model. Sarno et al.

(2016) reach a similar conclusion.2

To address this puzzling contradiction between the statistical and economic evidence on

bond return predictability, we adopt an empirical modeling strategy that accounts for time-

varying parameters, stochastic volatility and parameter estimation error and, thus, shares many

features with the approach pioneered by Johannes et al. (2014) to explore predictability of

stock returns. There are good economic reasons for considering these model features. First,

bond prices, and thus bond returns, are sensitive to monetary policy and inflation prospects,

both of which are known to shift over time.3 This suggests that it is important to adopt

a framework that accounts for time varying parameters. Second, uncertainty about inflation

prospects changes over time and the volatility of bond yields has also undergone shifts–most

notably during the Fed’s monetarist experiment from 1979-1982–underscoring the need to allow

for time varying volatility.4 Third, risk-averse bond investors are concerned not only with the

most likely outcomes but also with the degree of uncertainty surrounding future bond returns,

indicating the need to model the full probability distribution of bond returns.

The literature on bond return predictability has noted the importance of parameter esti-

1According to the Securities Industry and Financial Markets Association, the size of the U.S. Treasury bond
market was $11.9 trillion in 2013Q4. This is almost 30% of the entire U.S. bond market which includes corporate
debt, mortgage and municipal bonds, money market instruments, agency and asset-backed securities.

2For example, Sarno et al. (2016) write that ”The model predicts excess returns with high regression R2s and
high forecast accuracy but cannot outperform the expectations hypothesis out-of-sample in terms of economic
value, showing a general contrast between statistical and economic metrics of forecast evaluation.”

3Stock and Watson (1999) and Cogley and Sargent (2002) find strong evidence of time variation in a Phillips
curve model for U.S. inflation.

4Sims and Zha (2006) and Cogley et al. (2010) find that it is important to account for time varying volatility
when modeling the dynamics of U.S. macroeconomic variables.
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mation error, model instability, and model uncertainty. However, no study on bond return

predictability has so far addressed how these considerations, jointly, impact the results. To ac-

complish this, in common with Johannes et al. (2014) we adopt a Bayesian approach that brings

several advantages to inference about the return prediction models and to their use in portfolio

allocation analysis.

Our approach allows us, first, to integrate out uncertainty about the unknown parameters

and to evaluate the effect of estimation error on the results. Even after observing 50 years

of monthly observations, the coefficients of the return prediction models are surrounded by

considerable uncertainty and so accounting for estimation error turns out to be important.

Indeed, we find many cases with strong improvements in forecasting performance as a result of

incorporating estimation error.5

Second, we allow for time varying (stochastic) volatility in the bond excess return model.

Stochastic volatility models do not, in general, lead to notably improved point forecasts of bond

returns but they produce far better density forecasts which, when used by a risk averse investor to

form a bond portfolio, generate better economic performance. In addition to reducing portfolio

risk during periods with unusually high levels of volatility, the stochastic volatility models imply

that investors load more heavily on risky bonds during times with relatively low interest rate

volatility such as during the 1990s.

Third, our analysis allows for time variation in the regression parameters. We find evidence

that accounting for time varying parameters can lead to more accurate forecasts and, when

added to a model that already accounts for stochastic volatility, also improves on economic

performance.

Fourth, we generalize the setup to include a multivariate asset allocation exercise where the

optimal allocation to multiple risky bonds with different maturities is jointly determined. This

extension requires modelling the dynamics of bond returns (and the various predictors) in a

VAR setting with multivariate stochastic volatility and so is not a trivial extension of the setup

of Johannes et al. (2014).

Fifth, and finally, we address model uncertainty through forecast combination methods.

Model uncertainty is important in our analysis which considers a variety of univariate and mul-

tivariate models as well as different model specifications. We consider equal-weighted averages

of predictive densities, Bayesian model averaging, as well as combinations based on the optimal

pooling method of Geweke and Amisano (2011). The latter forms a portfolio of the individual

prediction models using weights that reflect the models’ posterior probabilities. Models that are

more strongly supported by the data get a larger weight in this average, so our combinations

5Altavilla et al. (2014) find that an exponential tilting approach helps improve the accuracy of out-of-sample
forecasts of bond yields. While their approach is not Bayesian, their tilting approach also attenuates the effect of
estimation error on the model estimates.

3



accommodate shifts in the relative forecasting performance of different models. The model com-

bination results are generally better than the results for the individual models and thus suggest

that model uncertainty can be effectively addressed through combination methods.6

Our empirical analysis uses the daily treasury yield data from Gurkaynak et al. (2007)

to construct monthly excess returns for bond maturities between two and five years over the

period 1962-2015. While previous studies have focused on the annual holding period, focusing

on the higher frequency affords several advantages. Most obviously, it expands the number of

non-overlapping observations, a point of considerable importance given the impact of parameter

estimation error. Moreover, it allows us to identify short-lived dynamics in both first and second

moments of bond returns which are missed by models of annual returns. This is an important

consideration during events such as the global financial crisis of 2007-09 and around turning

points of the economic cycle.

We conduct our analysis in the context of a three-variable model that includes the Fama-Bliss

forward spread, the Cochrane-Piazzesi linear combination of forward rates, and a macro factor

constructed using the methodology of Ludvigson and Ng (2009). Since forecasting studies have

found that simpler models often do well in out-of-sample experiments, we also consider simpler

univariate models.7

To assess the statistical evidence on bond return predictability, we use our models to generate

out-of-sample forecasts over the period 1990-2015. Our return forecasts are based on recursively

updated parameter estimates and use only historically available information, thus allowing us

to assess how valuable the forecasts would have been to investors in real time. Compared to the

benchmark EH model that assumes no return predictability, we find that many of the return

predictability models generate significantly positive out-of-sample R2 values. Moreover, the

Bayesian return prediction models generally perform better than the least squares counterparts

so far explored in the literature.

Turning to the economic value of such out-of-sample forecasts, we next consider the portfolio

choice between a risk-free Treasury bill versus a bond with 2-5 years maturity. We find that

the best return prediction models that account for volatility dynamics and changing parameters

deliver sizeable gains in certainty equivalent returns relative to an EH model that assumes

no predictability of bond returns. Our empirical results suggest that incorporating stochastic

volatility and unspanned macro factors is important to understanding the economic gains from

bond return predictability.

There are several reasons why our findings differ from studies such as Thornton and Va-

lente (2012) and Sarno et al. (2016) which argue that the statistical evidence on bond return

6Using an iterated combination approach, Lin et al. (2016) uncover statistical and economic predictability in
corporate bond returns

7Ang and Piazzesi (2003), Ang et al. (2007), Bikbov and Chernov (2010), Dewachter et al. (2014), Duffee
(2011) and Joslin et al. (2014) consider macroeconomic determinants of the term structure of interest rates.
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predictability does not translate into out-of-sample economic gains. Allowing for stochastic

volatility leads to notable gains in economic performance for many models.8 The inclusion

of a composite macro factor as a predictor of bond returns is another important feature that

differentiates our analysis from these earlier studies. Our results on forecast combinations also

emphasize the importance of accounting for model uncertainty and the ability to capture changes

in the performance of individual prediction models.

To interpret the economic sources of our findings on bond return predictability, we analyze

the extent to which such predictability is concentrated in certain economic states and whether it

is correlated with variables expected to be key drivers of time varying bond risk premia. We find

that bond return predictability is stronger in recessions than during expansions, consistent with

similar findings for stock returns by Henkel et al. (2011) and Dangl and Halling (2012). Using

data from survey expectations we find that, consistent with a risk-premium story, our bond

excess return forecasts are strongly negatively correlated with economic growth prospects (thus

being higher during recessions) and strongly positively correlated with inflation uncertainty.

Our finding that the macro factor of Ludvigson and Ng (2009) possesses considerable pre-

dictive power over bond excess returns out-of-sample implies that information embedded in the

yield curve does not subsume information contained in such macro variables. We address pos-

sible explanations of this finding, including the unspanned risk factor models of Joslin et al.

(2014) and Duffee (2011) which suggest that macro variables move forecasts of future bond ex-

cess returns and forecasts of future short rates by the same magnitude but in opposite directions.

We find support for this explanation as our bond excess return forecasts are strongly negatively

correlated with survey forecasts of future short rates.

The outline of the paper is as follows. Section 2 describes the construction of the bond

data, including bond returns, forward rates and the predictor variables. Section 3 sets up the

prediction models and introduces our Bayesian estimation approach. Section 4 presents both

full-sample and out-of-sample empirical results on bond return predictability. Section 5 assesses

the economic value of bond return predictability for a risk averse investor when this investor uses

the bond return predictions to form a portfolio of risky bonds and a risk-free asset. Section 6

analyzes economic sources of bond return predictability such as recession risk, time variations

in inflation uncertainty, and the presence of unspanned risk factors. Section 7 presents model

combination results and Section 8 concludes.

8Thornton and Valente (2012) use a rolling window to update their parameter estimates but do not have a
formal model that predicts future volatility or parameter values.
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2 Data

This section describes how we construct our monthly series of bond returns and introduces the

predictor variables used in the bond return models.

2.1 Returns and Forward Rates

Previous studies on bond return predictability such as Cochrane and Piazzesi (2005), Ludvig-

son and Ng (2009) and Thornton and Valente (2012) use overlapping 12-month returns data.

This overlap induces strong serial correlation in the regression residuals. To handle this issue,

we reconstruct the yield curve at the daily frequency starting from the parameters estimated

by Gurkaynak et al. (2007), who rely on methods developed in Nelson and Siegel (1987) and

Svensson (1994). Specifically, the time t zero coupon log yield on a bond maturing in n years,

y
(n)
t , gets computed as9

y
(n)
t = β0t + β1t

1− exp
(
− n
τ1

)
n
τ1

+ β2t

1− exp
(
− n
τ1

)
n
τ1

− exp

(
− n
τ1

)
+β3t

1− exp
(
− n
τ2

)
n
τ2

− exp

(
− n
τ2

) . (1)

The parameters (β0, β1, β2, β3, τ1, τ2) are provided by Gurkaynak et al. (2007), who report daily

estimates of the yield curve from June 1961 onward for the entire maturity range spanned by

outstanding Treasury securities. We consider maturities ranging from 12 to 60 months and, in

what follows, focus on the last day of each month’s estimated log yields.10

Denote the frequency at which returns are computed by h, so h = 1, 3 for the monthly and

quarterly frequencies, respectively. Also, let n be the bond maturity in years. For n > h/12 we

compute returns and excess returns, relative to the h−period T-bill rate11

r
(n)
t+h/12 = p

(n−h/12)
t+h/12 − p(n)

t = ny
(n)
t − (n− h/12)y

(n−h/12)
t+h/12 , (2)

rx
(n)
t+h/12 = r

(n)
t+h/12 − y

h/12
t (h/12). (3)

Here p
(n)
t is the logarithm of the time t price of a bond with n periods to maturity. Similarly,

9The third term was excluded from the calculations prior to January 1, 1980.
10The data is available at http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html. Because of

idiosyncrasies at the very short end of the yield curve, we do not compute yields for maturities less than twelve
months. For estimation purposes, the Gurkaynak et al. (2007) curve drops all bills and coupon bearing securities
with a remaining time to maturity less than 6 months, while downweighting securities that are close to this
window. The coefficients of the yield curve are estimated using daily cross-sections and thus avoid introducing
look-ahead biases in the estimated yields.

11The formulas assume that the yields have been annualized, so we multiply y
(h/12)
t by h/12.
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forward rates are computed as12

f
(n−h/12,n)
t = p

(n−h/12)
t − p(n)

t = ny
(n)
t − (n− h/12)y

(n−h/12)
t . (4)

2.2 Data Summary

We focus our analysis on monthly bond excess returns over the period 1962:01-2015:12. Figure 1

plots monthly bond returns for the 2, 3, 4, and 5-year maturities, computed in excess of the

1-month T-bill rate. All four series are notably more volatile during 1979-82 and the volatility

clearly increases with the maturity of the bonds. Panel A.1 in Table 1 presents summary

statistics for the four monthly excess return series. Returns on the two shortest maturities are

right-skewed and fat-tailed, more so than the longer maturities.

Because the data used in our study differ from datasets used in most existing studies, it is

worth highlighting the main differences and showing how they affect our data. First, there is a

difference in how bond yields and returns are constructed. Studies such as Cochrane and Piazzesi

(2005), Ludvigson and Ng (2009), and Thornton and Valente (2012) use data constructed using

the method proposed by Fama and Bliss (1987) which sequentially constructs yields on long-term

bonds from a set of estimated daily forward rates (see their Appendix A for more details). As

described above, the bond returns in our analysis are, instead, based on daily yields constructed

by Gurkaynak et al. (2007). Although the two approaches are different, they generate almost

identical yields and excess return series with time-series correlations ranging between 0.991 to

0.9998 across the four bond maturities. Thus, we conclude that this difference matters little to

our analysis.

More important is our use of one-month (non-overlapping) returns data as compared to the

12-month overlapping returns data used in many existing studies. Panels A.2 and A.3 in Table 1

provide summary statistics on the more conventional overlapping 12-month returns constructed

either from our monthly data (Panel A.2) or as in Cochrane and Piazzesi (2005) (Panel A.3),

using the Fama-Bliss CRSP files. The two series have very similar means which in turn are lower

than the mean excess return on the monthly series in Panel A.1 due to the lower mean of the

risk-free rate (1-month T-bill) used in Panel A.1 compared to the mean of the 12-month T-bill

rate used in Panels A.2 and A.3. Comparing the monthly series in Panel A.1 to the 12-month

series in Panels A.2 and A.3, we see that the serial correlation is much stronger in the 12-month

series due to the smoothing effect of using overlapping returns.

Using monthly non-overlapping bond returns offers important advantages over the 12-month

overlapping returns data which have been the focus of most studies in the literature. Some of

the most dramatic swings in bond prices occur over short periods of time lasting less than a

year–e.g., the effect of the bankruptcy of Lehman Brothers on September 15, 2008–and are easily

12For n = h/12, f
(n,n)
t = ny

(n)
t and y

(n−h/12)
t = y

(0)
t equals zero because P

(0)
t = 1 and its logarithm is zero.
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missed by models focusing on the annual holding period. Bond returns recorded at the annual

horizon easily overlook important variations around turning points of the economic cycle.

2.3 Predictor variables

Our empirical strategy entails regressing bond excess returns on a range of the most prominent

predictors proposed in the literature on bond return predictability. Specifically, we consider

forward spreads as proposed by Fama and Bliss (1987), a linear combination of forward rates

as proposed by Cochrane and Piazzesi (2005), and a linear combination of macro factors, as

proposed by Ludvigson and Ng (2009).

To motivate our use of these three predictor variables, note that the n-period bond yield is

related to expected future short yields and expected future excess returns (Duffee, 2013):

y
(n)
t =

1

n

n−1∑
j=0

E[y
(1)
t+j |zt]

+
1

n

n−1∑
j=0

Et[rx
(n−j)
t+j+1|zt]

 , (5)

where rx
(n−j)
t+j+1 is the excess return in period t+ j + 1 on a bond with n− j periods to maturity

and E[.|zt] denotes the conditional expectation given market information at time t, zt. Equation

(5) suggests that current yields or, equivalently, forward spreads should have predictive power

over future bond excess returns and so motivates our use of these variables in the excess return

regressions.

The use of non-yield predictors is more contentious. In fact, if the vector of conditioning

information variables, zt, is of sufficiently low dimension, we can invert (5) to get zt = g(yt).

In this case information in the current yield curve subsumes all other predictors of future excess

returns and so macro variables should be irrelevant when added to the prediction model. The

unspanned risk factor models of Joslin et al. (2014) and Duffee (2011) offer an explanation for

why macro variables help predict bond excess returns over and above information contained in

the yield curve. These models suggest that the effect of additional state variable on expected

future short rates and expected future bond excess returns cancel out in Equation (5). Such

cancellations imply that the additional state variables do not show up in bond yields although

they can have predictive power over bond excess returns.

Our predictor variables are computed as follows. The Fama-Bliss (FB) forward spreads are

given by

fs
(n,h)
t = f

(n−h/12,n)
t − y(h/12)

t (h/12). (6)

The Cochrane-Piazzesi (CP) factor is formed from a linear combination of forward rates

CP ht = γ̂h′f
(n−h/12,n)
t , (7)

where

f
(n−h/12,n)
t =

[
f

(n1−h/12,n1)
t , f

(n2−h/12,n2)
t , ..., f

(nk−h/12,nk)
t

]
.
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Here n = [1, 2, 3, 4, 5] denotes the vector of maturities measured in years. As in Cochrane and

Piazzesi (2005), the coefficient vector γ̂ is estimated from

1

4

5∑
n=2

rx
(n)
t+h/12 = γh0 +γh1 f

(1−1/12,1)
t +γh2 f

(2−1/12,2)
t +γh3 f

(3−1/12,3)
t +γh4 f

(4−1/12,4)
t +γh5 f

(5−1/12,5)
t +εt+h/12.

(8)

Ludvigson and Ng (2009) propose to use macro factors to predict bond returns. Suppose we

observe a T ×M panel of macroeconomic variables {xi,t} generated by a factor model

xi,t = κigt + εi,t, (9)

where gt is an s×1 vector of common factors and s << M . The unobserved common factor, gt is

replaced by an estimate, ĝt, obtained using principal components analysis. Following Ludvigson

and Ng (2009), we build a single linear combination from a subset of the first eight estimated

principal components, Ĝt = [ĝ1,t, ĝ
3
1,t, ĝ3,t, ĝ4,t, ĝ8,t] to obtain the LN factor13

LNh
t = λ̂

h′
Ĝt, (10)

where λ̂ is obtained from the projection

1

4

5∑
n=2

rx
(n)
t+h/12 = λh0 + λh1 ĝ1,t + λh2 ĝ

3
1,t + λh3 ĝ3,t + λh4 ĝ4,t + λh5 ĝ8,t + ηt+h/12. (11)

Panel B in Table 1 presents summary statistics for the Fama-Bliss forward spreads along with

the CP and LN factors. The Fama-Bliss forward spreads are strongly positively autocorrelated

with first-order autocorrelation coefficients around 0.90. The CP and LN factors are far less

autocorrelated with first-order autocorrelations of 0.71 and 0.39, respectively.

Panel C shows that the Fama-Bliss spreads are positively correlated with the CP factor,

with correlations around 0.5, but are uncorrelated with the LN factor. The LN factor captures

a largely orthogonal component in relation to the other predictors. For example, its correlation

with CP is only 0.13.

3 Return Prediction Models and Estimation Methods

We next introduce the return prediction models and describe the estimation methods used in

the paper.

13Ludvigson and Ng (2009) select this combination of factors using the Schwarz information crite-
rion. To compute the LN factor, we use the FRED-MD dataset. This data was downloaded from
https://research.stlouisfed.org/econ/mccracken/fred-databases/ and allows us to extend the original data of Lud-
vigson and Ng (2009) up to 2015. While not all variables are identical to those used in Ludvigsson and Ng, they
are very similar and the corresponding principal components are very highly correlated. Before extracting the
factors, each variable is transformed as described in the Appendix of McCracken and Ng (2015).
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3.1 Model specifications

Our analysis considers the three predictor variables described in the previous section. Specifi-

cally, we consider three univariate models, each of which includes one of these three variables,

along with a multivariate model that includes all three predictors for a total of four models:

1. Fama-Bliss (FB) univariate

rx
(n)
t+h/12 = β0 + β1fs

(n,h)
t + εt+h/12. (12)

2. Cochrane-Piazzesi (CP) univariate

rx
(n)
t+h/12 = β0 + β1CP

h
t + εt+h/12. (13)

3. Ludvigson-Ng (LN) univariate

rx
(n)
t+h/12 = β0 + β1LN

h
t + εt+h/12. (14)

4. Fama-Bliss, Cochrane-Piazzesi and Ludvigson-Ng predictors (FB-CP-LN)

rx
(n)
t+h/12 = β0 + β1fs

(n,h)
t + β2CP

h
t + β3LN

h
t + εt+h/12. (15)

These models are in turn compared to the Expectation Hypothesis benchmark

rx
(n)
t+h/12 = β0 + εt+h/12, (16)

that assumes no predictability. In each case n ∈ {2, 3, 4, 5}.

We consider four classes of models: (i) constant coefficient models with constant volatility;

(ii) constant coefficient models with stochastic volatility; (iii) time varying parameter models

with constant volatility; and (iv) time varying parameter models with stochastic volatility.

The constant coefficient, constant volatility model serves as a natural starting point for the

out-of-sample analysis. There is no guarantee that the more complicated models with stochastic

volatility and time varying regression coefficients produce better out-of-sample forecasts since

their parameters may be imprecisely estimated.

To estimate the models we adopt a Bayesian approach that offers several advantages over

the conventional estimation methods adopted by previous studies on bond return predictability.

First, imprecisely estimated parameters is a big issue in the return predictability literature and

so it is important to account for parameter uncertainty as is explicitly done by the Bayesian

approach. Second, portfolio allocation analysis requires estimating not only the conditional

mean, but also the conditional variance (under mean-variance preferences) or the full predictive
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density (under power utility) of returns. This is accomplished by our method which generates

the (posterior) predictive return distribution. Third, our approach also allows us to handle

model uncertainty (and model instability) by combining forecasting models.

We next describe our estimation approach for each of the four classes of models. To ease the

notation, for the remainder of the paper we drop the notation t + h/12 and replace h/12 with

1, with the understanding that the definition of a period depends on the data frequency.

3.2 Constant Coefficients and Constant Volatility

The linear model projects bond excess returns rx
(n)
τ+1 on a set of lagged predictors, x

(n)
τ :

rx
(n)
τ+1 = µ+ β′x(n)

τ + ετ+1, τ = 1, ..., t− 1, (17)

ετ+1 ∼ N (0, σ2
ε).

Ordinary least squares (OLS) estimation of this model is straightforward and so is not further

explained. However, we also consider Bayesian estimation so we briefly describe how the prior

and likelihood are specified for this (LIN) model. Following standard practice, the priors for the

parameters µ and β in (17) are assumed to be normal and independent of σ2
ε[

µ
β

]
∼ N (b,V ) , (18)

where

b =

[
rx

(n)
t

0

]
, V = ψ2

(s(n)
rx,t

)2
(
t−1∑
τ=1

x(n)
τ x(n)′

τ

)−1
 , (19)

and rx
(n)
t and

(
s

(n)
rx,t

)2
are data-based moments:

rx
(n)
t =

1

t− 1

t−1∑
τ=1

rx
(n)
τ+1,

(
s

(n)
rx,t

)2
=

1

t− 2

t−1∑
τ=1

(
rx

(n)
τ+1 − rx

(n)
t

)2
.

Our choice of the prior mean vector b reflects the ‘no predictability’ view that the best predictor

of bond excess returns is the average of past returns. We therefore center the prior intercept

on the prevailing mean of historical excess returns, while the prior slope coefficient is centered

on zero. To avoid any look-ahead bias in the out-of-sample forecasting exercise, the prevailing

mean is based only on information available at the time of the forecast which amounts to using

the historical average at that point in time.

It is common to base the priors of the hyperparameters on sample estimates, see Stock

and Watson (2006) and Efron (2010). Our analysis can thus be viewed as an empirical Bayes
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approach rather than a more traditional Bayesian approach that fixes the prior distribution

before any data are observed. We find that, at least for a reasonable range of values, the choice

of priors has modest impact on our results. In (19), ψ is a constant that controls the tightness

of the prior, with ψ →∞ corresponding to a diffuse prior on µ and β. Our benchmark analysis

sets ψ = n/2. This choice means that the prior becomes looser for the longer bond maturities

for which fundamentals-based information is likely to be more important.

We assume a standard gamma prior for the error precision of the return innovation, σ−2
ε :

σ−2
ε ∼ G

((
s

(n)
rx,t

)−2
, v0 (t− 1)

)
, (20)

where v0 is a prior hyperparameter that controls how informative the prior is with v0 → 0

corresponding to a diffuse prior on σ−2
ε . Our baseline analysis sets v0 = 2/n, again letting the

priors be more diffuse, the longer the bond maturity.

3.3 Stochastic Volatility

A large literature has found strong empirical evidence of time varying return volatility. We

accommodate such effects through a simple stochastic volatility (SV) model:

rx
(n)
τ+1 = µ+ β′x(n)

τ + exp (hτ+1)uτ+1, (21)

where hτ+1 denotes the (log of) bond return volatility at time τ + 1 and uτ+1 ∼ N (0, 1). The

log-volatility hτ+1 is assumed to follow a stationary and mean reverting process:

hτ+1 = λ0 + λ1hτ + ξτ+1, (22)

where ξτ+1 ∼ N
(

0, σ2
ξ

)
, |λ1| < 1, and uτ and ξs are mutually independent for all τ and s.

Appendix A explains how we estimate the SV model and set the priors.

3.4 Time varying Parameters

Studies such as Thornton and Valente (2012) find considerable evidence of instability in the

parameters of bond return prediction models. The following time varying parameter (TVP)

model allows the regression coefficients in (17) to change over time:

rx
(n)
τ+1 = (µ+ µτ ) + (β + βτ )′ x(n)

τ + ετ+1, τ = 1, ..., t− 1, (23)

ετ+1 ∼ N (0, σ2
ε).

The intercept and slope parameters θτ =
(
µτ ,β

′
τ

)′
are assumed to follow a zero-mean, stationary

process

θτ+1 = diag (γθ)θτ + ητ+1, (24)
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where θ1 = 0, ητ+1 ∼ N (0,Q), and the elements in γθ are restricted to lie between −1 and 1.

In addition, ετ and ηs are mutually independent for all τ and s. The key parameter is Q which

determines how rapidly the parameters θ are allowed to change over time. We set the priors to

ensure that the parameters are allowed to change only gradually. Again Appendix A provides

details on how we estimate the model and set the priors.

3.5 Time varying Parameters and Stochastic Volatility

Finally, we consider a general model that admits both time varying parameters and stochastic

volatility (TVP-SV):

rx
(n)
τ+1 = (µ+ µτ ) + (β + βτ )′ x(n)

τ + exp (hτ+1)uτ+1, (25)

with

θτ+1 = diag (γθ)θτ + ητ+1, (26)

where again θτ =
(
µτ ,β

′
τ

)′
, and

hτ+1 = λ0 + λ1hτ + ξτ+1, (27)

where uτ+1 ∼ N (0, 1), ητ+1 ∼ N (0,Q) , ξτ+1 ∼ N
(

0, σ2
ξ

)
and uτ , ηs and ξl are mutually

independent for all τ , s, and l. Again we refer to Appendix A for further details on this model.

The models are estimated by Gibbs sampling methods. This allows us to generate draws of

excess returns, rx
(n)
t+1, in a way that only conditions on a given model and the data at hand.

This is convenient when computing bond return forecasts and determining the optimal bond

holdings.

4 Empirical Results

This section describes our empirical results. For comparison with the existing literature, and

to convey results on the importance of different features of the models, we first report results

based on full-sample estimates. This is followed by an out-of-sample analysis of the statistical

evidence on return predictability.

4.1 Full-sample Estimates

For comparison with extant results, Table 2 presents full-sample (1962:01-2015:12) least squares

estimates for the bond return prediction models with constant parameters. While no investors

could have based their historical portfolio choices on these estimates, such results are important

for our understanding of how the various models work. The slope coefficients for the univariate
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models increase monotonically in the maturity of the bonds. With the exception of the coef-

ficients on the CP factor in the multivariate model, the coefficients are significant across all

maturities and forecasting models.

Bauer and Hamilton (2016) argue that prior findings of bond return predictability from

non-yield factors based on conventional HAC standard errors are not robust due to the use of

persistent predictor variables that are correlated with the innovations in bond returns. Instead,

they find that the standard errors proposed by Ibragimov and Muller (2010) have excellent

size and power properties in regressions where standard HAC inference is seriously distorted.

Working with 12-month overlapping returns, we confirm Bauer and Hamilton’s result and find

little evidence of predictability from non-yield factors when based on the Ibragimov-Muller

method. However, using one-month non-overlapping bond returns, we arrive at a very different

conclusion as the evidence based on the Ibragimov-Muller p-values suggest that three of the

eight Ludvigsson-Ng factors are statistically significant. These results suggest that the inference

problems pointed out by Bauer and Hamilton (2016) largely disappear when using one-month

non-overlapping bond returns rather than 12-month overlapping returns.14

Table 2 shows R2 values in the range 1.6-2.1% for the model that uses FB as a predictor,

2.1-2.3% for the model that uses the CP factor, and around 4.6-5.2% for the model based on the

LN factor. These values, which increase to 7-8% for the multivariate model, are notably smaller

than those conventionally reported for the overlapping 12-month horizon. For comparison, at

the one-year horizon we obtain R2 values of 9-12%, 12-19%, and 13-17% for the FB, CP, and

LN models, respectively.15

The extent of time variation in the parameter estimates of the multivariate FB-CP-LN model

is displayed in Figure 2. All coefficients are notably volatile around 1980 and the coefficients

continue to fluctuate throughout the sample.

To get a sense of the importance of parameter estimation error, Figure 3 plots full-sample

posterior densities of the regression coefficients for the multivariate model that uses FB, CP and

LN as predictors. The spread of the densities in this figure shows the considerable uncertainty

surrounding the parameter estimates even at the end of the sample. As expected, parameter

uncertainty is greatest for the TVP and TVP-SV models which allow for the greatest amount of

flexibility–clearly this comes at the cost of less precisely estimated parameters. The SV model

generates more precise estimates than the constant volatility benchmark, reflecting the ability

of the SV model to reduce the weight on observations in highly volatile periods.

14Wei and Wright (2013) also find that conventional tests applied to bond excess return regressions that use
yield spreads or yields as predictors are subject to considerable finite-sample distortions. Their reverse regressions
show that, even after accounting for such biases, bond excess returns still appear to be predictable.

15These values are a bit lower than those reported in the literature but are consistent with the range of results
reported by Duffee (2013) . The weaker evidence reflects our use of an extended sample along with a tendency
for the regression coefficients to decline towards zero at the end of the sample.
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The effect of such parameter uncertainty on the predictive density of bond excess returns is

depicted in Figure 4. This figure evaluates the univariate LN model at the mean of this predictor,

plus or minus two times its standard deviation. The TVP and TVP-SV models imply a greater

dispersion for bond returns and their densities shift further out in the tails as the predictor

variable moves away from its mean. The four models clearly imply very different probability

distributions for bond returns and so have very different implications when used by investors to

form portfolios.

Figure 5 plots the time series of the posterior means and volatilities of bond excess returns

for the FB-CP-LN model. Mean excess returns (top panel) vary substantially during the sample,

peaking during the early eighties, and again during 2008. Stochastic volatility effects (bottom

panel) also appear to be empirically important. The conditional volatility is very high during

1979-1982, while subsequent spells with above-average volatility are more muted and short-lived.

4.2 Calculation of out-of-sample Forecasts

To gauge the real-time value of the bond return prediction models, following Ludvigson and

Ng (2009) and Thornton and Valente (2012), we next conduct an out-of-sample forecasting

experiment.16 This experiment only uses information available at time t to compute return

forecasts for period t+1 and uses an expanding estimation window. Notably, when constructing

the CP and LN factors we also restrict our information set to end at time t and re-estimate each

period the principal components and the regression coefficients in equations (8) and (11).

We use 1962:01-1989:12 as our initial warm-up estimation sample and 1990:01-2015:12 as

the forecast evaluation period. As before, we set n = 2, 3, 4, 5 and so predict 2, 3, 4, and 5-year

bond returns in excess of the one-month T-bill rate.

The predictive accuracy of the bond excess return forecasts is measured relative to recursively

updated forecasts from the expectations hypothesis (EH) model (16) that projects excess returns

on a constant. Specifically, at each point in time we obtain draws from the predictive densities of

the benchmark model and the models with time varying predictors. For a given bond maturity,

n, we denote draws from the predictive density of the EH model, given the information set at

time t, Dt = {rx(n)
τ+1}

t−1
τ=1, by

{
rx

(n),j
t+1

}
, j = 1, ..., J . Similarly, draws from the predictive density

of any of the other models (labeled model i) given Dt = {rx(n)
τ+1,x

(n)
τ }t−1

τ=1 ∪ x
(n)
t are denoted{

rx
(n),j
t+1,i

}
, j = 1, ..., J.17

16Out-of-sample analysis also provides a way to guard against overfitting. Duffee (2010) shows that in-sample
overfitting can generate unrealistically high Sharpe ratios.

17We run the Gibbs sampling algorithms recursively for all time periods betweeen 1990:01 and 2015:12. At each
point in time, we retain 1,000 draws from the Gibbs samplers after a burn-in period of 500 iterations. For the
TVP, SV, and TVP-SV models we run the Gibbs samplers five times longer while at the same time thinning the
chains by keeping only one in every five draws, thus effectively eliminating any autocorrelation left in the draws.
Additional details on these algorithms are presented in Appendix A.
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For the constant parameter, constant volatility model, return draws are obtained by applying

a Gibbs sampler to

p
(
rx

(n)
t+1

∣∣∣Dt) =

∫
p
(
rx

(n)
t+1

∣∣∣µ,β, σ−2
ε ,Dt

)
p
(
µ,β, σ−2

ε

∣∣Dt) dµdβdσ−2
ε . (28)

Return draws for the most general TVP-SV model are obtained from the predictive density18

p
(
rx

(n)
t+1

∣∣∣Dt) =

∫
p
(
rx

(n)
t+1

∣∣∣θt+1, ht+1, µ,β,θ
t,γθ,Q, h

t, λ0, λ1, σ
−2
ξ ,Dt

)
×p
(
θt+1, ht+1|µ,β,θt,γθ,Q, ht, λ0, λ1, σ

−2
ξ ,Dt

)
(29)

×p
(
µ,β,θt,γθ,Q,h

t, λ0, λ1, σ
−2
ξ

∣∣∣Dt) dµdβdθt+1dγθdQdh
t+1dλ0dλ1dσ

−2
ξ .

where ht+1 = (h1, ..., ht+1) and θt+1 = (θ1, ...,θt+1) denote the sequence of conditional variance

states and time varying regression parameters up to time t + 1, respectively. Draws from the

SV and TVP models are obtained as special cases of (29). All Bayesian models integrate out

uncertainty about the parameters.

4.3 Forecasting Performance

Although our models generate a full predictive distribution for bond returns, insights can be

gained also from conventional point forecasts. To obtain point forecasts we first compute the

posterior mean from the densities in (28) and (29). We denote these by rx
(n)
t,EH = 1

J

∑J
j=1 rx

(n),j
t

and rx
(n)
t,i = 1

J

∑J
j=1 rx

(n),j
t,i , for the EH and alternative models, respectively. Using such point

forecasts, we obtain the corresponding forecast errors as e
(n)
t,EH = rx

(n)
t − rx

(n)
t,EH and e

(n)
t,i =

rx
(n)
t − rx

(n)
t,i , t = t, ..., t, where t = 1990 : 01 and t = 2015 : 12 denote the beginning and end of

the forecast evaluation period.

Following Campbell and Thompson (2008), we compute the out-of-sample R2 of model i

relative to the EH model as

R
(n)2
OoS,i = 1−

∑t
τ=t e

(n)2
τ,i∑t

τ=t e
(n)2
τ,EH

. (30)

Positive values of this statistic suggest evidence of time varying return predictability.

Table 3 reports R2
OoS values for the OLS, linear, SV, TVP and TVP-SV models across the

four bond maturities. For the two-year maturity we find little evidence that models estimated

by OLS are able to improve on the predictive accuracy of the EH model, although these models

fare better for the longer bond maturities. Conversely, almost all models estimated using our

Bayesian approach generate significantly more accurate forecasts at either the 10% or 1% signif-

icance levels, using the test for equal predictive accuracy suggested by Clark and West (2007).

18For each draw retained from the Gibbs sampler, we produce 100 draws from the corresponding predictive
densities.
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Similar results are obtained for the SV, TVP, and TVP-SV models which generate R2
OoS values

of 4-5% for the models that include the LN predictor.

Comparing R2
OoS values across predictors, CP delivers the weakest results although the TVP-

SV specification shows some evidence of predictive power for this variable, suggesting that the

coefficient on CP varies over time. Conversely, the FB and, in particular, the LN predictor,

add considerable improvements in out-of-sample predictive performance. To test the statistical

significance of these differences, in results available in a web appendix, we perform pairwise

comparisons across models with different predictor variables. Across all bond maturities and

model specifications, we find that the R2
OoS values are significantly higher for models that include

the LN predictor compared to models that use either FB or CP .

Similarly, ranking the different model specifications across bond maturities and predictor

variables, we find that the TVP-SV models produce the best out-of-sample forecasts in half

of all cases with the SV model a distant second best. These results suggest that the more

sophisticated models that allow for time varying parameters and time varying volatility manage

to produce better out-of-sample forecasts than simpler models. Even in cases where the TVP-SV

model is not the best specification, it still performs nearly as well as the best model. In contrast,

there are instances where the other models are clearly inferior to the TVP-SV model.

To identify which periods the models perform best, following Welch and Goyal (2008), we

use the out-of-sample forecast errors to compute the difference in the cumulative sum of squared

errors (SSE) for the EH model versus the ith model:

∆CumSSE
(n)
t,i =

t∑
τ=t

(
e

(n)
τ,EH

)2
−

t∑
τ=t

(
e

(n)
τ,i

)2
. (31)

Positive and increasing values of ∆CumSSEt suggest that the model with time varying return

predictability generates more accurate point forecasts than the EH benchmark.

Figure 6 plots ∆CumSSEt for the three univariate models and the three-factor model,

assuming a two-year bond maturity. These plots show periods during which the various models

perform well relative to the EH model–periods where the lines are increasing and above zero–

and periods where the models underperform against this benchmark–periods with decreasing

graphs. The univariate FB model performs quite poorly due to spells of poor performance in

1994, 2000, and 2008, while the CP model underperforms between 1993 and 2006. In contrast,

except for a few isolated months in 2002, 2008 and 2009, the LN model consistently beats the

EH benchmark up to 2009, at which point its performance flattens against the EH model. A

similar performance is seen for the multivariate model.

The predictive accuracy measures in (30) and (31) ignore information on the full probability

distribution of returns. To evaluate the accuracy of the density forecasts obtained in (28) and

(29), we compute the predictive likelihood (score) which gives a broad measure of accuracy of

17



density forecasts, see Geweke and Amisano (2010). At each point in time t, the log predictive

score is obtained by taking the natural log of the predictive densities (28)–(29) evaluated at the

observed bond excess return, rx
(n)
t , denoted by LSt,EH and LSt,i for the EH and alternative

models, respectively.

Table 4 reports the average log-score differential for each of our models, again measured

relative to the EH benchmark.19 The results show that the SV and TVPSV models perform

significantly better than the EH benchmark across all predictors and maturities. More modest

but, in most cases, still significant improvements over the EH benchmark are observed for the

linear and TVP specifications.

Figure 7 shows the cumulative log score (LS) differentials between the EH model and the

ith model, computed analogously to (31) as

∆CumLSt,i =
t∑

τ=t

[LSτ,i − LSτ ] . (32)

The dominant performance of the density forecasts generated by the SV and TVP-SV models is

clear from these plots. In contrast, the linear and TVP models offer only modest improvements

over the EH benchmark by this measure.

4.4 Robustness to Choice of Priors

Choice of priors can always be debated in Bayesian analysis, so we conduct a sensitivity analysis

with regard to two of the priors, namely ψ and v0, which together control how informative the

baseline priors are. Our first experiment sets ψ = 5 and v0 = 1/5. This choice corresponds

to using more diffuse priors than in the baseline scenario. Compared with the baseline prior,

this prior produces worse results (lower out-of-sample R2 values) for the two shortest maturities

(n = 2, 3), but stronger results for the longest maturities (n = 4, 5).

Our second experiment sets ψ = 0.5, v0 = 5, corresponding to tighter priors. Under these

priors, the results improve for the shorter bond maturities but get weaker at the longest maturi-

ties. In both cases, the conclusion that the best prediction models dominate the EH benchmark

continues to hold even for such large shifts in priors.

19To test if the differences in forecast accuracy are significant, we follow Clark and Ravazzolo (2015) and
apply the Diebold and Mariano (1995) t-test for equality of the average log-scores based on the statistic LSi =

1
t−t+1

∑t
τ=t (LSτ.i − LSτ,EH). The p-values for this statistic are based on t-statistics computed with a serial

correlation-robust variance, using the pre-whitened quadratic spectral estimator of Andrews and Monahan (1992).
Monte Carlo evidence in Clark and McCracken (2011) indicates that, with nested models, the Diebold-Mariano
test compared against normal critical values can be viewed as a somewhat conservative test for equal predictive
accuracy in finite samples. Since all models considered here nest the EH benchmark, we report p-values based on
one-sided tests, taking the nested EH benchmark as the null and the nesting model as the alternative.
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5 Economic Value of Return Forecasts

So far our analysis concentrated on statistical measures of predictive accuracy. We next turn our

attention to whether the apparent gains in predictive accuracy translate into better investment

performance.

5.1 Bond Holdings

We consider the asset allocation decisions of an investor that selects the weight, ω
(n)
t , on a

risky bond with n periods to maturity versus a one-month T-bill that pays the riskfree rate,

ỹt = y
(1/12)
t . Under power utility

U
(
ω

(n)
t , rx

(n)
t+1

)
=

[(
1− ω(n)

t

)
exp (ỹt) + ω

(n)
t exp

(
ỹt + rx

(n)
t+1

)]1−A

1−A
, A > 0, (33)

where A captures the investor’s risk aversion.

Using all information at time t, Dt, to evaluate the predictive density of rx
(n)
t+1, the investor

solves the optimal asset allocation problem

ω
(n)∗
t = arg max

ω
(n)
t

∫
U
(
ω

(n)
t , rx

(n)
t+1

)
p
(
rx

(n)
t+1

∣∣∣Dt) drx(n)
t+1. (34)

The integral in (34) can be approximated by generating a large number of draws, rx
(n),j
t+1,i,

j = 1, .., J , from the predictive densities specified in (28) and (29). For each of the candidate

models, i, we approximate the solution to (34) by

ω̂
(n)
t,i = arg max

ω
(n)
t,i

1

J

J∑
j=1


[(

1− ω(n)
t,i

)
exp (ỹt) + ω

(n)
t,i exp

(
ỹt + rx

(n),j
t+1,i

)]1−A

1−A

 . (35)

The resulting sequences of portfolio weights
{
ω̂

(n)
t,EH

}
and

{
ω̂

(n)
t,i

}
are used to compute re-

alized utilities. For each model, i, we convert these into certainty equivalent returns (CER)

obtained by equating the average utility of the EH model with the average utility of any of the

alternative models.

To make our results directly comparable to earlier studies such as Thornton and Valente

(2012), we assume a coefficient of risk aversion of A = 5 and constrain the weights on each bond

maturity to −1 ≤ ωi,t ≤ 2 (i = 1, ..., 4), thus ruling out extreme allocations. Moreover, we also

report results under mean-variance utility.

5.2 Multivariate asset allocation

So far we estimated univariate models separately for each bond maturity. We next generalize

this to a multivariate setting where investors jointly model bond excess returns across the four
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maturities. To this end, consider the following VAR(1) model

yt+1 = c+A1yt + εt+1, t = 1, ..., T − 1, (36)

where yt+1 =
(
rx

(2)
t+1, rx

(3)
t+1, rx

(4)
t+1, rx

(5)
t+1,x

′
t+1

)′
is an m × 1 vector, c is an m × 1 vector of

intercepts, A1 is an m×m matrix of coefficients on the lagged dependent variables, and εt+1 ∼
N (0,Ωt+1), where Ωt+1 is an m × m covariance matrix. Factoring the covariance matrix as

Ωt+1 = Γ−1Σ
1/2
t+1

(
Σ

1/2
t+1Γ−1

)′
, we can write εt+1 = Γ−1Σ

1/2
t+1ut+1, with ut+1 ∼ N (0, Im). Letting

hi,t+1 denote the i-th element of Σt+1, we specify the following law of motion for the log variances:

lnhi,t+1 = lnhi,t + ei,t+1, i = 1, ...,m, (37)

where the vector of innovations, et+1 ∼ N (0,Φ) is independent across time with variance matrix

Φ as in Primiceri (2005). This gives us a multivariate SV model. To keep the analysis simple,

and in view of the findings that stochastic volatility has a first-order effect on the results, we do

not consider multivariate models with time-varying parameters.

Assuming that bond returns are joint lognormally distributed, following Campbell and Vi-

ceira (1999) we can approximate excess returns on a bond portfolio, rp,t+1, by

rp,t+1 = ỹt + ω′trxt+1 +
1

2
ω′tσ

2
t+1|t −

1

2
ω′tΩ

[1:4,1:4]
t+1|t ωt, (38)

where ωt is a vector of portfolio weights, ỹt = y
(1/12)
t denotes the one-month riskless T-bill rate,

Ω
[1:4,1:4]
t+1|t denotes the top-left 4×4 partition of Ωt+1|t, the covariance matrix of the joint predictive

density p
(
rxt+1|Dt

)
, and σ2

t+1 is a 4 × 1 vector containing the first four diagonal elements of

Ωt+1|t. The optimal weights on the four bonds are given by

ωt =
1

A

(
Ω

[1:4,1:4]
t+1|t

)−1 [
E
(
rxt+1|Dt

)
+ σ2

t+1|t/2
]
, (39)

where E
(
rxt+1|Dt

)
denotes the mean of p

(
rxt+1|Dt

)
, the predictive density of the vector of

bond excess returns.

5.3 Empirical Results

Table 5 shows annualized CER values computed relative to the EH model so positive values

indicate that the time-varying predictability models perform better than the EH model. First,

consider the results with a single risky bond shown in the left-most columns under power utility

(Panel A) and mean-variance utility (Panel B), respectively. The CER values generally increase

with the bond maturity. In 11 of 16 cases, the highest CER values are found for the TVP-

SV models. For example, for the three-variable TVP-SV model the CER value increases from

0.52% (n = 2) to 2.82% (n = 5). To test if the annualized CER values are statistically greater
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than zero we use a Diebold-Mariano test.20 With the notable exception of the two-year bond

maturity, most of the CER values for the SV and TVP-SV models are significantly higher than

those generated by the EH benchmark.

To disentangle the sources of the gains in predictive performance that we uncover, for each

choice of predictor variable (FB, CP , LN and FB+CP +LN) and each bond maturity (2, 3, 4,

and 5 years) we run formal pairwise tests across the different model specifications. The results

(reported in a web appendix) show that accounting for stochastic volatility is important and the

improvement of both the SV and TVP-SV model over the LIN model are statistically significant

in many instances. Further confirming the importance of modeling volatility dynamics, the LIN

and TVP models that do not account for stochastic volatility produce lower predictive likelihood

values than an EH model with stochastic volatility (EH-SV). Interestingly, however, the SV and

TVP-SV models that account for time-varying risk premia continue to produce significantly

higher CER values than the EH-SV benchmark.

The pairwise tests further confirm that the inclusion of the LN macro factor as a predictor

makes an important difference. For each model specification, the LN factors is the single best

predictor, and we generally find significant improvements when moving from specifications based

on CP or FB to a model that includes LN.

Figure 8 plots cumulative CER values, computed relative to the EH benchmark, for the

three-factor model. These graphs parallel the cumulated sum of squared error difference plots

in (31), the key difference being that they show the cumulated risk-adjusted gains from using

a particular model instead of the EH model. Across all bond maturities the cumulative CER

value at the end of the sample exceeds 50 percent for all models.

Turning to the multi-asset allocation problem under the linear or SV specifications–results for

which are shown in the right-most column in Table 5–we find again that allowing for stochastic

volatility leads to substantial improvements in CER values, on the order of 1.1-2.0% per annum.

Once again, the CER values are substantially higher once the LN predictor is included and, for

such models, the multi-asset results improve upon the case with a single risky asset.

It is worth pointing out two limitations to the analysis above. First, the bond returns

analyzed here are not fully tradable in the sense that they rely on interpolated yields which do

not correspond exactly with traded market prices. Interpolation techniques are necessary to use

because only irregularly spaced maturities are available for many bonds. This means that the

20Specifically, we estimate the regression u
(n)
t+1,i − u

(n)
t+1,EH = α(n) + εt+1 where

u
(n)
t+1,i =

1

1−A

[(
1− ω(n)

t,i

)
exp (ỹt) + ω

(n)
t,i exp

(
ỹt + rx

(n)
t+1

)]1−A
,

and

u
(n)
t+1,EH =

1

1−A

[(
1− ω(n)

t,EH

)
exp (ỹt) + ω

(n)
t,EH exp

(
ỹt + rx

(n)
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and test if α(n) equals zero.
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simulated trading results reported here, as well as in other studies, should be interpreted with

caution.

Second, the CER values reported in Table 5 ignore transaction costs. However, when we allow

for transaction costs we continue to see sizeable gains over the EH benchmark. For example,

assuming a one-way transaction cost of 10 basis points, the CER value for the strategy that

uses the TVP-SV model to predict bond excess returns is reduced from 0.52% to 0.18% for the

two-year bond and from 2.82% to 2.46% for the five-year bond.

With these limitations in mind, we conclude that there is economic evidence that returns on

2-5 year bonds can be exploited using predictor variables proposed in the literature. Moreover,

the best performing models allow for time-varying mean and volatility dynamics.

5.4 Comparison with Other Studies

Our results are very different from those reported by Thornton and Valente (2012). These

authors find that statistical evidence of out-of-sample return predictability fails to translate into

an ability for investors to use return forecasts in a way that generates higher out-of-sample

average utility than forecasts from the EH model. Instead, Thornton and Valente (2012) find

that the Sharpe ratios of their bond portfolios decrease when accounting for such effects through

rolling window estimation. In contrast, we find that incorporating time-varying parameters and

stochastic volatility in many cases improves bond portfolio performance.

Besides differences in modeling approaches, a reason for such differences is the focus of

Thornton and Valente (2012) on 12-month bond returns, whereas we use monthly bond returns.

To address the importance of the return horizon, we repeat the out-of-sample analysis using

quarterly and annual returns data. Compared with the monthly results, the quarterly and

annual R2
OoS values decline somewhat. At the quarterly horizon the univariate specification

including the LN factor and the trivariate specification including FB, CP and LN, continue to

perform well across the four bond maturities. The LN factor also performs well at the annual

horizon, particularly for the bonds with longer maturities (n = 4, 5). The associated CER

values continue to be positive and, in most cases, significant at the quarterly horizon, but are

substantially smaller at the annual horizon. These findings indicate a fast moving predictable

component in bond returns that is well captured by the LN predictor and is missed when using

longer return horizons, thus helping to explain the difference between our results and those of

Thornton and Valente (2012) and Dewachter et al. (2014).

The setup of Sarno et al. (2016) is closest to that adopted here as they also consider results

for one-month returns and still obtain negative economic values from using their time varying

bond return forecasts compared with the EH model. Such differences in results reflect (i) differ-

ent modeling assumptions: Sarno et al. (2016) compute expected excess returns in the context

of an affine term structure model and also do not consider stochastic volatility or time vary-
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ing parameters; (ii) different predictor variables: Sarno et al. (2016) use latent state variables

extracted from their term structure model to predict bond excess returns; and, (iii) different

estimation methodologies: Sarno et al. (2016) do not follow the same Bayesian methodology

that we use here and thus ignore parameter uncertainty.21

Joslin and Le (2014) find that no-arbitrage term structure models that incorporate stochastic

volatility factors face difficulties in matching yield dynamics under both the physical and risk-

neutral probability measures. Given the focus of our study, we only model stochastic volatility

under the physical measure and do not impose no-arbitrage conditions. In view of the challenges

to affine term structure models from jointly matching the conditional means and variances of

bond yields (Dai and Singleton (2002)), this may also help explain the difference from the results

in Sarno et al. (2016) which are based on an afffine term structure model.

Another study that is closely related to ours is Barillas (2015) who uncovers the economic

importance of using unspanned macroeconomic factors in a dynamic portfolio selection exercise.

A notable difference between our paper and Barillas (2015) is that the latter provides in-sample

evidence while our results are conducted out-of-sample.22

Duffee (2013) expresses concerns related to data mining when interpreting results for macro

predictors whose effects are not underpinned by theory. A particular concern is that the strong

results for the LN factor are sample specific. The sample used by Ludvigson and Ng (2009) ends

in 2003:12. One way to address this concern is by inspecting the performance of the three-factor

model in the subsequent sample, i.e., from 2004:01 to 2015:12. Figure 6 , Figure 7 and Figure 8

show that the prediction models continue to generate more accurate forecasts, higher CER values

and higher log-density scores than the EH benchmark after 2003. Hence, the predictive power

of the LN factor is not limited to the original sample used to construct this variable.

6 Economic Drivers of Bond Return Predictability and Portfo-
lio Performance

We next conduct a set of tests designed to shed light on the economic drivers of bond return

predictability and portfolio performance. First, we explore whether bond return predictability

varies across the economic cycle. Next, we test implications for variation in risk premia of

21Both Thornton and Valente (2012) and Sarno et al. (2016) report performance using the Θ measure of Ingersoll
et al. (2007). For comparison, we also computed performance results using this measure; findings are reported in
a web appendix. We find that the results for the Θ measure are very similar to those obtained using the CER
values shown here. Without a proper joint test, it is difficult to conclusively evaluate the finding in Sarno et al.
(2016) that 13 ouf of 25 out-of-sample Θ estimates are positive. However, we note that their Θ estimates are
relatively small, the highest Θ value being 0.81% (see Panel A of their Table 4).

22The CER values displayed in Table 7 of Barillas (2015) are computed by equating the value functions of two
investors with different information sets: for the first, the information set only includes bond prices, while for the
second it also includes macroeconomic variables. Barillas (2015) evaluates the value functions by simulation, and
conducts rebalancing at the daily frequency whereas we use monthly rebalancing.
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asset pricing models featuring habit persistence or learning dynamics. Third, using an ICAPM

setting, we conduct a set of formal asset pricing tests to study whether variation in risk premia is

driven by time-varying covariances between bond returns and innovations in the factors driving

the pricing kernel. Fourth, we consider how the results from the portfolio analysis in Section 5

are related to uncertainty about the economy and biases in agents’ subjective beliefs. Finally,

we discuss whether unspanned risk factors help explain the predictive power of the LN macro

factor and our portfolio allocation results.

6.1 Cyclical Variation in Bond Return Predictability

Recent studies such as Rapach et al. (2010), Henkel et al. (2011) and Dangl and Halling (2012)

report that predictability of stock returns is concentrated in economic recessions and is largely

absent during expansions. Similarly, Sarno et al. (2016) find that there are larger gains from

predictability of bond returns during times with high macro uncertainty. These findings are

important since they suggests that return predictability is linked to cyclical variations and that

time varying risk premia may be important drivers of expected returns.

To see if bond return predictability varies over the economic cycle, we split the data into

recession and expansion periods using the NBER recession indicator which equals one in re-

cessions and zero in expansions. Table 6 uses full-sample parameter estimates, but computes

R2 values separately for the recession and expansion samples. We use full-sample information

because there are only three recessions in our out-of-sample period, 1990-2015.

Table 6 shows that the R2 values are generally higher during recessions than in expansions.

Moreover, this finding is robust across model specifications and predictor variables, the only

exception being the univariate FB model for which return predictability actually is stronger

during expansions. Conversely, note that the R2 values are particularly high in recessions for

the TVP models that include the LN variable.

To test if the differences in R2 values are statistically significant, we conduct a simple boot-

strap test that exploits the monotonic relation between the mean squared prediction error (MSE)

of the forecasting model, measured relative to that of the EH model, and the R2 measure in

(30). Specifically, we test the null that the predictive accuracy of a given prediction model

(measured relative to the EH benchmark) is the same across recessions and expansions, against

the one-sided alternative that the relative MSE is higher in expansions,

H0 : E[e2
EH,0 − e2

i,0︸ ︷︷ ︸
∆0

] = E[e2
EH,1 − e2

i,1︸ ︷︷ ︸
∆1

] (40)

H1 : E[e2
EH,0 − e2

i,0] < E[e2
EH,1 − e2

i,1].

Here eEH and ei are the forecast errors under the EH and model i, respectively, and the subscript

refers to expansions (0) and recessions (1). By computing a particular model’s MSE relative to
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the MSE of the EH model in the same state we control for differences in bond return variances

in recessions versus expansions. Our test uses a bootstrap based on the frequency with which

∆0 −∆1 is smaller than 10,000 counterparts bootstrapped under the null of ∆0 = ∆1.23

Outcomes from this test are indicated by stars in the recession columns of Table 6. With

the notable exception of the univariate FB model, we find that not only is the fit of the bond

return prediction models better in recessions than in expansions, but this difference is highly

statistically significant in most cases.24

We also compute results that split the sample into recessions and expansions using the un-

employment gap recession indicator of Stock and Watson (2010).25 This indicator is computable

in real time and so is arguably more relevant than the NBER indicator which gets released with

a considerable lag. Using this alternative measure of recessions we continue to find that return

predictability tends to be stronger in recessions than in expansions.

Cujean and Hasler (2016) provide a theoretical explanation of these patterns. In their anal-

ysis, investors assess uncertainty using different models which leads them to interpret the same

news differently depending on economic conditions. Predictability is concentrated in bad times

because this is when disagreement among investors tends to spike. To test whether disagreement

is higher during recessions, we proxy disagreement with the cross-sectional dispersion (75th mi-

nus the 25th percentile) in quarterly forecasts of the 3-month T-bill rate from the Survey of

Professional Forecasters. Regressing this proxy on a constant and the NBER recession index,

the estimated slope coefficient is positive (0.11) with a t-stat of 2.02 which, in the context of the

Cujean and Hasler model, is consistent with higher return predictability during recessions.

6.2 Variation in Risk Premia

Asset pricing models featuring habit persistence such as Campbell and Cochrane (1999) suggest

that risk premia move counter-cyclically and that the Sharpe ratio of the aggregate stock market

should be higher during recessions due to a reduced surplus consumption ratio. Wachter (2006)

derives implications for bond risk premia and the term structure of interest rates in a setting

with habit persistence.

23The p-value for the test is computed as follows: i) impose the null of equal-predictability across states i.e.,
compute ∆̂0 = ∆0 − µ̂(∆0) and ∆̂1 = ∆1 − µ̂(∆1); ii) estimate the distribution under the null by using an i.i.d.
bootstrap, to generate B bootstrap samples from ∆̂0 and ∆̂1 and for each of these compute Jb = µ(∆̂b

0)−µ(∆̂b
1);

iii) compute p-values as pval = 1
B

∑B
b=1 1[J > Jb] where J = µ(∆0)− µ(∆1) is based on the data.

24Engsted et al. (2013) find that bond return predictability is stronger during expansions than during recessions,
concluding that return predictability displays opposite patterns in the bond and stock markets. However, they
use returns on a 20-year Treasury bond obtained from Ibbotson International. As we have seen, bond return
predictability strongly depends on the bond maturity and so this is likely to explain the difference between their
results and ours.

25This measure is based on the difference between the current unemployment rate and a three-year moving
average of past unemployment rates.
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Creal and Wu (2016) extend the consumption-based framework of these papers by allowing

for time-variation in both prices and quantities of risk and show that this can introduce counter-

cyclical dynamics in bond risk premia. Moreover, habit formation in the model of Creal and

Wu (2016) depends not only on past consumption but also on past inflation and their calibrated

results suggest that inflation risk is an important driver of bond risk premia.26

To the extent that our forecasts of bond excess returns reflect time-varying risk premia,

following these papers we would expect (i) higher Sharpe ratios in recessions; (ii) a negative

correlation between economic growth and forecasts of bond risk premia; and (iii) a positive

correlation between inflation and consumption growth risk–key drivers of bond risk premia in

Creal and Wu (2016)–and forecasts of bond risk premia.

To test the first implication, Table 7 reports Sharpe ratios for the bond portfolios computed

separately for recession and expansion periods. Following authors such as Henkel et al. (2011)

these results are based on the full sample to ensure enough observations in recessions. With

exception of the univariate FB regressions, the Sharpe ratios are substantially higher during

recessions than in expansions.

Turning to the second implication, Panel A of Table 8 reports contemporaneous correlations

between forecasts of two-year bond excess returns and current real GDP growth. Except for

the models that use FB as a predictor, the correlations are negative and highly statistically

significant. Thus, lower economic growth appears to be associated with expectations of higher

bond excess returns as predicted by consumption-based models. Correlations are particularly

strong for the LN macro factor which is sensitive to the economic cycle and also is the predictor

that generates the highest economic gains.

To test the final implication, we show correlations between forecasts of two-year bond excess

returns and expected consumption growth risk (Panel B in Table 8) or expected inflation risk

(Panel C). We use a model-free approach to measure uncertainty about consumption growth

and inflation by means of the interquartile range of one-quarter-ahead forecasts of consumption

and consumer prices, respectively, obtained from the Survey of Professional Forecasters (SPF).

With exception of the FB model, we find strongly positive and, in most cases, highly sig-

nificant correlations between uncertainty about consumption growth and future inflation on the

one hand, and expected bond risk premia on the other. Moreover, the correlations are strongest

for expected inflation risk, consistent with the finding in Creal and Wu (2016) that time-varying

inflation risk is an important driver of bond risk premia.

6.2.1 Asset pricing models with learning dynamics

Giacoletti et al. (2016) show that time-varying risk premia can also arise in dynamic term

26Wright (2011) and Abrahams et al. (2013) also emphasize the importance of inflation risk to bond return
dynamics.
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structure models in which agents learn about the parameters of the data generating process or

about the value of an unobserved state variable.27

To explore the relation between this type of dynamics and our analysis, we compute the

correlation between our forecasts and those from Giacoletti et al. (2016) based on a learning

rule that updates beliefs using the history of bond yields and disagreement among investors.28

The results, presented in Panel D in Table 8, show quite large and mostly significant correlations

between the forecasts in Giacoletti et al. (2016) and our forecasts. These results suggest that

dynamic learning effects could account for some of our findings of return predictability in the

bond market.

6.3 Multivariate ICAPM test

Next, we explore the extent to which movements in bond risk premia arise from time variation

in the covariance between bond returns and shocks to the factors that enter in the pricing

kernel. To do so, we use the multivariate ICAPM setting of Bali (2008) and Bali and Engle

(2010). Specifically, we estimate a system of seemingly unrelated regressions for the four bond

maturities using three instruments (∆Inflation,∆Default,∆Term) that have been widely used

to capture variation in the state of the economy and, hence, are likely to affect the pricing kernel:

rxi,t+1 = αi + β × cov(rxi,t+1, rmkt,t+1) + γ × cov(rxi,t+1,∆Inflationt+1) (41)

+δ × cov(rxi,t+1,∆Defaultt+1) + θ × cov(rxi,t+1,∆Termt+1) + εit+1.

Here rxi,t+1 denotes the excess return on bond i, rmkt is the value-weighted excess return on

NYSE, AMEX and NASDAQ stocks, ∆Inflationt+1 is the change in the inflation rate computed

from the consumer price index, ∆Defaultt+1 is the change in the difference between yields on

BAA and AAA-rated bond portfolios, and ∆Termt+1 is the change in the term spread computed

as the difference between yields on Treasury bonds with long and short maturities. Conditional

covariances are computed using the dynamic conditional correlation (DCC) specification of Engle

(2002).

Panel A of Table 9 reports slope estimates and t-statistics from the model in (41).29 The

coefficient on the conditional covariance between bond and stock returns (β) is positive but

insignificant. Conversely, the coefficients on the conditional covariance between bond returns

and changes to either inflation or the default spread are negative and significant. This is as we

would expect: Assets whose returns are high when the default premium is unexpectedly high act

as a hedge against bad economic states and, thus, should earn a lower risk premium, consistent

27Giacoletti et al. (2016) provide evidence that accounting for real time learning and belief dispersion improves
forecasts of bond risk premia relative to a simple expectations hypothesis model of the term structure.

28We thank the authors for making this data available to us.
29As in Bali and Engle (2010), the slope coefficients β, γ, δ and θ, are pooled across the equations, while the

intercepts (αi) are allowed to differ across equations.
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with a negative estimate of δ. Similarly, assets that act as an inflation hedge can be expected

to earn a lower risk premium, consistent with a negative value for γ.

Finally, for each bond maturity and each model specification we computed the correlation

between the ICAPM-fitted risk premium estimates based on equation (41) and the forecasts from

our bond excess return equations, which is a key driver of the portfolio results. The results,

reported in Panel B of Table 9, show that the correlation estimates generally fall in the range

0.10-0.30 and are statistically significant.

Taken together, these findings suggest that time-variation in the conditional covariance be-

tween bond excess returns and innovations to a set of widely-used economic state variables can

account, at least in part, for movements in bond risk premia.

6.4 Economic Drivers of Portfolio Performance

So far we have seen that the risk premia generated by our prediction models are closely related to

the state of the macroeconomy and proxies for macroeconomic uncertainty in particular. We next

consider how the results from the portfolio analysis in Section 5 are related to macroeconomic

uncertainty and agents’ subjective beliefs about interest rates.

6.4.1 Macroeconomic uncertainty and portfolio performance

To relate time variation in bond risk premia to our earlier portfolio analysis, we compute the

time-series correlation between the realized utility obtained in the portfolio analysis and our

measures of GDP growth and inflation uncertainty.

The results, presented in panels E and F of Table 8, show that the realized utility from

the portfolio analysis is positively and significantly correlated with inflation uncertainty. The

correlation between realized utility and GDP growth uncertainty, while always positive, is smaller

in magnitude and less statistically significant. Hence, the bond portfolios perform better in

economic utility terms during times where macroeconomic uncertainty is high. This also tends

to be times with higher recession risk and indicates the importance of inflation risk as a driver

of portfolio performance.

6.4.2 Subjective forecasts of interest rates and portfolio performance

Using survey data on interest rate forecasts, Piazzesi et al. (2015) find that subjective risk premia

are less volatile and less cyclical than statistical risk premia. The reason for the discrepancy is

that survey forecasts of interest rates are made as if both the level and the slope of the yield

curve are more persistent than under common statistical models.
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Piazzesi et al. (2015) derive the following equation to construct subjective bond risk premia

from survey data on interest rate forecasts:

Et

[
rx

(n)
t,t+h

]
= E∗t

[
rx

(n)
t,t+h

]
+ (n− h)

(
E∗t

[
i
(n−h)
t+h

]
− Et

[
i
(n−h)
t+h

])
, (42)

where Et

[
rx

(n)
t,t+h

]
, the statistical premium, and Et

[
i
(n−h)
t+h

]
, the statistical interest-rate expec-

tation, are obtained from a VAR(1), and E∗t

[
i
(n−h)
t+h

]
, the subjective interest-rate expectation, is

obtained from the Blue Chip data.

To see whether the utility gains from our portfolio analysis might be related to biases in

market participants’ forecasts of future interest rates, we regress utility gains, computed relative

to the EH benchmark, on the absolute difference between the subjective and the statistical

interest rate forecasts, |E∗t [i
(n−h)
t+h ] − Et[i(n−h)

t+h ]|.30 Results from these regressions, reported in a

web Appendix, show a mostly positive (and statistically significant at the 10% level or better)

correlation between utility gains and differences in the subjective and statistical interest rate

forecasts.

These findings suggest that the scope for turning bond return predictability into a portfolio

strategy that enhances utility is larger during times with greater differences between statistical

and subjective expectations of future interest rates. A possible interpretation of this finding is

that biases in agents’ beliefs about future yields are in part accountable for the possibility of

increasing economic utility by exploiting the return predictability that we uncover.

6.5 Unspanned Macro Factors

Many studies use only information in the yield curve to predict bond excess returns so our finding

that the LN macro factor improves such forecasts may seem puzzling. However, as discussed by

Duffee (2013), a possible explanation is that the macro variables are hidden or unspanned risk

factors which do not show up in the yield curve because their effect on expected future bond

excess returns and expected future short rates work in opposite directions and so tend to cancel

out in (5).31 To see if this possibility holds up, we use Blue Chip survey forecasts of future

short-term (one-year) yields to construct an estimate of the first term on the right hand side in

(5), averaging, at each point in time, across the forecast horizons available from the Blue Chip

survey.32 To construct an estimate of the second term on the right hand side in (5), we use the

forecasts from the models introduced in Section 3.

30We also tried using the squared difference,
(
E∗t [i

(n−h)
t+h ]− Et[i(n−h)

t+h ]
)2

and found similar results.
31See Huang and Shi (2014) for a related analysis of unspanned macro risk factors.
32The Blue Chip survey forecasts are conducted for yields on US treasuries with maturities of 6 months, 1, 2,

5, 7, 10 and 30 years. The survey is run monthly and panel members provide forecasts of the average realization
over a particular calendar quarter beginning with the current quarter and extending four to five quarters into the
future. This implies that the forecast horizon depends on the month of the quarter in which the forecasts are
formed. To equate forecast horizons throughout the sample, we use the interpolation method suggested by Chun
(2011) and adopted in Giacoletti et al. (2016).
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Consistent with the unspanned risk factor story, Panels A1 and B1 of Table 10 show that our

forecasts of bond excess returns and survey expectations of future treasury yields are strongly

negatively correlated with three-factor (FB-CP-LN) R2 values ranging from 0.02 to 0.09 for

n = 2 years and from 0.10 to 0.18 for n = 5 years.

To relate this finding to our portfolio exercise, we expand the analysis to regress mean-

variance expected utilities on Blue Chip forecasts of future short yields. We show the results

for the two-year and five-year bond maturities in Panels A2 and B2 of Table 10. We find a

negative and highly statistically significant relation between expected future bond yields and

expected utility, suggesting that periods where yields are expected to be low coincide with high

risk premia and high expected future utility.

The final part of our analysis estimates bond risk premia by fitting an affine term structure

model to the cross section of bond yields. In Appendix B we explain how we use the approach

of Joslin et al. (2011) and Wright (2011) to fit term structure models with unspanned macro

risks to compute bond risk premia. We use the resulting risk premium estimates to regress, for

a given maturity n, the corresponding mean bond excess returns, rxt, on a constant and the

corresponding risk premium estimates rp
(n)
t ,

rx
(n)
t = µ+ βrp

(n)
t + ut, (43)

where rx
(n)
t denotes the predicted bond excess-return and rp

(n)
t denotes the risk premium esti-

mate. Table 11 reports the estimated coefficient β along with its t-statistics for the FB-CP-LN

model. For all specifications, the estimated β coefficient has the right sign (positive) and it is

statistically significant for the SV and TVP-SV models fitted to the two shortest bond maturi-

ties.

7 Model Combinations

In addition to parameter uncertainty, investors face model uncertainty along with the possibility

that the best model may change over time, i.e., model instability. This raises the question

whether, in real time, investors could have selected forecasting models that would have generated

accurate forecasts. Model uncertainty would not be a concern if all prediction models produced

improvements over the EH benchmark. However, as we have seen in the empirical analysis, there

is a great deal of heterogeneity across the models’ predictive performance. To address this issue,

we turn to model combination. Model combinations form portfolios of individual prediction

models. Similar to diversification benefits obtained for asset portfolios, model combination tends

to stabilize forecasts relative to forecasts generated by individual return prediction models.

Recent model combination approaches such as Bayesian model averaging and the optimal

prediction pool of Geweke and Amisano (2011) allow the weights on individual forecasting models
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to reflect their predictive accuracy. Such combination schemes can therefore accommodate time

variations in the relative performance of different models. This matters if the importance of

features such as time varying parameters and stochastic volatility dynamics changes over time.

A final reason for our interest in model combinations is that studies on predictability of

stock returns such as Rapach et al. (2010), Dangl and Halling (2012), Elliott et al. (2013) and

Pettenuzzo et al. (2014) find that combinations improve on the average performance of the

individual models. This result has only been established for stock returns, however.

To see if it carries over to bond returns, we consider three different combination schemes

applied to all possible models obtained by combining the FB, CP and LN predictors, estimated

using the linear, SV, TVP and TVP-SV approaches.

7.1 Combination Schemes

We begin by considering the equal-weighted pool (EW) which weighs each of the N models, Mi,

equally

p
(
rx

(n)
t+1

∣∣∣Dt) =
1

N

N∑
i=1

p
(
rx

(n)
t+1

∣∣∣Mi,Dt
)
, (44)

where
{
p
(
rx

(n)
t+1

∣∣∣Mi,Dt
)}N

i=1
denotes the predictive densities specified in (28) and (29). This

approach does not allow the weights on different models to change over time as a result of

differences in predictive accuracy.

We also consider Bayesian model averaging (BMA) weights:

p
(
rx

(n)
t+1

∣∣∣Dt) =
N∑
i=1

Pr
(
Mi| Dt

)
p
(
rx

(n)
t+1

∣∣∣Mi,Dt
)
. (45)

Here Pr
(
Mi| Dt

)
denotes the posterior probability of model i, relative to all models under

consideration, computed using information available at time t, Dt. This is given by

Pr
(
Mi| Dt

)
=

Pr
(
Dt
∣∣Mi

)
Pr (Mi)∑N

j=1 Pr (Dt|Mj) Pr (Mj)
. (46)

Pr
(
Dt
∣∣Mi

)
and Pr (Mi) denote the marginal likelihood and prior probability for model i, re-

spectively. We assume that all models are equally likely a priori and so set Pr (Mi) = 1/N .33

A limitation of the BMA approach is that it assumes that the true prediction model is

contained in the set of models under consideration. One approach that does not require this

33We follow Geweke and Amisano (2010) and compute the marginal likelihoods by cumulating the predictive log

scores of each model over time after conditioning on the initial warm-up estimation sample Pr
(
{rx(n)

τ+1}
t−1
τ=1

∣∣∣Mi

)
=

exp
(∑t

τ=t LSτ.i
)
.
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assumption is the optimal predictive pool (OW) proposed by Geweke and Amisano (2011). This

approach again computes a weighted average of the predictive densities:

p
(
rx

(n)
t+1

∣∣∣Dt) =

N∑
i=1

w∗t,i × p
(
rx

(n)
t+1

∣∣∣Mi,Dt
)
. (47)

The (N × 1) vector of model weights w∗t =
[
w∗t,1, ..., w

∗
t,N

]
is determined by recursively solving

the following maximization problem

w∗t = arg max
wt

t−1∑
τ=1

log

[
N∑
i=1

wti × Sτ+1,i

]
, (48)

where Sτ+1,i = exp (LSτ+1,i) is the recursively computed log-score for model i at time τ+1, and

w∗t ∈ [0, 1]N . As t→∞ the weights in (48) minimize the Kullback-Leibler distance between the

combined predictive density and the data generating process, see Hall and Mitchell (2007).

By recursively updating the combination weights in (45) and (48), these combination meth-

ods accommodate changes in the relative performance of the different models. This is empirically

important as we shall see.

7.2 Empirical Findings

Table 12 presents statistical and economic measures of out-of-sample forecasting performance

for the three combination schemes. The combinations generate similar R2
OoS values which range

between 3.1% and 5.5%. In all cases, the forecast combinations perform better than what one

would expect from simply selecting a single model at random.

The predictive likelihood tests shown in Panel B of Table 12 strongly reject the null of equal

predictive accuracy relative to the EH model. Finally, the CER values range from 0.4% for

the shortest bond maturity (n = 2) to 2-3% for the longest maturity (n = 5) with the optimal

weights and BMA weights generally being better than those based on the EW combination.

8 Conclusion

We analyze predictability of excess returns on US Treasury bonds with maturities ranging from

two through five years. As predictors we use the forward spread variable of Fama and Bliss

(1987), the Cochrane and Piazzesi (2005) combination of forward rates, and the Ludvigson

and Ng (2009) macro factors. Our analysis allows for time varying regression parameters and

stochastic volatility dynamics and accounts for both parameter estimation error and model

uncertainty.

We find evidence of both statistically and economically significant predictability in bond

excess returns. This contrasts with the findings of Thornton and Valente (2012) who conclude
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that the statistical evidence on bond return predictability fails to translate into economic return

predictability. We find that such differences can be attributed to the importance of accounting

for the information in (unspanned) macro factors along with modeling stochastic volatility and

time-varying parameters in monthly bond excess returns. Consistent with unspanned risk factor

models, forecasts of bond excess returns that incorporate information on macro variables are

strongly negatively correlated with survey forecasts of future short term yields.

Our finding of economically significant return predictability in the US Treasury bond market

can be understood in terms of two broad themes. First, it is possible that our forecasting models

incorporate a larger information set or use more sophisticated methods than those adopted by

investors to form yield expectations. The mostly positive correlation between utility gains from

using our bond return forecasts and differences between subjective (survey) and statistical inter-

est rate forecasts is consistent with this story.34 The importance to bond return predictability

of the composite Ludvigson-Ng macro factor and of stochastic volatility dynamics also makes

this explanation more plausible than if, say, we had found that simpler predictors and simpler

forecasting models accounted for the economic gains from return predictability.

Second, it is possible that we used the wrong preferences to evaluate the economic significance

of return predictability, implicitly leading to a misspecified model for the market equilibrium.

Consistent with this story, our bond return forecasts are strongly positively correlated with infla-

tion uncertainty and negatively correlated with economic growth, suggesting that time varying

risk premia could be an important driver of the results. The performance of portfolios formed

using our bond excess return forecasts, also tends to be higher during times when macroeconomic

uncertainty is high and risk premia could be higher than assumed.

While, ultimately, short of observing investors’ preferences and beliefs, it is difficult to quan-

tify the relative importance of these two explanations to our findings, our diagnostic tests suggest

that both factors are at play.
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Appendix A Bayesian estimation and predictions

This appendix explains how we obtain parameter estimates for the models described in Section

3 and shows how we use these to generate predictive densities for bond excess returns. We begin

by discussing the linear regression model in (17), then turn to the SV model in (21)-(22), the

TVP model in (23)-(24), and the general TVP-SV model in (25)-(27).

A.1 Constant coefficient, constant volatility model

The goal for the simple linear regression model is to obtain draws from the joint posterior dis-

tribution p
(
µ,β, σ−2

ε

∣∣Dt), where Dt denotes all information available up to time t. Combining

the priors in (18)-(20) with the likelihood function yields the following posteriors:[
µ
β

]∣∣∣∣σ−2
ε ,Dt ∼ N

(
b,V

)
, (A-1)

and

σ−2
ε

∣∣µ,β,Dt ∼ G (s−2, v
)
, (A-2)

where

V =

[
V −1 + σ−2

ε

t−1∑
τ=1

x(n)
τ x(n)′

τ

]−1

,

b = V

[
V −1b+ σ−2

ε

t−1∑
τ=1

x(n)
τ rx

(n)
τ+1

]
, (A-3)

v = (1 + v0) (t− 1) .

and

s2 =

∑t−1
τ=1

(
rx

(n)
τ+1 − µ− β

′x
(n)
τ

)2
+

((
s

(n)
rx,t

)2
× v0 (t− 1)

)
v

. (A-4)

Gibbs sampling can be used to iterate back and forth between (A-1) and (A-2), yielding a series

of draws for the parameter vector
(
µ,β, σ−2

ε

)
. Draws from the predictive density p

(
rx

(n)
t+1

∣∣∣Dt)
can then be obtained by noting that

p
(
rx

(n)
t+1

∣∣∣Dt) =

∫
p
(
rx

(n)
t+1

∣∣∣µ,β, σ−2
ε ,Dt

)
p
(
µ,β, σ−2

ε

∣∣Dt) dµdβdσ−2
ε . (A-5)

A.2 Stochastic Volatility model35

The SV model requires specifying a joint prior for the sequence of log return volatilities,

ht, the parameters λ0 and λ1, and the error precision, σ−2
ξ . Writing p

(
ht, λ0, λ1, σ

−2
ξ

)
=

35See Pettenuzzo et al. (2014) for a description of a similar algorithm where the priors are modified to impose
economic constraints on the model parameters.
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p
(
ht
∣∣λ0, λ1, σ

−2
ξ

)
p (λ0, λ1) p

(
σ−2
ξ

)
, it follows from (22) that

p
(
ht
∣∣λ0, λ1, σ

−2
ξ

)
=

t−1∏
τ=1

p
(
hτ+1|hτ , λ0, λ1, σ

−2
ξ

)
p (h1) , (A-6)

with hτ+1|hτ , λ0, λ1, σ
−2
ξ ∼ N

(
λ0 + λ1hτ , σ

2
ξ

)
. Thus, to complete the prior elicitation for

p
(
ht, λ0, λ1, σ

−2
ξ

)
, we only need to specify priors for h1, the initial log volatility, λ0, λ1, and

σ−2
ξ . We choose these from the normal-gamma family as follows:

h1 ∼ N
(

ln
(
s

(n)
rx,t

)
, kh

)
, (A-7)[

λ0

λ1

]
∼ N

([
mλ0

mλ1

]
,

[
V λ0

0
0 V λ1

])
, λ1 ∈ (−1, 1) , (A-8)

and

σ−2
ξ ∼ G

(
1/kξ, υξ (t− 1)

)
. (A-9)

We set kξ = 0.01 and set the remaining hyperparameters in (A-7) and (A-9) at kh = 10

and υξ = 1 to imply uninformative priors, thus allowing the data to determine the degree

of time variation in the return volatility. Following Clark and Ravazzolo (2015) we set the

hyperparameters to mλ0
= 0, mλ1

= 0.9, V λ0
= 0.25, and V λ0

= 1.0e−4. This corresponds to

setting the prior mean and standard deviation of the intercept to 0 and 0.5, respectively, and

represents uninformative priors on the intercept of the log volatility specification and a prior

mean of the AR(1) coefficient, λ1, of 0.9 with a standard deviation of 0.01. This is a more

informative prior that matches persistent dynamics in the log volatility process.

To obtain draws from the joint posterior distribution p
(
µ,β, ht, λ0, λ1, σ

−2
ξ

∣∣∣Dt) under the

SV model, we use the Gibbs sampler to draw recursively from the following four conditional

distributions:

1. p
(
ht
∣∣µ,β, λ0, λ1, σ

−2
ξ ,Dt

)
.

2. p
(
µ,β|ht, λ0, λ1, σ

−2
ξ ,Dt

)
.

3. p
(
λ0, λ1|µ,β, ht, σ−2

ξ ,Dt
)
.

4. p
(
σ−2
ξ

∣∣∣µ,β, ht, λ0, λ1,Dt
)
.

We simulate from each of these blocks as follows. Starting with p
(
ht
∣∣µ,β, λ0, λ1, σ

−2
ξ ,Dt

)
,

we employ the algorithm of Kim et al. (1998).36 Define rx
(n)∗
τ+1 = rx

(n)
τ+1 − µ − β′x

(n)
τ and note

that r
(n)∗
τ+1 is observable conditional on µ, β. Next, rewrite (21) as

rx
(n)∗
τ+1 = exp (hτ+1)uτ+1. (A-10)

36We apply the correction to the ordering of steps detailed in Del Negro and Primiceri (2015).
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Squaring and taking logs on both sides of (A-10) yields a new state space system that replaces

(21)-(22) with

rx
(n)∗∗
τ+1 = 2hτ+1 + u∗∗τ+1, (A-11)

hτ+1 = λ0 + λ1hτ + ξτ+1, (A-12)

where rx
(n)∗∗
τ+1 = ln

[(
rx

(n)∗
τ+1

)2
]
, and u∗∗τ+1 = ln

(
u2
τ+1

)
, with u∗∗τ independent of ξs for all τ and s.

Since u∗∗t+1 ∼ ln
(
χ2

1

)
, we cannot resort to standard Kalman recursions and simulation algorithms

such as those in Carter and Kohn (1994) or Durbin and Koopman (2002). To get around this

problem, Kim et al. (1998) employ a data augmentation approach and introduce a new state

variable sτ+1, τ = 1, .., t− 1, turning their focus to drawing from p
(
ht
∣∣µ,β, λ0, λ1, σ

−2
ξ , st,Dt

)
instead of p

(
ht
∣∣µ,β, λ0, λ1, σ

−2
ξ ,Dt

)
, where st = {s2, ..., st} denotes the history up to time t of

the new state variable s.

The introduction of the state variable sτ+1 allows us to rewrite the linear non-Gaussian state

space representation in (A-11)-(A-12) as a linear Gaussian state space model, making use of the

following approximation,

u∗∗τ+1 ≈
7∑
j=1

qjN
(
mj − 1.2704, v2

j

)
, (A-13)

where mj , v
2
j , and qj , j = 1, 2, ..., 7, are constants specified in Kim et al. (1998) and thus need

not be estimated. In turn, (A-13) implies

u∗∗τ+1

∣∣ sτ+1 = j ∼ N
(
mj − 1.2704, v2

j

)
, (A-14)

where each state has probability

Pr (sτ+1 = j) = qj . (A-15)

Draws for the sequence of states st can be easily obtained, noting that each of its elements can

be independently drawn from the discrete density defined by

Pr
(
sτ+1 = j|µ,β, λ0, λ1, σ

−2
ξ , ht,Dt

)
=

qifN

(
rx

(n)∗∗
τ+1

∣∣∣ 2hτ+1 +mj − 1.2704, v2
j

)
∑7

l=1 qlfN

(
rx

(n)∗∗
τ+1

∣∣∣ 2hτ+1 +ml − 1.2704, v2
l

) .
(A-16)

for τ = 1, ..., t− 1 and j = 1, ..., 7, and where fN denotes the kernel of a normal density. Next,

conditional on st, we can rewrite the nonlinear state space system as follows:

rx
(n)∗∗
τ+1 = 2hτ+1 + eτ+1,

hτ+1 = λ0 + λ1hτ + ξτ+1, (A-17)

where eτ+1 ∼ N
(
mj − 1.2704, v2

j

)
with probability Pr

(
sτ+1 = j|µ,β, λ0, λ1, σ

−2
ξ , ht,Dt

)
. For

this linear Gaussian state space system, we can use the algorithm of Carter and Kohn (1994) to

draw the whole sequence of stochastic volatilities, ht.
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Moving on to p
(
µ,β|ht, λ0, λ1, σ

−2
ξ ,Dt

)
, conditional on ht it is straightforward to draw µ

and β and apply standard results. Specifically,[
µ
β

]∣∣∣∣ht, λ0, λ1, σ
−2
ξ ,Dt ∼ N

(
b,V

)
, (A-18)

with

V =

{
V −1 +

t−1∑
τ=1

1

exp (hτ+1)2x
(n)
τ x(n)′

τ

}−1

,

b = V

{
V −1b+

t−1∑
τ=1

1

exp (hτ+1)2x
(n)
τ rx

(n)
τ+1

}
.

Next, the distribution p
(
λ0, λ1|µ,β, ht, σ−2

ξ ,Dt
)

takes the form

λ0, λ1|µ,β, ht, σ−2
ξ ,Dt ∼ N

([
mλ0

mλ1

]
,Vλ

)
× λ1 ∈ (−1, 1) ,

where

Vλ =

{[
V −1
λ0

0

0 V −1
λ1

]
+ σ−2

ξ

t−1∑
τ=1

[
1
hτ

]
[1, hτ ]

}−1

, (A-19)

and [
mλ0

mλ1

]
= Vλ

{[
V −1
λ0

0

0 V −1
λ1

] [
mλ0

mλ1

]
+ σ−2

ξ

t−1∑
τ=1

[
1
hτ

]
hτ+1

}
. (A-20)

Finally, the posterior distribution for p
(
σ−2
ξ

∣∣∣µ,β, ht, λ0, λ1,Dt
)

is readily available using

σ−2
ξ

∣∣∣µ,β, ht, λ0, λ1,Dt ∼ G

[kξvξ(t− 1) +
∑t−1

τ=1 (hτ+1 − λ0 − λ1hτ )2(
1 + vξ

)
(t− 1)

]−1

,
(
1 + vξ

)
(t− 1)

 .

(A-21)

Draws from the predictive density p
(
rx

(n)
t+1

∣∣∣Dt) can be obtained by noting that

p
(
rx

(n)
t+1

∣∣∣Dt) =

∫
p
(
rx

(n)
t+1

∣∣∣ht+1, µ,β, h
t, λ0, λ1, σ

−2
ξ ,Dt

)
×p
(
ht+1|µ,β, ht, λ0, λ1, σ

−2
ξ ,Dt

)
(A-22)

×p
(
µ,β, ht, λ0, λ1, σ

−2
ξ

∣∣∣Dt) dµdβdht+1dλ0dλ1dσ
−2
ξ .

The first term in the integral above, p
(
rx

(n)
t+1

∣∣∣ht+1, µ,β, h
t, λ0, λ1, σ

−2
ξ ,Dt

)
, represents the pe-

riod t + 1 predictive density of bond excess returns, treating model parameters as if they were

known with certainty, and so is straightforward to calculate. The second term in the integral,

p
(
ht+1|µ,β, ht, λ0, λ1, σ

−2
ξ ,Dt

)
, reflects how period t+ 1 volatility may drift away from ht over
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time. Finally, the last term in the integral, p
(
µ,β, ht, λ0, λ1, σ

−2
ξ

∣∣∣Dt), measures parameter

uncertainty in the sample.

To obtain draws for p
(
rx

(n)
t+1

∣∣∣Dt), we proceed in three steps:

1. Simulate from p
(
µ,β, ht, λ0, λ1, σ

−2
ξ

∣∣∣Dt): draws from p
(
µ,β, ht, λ0, λ1, σ

−2
ξ

∣∣∣Dt) are ob-

tained from the Gibbs sampling algorithm described above.

2. Simulate from p
(
ht+1|µ,β, ht, λ0, λ1, σ

−2
ξ ,Dt

)
: having processed data up to time t, the

next step is to simulate the future volatility, ht+1. For a given ht and σ−2
ξ , note that µ and β

and the history of volatilities up to t become redundant, i.e., p
(
ht+1|µ,β, ht, λ0, λ1, σ

−2
ξ ,Dt

)
=

p
(
ht+1|ht, λ0, λ1, σ

−2
ξ ,Dt

)
. Note also that (22) along with the distributional assumptions

made on ξτ+1 imply that

ht+1|ht, λ0, λ1, σ
−2
ξ ,Dt ∼ N

(
λ0 + λ1ht, σ

2
ξ

)
. (A-23)

3. Simulate from p
(
rx

(n)
t+1

∣∣∣ht+1, µ,β, h
t, λ0, λ1, σ

−2
ξ ,Dt

)
: For a given ht+1, µ, and β, note

that ht, λ0, λ1, and σ−2
ξ become redundant, i.e., p

(
rx

(n)
t+1

∣∣∣ht+1, µ,β, h
t, λ0, λ1, σ

−2
ξ ,Dt

)
=

p
(
rx

(n)
t+1

∣∣∣ht+1, µ,β,Dt
)
. Then use the fact that

rx
(n)
t+1

∣∣∣ht+1, µ,β,Dt ∼ N
(
µ+ β′x(n)

τ , exp (ht+1)
)
. (A-24)

A.3 Time varying Parameter Model

In addition to specifying prior distributions and hyperparameters for [µ,β]′ and σ2
ε , the TVP

model in (23)-(24) requires eliciting a joint prior for the sequence of time varying parameters

θt = {θ2, ..., θt}, the parameter vector γθ, and the variance covariance matrix Q. For [µ,β]′

and σ2
ε , we follow the same prior choices made for the linear model:[

µ
β

]
∼ N (b,V ) , (A-25)

and

σ−2
ε ∼ G

((
s

(n)
rx,t

)−2
, v0 (t− 1)

)
. (A-26)

Turning to θt, γθ, and Q, we first write p
(
θt,γθ,Q

)
= p

(
θt
∣∣γθ,Q) p (γθ) p (Q), and note that

(24) along with the assumption that θ1 = 0 implies

p
(
θt
∣∣γθ,Q) =

t−1∏
τ=1

p (θτ+1|θτ ,γθ,Q) , (A-27)

with θτ+1|θτ ,γθ,Q ∼ N (diag (γθ)θτ ,Q) . Thus, to complete the prior elicitation for p
(
θt,γθ,Q

)
we need to specify priors for γθ and Q.
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We choose an Inverted Wishart distribution for Q:

Q ∼ IW
(
Q, vQ (t0 − 1)

)
, (A-28)

with

Q = kQvQ (t0 − 1) V. (A-29)

kQ controls the degree of variation in the time-varying regression coefficients θτ , with larger

values of kQ implying greater variation in θτ . Our analysis sets kQ =
(
ψ/100

)2
and vQ = 10.

These are more informative priors than the earlier choices and limit the changes to the regression

coefficients to be ψ/100 on average.

We specify the elements of γθ to be a priori independent of each other with generic element

γiθ
γiθ ∼ N

(
mγθ

, V γθ

)
, γiθ ∈ (−1, 1) , i = 1, ..., k. (A-30)

where mγθ
= 0.8, and V γθ

= 1.0e−6, implying relatively high autocorrelations.

To obtain draws from the joint posterior distribution p
(
µ,β,θt,γθ,Q

∣∣Dt) under the TVP

model we use the Gibbs sampler to draw recursively from the following conditional distributions:

1. p
(
θt
∣∣µ,β, σ−2

ε ,γθ,Q,Dt
)
.

2. p
(
µ,β,σ−2

ε

∣∣θt,γθ,Q,Dt) .
3. p

(
γθ|µ,β,σ−2

ε ,θt,Q,Dt
)
.

4. p
(
Q|µ,β, σ−2

ε ,θt,γθ,Dt
)
.

We simulate from each of these blocks as follows. Starting with θt, we focus on p
(
θt
∣∣µ,β, σ−2

ε ,γθ,Q,Dt
)
.

Define rx
(n)∗
τ+1 = rx

(n)
τ+1 − µ− β′x

(n)
τ and rewrite (23) as follows:

rx
(n)∗
τ+1 = µτ − β′τx(n)

τ + ετ+1 (A-31)

Knowledge of µ and β makes rx
(n)∗
τ+1 observable, and reduces (23) to the measurement equation

of a standard linear Gaussian state space model with homoskedastic errors. Thus, the sequence

of time varying parameters θt can be drawn from (A-31) using the algorithm of Carter and

Kohn (1994).

Moving on to p
(
µ,β,σ−2

ε

∣∣θt,γθ,Q,Dt) , conditional on θt it is straightforward to draw µ,β,

and σ−2
ε by applying standard results. Specifically,[

µ
β

]∣∣∣∣σ−2
ε ,θt,γθ,γθ,Q,Dt ∼ N

(
b,V

)
, (A-32)

and

σ−2
ε

∣∣µ,β,θt,Q,Dt ∼ G (s−2, v
)
, (A-33)
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where

V =

[
V −1 + σ−2

ε

t−1∑
τ=1

x(n)
τ x(n)′

τ

]−1

,

b = V

[
V −1b+ σ−2

ε

t−1∑
τ=1

x(n)
τ

(
rx

(n)
τ+1 − µτ − β

′
τx

(n)
τ

)]
, (A-34)

s2 =

∑t−1
τ=1

(
rx

(n)∗
τ+1 − µτ − β

′
τx

(n)
τ

)2
+

((
s

(n)
rx,t

)2
× v0 (t− 1)

)
v

, (A-35)

and v = (1 + v0) (t− 1) .

Next, obtaining draws from p
(
γθ|µ,β,σ−2

ε ,θt,Q,Dt
)

is straightforward. The i−th element

γiθ is drawn from the following distribution

γiθ
∣∣µ,β,σ−2

ε ,θt,Q,Dt ∼ N
(
mi
γθ
, V

i
γθ

)
× γiθ ∈ (−1, 1) (A-36)

where

V
i
γθ

=

[
V −1
γθ

+ Qii
t−1∑
τ=1

(
θiτ
)2]−1

,

mi
γθ

= V
i
γθ

[
V −1
γθ
mγθ

+ Qii
t−1∑
τ=1

θiτθ
i
τ+1

]
, (A-37)

and Qii is the i−th diagonal element of Q−1.

As for p
(
Q|µ,β, σ−2

ε ,θt,γθ,Dt
)
, we have that

Q|µ,β, σ−2
ε ,θt,Dt ∼ IW

(
Q, vQ

)
, (A-38)

where

Q = Q +

t−1∑
τ=1

(θτ+1 − diag (γθ)θτ ) (θτ+1 − diag (γθ)θτ )′ . (A-39)

and vQ =
(
1 + vQ

)
(t− 1).

Finally, draws from the predictive density p
(
rx

(n)
t+1

∣∣∣Dt) can be obtained by noting than

p
(
rx

(n)
t+1

∣∣∣Dt) =

∫
p
(
rx

(n)
t+1

∣∣∣θt+1, µ,β,θ
t,γθ,Q, σ

−2
ε ,Dt

)
×p
(
θt+1|µ,β,θt,γθ,Q, σ−2

ε ,Dt
)

(A-40)

×p
(
µ,β,θt,γθ,Q,σ

−2
ε

∣∣Dt) dµdβdθt+1dγθdQdσ
−2
ε .

The first term in the integral above, p
(
rx

(n)
t+1

∣∣∣θt+1, µ,β,θ
t,γθ,Q, σ

−2
ε ,Dt

)
, represents the pe-

riod t + 1 predictive density of bond excess returns, treating model parameters as if they were
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known with certainty, and so is straightforward to calculate. The second term in the integral,

p
(
θt+1|µ,β,θt,γθ,Q, σ−2

ε ,Dt
)
, reflects that the regression parameters may drift away from θt

over time. Finally, the last term in the integral, p
(
µ,β,θt,γθ,Q,σ

−2
ε

∣∣Dt), measures parameter

uncertainty.

To obtain draws for p
(
rx

(n)
t+1

∣∣∣Dt), we proceed in three steps:

1. Simulate from p
(
µ,β,θt,γθ,Q,σ

−2
ε

∣∣Dt): draws from p
(
µ,β,θt,γθ,Q,σ

−2
ε

∣∣Dt) are ob-

tained from the Gibbs sampling algorithm described above;

2. Simulate from p
(
θt+1|µ,β,θt,γθ,Q, σ−2

ε ,Dt
)
: For a given θt and Q, note that µ, β, σ−2

ε ,

and the history of regression parameters up to t become redundant, i.e., p
(
θt+1|µ,β,θt,γθ,Q, σ−2

ε ,Dt
)

=

p
(
θt+1|θt,γθ,Q,Dt

)
. Note also that (24), along with the distributional assumptions made

with regards to ητ+1, imply that

θt+1|θt,γθ,Q,Dt ∼ N (diag (γθ)θt,Q) . (A-41)

3. Simulate from p
(
rx

(n)
t+1

∣∣∣θt+1, µ,β,θ
t,γθ,Q, σ

−2
ε ,Dt

)
: For a given θt+1, µ, β, and σ−2

ε , θt,

γθ, andQ become redundant so p
(
rx

(n)
t+1

∣∣∣θt+1, µ,β,θ
t,γθ,Q, σ

−2
ε ,Dt

)
= p

(
rx

(n)
t+1

∣∣∣θt+1, µ,β, σ
−2
ε ,Dt

)
.

Then use the fact that

rx
(n)
t+1

∣∣∣θt+1, µ,β, σ
−2
ε ,Dt ∼ N

(
(µ+ µt) + (β + βt)

′ x(n)
τ , σ2

ε

)
. (A-42)

A.4 Time varying Parameter, Stochastic Volatility Model

Our priors for the TVP-SV model combine the earlier choices for the TVP and SV models, i.e.,

(A-25) and (A-26) for the regression parameters, (A-7) and (A-9) for the SV component, and

(A-28) and (A-29) for the TVP component.

To obtain draws from the joint posterior distribution p
(
µ,β,θt,γθ,Q,h

t, λ0, λ1, σ
−2
ξ

∣∣∣Dt)
under the TVP-SV model, we use the Gibbs sampler to draw recursively from the following

seven conditional distributions:

1. p
(
θt
∣∣µ,β, λ0, λ1, σ

−2
ε ,γθ,Q,Dt

)
.

2. p
(
µ,β, λ0, λ1, σ

−2
ε

∣∣θt,γθ,Q,Dt) .
3. p

(
ht
∣∣µ,β, λ0, λ1, σ

−2
ξ ,Dt

)
.

4. p
(
γθ|µ,β,σ−2

ε ,θt,Q,Dt
)
.

5. p
(
Q|µ,β, λ0, λ1, σ

−2
ε ,θt,γθ,Dt

)
.

6. p
(
λ0, λ1|µ,β, ht, σ−2

ξ ,Dt
)
.
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7. p
(
σ−2
ξ

∣∣∣µ,β, ht, λ0, λ1,Dt
)
.

With minor modifications, these steps are similar to the steps described in the TVP and SV

sections above. Draws from the predictive density p
(
rx

(n)
t+1

∣∣∣Dt) can be obtained from

p
(
rx

(n)
t+1

∣∣∣Dt) =

∫
p
(
rx

(n)
t+1

∣∣∣θt+1, ht+1, µ,β,θ
t,γθ,Q, h

t, λ0, λ1, σ
−2
ξ ,Dt

)
×p
(
θt+1, ht+1|µ,β,θt,γθ,Q, ht, λ0, λ1, σ

−2
ξ ,Dt

)
(A-43)

×p
(
µ,β,θt,γθ,Q,h

t, λ0, λ1, σ
−2
ξ

∣∣∣Dt) dµdβdθt+1dγθdQdh
t+1dλ0dλ1dσ

−2
ξ .

and following the steps described in the SV and TVP sections above.

Appendix B Estimation of bond risk premia

In this appendix we describe how we estimate bond risk premia using a dynamic Gaussian

affine term structure model. Yields are first collected in a vector, Yt, which contains rates for J

different maturities. The risk factors that determine the yields are denoted by Zt; these include

both macro factors (Mt) and yield factors (FLt ) extracted as the first L principal components

of yields, i.e., Zt =
(
M ′t , F

L′
t

)
. The macro factors can be unspanned, i.e., they are allowed to

predict future yields without having additional explanatory power for current yields beyond the

yield factors.

We begin by assuming that the continuously compounded nominal one-period interest rate

rt depends on the yield factors, but not on the macro factors,

rt = δ0 + δ′FF
L
t + 0′MMt. (B-1)

Next, the risk factors are assumed to follow a Gaussian vector autoregression (VAR) under the

risk neutral probability measure:

FLt = µQ + φQFLt−1 + 0′L×MMt−1 + ΣεQt , (B-2)

where εQt ∼ N (0, I). Finally, the evolution in Zt under the physical measure takes the form:

Zt = µ+ φZt−1 + Σεt, (B-3)

where εt ∼ N (0, I). Under these assumptions bond prices are exponentially affine in the yield

factors and do not depend on the macro factors,

P
(n)
t = exp

(
An + BnFLt + 0′M×MMt

)
, (B-4)
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where A = A
(
µQ, φQ, δ0, δF ,Σ

)
and B = B

(
φQ, δF

)
are affine loadings which are given by the

following recursions:

An+1 = An +
(
µQ
)′
Bn +

1

2
B′nΣΣ′Bn − δ0

Bn+1 =
(
φQ
)′
Bn − δF

(B-5)

with starting values A0 = 0 and B0 = 0.

Using these coefficients, the model-implied yields are obtained as

y
(n)
t = − 1

n
log
(
P

(n)
t

)
= Aj +BnF

L
t , (B-6)

where

An = − 1

n
An, Bn = − 1

n
Bn. (B-7)

Similarly, the risk neutral price of a n-period bond, P̃
(n)
t , and its implied yield, ỹ

(n)
t , can be

calculated as

P̃
(n)
t = exp

(
Ãn + B̃nZt

)
, (B-8)

and

ỹ
(n)
t = Ãn + B̃nZt, (B-9)

where

Ãn = − 1

n
Ãn, B̃n = − 1

n
B̃n. (B-10)

and where Ãn and B̃n are given by the following recursions:

Ãn+1 = Ãn + µ′B̃n +
1

2
B̃′nΣΣ′B̃n − δ0

B̃n+1 = φ′B̃j − δF
(B-11)

initialized at Ã0 = 0 and B̃0 = 0.

We follow Joslin et al. (2011) and Wright (2011) and include in FLt the first three principal

components of zero-coupon bond yields using maturities ranging from three months to ten years.

As macro factors, Mt, we use exponentially weighted moving averages of monthly inflation and

IPI growth. The data used for estimation are monthly yields on zero-coupon bonds, inflation,

and IPI growth, from 1982:01 to 2015:12. Our estimation approach also follows closely Joslin

et al. (2011). Using the resulting estimates of the model parameters, we compute the risk

premium at all maturities as the difference between the yields computed under the risk neutral

measure, Q, and the yields calculated under the physical measure, i.e.,

rp
(n)
t = y

(n)
t − ỹ(n)

t . (B-12)
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Figure 1. Bond excess returns
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This figure shows time series of monthly bond excess returns (in percentage terms) for maturities (n) ranging

from 2 years through 5 years. Monthly bond excess returns, rx
(n)

t+1/12, are computed from monthly yields, y
(n)
t ,

and are expressed in deviations from the 1-month T-bill rate, rx
(n)

t+1/12 = r
(n)

t+1/12 − (1/12)y
1/12
t , with r

(n)

t+1/12 =

ny
(n)
t − (n− 1/12)y

n−1/12

t+1/12 . The sample ranges from January 1962 to December 2015.
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Figure 2. Parameter estimates for bond return forecasting model
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This figure displays parameter estimates for the FB-CP-LN model used to forecast monthly 3-year bond excess

returns using as predictors the Fama-Bliss (FB), Cochrane-Piazzesi (CP), and Ludvigson-Ng (LN) variables. The

blue solid line represents the linear, constant coefficient model (Linear); the red dashed line tracks the parameter

estimates for the time-varying parameter model (TVP); the green dashed-dotted line depicts the parameters

for the stochastic volatility model (SV), while the dotted light-blue line shows estimates for the time-varying

parameter, stochastic volatility (TVP-SV) model. The top left panel plots estimates of the intercept and the top

right panel displays the coefficients on the FB predictor. The bottom left and right panels plot the coefficients on

the CP and LN factors, respectively. The sample ranges from January 1962 to December 2015 and the parameter

estimates are based on full-sample information.
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Figure 3. Posterior densities for model parameters
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This figure displays posterior densities for the coefficients of the FB-CP-LN return model fitted to 3-year Treasury

bonds, using as predictors the Fama-Bliss (FB), Cochrane-Piazzesi (CP), and Ludvigson-Ng (LN) factors. The

blue solid line represents the linear, constant coefficient (Linear) model; the red dashed line shows the parame-

ter posterior density for the time-varying parameter (TVP) model; the green dashed-dotted line represents the

stochastic volatility (SV) model, while the dotted light-blue line shows the posterior density for the time-varying

parameter, stochastic volatility (TVP-SV) model. The first panel shows densities for the intercept. The second

panel shows densities for the coefficient on the FB predictor. The third and fourth panels show densities for the

coefficients on the CP and LN factors, respectively. The posterior density estimates shown here are based on their

values as of 2015:12.
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Figure 4. Posterior densities for bond returns
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This figure shows the posterior density for excess returns on a three-year Treasury bond using the univariate

Ludvigson-Ng (LN) state variable as a predictor. The LN variable is set at its sample mean LN (top panel),

LN−2stdev (LN) (middle panel), and LN+2stdev (LN) (bottom panel). The blue solid line represents the linear,

constant coefficient (Linear) model. the red dashed line tracks densities for the time-varying parameter (TVP)

model. The green dashed-dotted line represents the stochastic volatility (SV) model, and the dotted light-blue

line refers to the time varying parameter, stochastic volatility (TVP-SV) model. All posterior density estimates

are based on the full data sample at the end of 2015.
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Figure 5. Conditional mean and volatility estimates for bond excess returns
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The top panel shows time-series of expected bond excess returns obtained from a range of models used to forecast

monthly returns on a three-year Tresury bond using as predictors the Fama-Bliss (FB), Cochrane-Piazzesi (CP),

and Ludvigson-Ng (LN) factors. The blue solid line represents the linear, constant coefficient (Linear) model;

the red dashed line tracks the time-varying parameter (TVP) model; the green dashed-dotted line depicts the

stochastic volatility (SV) model, while the dotted light-blue line displays values for the time varying parameter,

stochastic volatility (TVP-SV) model. The bottom panel displays volatility estimates for the FB-CP-LN models.

The sample ranges from January 1962 to December 2015 and the estimates are based on full-sample information.
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Figure 6. Cumulative sum of squared forecast error differentials
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This figure shows the recursively calculated sum of squared forecast errors for the expectations hypothesis (EH)

model minus the sum of squared forecast errors for a forecasting model with time-varying expected returns for a

bond with a two year maturity, (n = 2). Each month we recursively estimate the parameters of the forecasting

models and generate one-step-ahead forecasts of bond excess returns which are in turn used to compute out-of-

sample forecasts. This procedure is applied to the EH model, which is our benchmark, as well as to forecasting

models based on the Fama-Bliss (FB) predictor (1st window), the Cochrane-Piazzesi (CP) factor (2nd window),

the Ludvigson-Ng (LN) factor (3rd window), and a multivariate model with all three predictors included (4th

window). We then plot the cumulative sum of squared forecast errors (SSEt) of the EH forecasts (SSEEHt ) minus

the corresponding value from the model with time-varying mean, SSEEHt −SSEt. Values above zero indicate that

a forecasting model with time-varying predictors produces more accurate forecasts than the EH benchmark, while

negative values suggest the opposite. The blue solid line represents the linear, constant coefficient (Linear) model;

the red dashed line tracks the time-varying parameter (TVP) model; the green dashed-dotted line represents the

stochastic volatility (SV) model, while the dotted light-blue line refers to the time-varying parameter, stochastic

volatility (TVP-SV) model. The out-of-sample period is 1990:01 - 2015:12.
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Figure 7. Cumulative sum of log-score differentials
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This figure shows the recursively calculated sum of log predictive scores from forecasting models with time-varying

predictors minus the corresponding sum of log predictive scores for the EH model, using a 2-year Treasury bond.

Each month we recursively estimate the parameters of the forecasting models and generate one-step-ahead density

forecasts of bond excess returns which are in turn used to compute log-predictive scores. This procedure is

applied to the benchmark EH model as well as to forecasting models based on the Fama-Bliss (FB) predictor (1st

window), the Cochrane-Piazzesi (CP) factor (2nd window), the Ludvigson-Ng (LN) factor (3rd window), and a

multivariate FB-CP-LN model (4th window). We then plot the cumulative sum of log predictive scores (LSt)

for the models with time-varying predictors minus the cumulative sum of log-predictive scores of the EH model,

LSt−LSEHt . Values above zero indicate that the time-varying mean model generates more accurate forecasts than

the EH benchmark, while negative values suggest the opposite. The blue solid line represents the linear, constant

coefficient (Linear) model; the red dashed line tracks the time-varying parameter (TVP) model; the green dashed-

dotted line represents the stochastic volatility (SV) model, while the dotted light-blue line shows the time-varying

parameter, stochastic volatility (TVP-SV) model. The out-of-sample period is 1990:01 - 2015:12.
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Figure 8. Economic value of out-of-sample bond return forecasts
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This figure plots cumulative certainty equivalent returns for the three-factor FB-CP-LN forecasting model that

uses the Fama-Bliss (FB), Cochrane-Piazzesi (CP), and Ludvigson-Ng (LN) factors as predictors, measured rel-

ative to the expectations hypothesis (EH) model. Each month we compute the optimal allocation to bonds and

T-bills based on the predictive densities of bond excess returns. The investor is assumed to have power utility

with a coefficient of relative risk aversion of ten and the weight on bonds is constrained to lie in the interval

[−200%, 300%]. Each panel displays a different bond maturity, ranging from 2 years (1st panel) to 5 years (4th

panel) The blue solid line represents the linear, constant coefficient (Linear) model; the red dashed line tracks

the time-varying parameter (TVP) model; the green dashed-dotted line represents the stochastic volatility (SV)

model, while the dotted light-blue line shows results for the time-varying parameter, stochastic volatility (TVP-

SV) model. The out-of-sample period is 1990:01 - 2015:12.
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Table 1. Summary Statistics.
2 years 3 years 4 years 5 years

Panel A.1: One-month excess returns

mean 1.3479 1.6679 1.9255 2.1353
mean (gross) 5.9985 6.3186 6.5761 6.7859
st.dev. 2.8636 4.0133 5.0528 6.0457
skew 0.5360 0.2268 0.0674 0.0223
kurt 15.9574 11.3365 8.3208 6.8606
AC(1) 0.1681 0.1496 0.1323 0.1162

Panel A.2: 12-month overlapping excess returns

mean 0.4992 0.8602 1.1440 1.3757
mean (gross) 5.8838 6.2448 6.5285 6.7603
st.dev. 1.6954 3.0798 4.2830 5.3784
skew -0.0772 -0.0628 -0.0337 -0.0053
kurt 4.0286 3.8186 3.6981 3.6572
AC(1) 0.9312 0.9319 0.9320 0.9312

Panel A.3: 12-month overlapping excess returns
(Cochrane-Piazzesi)

mean 0.4700 0.8670 1.1805 1.2927
mean (gross) 5.8511 6.2481 6.5616 6.6738
st.dev. 1.7178 3.1528 4.3924 5.4264
skew 0.0774 -0.0262 0.0004 -0.0115
kurt 3.6801 3.7473 3.6514 3.5716
AC(1) 0.9311 0.9333 0.9323 0.9236

Panel B: Predictors

Fama Bliss CP LN
2-years 3-years 4-years 5-years

mean 0.1054 0.1287 0.1473 0.1623 0.1480 0.1480
st.dev. 0.0967 0.1120 0.1241 0.1339 0.1982 0.2887
skew -0.0120 -0.2446 -0.2693 -0.2130 0.6316 0.6962
kurt 3.9157 3.5445 3.1892 2.8765 4.4039 4.8691

AC(1) 0.8801 0.8998 0.9130 0.9233 0.7073 0.3899
Panel C: Correlation Matrix

FB-2 FB-3 FB-4 FB-5 CP LN
FB-2 1.000 0.969 0.914 0.860 0.487 -0.121
FB-3 1.000 0.985 0.955 0.497 -0.073
FB-4 1.000 0.992 0.508 -0.026
FB-5 1.000 0.510 0.012
CP 1.000 0.126
LN 1.000

This table reports summary statistics for monthly bond excess returns and the predictor variables used in

our study. Panels A.1-A.3 report the mean, standard deviation, skewness, kurtosis and first-order autocorrelation

(AC(1)) of bond excess returns for 2 to 5-year bond maturities. Panel A.1 is based on monthly returns computed

in excess of a one-month T-bill rate while Panels A.2 and Panel A.3 are based on 12-month overlapping returns,

computed in excess of a 12-month T-bill rate. Gross returns do not subtract the risk-free rate. In Panels A.1

and A.2 returns are constructed using daily treasury yield data from Gurkaynak et al. (2007) while in Panel A.3

returns are constructed as in Cochrane and Piazzesi (2005) using the Fama-Bliss CRSP files. Panel B reports the

same summary statistics for the predictors: the Fama-Bliss (FB) forward spreads (2, 3, 4, and 5 years), Cochrane-

Piazzesi (CP ), and Ludvigson-Ng (LN) factors. Panel C reports the correlation matrix for the predictors. The

sample period is 1962-2015.
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Table 2. Full-sample OLS estimates

FB CP LN FB+CP+LN
2 years

βFB 1.1724∗∗∗ 1.1823∗∗∗

βCP 0.6477∗∗ 0.2403
βLN 0.6640∗∗∗ 0.6912∗∗∗

R2 0.0173 0.0226 0.0522 0.0795
3 years

βFB 1.3803∗∗ 1.2338∗∗

βCP 0.8741∗∗ 0.3615
βLN 0.9050∗∗∗ 0.9089∗∗∗

R2 0.0163 0.0208 0.0493 0.0718
4 years

βFB 1.6639∗∗ 1.3368∗∗

βCP 1.1079∗∗ 0.4835
βLN 1.1180∗∗∗ 1.0910∗∗∗

R2 0.0185 0.0211 0.0474 0.0694
5 years

βFB 1.9555∗∗ 1.4330∗∗

βCP 1.3702∗∗ 0.6479
βLN 1.3130∗∗∗ 1.2489∗∗∗

R2 0.0210 0.0227 0.0456 0.0684

This table reports OLS estimates of the slope coefficients for four linear models based on inclusion or exclusion of

the Fama-Bliss (FB) forward spread predictor, the Cochrane-Piazzesi (CP ) predictor computed from a projection

of the time series of cross-sectional averages of the 2, 3, 4, 5 bond excess returns on the 1, 2, 3, 4 and 5 year

forward rates, and the Ludvigson-Ng (LN) predictor computed from a projection of the time-series of cross-

sectional averages of the 2, 3, 4, 5 bond excess returns on five principal components obtained from a large

panel of macroeconomic variables. Columns (1)-(3) report results for the univariate models, column (4) for the

multivariate model that includes all three predictors. The last row in each panel reports the adjusted R2. Stars

indicate statistical significance based on p-values computed using the Ibragimov and Muller (2010) procedure

with q, the number of sample partitions, equal to 16. ***: significant at the 1% level; ** significant at the 5%

level; * significant at the 10% level. The sample period is 1962-2015.
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Table 4. Out-of-sample forecasting performance: predictive likelihood

Panel A: 2 years Panel B: 3 years
Model LIN SV TVP TVPSV LIN SV TVP TVPSV
FB 0.004 0.315∗∗∗ 0.008∗∗ 0.315∗∗∗ 0.004∗∗ 0.187∗∗∗ 0.007∗∗ 0.186∗∗∗

CP 0.005∗ 0.307∗∗∗ 0.004∗ 0.300∗∗∗ 0.005∗∗ 0.184∗∗∗ 0.006∗ 0.182∗∗∗

LN 0.008∗ 0.301∗∗∗ 0.008∗∗ 0.298∗∗∗ 0.010∗∗ 0.188∗∗∗ 0.010∗∗ 0.186∗∗∗

FB + CP + LN 0.011∗ 0.315∗∗∗ 0.014∗ 0.306∗∗∗ 0.013∗∗ 0.193∗∗∗ 0.014∗∗ 0.189∗∗∗

Panel C: 4 years Panel D: 5 years
Model LIN SV TVP TVPSV LIN SV TVP TVPSV
FB 0.004∗∗ 0.124∗∗∗ 0.005∗∗ 0.123∗∗∗ 0.006∗∗ 0.091∗∗∗ 0.006∗∗ 0.091∗∗∗

CP 0.004∗ 0.122∗∗∗ 0.004∗ 0.123∗∗∗ 0.004∗∗ 0.089∗∗∗ 0.006∗ 0.089∗∗∗

LN 0.011∗∗ 0.129∗∗∗ 0.010∗∗ 0.128∗∗∗ 0.011∗∗ 0.096∗∗∗ 0.011∗ 0.095∗∗∗

FB + CP + LN 0.014∗∗ 0.134∗∗∗ 0.015∗∗ 0.131∗∗∗ 0.015∗∗ 0.101∗∗∗ 0.015∗∗ 0.099∗∗∗

This table reports the log predictive score for four forecasting models that allow for time-varying predictors relative

to the log-predictive score computed under the expectation hypothesis (EH) model. The four forecasting models

use the Fama-Bliss (FB) forward spread predictor, the Cochrane-Piazzesi (CP) combination of forward rates,

the Ludvigson-Ng (LN) macro factor, and the combination of these. Positive values of the test statistic indicate

that the model with time-varying predictors generates more precise forecasts than the EH benchmark. We report

results for a linear specification with constant coefficients and constant volatility (LIN), a model that allows

for stochastic volatility (SV ), a model that allows for time-varying coefficients (TV P ) and a model that allows

for both time-varying coefficients and stochastic volatility (TV PSV ). The results are based on out-of-sample

estimates over the sample period 1990 - 2015. ***: significant at the 1% level; ** significant at the 5% level; *

significant at the 10% level. For every model and maturity, we denote in bold font the Predictive Likelihood of

the estimation method (LIN, SV, TVP and TVPSV) which delivers the best result.
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Table 5. Out-of-sample economic performance of bond portfolios

Panel A: Power Utility

Univariate Joint
Panel A.1: 2 years Panel A.2: 3 years

Model LIN SV TVP TVPSV LIN SV TVP TVPSV LIN
FB -0.45% -0.63% -0.23% -0.05% 0.16% 0.21% 0.29% 0.59%∗ -0.883
CP -0.40% -0.07% -0.30% 0.02% -0.32% 0.47%∗ -0.23% 0.66%∗∗ -1.097
LN 0.25% 0.18% 0.25% 0.25% 1.14%∗∗∗ 1.37%∗∗∗ 1.11%∗∗∗ 1.28%∗∗∗ 2.298∗∗∗

FB + CP + LN 0.22% 0.32% 0.29% 0.52%∗∗ 1.12%∗∗∗ 1.53%∗∗∗ 1.18%∗∗∗ 1.76%∗∗∗ 1.501∗∗∗

Panel A.3: 4 years Panel A.4: 5 years
Model LIN SV TVP TVPSV LIN SV TVP TVPSV SV
FB 0.76%∗ 1.02%∗ 0.88%∗∗ 1.26%∗∗ 1.15%∗∗ 1.69%∗∗ 1.14%∗∗ 1.73%∗∗ 0.481∗

CP -0.13% 0.62% -0.06% 0.87%∗∗ 0.19% 0.85%∗ 0.20% 0.82%∗ 0.581∗

LN 1.48%∗∗∗ 2.10%∗∗∗ 1.47%∗∗∗ 2.14%∗∗∗ 1.54%∗∗∗ 2.46%∗∗∗ 1.57%∗∗∗ 2.49%∗∗∗ 3.331∗∗∗

FB + CP + LN 1.80%∗∗∗ 2.34%∗∗∗ 1.78%∗∗∗ 2.34%∗∗∗ 1.96%∗∗∗ 2.92%∗∗∗ 1.96%∗∗∗ 2.82%∗∗∗ 3.489∗∗∗

Panel B: Mean Variance Utility

Univariate Joint
Panel B.1: 2 years Panel B.2: 3 years

Model LIN SV TVP TVPSV LIN SV TVP TVPSV LIN
FB -0.43% -0.57% -0.21% -0.01% 0.22% 0.34% 0.35% 0.69%∗∗ 0.196
CP -0.42% -0.05% -0.31% 0.05% -0.29% 0.54%∗ -0.20% 0.73%∗∗ 0.177
LN 0.27% 0.21% 0.27% 0.26% 1.19%∗∗∗ 1.45%∗∗∗ 1.15%∗∗∗ 1.37%∗∗∗ 3.108∗∗∗

FB + CP + LN 0.22% 0.34% 0.29% 0.52%∗∗ 1.16%∗∗∗ 1.57%∗∗∗ 1.20%∗∗∗ 1.79%∗∗∗ 2.257∗∗∗

Panel B.3: 4 years Panel B.4: 5 years
Model LIN SV TVP TVPSV LIN SV TVP TVPSV SV
FB 0.84%∗∗ 1.12%∗∗ 0.94%∗∗ 1.35%∗∗ 1.15%∗∗ 1.74%∗∗ 1.14%∗∗ 1.79%∗∗ 0.647∗∗

CP -0.08% 0.65%∗ -0.01% 0.90%∗∗ 0.16% 0.87%∗∗ 0.17% 0.84%∗ 0.375
LN 1.49%∗∗∗ 2.13%∗∗∗ 1.47%∗∗∗ 2.18%∗∗∗ 1.51%∗∗∗ 2.42%∗∗∗ 1.53%∗∗∗ 2.48%∗∗∗ 3.082∗∗∗

FB + CP + LN 1.81%∗∗∗ 2.37%∗∗∗ 1.80%∗∗∗ 2.37%∗∗∗ 1.93%∗∗∗ 2.92%∗∗∗ 1.90%∗∗∗ 2.83%∗∗∗ 2.713∗∗∗

This table reports annualized certainty equivalent return values for portfolio decisions based on recursive out-

of-sample forecasts of bond excess returns for an investor with power utility (Panel A) / mean-variance utility

(Panel B) and coefficient of relative risk aversion of 5. In the univariate asset allocation exercise the investor

selects 2, 3, 4, or 5-year bond and 1-month T-bills based on the predictive density implied by a given model.

In the joint asset allocation exercise the investor selects 2, 3, 4, 5-year bond and 1-month T-bills. The four

forecasting models use the Fama-Bliss (FB) forward spread predictor, the Cochrane-Piazzesi (CP) combination of

forward rates, the Ludvigson-Ng (LN) macro factor, and the combination of these. We report results for a linear

specification with constant coefficients and constant volatility (LIN), a model that allows for stochastic volatility

(SV ), a model that allows for time-varying coefficients (TV P ) and a model with both time varying coefficients

and stochastic volatility (TV PSV ). Statistical significance is based on a one-sided Diebold-Mariano test applied

to the out-of-sample period 1990-2015. * significance at 10% level; ** significance at 5% level; *** significance at

1% level. For every model and maturity, we denote in bold font the CER of the estimation method (LIN, SV,

TVP and TVPSV) that delivers the best result in the univariate asset allocation exercise.
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Table 6. Bond return predictability in expansions and recessions

LIN SV TVP TVPSV
Model Exp Rec Exp Rec Exp Rec Exp Rec

Panel A: 2 years
FB 2.58% 0.51% 3.14% 0.11% 7.20% 8.99%∗∗ 8.53% 3.38%
CP 1.86% 2.57%∗ 1.97% 1.80%∗ 6.13% 5.35%∗∗ 6.71% 3.87%∗∗

LN 1.78% 8.77%∗∗∗ 1.95% 5.43%∗∗∗ 4.83% 15.14%∗∗∗ 6.21% 9.11%∗∗∗

FB + CP + LN 5.37% 10.41%∗∗∗ 5.51% 7.10%∗∗ 12.84% 23.90%∗∗∗ 13.32% 13.66%∗∗∗

Panel B: 3 years
FB 2.31% 0.01% 2.89% -0.40% 4.77% 5.29%∗∗ 5.73% 1.75%
CP 1.41% 2.47%∗∗ 1.47% 2.37%∗∗ 3.90% 4.17%∗∗ 4.15% 3.57%∗∗

LN 2.00% 7.50%∗∗∗ 1.99% 6.31%∗∗∗ 3.72% 11.45%∗∗∗ 4.23% 8.49%∗∗∗

FB + CP + LN 4.68% 8.62%∗∗∗ 4.76% 7.15%∗∗∗ 8.94% 17.40%∗∗∗ 9.20% 11.39%∗∗∗

Panel C: 4 years
FB 2.11% 0.14% 2.56% -0.14% 3.80% 3.31%∗ 4.46% 1.34%
CP 1.17% 2.47%∗∗ 1.25% 2.52%∗∗ 3.02% 3.81%∗∗ 3.06% 3.49%∗∗

LN 1.87% 6.72%∗∗∗ 1.84% 6.11%∗∗∗ 3.06% 9.82%∗∗∗ 3.26% 8.13%∗∗∗

FB + CP + LN 4.05% 7.82%∗∗∗ 4.09% 7.06%∗∗∗ 7.11% 14.16%∗∗∗ 6.98% 10.24%∗∗∗

Panel D: 5 years
FB 1.95% 0.42% 2.31% 0.22% 3.14% 2.49% 3.61% 1.33%
CP 1.09% 2.67%∗∗ 1.14% 2.66%∗∗ 2.47% 3.71%∗∗ 2.50% 3.38%∗∗

LN 1.65% 6.00%∗∗∗ 1.64% 5.69%∗∗∗ 2.58% 8.76%∗∗∗ 2.77% 7.59%∗∗∗

FB + CP + LN 3.54% 7.32%∗∗∗ 3.57% 6.86%∗∗∗ 5.84% 11.98%∗∗∗ 5.67% 9.55%∗∗∗

This table reports the R2 from regressions of bond excess returns on the Fama-Bliss (FB) forward spread pre-

dictor, the Cochrane-Piazzesi (CP) combination of forward rates, the Ludvigson-Ng (LN) macro factor, and the

combination of these. We report results separately for expansions (Exp) and recessions (Rec) as defined by the

NBER recession index. Results are shown for a linear specification with constant coefficients and constant volatil-

ity (LIN), a model that allows for stochastic volatility (SV ), a model that allows for time-varying coefficients

(TV P ) and a model that allows for both time-varying coefficients and stochastic volatility (TV PSV ). The R2

in expansions is computed as R2
i,0 = 1 − ei,0

′ei,0
eEH,0

′eEH,0
where ei,0 and eEH,0 denote the vectors of residuals of the

alternative and the benchmark model, respectively, during expansions. Similarly, the R2 in recessions only uses

the vector of residuals in recessions: R2
i,1 = 1 − ei,1

′ei,1
eEH,1

′eEH,1
. We test whether the R2 is higher in recessions

than in expansions using a bootstrap methodology. * significance at 10% level; ** significance at 5% level; ***

significance at 1% level. For each model and estimation method (LIN, SV, TVP and TVPSV) we denote in bold

font the R2 in recessions which are higher than the R2 in expansions.
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Table 7. Sharpe ratios in expansions and recessions

LIN SV TVP TVPSV
Model Exp Rec Exp Rec Exp Rec Exp Rec

Panel A: 2 years
FB 0.48 0.43 0.46 0.32 0.47 0.58 0.48 0.45
CP 0.45 0.62 0.43 0.47 0.43 0.71 0.44 0.61
LN 0.38 1.15 0.30 0.70 0.38 1.27 0.33 0.92

FB + CP + LN 0.38 1.21 0.39 0.78 0.36 1.42 0.41 1.01

Panel B: 3 years
FB 0.42 0.36 0.47 0.33 0.43 0.44 0.48 0.39
CP 0.40 0.54 0.46 0.54 0.41 0.60 0.46 0.61
LN 0.34 0.96 0.36 0.87 0.34 1.03 0.37 0.97

FB + CP + LN 0.34 0.98 0.41 0.90 0.34 1.11 0.42 1.01

Panel C: 4 years
FB 0.39 0.34 0.48 0.35 0.39 0.37 0.48 0.38
CP 0.37 0.48 0.46 0.54 0.37 0.52 0.47 0.59
LN 0.32 0.83 0.38 0.89 0.32 0.89 0.38 0.97

FB + CP + LN 0.32 0.83 0.42 0.92 0.32 0.94 0.43 1.00

Panel D: 5 years
FB 0.36 0.32 0.47 0.35 0.36 0.35 0.48 0.38
CP 0.34 0.45 0.47 0.54 0.34 0.48 0.47 0.58
LN 0.30 0.73 0.40 0.88 0.30 0.79 0.40 0.95

FB + CP + LN 0.30 0.73 0.43 0.90 0.30 0.80 0.43 0.96

This table reports the annualized Sharpe ratio computed from conditional mean and conditional volatility es-

timates implied by regressions of bond excess returns on the Fama-Bliss (FB) forward spread predictor, the

Cochrane-Piazzesi (CP) combination of forward rates, the Ludvigson-Ng (LN) macro factor, and the combination

of these. We report results separately for expansions (Exp) and recessions (Rec) as defined by the NBER reces-

sion index. Results are shown for a linear specification with constant coefficients and constant volatility (LIN),

a model that allows for stochastic volatility (SV ), a model that allows for time-varying coefficients (TV P ) and

a model that allows for both time-varying coefficients and stochastic volatility (TV PSV ). For each model and

estimation method (LIN, SV, TVP and TVPSV) we denote in bold font the Sharpe Ratios in recessions which

are higher than their counterparts in expansions.
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Table 8. Correlations between expected bond excess returns, realized utilities, and
economic variables

Expected Excess Returns
Panel A: GDP Growth Panel B: Consumption Growth Uncertainty

Model LIN SV TVP TVPSV LIN SV TVP TVPSV
FB 0.16 0.17∗ 0.09 0.09 0.08 0.08 0.09 0.10
CP -0.29∗∗∗ -0.26∗∗∗ -0.33∗∗∗ -0.35∗∗∗ 0.16 0.17∗ 0.17∗ 0.18∗

LN -0.60∗∗∗ -0.59∗∗∗ -0.61∗∗∗ -0.61∗∗∗ 0.25∗∗ 0.28∗∗∗ 0.24∗∗ 0.28∗∗∗

FB+CP+LN -0.47∗∗∗ -0.39∗∗∗ -0.50∗∗∗ -0.44∗∗∗ 0.26∗∗∗ 0.28∗∗∗ 0.26∗∗∗ 0.28∗∗∗

Panel C: Inflation Uncertainty Panel D: Giacoletti et. al. (2016)
Model LIN SV TVP TVPSV LIN SV TVP TVPSV
FB 0.03 -0.00 0.05 0.04 0.39∗∗∗ 0.42∗∗∗ 0.43∗∗∗ 0.44∗∗∗

CP 0.36∗∗∗ 0.35∗∗∗ 0.37∗∗∗ 0.34∗∗∗ 0.21∗∗∗ 0.19∗∗∗ 0.21∗∗∗ 0.19∗∗∗

LN 0.48∗∗∗ 0.48∗∗∗ 0.47∗∗∗ 0.45∗∗∗ 0.09 0.09 0.10∗ 0.11∗

FB+CP+LN 0.44∗∗∗ 0.40∗∗∗ 0.44∗∗∗ 0.39∗∗∗ 0.27∗∗∗ 0.32∗∗∗ 0.27∗∗∗ 0.33∗∗∗

Realized Utilities
Panel E: GDP growth Uncertainty

Power Utility Mean Variance Utility
Model LIN SV TVP TVPSV LIN SV TVP TVPSV
FB 0.18∗ 0.19∗∗ 0.19∗ 0.19∗∗ 0.19∗ 0.19∗∗ 0.19∗ 0.19∗∗

CP 0.18∗ 0.17∗ 0.18∗ 0.18∗ 0.18∗ 0.17∗ 0.18∗ 0.18∗

LN 0.10 0.09 0.11 0.12 0.11 0.10 0.11 0.11
FB + CP + LN 0.11 0.10 0.11 0.11 0.11 0.10 0.11 0.12

Panel F: Inflation Uncertainty
Power Utility Mean Variance Utility

Model LIN SV TVP TVPSV LIN SV TVP TVPSV
FB 0.21∗∗ 0.22∗∗ 0.24∗∗ 0.24∗∗ 0.22∗∗ 0.22∗∗ 0.23∗∗ 0.24∗∗

CP 0.21∗∗ 0.23∗∗ 0.21∗∗ 0.23∗∗ 0.21∗∗ 0.22∗∗ 0.21∗∗ 0.23∗∗

LN 0.20∗∗ 0.20∗∗ 0.20∗∗ 0.22∗∗ 0.20∗∗ 0.20∗∗ 0.20∗∗ 0.22∗∗

FB + CP + LN 0.19∗ 0.20∗∗ 0.20∗∗ 0.22∗∗ 0.19∗ 0.20∗∗ 0.20∗∗ 0.22∗∗

This table reports in Panel A, B, C and D the contemporaneous correlations between out-of-sample forecasts

of excess returns on a two-year Treasury bond and real GDP growth (Panel A), Consumption (Panel B) or

inflation uncertainty (Panel C) and the out-of-sample bond return forecasts of Giacoletti et al. (2016) (Panel D).

Panel E and F display the contemporaneous correlations between out-of-sample realized utility and GDP growth

(Panel E) or inflation uncertainty (Panel F). Real GDP growth is computed as ∆log(GDPt) where GDPt is the

real gross domestic product (GDPMC1 Fred mnemonic). Inflation uncertainty is the cross-sectional dispersion

(the difference between the 75th percentile and the 25th percentile) for CPI forecasts from the Philadelphia Fed

Survey of Professional Forecasters. The bond return prediction models use the Fama-Bliss (FB) forward spread

predictor, the Cochrane-Piazzesi (CP) combination of forward rates, the Ludvigson-Ng (LN) macro factor, and the

combination of these. We report results for a linear specification with constant coefficients and constant volatility

(LIN), a model that allows for stochastic volatility (SV ), a model that allows for time-varying coefficients (TV P )

and a model that allows for both time-varying coefficients and stochastic volatility (TV PSV ). Finally, we test

whether the correlation coefficients are statistically different from zero. All results are based on the out-of-sample

period 1990-2011. * significance at 10% level; ** significance at 5% level; *** significance at 1% level.
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Table 9. Multivariate ICAPM test of Bali (2008)
Panel A: ICAPM Estimates

β γ δ θ β, γ, δ, θ
(t-stat) (t-stat) (t-stat) (t-stat) (t-stat)

Market 0.393 0.297 0.339 0.416 0.387
(0.972) (0.763) (0.416) (0.992) (0.980)

Inflation -9.862 -7.419
(-6.179) (-4.685)

Default -2.179 -1.640
(-4.367) (-3.132)

Term -0.20 1.227
(-0.15) (0.957)

Panel B: Correlation between expected excess returns and ICAPM risk premia

Panel B.1: 2 years Panel B.2: 3 years
Model LIN SV TVP TVPSV LIN SV TVP TVPSV
FB 0.01 0.10 0.06 0.05 0.22∗∗∗ 0.19∗∗∗ 0.23∗∗∗ 0.20∗∗∗

CP 0.25∗∗∗ 0.27∗∗∗ 0.29∗∗∗ 0.34∗∗∗ 0.20∗∗∗ 0.21∗∗∗ 0.22∗∗∗ 0.22∗∗∗

LN 0.29∗∗∗ 0.31∗∗∗ 0.30∗∗∗ 0.35∗∗∗ 0.15∗∗∗ 0.14∗∗ 0.16∗∗∗ 0.17∗∗∗

FB + CP + LN 0.29∗∗∗ 0.28∗∗∗ 0.31∗∗∗ 0.32∗∗∗ 0.19∗∗∗ 0.19∗∗∗ 0.20∗∗∗ 0.20∗∗∗

Panel B.3: 4 years Panel B.4: 5 years
Model LIN SV TVP TVPSV LIN SV TVP TVPSV
FB 0.13∗∗ 0.10∗ 0.14∗∗ 0.13∗∗ 0.27∗∗∗ 0.26∗∗∗ 0.27∗∗∗ 0.25∗∗∗

CP 0.21∗∗∗ 0.21∗∗∗ 0.23∗∗∗ 0.24∗∗∗ 0.20∗∗∗ 0.21∗∗∗ 0.21∗∗∗ 0.22∗∗∗

LN 0.19∗∗∗ 0.20∗∗∗ 0.20∗∗∗ 0.23∗∗∗ 0.14∗∗ 0.14∗∗ 0.15∗∗∗ 0.15∗∗∗

FB + CP + LN 0.21∗∗∗ 0.21∗∗∗ 0.23∗∗∗ 0.23∗∗∗ 0.20∗∗∗ 0.20∗∗∗ 0.21∗∗∗ 0.21∗∗∗

Panel A displays slope estimates and associated t-statistics from the following Seemingly Unrelated Regressions:

Rxi,t+1 = αi+β ∗ cov(Rxi,t+1,Mktt+1) + γ ∗ cov(Rxi,t+1,∆Inflt+1)

+δ ∗ cov(Rxi,t+1,∆Dfltt+1) + θ ∗ cov(Rxi,t+1,∆Termt+1) + εi,t+1

where Rx denotes the excess return of bond i, Mkt is the value-weighted excess return of the stocks belonging to

NYSE, AMEX or NASDAQ, Inflation is the inflation computed from the consumer price index (CPIAUCSL

Fred mnemonic), Dflt is the difference between the BAA and AAA yields, Term is the term spread computed

as the difference between the long- and short-term yields; and ∆ is the first-difference operator. The system

contains four equations corresponding to bonds with maturity of 2, 3, 4 and 5 years. Conditional covariances

are computed with the DCC (Dynamic Conditional Correlation) model of Engle (2002). As in Bali and Engle

(2010) and Bali (2008) the slope coefficients β, γ, δ and θ, are pooled across equations while the intercepts (αi)

differ across equations. The t-stats are adjusted for heteroskedasticity and autocorrelation for each series and

for cross-correlations across bonds based on the procedure of Parks (1967). The estimates are based on data

from January 1962 to December 2015. Panel B reports the contemporaneous correlations between out-of-sample

forecasts of excess returns and the risk-premia implied by the ICAPM. The bond return prediction models use

the Fama-Bliss (FB) forward spread predictor, the Cochrane-Piazzesi (CP) combination of forward rates, the

Ludvigson-Ng (LN) macro factor, and the combination of these. We report results for a linear specification with

constant coefficients and constant volatility (LIN), a model that allows for stochastic volatility (SV ), a model

that allows for time-varying coefficients (TV P ) and a model that allows for both time-varying coefficients and

stochastic volatility (TV PSV ). Finally, we test whether the correlation coefficients are statistically different from

zero. *significance at 10% level; ** significance at 5% level; *** significance at 1% level.
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Table 10. Expected bond excess returns, expected utility and survey forecasts of bond yields

Panel A: 2 years
Panel A.1: Expected Bond Excess Returns

Slope coefficient R2

Model LIN SV TVP TVPSV LIN SV TVP TVPSV
FB -0.47∗∗∗ -0.41∗∗ -0.45∗∗∗ -0.40∗∗ 4.19 1.78 4.70 2.08
CP -0.74∗∗∗ -0.60∗∗∗ -0.78∗∗∗ -0.61∗∗∗ 5.75 4.29 6.72 4.63
LN -1.77∗∗∗ -1.22∗∗∗ -1.64∗∗∗ -1.01∗∗∗ 8.64 5.32 8.04 3.69

FB + CP + LN -2.03∗∗∗ -1.39∗∗∗ -1.80∗∗∗ -1.15∗∗∗ 9.01 5.17 8.06 3.70

Panel A.2: Expected Utility
Slope coefficient R2

Model LIN SV TVP TVPSV LIN SV TVP TVPSV
FB -0.57∗∗∗ -0.49∗∗∗ -0.54∗∗∗ -0.47∗∗∗ 6.14 2.65 7.07 3.14
CP -0.83∗∗∗ -0.68∗∗∗ -0.87∗∗∗ -0.69∗∗∗ 7.29 5.67 8.38 6.06
LN -1.87∗∗∗ -1.30∗∗∗ -1.73∗∗∗ -1.08∗∗∗ 9.53 6.00 8.97 4.30

FB + CP + LN -2.12∗∗∗ -1.46∗∗∗ -1.89∗∗∗ -1.22∗∗∗ 9.87 5.82 8.93 4.26

Panel B: 5 years
Panel B.1: Expected Bond Excess Returns

Slope coefficient R2

Model LIN SV TVP TVPSV LIN SV TVP TVPSV
FB -1.69∗∗∗ -1.82∗∗∗ -1.66∗∗∗ -1.77∗∗∗ 12.34 10.96 11.85 11.95
CP -1.18∗∗∗ -1.05∗∗∗ -1.23∗∗∗ -1.14∗∗∗ 12.78 10.71 14.17 12.83
LN -2.39∗∗∗ -2.16∗∗∗ -2.37∗∗∗ -2.08∗∗∗ 14.56 13.30 14.15 11.57

FB + CP + LN -3.17∗∗∗ -2.92∗∗∗ -3.07∗∗∗ -2.77∗∗∗ 18.13 16.72 17.32 14.62

Panel B.2: Expected Utility
Slope coefficient R2

Model LIN SV TVP TVPSV LIN SV TVP TVPSV
FB -1.85∗∗∗ -1.90∗∗∗ -1.83∗∗∗ -1.85∗∗∗ 14.39 14.08 14.33 15.56
CP -1.34∗∗∗ -1.14∗∗∗ -1.39∗∗∗ -1.22∗∗∗ 16.24 13.05 17.74 15.46
LN -2.56∗∗∗ -2.24∗∗∗ -2.53∗∗∗ -2.17∗∗∗ 16.41 14.33 16.02 12.64

FB + CP + LN -3.34∗∗∗ -3.01∗∗∗ -3.23∗∗∗ -2.85∗∗∗ 19.96 18.12 19.15 15.92

This table reports the R2 and OLS estimates of slope coefficients from a regression of the predicted bond excess

return (Panels A.1 and B.1) and expected utility (Panels A.2 and B.2) on yield forecasts from the Blue Chip

Financial Forecasts. The bond return prediction models use the Fama-Bliss (FB) forward spread predictor, the

Cochrane-Piazzesi (CP) combination of forward rates, the Ludvigson-Ng (LN) macro factor, and the combination

of these. Panels A and B display results for 2- and 5-year bond maturities, respectively. We report results for

a linear specification with constant coefficients and constant volatility (LIN), a model that allows for stochas-

tic volatility (SV ), a model that allows for time-varying coefficients (TV P ) and a model that allows for both

time-varying coefficients and stochastic volatility (TV PSV ). All results are based on the sample 1990-2015.

Stars indicate statistical significance based on Newey-West standard errors. ***: significant at the 1% level; **

significant at the 5% level; * significant at the 10% level.
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Table 11. Risk-premium regression

Panel A: 2 years Panel B: 3 years
Model LIN SV TVP TVPSV LIN SV TVP TVPSV
β 0.35 0.65 0.37 0.73 0.19 0.37 0.19 0.43

t-stat 1.86 3.87 2.11 4.48 1.17 2.39 1.19 2.72

Panel C: 4 years Panel D: 5 years
Model LIN SV TVP TVPSV LIN SV TVP TVPSV
β 0.14 0.25 0.15 0.29 0.12 0.19 0.12 0.22

t-stat 0.94 1.69 0.97 1.89 0.86 1.39 0.83 1.49

This table reports OLS estimates of the slope coefficients (and the relative t-stats) from the following regression

rxt = µ+ βrpt + ut,

where rxt denotes the predicted bond excess returns and rpt denotes the risk premium estimates, obtained from

a term structure model with unspanned macro risks, based on the approach of Joslin et. a. (2011) and Wright

(2011). We report results for a linear specification with constant coefficients and constant volatility (LIN), a

model that allows for stochastic volatility (SV ), a model that allows for time-varying coefficients (TV P ) and a

model that allows for both time-varying coefficients and stochastic volatility (TV PSV ). All results are based on

the sample 1990-2015. Stars indicate statistical significance based on Newey-West standard errors. ***: significant

at the 1% level; ** significant at the 5% level; * significant at the 10% level.
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Table 12. Economic and statistical performance of forecast combinations

Method 2 years 3 years 4 years 5 years
Panel A: Out-of-sample R2

OW 4.70%∗∗∗ 4.79%∗∗∗ 4.07%∗∗∗ 3.79%∗∗∗

EW 5.53%∗∗∗ 4.33%∗∗∗ 3.49%∗∗∗ 3.12%∗∗∗

BMA 5.53%∗∗∗ 4.61%∗∗∗ 3.78%∗∗∗ 3.53%∗∗

Panel B: Predictive Likelihood
OW 0.33∗∗∗ 0.20∗∗∗ 0.13∗∗∗ 0.10∗∗∗

EW 0.19∗∗∗ 0.12∗∗∗ 0.08∗∗∗ 0.06∗∗∗

BMA 0.32∗∗∗ 0.20∗∗∗ 0.13∗∗∗ 0.09∗∗∗

Panel C: CER
OW 0.43% 1.51%∗∗∗ 2.40%∗∗∗ 2.96%∗∗∗

EW 0.44%∗∗ 1.30%∗∗∗ 1.83%∗∗∗ 1.91%∗∗∗

BMA 0.50%∗∗ 1.65%∗∗∗ 2.30%∗∗∗ 2.75%∗∗∗

This table reports out-of-sample results for the optimal predictive pool (OW) of Geweke and Amisano (2011), an

equal-weighted (EW) model combination scheme, and Bayesian Model Averaging (BMA) applied to 28 forecasting

models based on all possible combinations of the CP, FB and LN factors estimated using linear, SV, TVP and

TVPSV methods. In each case the models and combination weights are estimated recursively using only data up

to the point of the forecast. The R2 values in Panel A use the out-of-sample R2 measure proposed by Campbell

and Thompson (2008). The predictive likelihood in Panel B is the value of the test for equal accuracy of the

predictive density log-scores proposed by Clark and Ravazzolo (2014). CER values in Panels C are the annualized

certainty equivalent returns derived for an investor with power utility and a coefficient of relative risk aversion of

5 who uses the posterior predictive density implied by the forecast combination. The forecast evaluation sample

is 1990:01-2015:12. * significance at 10% level; ** significance at 5% level; *** significance at 1% level.
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