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I. Introduction 

Is the market risk premium predictable? Financial research has strived to answer 

this question going back to at least to Dow (1920), and a large number of variables have 

been used to predict the time-series of stock returns. A growing number of papers with 

time-series predictors begin with a cross-sectional predictor and ask whether that cross-

sectional variable can be aggregated and then used to predict market returns. Such papers 

presume that cross-sectional predictors contain systematic information. For example, 

Baker and Wurgler (2000) cite the extensive market-timing literature, which relates equity 

issuance to returns in the cross-section, and suggest “issuers try to time both their 

idiosyncratic return and the market return.” They find that an aggregated capital raising 

variable predicts market returns. Similarly, Lewellen (2004) finds that aggregated price-

to-fundamental ratios based on dividends, book-to-market, and earnings predict market 

returns. Robert Shiller’s famous CAPE ratio is based on the idea that aggregated price-to-

earnings ratios predicts market returns. Hirshleifer, Hou, and Teoh (2009) aggregate 

Sloan’s (1996) accrual anomaly and use it to predict the market. Baker and Wurgler (2007) 

incorporate several firm-level variables to create an investor sentiment index, and show 

that it predicts market returns. 

Drawing on this large literature, we examine market return predictability from cross-

sectional variables through the lens of multiple hypothesis testing. After all, there are many 

cross-sectional predictors that could be chosen in order to predict market returns. Published 

papers present individual hypothesis tests for predictors that were chosen. This paper asks: 

do cross-sectional variables generally aggregate to make good time-series predictors?  

Using various samples of cross-sectional predictors and incorporating a multiple 

hypothesis testing framework, we find that the answer is “no.”  

We begin by creating a sample of time-series predictors constructed from the 

population of cross-sectional predictors documented in the literature. We use a sample of 

140 cross-sectional predictors that is essentially the population of firm-level characteristics 
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that have demonstrated cross-sectional predictability in the academic literature.1 Of these 

140 predictors, 26 have already been aggregated and used to predict market returns in a 

published study.2 These papers are well-cited, having received over 12,000 Google Scholar 

citations in total.   

It is impossible to know the true set of variables examined by researchers. 

Statistically significant findings are more likely to be published, so the 26 variables in the 

aforementioned papers represent a lower-bound on the set of predictors considered by 

researchers. We begin our analysis be examining this sample; we then extend our analyses 

to examine other subsets motivated by economic theory, as well as the entire sample of 140 

predictors that could have been considered. Our analyses thus examine the minimum and 

maximum number of cross-sectional variables that could have been used to generate time-

series variables. 

We begin by taking each of the 140 firm-level predictors and calculating monthly 

cross-sectional averages to get a single, monthly value. For each predictor, we construct 

equal-weighted and value-weighted averages; the resulting database has 280 different 

predictive variables (140 equal-weighted and 140 value-weighted).3 To examine the 

market-level predictability of these variables, we perform both in-sample and out-of-

sample tests. Like other papers in the time-series literature, our in-sample tests use the 

entire sample of data and estimate a single parameter estimate from a time-series regression 

of the market risk premium on the predictor. Our out-of-sample tests consist of expanding, 

rolling-window regressions that use only information available at each point in time to 

examine whether a predictor is useful for forecasting the market’s risk premium. 

At first glance, it appears that many cross-sectional predictors are good market-

level predictors in-sample. When we examine the predictors already studied by the existing 

 
1 This builds on the 97-predictor list used in McLean and Pontiff (2016) and Engelberg, McLean, and Pontiff 

(2018). 
2 Table IA.VI in the Internet Appendix lists these 26 cross-sectional predictors along with the 23 time-series 

papers that each was featured in. 
3We follow existing practice when constructing aggregate predictors from cross-sectional data: although 

some researchers consider equal-weights (for example, Goyal and Santa-Clara, 2003, and Hirshleifer, Hou, 

and Teoh, 2009), value-weights are most common. For completeness, we present results with both types of 

weighting.  
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literature, we find that 20% of them predict 1-year market returns in an ordinary least 

squares (OLS) regression with coefficients that are significant at the 10% level or better, 

and 8% of them are significant at the 1% level.4 The strength of this result is strongly related 

to the horizon of predictability: when considering 1-month market returns, the number of 

significant variables falls to 12% at the 10% level and 2% at the 1% level.   

 We then consider two predictor subgroups that can clearly be motivated by economic 

theory. The first is a subsample of Valuation predictors, which are variables that are based 

on ratios of market prices to fundamentals. Many Valuation predictors have received 

attention in the market risk premium literature, including the dividend-to-price and 

earnings-to-price ratios. Moreover, since virtually all valuation ratios should be a function 

of discount rates, theory suggests that they should all work in a time-series setting (Kelly 

and Pruitt, 2013, and Lewellen, 2004). We also form a subsample of Opinion predictors 

(e.g., institutional trading, analyst upgrades) which can be motivated with the sentiment 

explanation of Baker and Wurgler (2006) or with the information explanation of Seyhun 

(1988). However, despite the economic motivation for these subsamples, we find only 

weak in-sample predictability for the Valuation and Opinion sub-categories. In fact, the 

Valuation and Opinion sub-categories perform worse than the sample of predictors from 

the existing literature, suggesting the predictors in the existing literature are a special subset 

of all cross-sectional variables. 

We also examine a third subsample, Best Cross-Sectional, which consists of the ten 

predictors with the highest cross-sectional t-statistic. A number of papers have found 

evidence that cross-sectional return predictability is smaller in recent periods (e.g., McLean 

and Pontiff (2016), Green, Hand, and Zhang (2017)), so it is possible that the weak 

performance of some of our predictors (like those in the Valuation and Opinion 

subsamples) results from weakness of the underlying cross-sectional. To account for this 

 
4 There are 51 variables since we create both equal-weighted and value-weighted predictors for each of the 

26 variables in the existing literature and one of the resulting 52 possible variables is dropped because it is 

non-stationary. While we do not find that 51 out of 51 are significant, it is important to note these are re-

analyses, not replications, in the language of Welch (2019) because we do not use the same sample or code 

used in the original papers. Moreover, we examine two versions of each predictor (equal-weighted and value-

weighted) while many of the original papers only examine one of these. 
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possibility, we examine a subset of predictors formed from the cross-sectional variables 

with the best performance. Yet, once again, for this subsample we find only weak evidence 

of return predictability.  

The 51 predictors from the existing literature that we discuss above represent a lower-

bound on the set of variables actually considered. Harvey, Liu, and Zhu (2015) note that 

there is a publication bias in Finance, because journals are less likely to publish results that 

are not statistically significant. Chen (2020) notes that selective reporting of results makes 

it difficult to know the true set of variables considered, and this has implications for 

statistical inference. We therefore examine all 280 possible predictors constructed from the 

140 cross-sectional variables in the literature – this set represents an upper bound on the 

cross-sectional predictors that could have been used to make time-series predictors. Out of 

the 280 predictive variables, 253 of them are stationary and exhibit sufficient time series 

variation.5 Of these 253 predictors, 43 (17%) predict 1-year market returns in an ordinary 

least squares (OLS) regression with coefficients that are significant at the 10% level or 

better, and 14 (6%) are significant at the 1% level. Again, the strength of this result is 

strongly related to the horizon of predictability: when considering 1-month market returns, 

only 27 of the 253 predictors (11%) are significant at the 10% level and 7 (3%) are 

significant at the 1% level. We also find that several cross-sectional predictors–such as 

Asset Turnover and Z-Score–are among the best performers for market predictability, but 

have yet to be documented in this literature. For example, value-weighted Asset Turnover, 

which has not been previously proposed as a predictor of market risk premia, predicts the 

market risk premium with an R-squared of 17.8% at the one-year horizon. 

Since we examine a large number of predictors, we expect that some variables will 

appear significant by chance. Moreover, many of these variables are related to each other 

so the tests we conduct are not independent. To address both the number of tests we conduct 

as well as the dependency among the tests, we perform the Romano and Wolf (2016) 

 
5 We test each of the 280 predictors for a unit root using an Augmented Dickey-Fuller (1979) test. If we fail 

to reject the null that a variable is non-stationary, we then calculate the first-difference. If we fail to reject the 

null that the first-differenced variable is non-stationary, we drop the variable. We also drop variables that 

aggregate to form a variable that does not exhibit time-series variation and we filter variables that should not 

aggregate according to economic logic. See Section II for details. 
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resampling-based stepdown procedure to compute adjusted p-values that control the 

family-wise error rate while accounting for the number of tests and dependence. Among 

methods that control the family-wise error rate, the Romano and Wolf (2016) procedure is 

preferable to the well-known Bonferroni (Dunn, 1961) or Holm (1979) tests because it 

considers the dependence structure across multiple tests and thus has more power (Romano 

and Wolf, 2005, 2016).6 Our paper is first to apply this procedure to predicting the equity 

market risk premium. In robustness tests, we also estimate adjusted p-values while 

controlling the false discovery rate (Benjamini and Yekutieli, 2001). This approach is less 

conservative than controlling the family-wise error rate (Romano, Shaikh, and Wolf 

(2008)).7 We reach the same conclusion with both approaches. 

When we apply the Romano and Wolf (2016) stepdown procedure to the 51 

predictors from the existing literature, we find weaker evidence that cross-sectional 

predictors contain systematic information. While 10 are significant at the 1-year horizon 

using single hypothesis testing, only 3 are significant at the 1-year horizon using the 

Romano and Wolf procedure. The results suggest the predictors in the existing literature 

may be a result of selective testing and reporting. Of course, it is not possible to know the 

true set of cross-sectional variables considered, and Chen (2020) shows that accounting for 

this could raise or lower the bar for statistical significance. To account for this, we then 

examine our other samples using the Romano and Wolf procedure. For the Valuation and 

Opinion subsamples, as well as the Best Cross-Sectional subsample, we find weak 

evidence of return predictability using multiple testing methods. 

We then turn to our full sample of predictors. Using in-sample regressions, when 

we examine the full set of 253 predictors and perform the Romano and Wolf (2016) 

 
6 Romano, Shaikh, and Wolf (2008) examine simulation evidence for a variety of multiple testing techniques 

and find that the Romano and Wolf (2005) procedure has good power, especially relative to methods that do 

not account for the dependence of the individual test statistics. While some other methods that control 

generalized error rates have even better power, this comes at the cost of having higher false rejection rates. 

They state, “It appears that when the number of strategies is in the thousands, controlling the [family-wise 

error rate] becomes too stringent.” Since we examine a maximum of 269 strategies, we focus on controlling 

the family-wise error rate. 
7 Romano, Shaikh, and Wolf (2008) show that false discovery rate methods generally exhibit fewer false 

negatives at the cost of allowing more false positives. 
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stepdown procedure we are unable to reject the null of no-predictability at the 1% level for 

any predictor at any horizon. At the 1-month and 3-month horizons, no variable is 

significant even at the 10% level. At the 12-month horizon only two variables, Z-Score and 

Asset Turnover, have Romano and Wolf p-values that are less than 5%. When we examine 

more permissive p-values based on controlling the false discovery rate, there are only a 

few more significant predictors. We find that one predictor is significant at the 5% level at 

the 1-month horizon and eight (out of 253) are significant at the 12-month horizon. In short, 

we find most of the cross-sectional variables that were statistically significant when 

examined in isolation are no longer significant when examined in the context of all cross-

sectional predictors. However, a few variables, like Z-Score and Asset Turnover, do still 

show evidence of return predictability. 

Goyal and Welch (2008) argue that out-of-sample regressions serve as a useful 

diagnostic. Accordingly, we turn to out-of-sample forecasting regressions – again, we start 

with the predictors already examined in the literature, and then examine other samples of 

predictors including the sub-groups motivated by economic theory and the set of all 140 

cross-sectional variables that could have been considered. In all samples, we find that 

things look even bleaker for cross-sectional predictors when we consider out-of-sample 

tests. While 11 out of the 51 predictors from the existing literature are significant at the 12-

month horizon, none are significant at the 1-month horizon. Similarly, among the 253 

stationary predictors we examine in out-of-sample regressions, 3% significantly predict 

market returns at the 1-month horizon and 17% predict market returns at the 12-month 

horizon (compared with 11% and 17% in-sample). Moreover, once we adjust the individual 

p-values using the Romano and Wolf (2016) stepdown procedure, we no longer find 

evidence against the null at the 10% level for any predictor at any horizon. For example, 

in our out-of-sample tests, Asset Turnover again appears to be a strong predictor. It exhibits 

positive out-of-sample R-squared values at every forecasting horizon, with an impressive 

R-squared of 17% at the one-year horizon. However, the corresponding Romano and Wolf 

(2016) adjusted p-value is not statistically significant at any of the usual levels. We find 
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similar results when controlling the false discovery rate. Taking all of the results together, 

our findings suggest that cross-sectional predictors do not contain systematic information. 

Our paper makes a number of contributions. First, we provide context for existing 

papers that propose a particular cross-sectional predictor should be transformed into a time-

series one. Existing results in the literature that have economically large coefficients and 

impressive t-statistics could be the result of chance if enough predictors are considered. 

Our findings show that cross-sectional predictors as a group do not make good time-series 

predictors. The literature’s elevation of individual predictors should consider the economic 

motivation behind each predictor, and the results should be interpreted in light of our data 

mining critique.  

Second, our results provide new insight into the nature of return predictability, both 

in the cross-section and the time-series. By aggregating cross-sectional predictors into time 

series variables, we are able to understand whether cross-sectional variables contain 

information about the systematic components of returns. Our results suggest they do not. 

This is surprising, as Wen (2009) finds that asset growth can be aggregated to predict 

market returns, and several studies (e.g., Hou, Xue, and Zhang, 2009) find that factor 

models with an investment factor can explain many cross-sectional anomalies. Taken 

together, these papers suggest that most anomalies should aggregate to predict market 

returns, yet we find little evidence that they do. 

Finally, we contribute to the extensive equity return premium literature. While 

Goyal and Welch (2008) show that 14 popular time-series variables do not significantly 

predict returns in out-of-sample tests, subsequent papers have documented evidence of 

return predictability using firm-level variables aggregated across stocks (e.g., Hirshleifer, 

Hou, and Teoh (2009), Rapach, Ringgenberg, and Zhou (2016)). Our results extend these 

findings by showing that several other cross-sectional predictors can be aggregated to form 

good time series predictors. However, we find that many of these predictors are no longer 

significant after adjusting for multiple hypothesis testing. Our findings emphasize the 

importance of considering the impact of data snooping bias when examining time-series 

return predictability.   
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The remainder of this paper proceeds as follows: Section I briefly describes the 

existing literature and outlines the theoretical relation between cross-sectional predictive 

variables and time series return predictability. Section II describes the data used in this 

study. Section III characterizes our findings and Section IV concludes. 

 

II. Background 

Financial researchers have examined the predictability of stock returns for over a 

century (e.g., Gibson, 1906) and a large literature has documented evidence of 

predictability in the cross-section of stock returns. A separate literature has examined the 

predictability of the equity risk-premium using time-series predictive variables. To date, 

these two literatures have evolved relatively independently. We connect these two 

literatures. 

 

A. Time Series Return Predictability 

A number of papers find in-sample evidence of time series return predictability, but 

out-of-sample evidence is rare, suggesting that many predictors are the result of data 

snooping (i.e., overfitting). For example, Bossaerts and Hillion (1999) use model selection 

criteria from the statistics literature to choose candidate predictors, which allows them to 

partially avoid data snooping biases, yet they find that the resulting predictors are unable 

to forecast out-of-sample returns. Similarly, Goyal and Welch (2008) examine 14 popular 

predictors from the existing literature and find that they fail to forecast the equity risk 

premium in out-of-sample tests. Cooper and Gulen (2006) note that researchers have many 

different choices regarding the specification of predictability tests, including the predictor 

variables, the estimation periods, and the assets being forecasted. They perform 

specification searches across these parameters and find that return predictability is highly 

sensitive to these parameter choices. More recently, Bartsch, Dichtl, Drobetz, and Neuhierl 

(2017) examine a wide variety of possible permutations of the predictors in Goyal and 

Welch (2008) and the technical predictors in Neely, Rapach, Tu, and Zhou (2014) and 

estimate that most out-of-sample performance for these variables is from data snooping. 
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In light of the poor performance of many predictive variables in out-of-sample tests, 

researchers have focused on developing methodologies that are robust to data snooping 

concerns (see Harvey, Liu, and Saretto, 2020). Foster, Smith, and Whaley (1997) develop 

a procedure to account for data snooping biases when evaluating the fit of predictive 

regressions. White (2000) develops a reality check bootstrap (RCB) to account for data 

snooping biases that result from specification searches, and Sullivan, Timmermann, and 

White (1999) apply the RCB procedure to a set of technical trading rules. While the White 

RCB procedure determines whether the best predictor among a group is statistically 

significant after adjusting for data snooping biases, Romano and Wolf (2005, 2016) show 

how to adjust the p-value for each individual predictor to account for data snooping biases. 

We are the first to apply the Romano and Wolf stepdown procedure to a large set of 

predictive variables derived from existing academic studies. In robustness checks, we also 

examine adjusted p-values that control the false discovery rate (Benjamini and Yekutieli, 

2001) which is less conservative than the Romano and Wolf procedure. 

 

B. Cross-sectional Return Predictability 

While the literature on time series return predictability has generally found that most 

predictors fail to perform in out-of-sample tests, a large literature finds evidence of return 

predictability in the cross-section of stocks. More recently, a number of papers re-affirm 

earlier studies that find return predictability in the cross-section of stocks. As examples, 

using quintile portfolios, McLean and Pontiff (2016) find that 88% of firm-level predictors 

generate t-statistics greater than 1.5 in the sample period used by the original study. Chen 

and Zimmerman (2019) replicate 319 firm-level predictors and find that only three fail to 

reproduce the statistical significance of the original study. Some studies question the 

breadth of predictability and whether implementable portfolio strategies are possible. Hou, 

Xue, and Zhang (2020) use a sample of 452 anomalies and conclude that most fail to 

replicate.  Chen and Zimmerman reconcile their results with Hou, Xue, and Zhang (2020) 

by noting that Hou et al. eliminate microcap stocks from their sample (60% of CRSP), that 

many of Hou et al.’s anomalies are not unique and are based on the same firm-level variable 
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measured over different horizons or intervals, and that many of Hou et al.’s anomalies are 

unique to their paper and were never significant to begin with. The fact that Hou et al. find 

that eliminating microcaps weakens return-predictability is consistent with many studies 

(see Barberis and Thaler (2003) or Pontiff (2006) for a thorough review) which find that 

anomalies are weaker in large stocks and strongest in small stocks that are more costly to 

hold and trade (Pontiff, 1996).   

There is though, an evolving discussion centered on the extent to which cross-

sectional predictability is the outcome of data mining and whether the literature has 

overlooked multiple testing issues. Harvey, Liu and Zhu (2016) conclude that the majority 

of findings in financial economics papers are likely false, and that t-statistic hurdles should 

be raised to 3. McLean and Pontiff (2016) examine 97 anomalies and find that at most 25% 

of anomaly returns can be explained by data mining. Linnainmaa and Roberts (2018) 

conclude that the majority of accounting-based anomalies are the outcome of data mining. 

Yet other recent studies find that data mining is likely not the first-order cause of 

anomaly returns. McLean and Pontiff (2016) find that anomaly returns are 50% lower post-

publication, an effect they attribute to both data mining and arbitrage informed by the 

original publication. Importantly, they reject the null that anomaly returns are zero post-

publication. Jacobs and Muller (2019), find that anomaly returns are, on average, 

significant outside of the US, and do not decline post-publication as they do in the US. 

Chen and Zimmerman (2019) find that publication bias only accounts for about 12% of 

anomaly returns. Chen (2021) argues that it would take 10,000 researchers hundreds of 

years to produce the large t-statistics reported in the anomaly literature.   

Overall, the existence, and nature, of cross-sectional return predictability is an 

important debate that has yet to be resolved. However, none of the existing studies examine 

the relation between cross-sectional predictors and aggregate market returns, which is the 

focus of our paper. 
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C. The Information in Cross-Sectional Variables 

While there are extensive literatures on both time series predictability and cross-

sectional predictability, with a few notable exceptions they have evolved independently. 

Several papers show that firm-level anomalies aggregate to market-wide predictors. As we 

mention earlier, to the best of our knowledge 26 predictors have been aggregated and used 

to predict market returns in a published study. Table 1 lists these 26 cross-sectional 

predictors along with the 23 time-series papers that each was featured in. Some examples 

include Pontiff and Schall (1998) with book-to-market ratios, Campbell and Shiller (1988) 

with P/E ratios, and Chordia et al. (2002) with insider trading. More recently, Hirshleifer, 

Hou, and Teoh (2009) find that firm-level accruals and cash-flow, when aggregated across 

stocks, contain information about market returns, and Wen (2019) shows that aggregate 

asset growth predicts market returns. Finally, Rapach, Ringgenberg and Zhou (2016) show 

that firm-level short interest aggregates to form one of the strongest known predictors of 

market returns.  

 

D. The Information in Non-Systematic Predictors 

In this paper, our goal is to understand the relation between cross-sectional return 

predictability and time-series return predictability. While it may seem natural that cross-

sectional return predictors should aggregate to generate time-series return predictors, it is 

possible to have one without the other.8 Specifically, cross-sectional variables could predict 

returns because they forecast the systematic component of returns or the non-systematic 

component of returns. As such, cross-sectional return predictors do not necessarily 

aggregate to form good time series predictors. To see this, define a variable 𝑋𝑖,𝑡
𝑁𝑜𝑛−𝑆𝑦𝑠𝑡

 as 

a non-systematic predictor if it forecasts the non-systematic portion of stock returns for 

 
8 Indeed, several existing papers find that firm-level relations do not hold at the aggregate level. Kothari, 

Lewellen, and Warner (2006) document a negative relation between returns and earnings surprise at the 

aggregate level, in contrast to the positive relation documented at the firm-level. Similarly, Hirshleifer, Hou, 

and Teoh (2009) find that the relation between accruals and returns changes sign between firm-level and 

aggregate-level analyses. 
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asset i on date t+1. Without loss of generalization,9 we can express the return on asset i 

using the market model:  

(1) 𝑅𝑖,𝑡 =  𝑅𝑓 +  β𝑖(𝑅𝑚,𝑡 −  𝑅𝑓) + 𝜀𝑖,𝑡, 

where 𝑅𝑖,𝑡 is the return on stock i on date t, 𝑅𝑓 is the risk-free rate, 𝑅𝑚,𝑡 is the market return, 

and 𝜀𝑖,𝑡 is the portion of stock i's return that is orthogonal to the market’s return. We define 

a non-systematic predictor as a variable 𝑋𝑖,𝑡−1
𝑁𝑜𝑛−𝑆𝑦𝑠𝑡

 that satisfies 𝛾1  ≠ 0 in a linear 

regression of the form: 10 

(2) 𝜀𝑖,�̂� = 𝛾0 + 𝛾1𝑋𝑖,𝑡−1
𝑁𝑜𝑛−𝑆𝑦𝑠𝑡

+ 𝜔𝑖,𝑡,  

where 𝜀𝑖,�̂� is the abnormal return from the market model (Sharpe (1964); Lintner (1965)). 

In other words, a non-systematic predictor, by definition, forecasts the portion of asset i’s 

return that is not explained by aggregate market movements. However, while 𝑋𝑖,𝑡−1
𝑁𝑜𝑛−𝑆𝑦𝑠𝑡

 

contains information about individual stock returns, it will not aggregate to generate market 

return predictability. To see this, average equation (2) across assets all N stocks in the 

economy and multiply both sides by 
𝑚𝑐𝑖,𝑡

∑ 𝑚𝑐𝑁
𝑖 𝑖,𝑡

, where 𝑚𝑐𝑖,𝑡 is the market capitalization of 

stock i on date t: 

(3) 𝑚𝑐𝑖,𝑡

∑ 𝑚𝑐𝑁
𝑖 𝑖,𝑡

∑ [𝑅𝑖,𝑡
𝑁
𝑖=1 −  𝑅𝑓 −  β𝑖(𝑅𝑚,𝑡 −  𝑅𝑓)] =  𝛾0̅ +  𝛾1̅𝑋𝑡−1

𝑁𝑜𝑛−𝑆𝑦𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
, 

where the bar above a variable denotes the value-weighted mean. It is simple to show that 

the left-hand side of equation (3) is equal to zero. Thus, the value-weighted variable 

𝑋𝑡−1
𝑁𝑜𝑛−𝑆𝑦𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 contains no information about aggregate market returns.  

 

E. The Information in Systematic Predictors 

While non-systematic predictors contain no information about aggregate market 

returns, it is possible to have a variable that predicts information in the cross-section that 

 
9 In Section B of the Internet Appendix we show the logic in this section generalizes to any model with non-

systematic and systematic components including the Fama-and French (1992) 3-factor model and the Fama-

and French (2014) 5-factor model. 
10 For simplicity, we ignore the sign of the abnormal return and define an anomaly as any variable that predicts 

abnormal returns in either direction.  
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contains information about the aggregate risk-premium. Define a variable 𝑋𝑖,𝑡−1
𝑠𝑦𝑠𝑡

 as a 

systematic predictor if it forecasts the systematic portion of stock returns for asset i on date 

t+1. Thus, define a systematic predictor as a variable 𝑋𝑖,𝑡−1
𝑠𝑦𝑠𝑡

 that satisfies 𝛾1  ≠ 0 in a linear 

regression of the form: 

(4) β𝑖(𝑅𝑚,𝑡 − 𝑅𝑓) = 𝛾0 +  𝛾1𝑋𝑖,𝑡−1
𝑠𝑦𝑠𝑡

+ 𝜔𝑖,𝑡. 

Because the market beta is 1, it is easy to show that the left-hand side of equation (4) 

implies a direct linear relation between the predictor variable and the market risk-premium. 

Notice also that this relation goes in both directions: if a time-series predictor is constructed 

from individual assets, it must contain information about the systematic portion of 

individual asset returns.11,12 This implication provides additional economic information to 

test the validity of proposed predictors. In other words, when evaluating predictors 

constructed from individual characteristics, we should focus on the subsample of individual 

characteristics that contain information about individual asset returns. Accordingly, in the 

rest of the paper, we examine the aggregate information in a set of 140 predictors that have 

been previously shown to contain information about individual asset returns (McLean and 

Pontiff, 2016). 

  

III. Data 

To examine the relation between cross-sectional anomaly variables and the equity 

risk premium, we combine daily data from the Center for Research in Security Prices 

(“CRSP”) and Compustat over the period 1926 through 2017.  

 
11 In the market model (Sharpe (1964); Lintner (1965)), the systematic portion of stock returns reflects 

compensation for bearing systematic risk. However, outside of the market model, a common component of 

returns could exist that is not related to systematic risk (for example, consumer sentiment). Similar to the 

systematic portion of returns in the market model, such a variable could be related to the cross-section of 

returns and, since it has a common component, it could aggregate to contain information about the equity 

risk premium.  
12 Theoretically, it is possible that investors switch from gathering systematic information to gathering 

idiosyncratic information depending on economic conditions as in Kacperczyk, Van Nieuwerburgh, and 

Veldkamp (2016). As a result, some variables could contain idiosyncratic information at times, and 

systematic information at other times. 
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We calculate the equity risk premium as the log return on the S&P 500 index minus 

the log return on a one-month Treasury bill as in Goyal and Welch (2008).13 We construct 

aggregate time series variables for each of the 97 cross-sectional anomalies in McLean and 

Pontiff (2016) and we supplement this dataset with 43 additional variables from the extant 

literature to arrive at 140 candidate predictors.14 As we explain in the Introduction, we 

explore various subgroups within the 140. Table 1 contains summary statistics for the 

cross-sectional variables we use to form time-series predictors. Of the 140 variables, 15 are 

classified as Valuation predictors and 22 are classified as Opinion predictors. Best Cross-

Sectional. This subcategory consists of the ten predictors with the greatest cross-sectional 

t-statistic, using the sample period in the original paper. By definition, the Best Cross-

Sectional predictors exhibit strong cross-sectional predictive power; indeed, the mean 

cross-sectional t-statistic for these predictors is approximately 9. Predictors from existing 

papers consist of the 26 cross-sectional variables that have been used to predict market 

returns in a published study. 

We construct two time-series predictors from each cross-sectional variable based on 

the equal-weighted average and value-weighted average. Unlike with cross-sectional 

estimation, consideration of stationarity is crucial in estimation of the market risk premium 

(for example, Campbell, 1991, and Hodrick, 1992). We test each time-series predictor for 

a unit root using an Augmented Dickey-Fuller (1979) test. Because some of the resulting 

time-series variables are non-stationary, we proceed as follows: if we reject the null that 

the raw (untransformed) variable is non-stationary, we use it in our tests. If not, we 

calculate the first-difference for each variable; if we reject the null that it is non-stationary 

then we use it, otherwise the variable is excluded. 

 Some of our cross-sectional predictors should (theoretically) aggregate to form a 

variable that is constant across time (e.g., CAPM beta). Accordingly, after constructing 

time-series versions of each variable, we apply a manual filter to drop variables that should 

not aggregate to form an economically meaningful variable and we also examine each 

 
13 We download this data from Amit Goyal’s website (http://www.hec.unil.ch/agoyal/). 
14 See the Internet Appendix for an overview of the construction of these 140 variables.  
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variable’s time-series standard deviation and exclude predictors that exhibit little to no 

time-series variation.15 Of our original 280 different predictive variables (140 equal-

weighted and 140 value-weighted variables), 253 survive the screening procedures 

discussed above. We use these 253 variables in our main regressions.  

To verify that the Romano and Wolf (2016) adjusted p-values are not sensitive to the 

set of variables we consider, we also examine three alternate sets of candidate predictors: 

one that has more variables (269 variables) and two that have fewer (137 and 51 variables, 

respectively). The first set expands the list of predictors to 269 variables by omitting the 

manual filter discussed above and adding stochastic detrending as a way to avoid non-

stationarity. Specifically, if we reject the null that the raw (untransformed) variable is non-

stationary, we use it in our tests. If not, we calculate deviations from a linear trend model 

for each variable; if we reject the null that it is non-stationary then we use it. If not, we 

calculate the first-difference for each variable; if we reject the null that it is non-stationary 

then we use it, otherwise we drop the variable. For the linear trend, we estimate a model of 

the form: 

(5) xt = a + bt + ut for t = 1, . . . ,T, 

for each predictor variable xt and time period t. We take the fitted residual, �̂�𝑡, as our de-

trended measure. By construction, �̂�𝑡 has a mean of zero and we normalize it to have a 

standard deviation of one.16 This set represents the maximum number of candidate variables 

possible; we use all of the candidate predictors that we can with minimal assumptions (i.e., 

they must have time-series variation and pass the unit root test). 

 One potential criticism is that there may be only a few potent predictor variables. In 

this view of the world, a large sample such as ours might be padded with obviously unlikely 

candidates, and a multiple hypothesis test would have low statistical power. To address this 

potential criticism, we consider two smaller sets of predictors. One set contains 137 

 
15 We calculate a measure of variation for each variable as the ratio of its time-series standard deviation to 

the absolute value of its time-series mean, and we drop variables with a ratio less than 0.06. See the Internet 

Appendix for a list of variables dropped using the manual filter.  
16 For our in-sample analyses, we estimate the linear trend model using all available data. For our out-of-

sample analyses, we estimate the trend model only using data available at each point in time to avoid a look-

ahead bias. 
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predictors and uses only the raw version of each variable (i.e., it does not use first-

differencing or stochastic detrending). This selection reflects the notion that authors, 

referees, and editors avoid time-series variables that require extra manipulation. For this 

set, we again apply the manual filter to drop predictors that exhibit little to no time-series 

variation. The other set represents the minimum number of candidate variables possible; 

we use only the predictors that have already been examined in the existing time-series 

literature. This set contains 51 variables and, by definition, contains variables that the 

literature views as reasonable candidate variables.  

 

IV. Results 

In this section, we examine whether cross-sectional predictors, in general, contain 

information about the equity risk premium. We start by examining in-sample tests that use 

the entire sample of data and estimate a single parameter estimate from a time-series 

regression of the market risk premium on the predictor. We then examine out-of-sample 

tests that use rolling regressions to test whether a variable is useful for predicting the future 

equity risk premium, using only information available at each date. 

 

A. In-Sample Tests 

As noted in Goyal and Welch (2008), “It is unreasonable to propose a model if the 

[in-sample] performance is insignificant, regardless of its [out-of-sample] performance.” 

As discussed in Section II, we start with 140 variables from the existing literature and, 

using these, we form 268 candidate predictor variables. The sample length for each 

predictive variable depends on data availability. Some predictors have data available as far 

back as 1926, while other variables have samples that start more recently. In our in-sample 

tests, the length of the time series varies depending on data availability. 

For each variable, we run predictive regression models of the form: 

(6) rt:t+h = α + βxt + εt:t+h for t = 1, . . . ,T −h, 

where rt:t+h = (1/h)(rt+1 +···+rt+h), rt is the continuously compounded S&P 500 return for 

month t from CRSP including dividends and excess of the monthly risk-free rate from 
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Goyal and Welch (2008), xt is the predictor variable, and h denotes the forecast horizon. 

We examine four different forecast horizons: one month ahead, one quarter ahead, one-

half year ahead, and one year ahead (i.e., h = 1, 3, 6, or 12). For each predictor at each 

forecast horizon, the regression is estimated using all available data, leading to a single 

parameter estimate (β) that measures the predictive ability of the candidate variable at that 

horizon.17  

 The results are shown in Figure 1 and Tables 2 and 3. In Figure 1, we provide a visual 

display of the relation between cross-sectional predictors and their time-series counterpart. 

For each predictor, the horizontal axis plots the cross-sectional t-statistic, while the vertical 

axis plots the time-series t-statistic. Panel A displays results for 1-month time-series 

regressions, while panels B, C, and D display results for 3-month, 6-month, and 12-month 

regressions.18 If there is a direct mapping from cross-sectional predictability to time-series 

predictability, then at a minimum, the signs of the two results should be the same. This 

would imply that all of the results should either be in quadrant I (the top right of each panel) 

or quadrant III (the bottom left). While a number of results are in quadrant I and III, they 

represent about 58% of all observations at the 12-month horizon. In other words, there are 

a number of results in quadrant II (top left) and IV (bottom right) suggesting that many 

time-series predictors have the opposite sign of their cross-sectional counterpart. In each 

panel, we also plot a linear trendline; if time-series predictors have the same t-statistics as 

their cross-sectional counterpart, the trendline should have a 45-degree slope increasing 

from the left of the figure to the right. In all panels, the line does slope up from left to right, 

indicating a relation between time-series and cross-sectional predictors, but the line is 

flatter than 45 degrees. However, the line does become steeper as the forecasting horizon 

increases. At the 1-month horizon, the Pearson correlation coefficient between the time-

series and cross-sectional predictors is 0.175 while at the 12-month horizon the correlation 

rises to 0.289.  

 
17 In untabulated results, we estimate equation (6) using the weighted least squares method of Johnson 

(2019). This estimator does not affect our conclusions.  
18 We only display results for value-weighted time series predictors in Figure 1, however, in unreported 

results the results are similar for equal-weighted predictors. 
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To formally examine the time-series information in cross-sectional predictors, we 

next turn to the regression results. Table 2 provides a summary of the performance of the 

candidate predictors, broken out by various sub-categories. We report the fraction of 

predictors that are statistically significant at the 10% level or better using two-sided t-

statistics computed using a stationary block bootstrap (Politis and Romano, 1994) with 

1,000 draws to account for the Stambaugh (1999) bias and the fact that the model uses 

overlapping observations when h > 1 (Goetzmann and Jorion (1993); Hodrick (1992); 

Nelson and Kim (1993)).19  

Panel A displays the results from the four different sets of predictors: (1) “Predictors 

from Existing Papers” examines only predictors that have already been examined in the 

time-series literature; (2) “Raw Predictors” expands the list to include all predictors that 

are stationary in raw form (i.e., before applying transformations like the first difference) 

and it imposes filters to remove variables that should not aggregate and/or do not exhibit 

time-series variation; (3) “Raw Predictors + First Diff.” is similar to (2) except it adds the 

first-difference transformation (i.e., if we fail to reject the null that the raw variable is non-

stationary, we then calculate the first difference and include it if it passes the unit root test); 

(4) “All Possible Predictors” examines as many predictors as possible (i.e., we only require 

that they have time-series variation and pass the unit root test). Across all four sets, we find 

evidence of return predictability. In our main specification (“Raw Predictors + First Diff.”), 

on average 13% are statistically significant at the 10% level or better across the various 

forecasting horizons. This number generally increases as the forecast horizon increases 

from 27 (11%) at the one-month horizon to 43 (17%) at the 12-month horizon. The numbers 

are similar for the other sets of predictors. These results run counter to explanations that 

the results are hinged on the initial set of variables being over- or under-aggressive.  

 
19 Specifically, we resample the original data using a stationary block bootstrap with a mean block size of 5, 

however our conclusions are robust to alternate block sizes of 10, 25, and 50. To avoid the overlapping 

dependent variable issue, we have also tried aggregating the independent variable rather than the dependent 

variable as suggested by Cochrane (1991) and Jegadeesh (1991); our general conclusions - about the lack 

of statistically significant predictability after accounting for the number of tests run - do not change under 

any of these alternate approaches. 
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In Panel B, we examine three sub-categories of the 253 variables in our main 

specification. The first two sub-categories, Valuation and Opinion, are motivated by 

economic theory. The Valuation sub-category is composed of variables that are a function 

of discount rates, so theory suggests that they should be related to returns in a time-series 

setting (Kelly and Pruitt, 2013, and Lewellen, 2004). The Opinion subcategory of 

predictors consists of variables like institutional trading and analyst upgrades, which can 

be motivated with the sentiment explanation of Baker and Wurgler (2006) or with the 

information explanation of Seyhun (1988). Finally, we examine a third subcategory, Best 

Cross-sectional, defined as the 10 most statistically significant anomalies in the cross-

sectional literature. Several papers find a reduction of cross-sectional return predictability 

in recent periods (e.g., McLean and Pontiff (2016), Green, Hand, and Zhang (2017)). If the 

cross-sectional predictors we start with are only weakly related to returns in the cross-

section, then they may lead to weak performance in our time-series tests. Accordingly, we 

examine a subcategory that focuses on the best performers in the cross-sectional literature.   

When we examine the three sub-categories defined above, the results are similar. 

Interestingly, the results are generally weaker for the Valuation and Opinion categories 

than for the entire set of predictors. Since valuation ratios may be a function of discount 

rates, they are arguably the most likely cross-sectional predictors to work in a time-series 

setting (Kelly and Pruitt, 2013). Indeed, several different Valuation predictors have been 

studied in the existing market risk premium literature, notably the dividend-to-price and 

earnings-to-price ratios. Our results suggest these predictors are an exception, rather than 

the norm. Across all horizons, only 8% of Valuation predictors and 8% of Opinion 

predictors are statistically significant, versus 13% across all predictors. 

When we examine the results for the “best” cross-sectional variables, there is some 

evidence of predictability, but again, the results are weaker than when we examine all 

possible predictors. For the Best Cross-Sectional predictors (those with the top ten highest 

cross-sectional t-statistics), 10% are statistically significant at the one-year horizon. The 

results are generally consistent with the idea that the best cross-sectional variables forecast 

returns because they contain information about the systematic component of returns. As a 
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result, these variables also aggregate to form good time-series predictors. However, the 

fact that the subset of Best Cross-Sectional predictors is not stronger than the entire set 

suggests that good cross-sectional predictors are not necessarily good time-series 

predictors. 

 Finally, we examine the in-sample results broken out by the different methodologies 

used to construct the aggregate predictor variables. Specifically, in Panel C we present 

results for value- or equal-weighted average predictors. The findings are largely consistent 

across the two methodologies: across all predictors, 13% are statistically significant at the 

one-month horizon when value-weighted and 8% are statistically significant at the one-

month horizon when equal-weighted. As the horizon extends, the value-weighted 

predictors appear to perform slightly better, but the results are generally similar across the 

two groups. For example, across all predictors, 20% are statistically significant at the 

annual horizon when value-weighted versus 14% when equal-weighted. On the surface, 

before a deeper consideration of multiple hypothesis testing is considered, Table 2 suggests 

that some cross-sectional anomaly variables predict the market risk premium. 

 

B. Multiple Hypothesis Testing 

The results in Table 2 examine as many as 269 different regression models, so the 

results are subject to concerns about data snooping. Put differently, with 269 different 

regression models, some tests will likely be statistically significant due to type I errors. 

Fortunately, a growing literature shows how to adjust p-values to account for the number 

of models considered.  

White (2000) develops a reality check bootstrap (RCB) to correct for data-snooping. 

While a number of approaches exist to adjust p-values for the bias that results from multiple 

hypothesis testing, the White approach has several desirable properties. First, it uses a 

bootstrap procedure to estimate the dependence structure of the p-values across all 

considered models. In contrast, the Bonferroni, Dunn (1961) and Holm (1979) approaches 

assume the worst-case dependence structure. This causes them to be overly conservative 

in that they do not reject the null hypothesis enough when the null is false. Because it 
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estimates the actual dependence structure, the White RCB has greater power than the 

Bonferroni and Holm methods. Second, the White procedure is particularly suited to the 

application of return predictability regressions because the procedure uses a loss function 

that compares the performance of a predictor to a benchmark model. Economic theory 

suggests the equity risk premium should be positive; as a result, a strategy that simply 

predicts positive returns all the time would frequently be correct. Accordingly, the return 

predictability literature often compares the forecast accuracy of a predictive variable to the 

so-called “prevailing mean” model that uses the prevailing mean return as the forecast of 

next period’s equity risk premium. The White RCB then uses a loss function that compares 

the mean squared forecast error for each predictor to the mean squared forecast error from 

a benchmark model that uses the prevailing mean return. 

Despite these advantages, the White procedure does have a drawback: if the null is 

rejected, it indicates that the best predictor examined is better than the benchmark, but it 

does not reveal whether the other predictors are better. Put differently, the White procedure 

does not test whether the second-best predictor, or the kth best predictor, is better than the 

benchmark. Accordingly, Romano and Wolf (2005, 2016) develop a step-down procedure 

that extends the White procedure to calculate whether individual predictors are better than 

the benchmark.20 The resulting procedure controls the familywise error rate and provides 

p-values for each individual predictor.  

This is the first paper to use this procedure to evaluate the predictability of the market 

risk premium. The closest related papers are Sullivan, Timmerman, and White (1999) and 

Chordia, Goyal, and Saretto (2020). Sullivan, Timmerman, and White (1999) apply the 

White procedure to examine the performance of technical trading strategies in predicting 

the equity risk premium. Sullivan et al. find no evidence that technical trading strategies 

generate portfolio performance that out-performs a benchmark. More recently, Chordia, 

Goyal, and Saretto (2020) examine the performance of trading strategies in the cross-

 
20 See Romano and Wolf (2016) for a detailed discussion of the procedure and see Section C of the Internet 

Appendix for a detailed overview of our implementation of the procedure. We thank Allan Timmermann 

for helpful conversations about the White (2000) and Romano and Wolf (2005) procedures. 

 

Electronic copy available at: https://ssrn.com/abstract=3459229



 

  

22 
 

section and they use several methods to correct for multiple hypothesis testing bias, 

including the Romano and Wolf (2005, 2016) procedure. They find that most strategies 

studied in the extant literature are not significant after adjusting for multiple hypothesis 

testing. Our paper unifies these two literatures by providing the first evidence on the 

performance of time-series predictors formed from cross-sectional variables.  

To further explore the robustness of our findings, in the Internet Appendix we also 

examine p-values calculated using the Benjamini and Yekutieli (2001) procedure, which 

controls the false discovery rate while allowing for arbitrary dependence. On average, false 

discovery rate methods have better power to reject false null hypotheses, but this comes at 

a cost: they are more likely to reject true null hypotheses. In other words, the Benjamini 

and Yekutieli (2001) procedure is less conservative than the Romano and Wolf (2016) 

procedure as it allows for more false positives.21 Nonetheless, in all analyses our main 

conclusions are unchanged when we use the Benjamini and Yekutieli (2001) procedure in 

place of the Romano and Wolf (2016) procedure. 

 

B.2 In-Sample Results Adjusted for Multiple Hypothesis Testing 

Table 3 reports detailed estimates for individual predictors that are statistically 

significant before adjusting for multiple testing. For brevity, we present results for only our 

main specification, which examines 253 candidate predictors, however the results are 

similar for other specifications. The table presents coefficient estimates, R-squared values, 

and both raw and Romano and Wolf (2016) adjusted p-values. Here we reach the main 

conclusion of the paper: most of the cross-sectional variables that appear to be statistically 

significant when examined in isolation are no longer statistically significant when 

examined in the context of all cross-sectional predictors.  

For example, at the 1-month and 3-month horizons, none of the predictors remain 

significant at the 10% level when computing Romano and Wolf (2016) adjusted p-values 

compared to 27 when computing individual p-values (Table 2). At the 6-month horizon, 

 
21 Specifically, the Romano and Wolf (2016) procedure controls the probability of having any false positives 

while the Benjamini and Yekutieli (2001) procedure controls the expected proportion of false positives, so it 

allows for more false positives as you consider more predictors. 
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there are 2 predictors that are significant at the 10% level (compared to 36 in Table 2) and 

at the 12-month horizon there are 2 predictors significant at the 10% level (compared to 43 

in Table 2). Moreover, the predictors with remarkable statistical significance when 

examined in isolation, no longer appear to be so stellar when examined among the set of 

253 predictors. 

In terms of economic significance, a number of predictors are noteworthy. Z-score 

and Asset Turnover, with R-squared values of 4.6% and of 4.7% shown in column 5 of 

Panel B, are among the best predictors at the three-month horizon. Moreover, several other 

predictors have R-squared values exceeding 3% including Percent Operating Accrual and 

Target Price. Although these R-squared values might seem small in absolute magnitude, 

Zhou (2010) notes that R-squared values from predictive regressions are typically small in 

absolute magnitude as stock returns are difficult to forecast. Accordingly, Zhou (2014) 

builds on the insights of Ross (2005) to construct a mathematical bound on the maximum 

R-squared that can exist under no arbitrage conditions. Using consumption growth rates as 

a state variable, Zhou’s bounds imply a maximum R-squared at the monthly horizon of 

between 0.079% and 0.177%22 and Huang and Zhou (2017) show that the quarterly R-

squared is bound by at most 3.74%, depending on the specification, and in most cases it is 

less than 3%. In light of this, the return predictability of some Table 3 predictors is 

economically large.23  

In addition, we note that many of the best predictors at the 3-month horizon are also 

good predictors at the six-month and twelve-month horizons. At the twelve-month horizon, 

a number of the predictors have impressive R-squared values of 10% or greater including 

 
22 The bounds developed in Zhou (2010) depend on the choice of a state variable. We do not take a stance on 

state variables in this paper, we simply note that the R-squared values we document appear economically 

meaningful relative to the example bounds presented in Zhou (2010). 
23 We also construct predictors based on sets of cross-sectional predictors using principal component analysis 

(PCA). PCA requires non-missing observations for each predictor; as a result, we are not able to utilize the 

entire set of predictors until 1999. In untabulated results, the first principal component extracted from all 

equal-weighted predictors and value-weighted predictors exhibits strong return predictability over the period 

1999 to 2017, before adjusting for multiple testing. However, if we estimate the PCA using the set of variables 

with data starting in 1980, the evidence becomes mixed; we find weak evidence of return predictability for 

value-weighted predictors, but no evidence of return predictability for equal-weighted predictors. We thank 

Bryan Kelly for this suggestion. 
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Z-score, Asset Turnover, and Percent Operating Accrual. For example, Z-score exhibits a 

remarkable R-squared of 18.5% at the twelve-month horizon. However, despite some 

impressive results for individual predictors, after applying the Romano and Wolf (2005, 

2016) procedure only Z-score and Asset Turnover are statistically significant.  

Table 4 summarizes the results after applying the Romano and Wolf (2005, 2016) 

procedure. In Panel A, our main specification (“Raw Predictors + First Diff.”) exhibits 0, 

0, 2, and 2 statistically significant predictors at the 1- month, 3- month, 6- month, and 12-

month horizons. One possible critique is that these results include predictors that should 

not have been included, and this causes a failure to reject a false null hypothesis (a type II 

error). To address this concern, we also present results for a variety of different sets of 

predictors and subsamples. In our main specification we use only the raw or first-

differenced version of each variable, yet some existing papers in the time-series return 

predictability literature examine stochastically detrended variables. Accordingly, in Panel 

A we examine “All Possible Predictors” which add predictors that require stochastic 

detrending. Consistent with Rapach et al. (2016) we find that detrended short interest is 

one of the best predictors at the 3-month, 6-month, and 12-month horizons.24 However, 

after applying the Romano and Wolf procedure, we find that none of the 269 predictors are 

statistically significant at the 1-month and 3-month horizons and only 3 of the variables are 

statistically significant at the 12-month horizon.  

Similarly, we examine two other sets of predictors (“Raw Predictors” and 

“Predictors from Existing Papers”) and find little evidence of return predictability. In sum, 

the three alternate sets of predictors in Panel A provide bounds on the possible set of 

variables to consider. At a minimum, we know the profession has examined the 51 

variables in the “Predictors from Existing Papers” so these variables have to be included 

in a multiple testing framework. At a maximum, the 269 predictors in “All Possible 

Predictors” represent all the cross-sectional variables that could possibly be examined. The 

fact that our results are unchanged across these two extremes shows that our conclusions 

 
24 Detailed in-sample results for the set of “All Possible Predictors” are shown in Table IA.III of the 

Internet Appendix and out-of-sample results are shown in Table IA.IV of the Internet Appendix. 
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are not sensitive to the number of variables considered. Moreover, when we examine the 

results by sub-category in Panel B, the results again show zero statistically significant 

predictors at the 1-month horizon and between 0 and 1 statistically significant predictors 

at the 12-month horizon.  

Finally, Table IA.I summarizes the results after applying the Benjamini and Yekutieli 

(2001) procedure. As expected, there are more statistically significant predictors in Table 

IA.I than Table 4, but the overall conclusion is similar. Even though the Benjamini and 

Yekutieli (2001) procedure is more permissive than the Romano and Wolf (2016) 

procedure, there are relatively few predictors that remain significant. For example, when 

we examine “Predictors from Existing Papers,” we find no evidence of predictability at the 

1-month and 3-month horizons, and only 3 of the 60 predictors are significant at the 6-

month horizon and 4 of the 60 predictors are significant at the 12-month horizon. Overall, 

across a wide variety of samples and methodologies, our conclusion remains unchanged: 

there is only weak in-sample evidence that cross-sectional predictors contain information 

about the systematic portion of returns. 

 

C. Out-of-Sample Tests 

A number of papers note that in-sample tests may overstate predictability due to the 

use of information that was not known ex-ante (e.g., Cooper, Gutierrez, Marcum (2005), 

Goyal and Welch (2008)). Accordingly, in this section, we revisit each of our tests using 

out-of-sample forecasting regressions. We again run predictive regressions of the form: 

(7) rt:t+h = αt + βtxt + εt:t+h for t = 1, . . . ,T −h, 

where rt:t+h = (1/h)(rt+1 +···+rt+h), rt is the excess return on the S&P500, and xt is the 

predictor variable. However, now we estimate the model separately for each time period, 

using only information that was available at each date. As such, we estimate new parameter 

estimates for αt and βt at each point in time. If the relation between the predictor variable 

and the equity risk premium is stable over time, then this out-of-sample approach should 

produce the same results as the in-sample analysis discussed in Section III.A. If the relation 
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between the predictor variable and the equity risk premium is not stable, the out-of-sample 

tests may lead to a different conclusion. 

As previously discussed, the sample length for each predictive variable depends on 

data availability. For the out-of-sample tests, we use the first 10 years of data to train the 

model before we make our first forecast. As before, we start by summarizing the results 

across all specifications. Table 5 provides a summary of the performance of the candidate 

predictors. To make inferences, we calculate the out-of-sample 𝑅𝑂𝑆
2  statistic defined as in 

Campbell and Thompson (2008).25 To calculate the out-of-sample 𝑅𝑂𝑆
2 , we use the 

prevailing mean equity risk premium, at each date, as our benchmark model and we use 

the Clark and West (2007) statistic to assess statistical significance.26 Panel A summarizes 

statistical significance across the four different sets of predictors: (1) “Predictors from 

Existing Papers”; (2) “Raw Predictors”; (3) “Raw Predictors + First Diff.”; and (4) “All 

Possible Predictors.” Recall that in Table 2, the in-sample evidence was strongest at the 

annual horizons, however even at the 1-month horizon approximately 11% of the “Raw 

Predictors + First Diff.” predictors were statistically significant at the 10% level or better. 

In contrast, the out-of-sample evidence is weaker. At the one-month horizon, less than 3% 

of the variables are statistically significant. 

In Panel B, we examine three sub-categories of the 253 variables in our main 

specification (Best Cross-sectional, Opinion, and Valuation) and the results do not look 

much better. Again, the Valuation and Opinion sub-categories appear to be worse than the 

full sample of predictors, despite the economic motivation for Valuation predictors and 

their popularity in the extant literature. Moreover, while the Best Cross-Sectional category 

continues to show some evidence of predictability at longer horizons, none of the predictors 

is significant at the one-month horizon. 

 
25 We use the unconstrained out-of-sample R-squared from Campbell and Thompson (2008) (i.e., we do not 

impose any sign restrictions). 
26 Formally, we test the null hypothesis that the mean square forecast error (MSFE) from the baseline model 

is less than or equal to the MSFE from the predictive model versus the alternative hypothesis that the MSFE 

from the benchmark model is greater than the MSFE from the predictive model (𝐻0: 𝑅𝑂𝑆
2  ≤

0 against (𝐻𝐴: 𝑅𝑂𝑆
2 >  0). 
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The remaining panels of Table 5 examine the out-of-sample results broken out by 

the different methodologies used to construct the aggregate predictor variables. 

Specifically, Panel C examines the results when we calculate the aggregate predictor using 

a value-weighted average or an equal-weighted average, respectively. Again, the results 

look similar regardless of the methodology used to construct the predictors. Only 4 of 128 

value-weighted predictors are significant at the one-month horizon and only 3 of 125 equal-

weighted predictors are significant. Overall, the results show that cross-sectional variables 

contain some systematic information at longer horizons, but not at short horizons. Taken 

together, it is tempting to conclude that some cross-sectional predictors can be used to form 

aggregate predictors, suggesting they contain information about the systematic component 

of returns. However, our out-of-sample analyses consider more than 253 different 

specifications. In the next section, we revisit our results after accounting for the number of 

hypotheses tested. 

 

D.1. Multiple Hypothesis Testing  

As before, we ask whether our out-of-sample tests show evidence of return 

predictability after accounting for possible data snooping biases. To do this, we again use 

the Romano and Wolf (2016) procedure.27 The procedure follows a similar process to the 

in-sample procedure, except we estimate rolling regressions and compare the prediction 

from these regressions to a rolling average market risk premium. Section B of the Internet 

Appendix provides a detailed overview of the procedure. 

 

D.2 Out-of-Sample Results Adjusted for Multiple Hypothesis Testing 

Table 6 displays detailed estimates for individual predictors that are statistically 

significant before adjusting for multiple testing. The table presents the time-series mean of 

each coefficient estimate, the Campbell and Thompson (2008) out-of-sample R-squared, 

 
27 The Romano and Wolf procedure expands the White (2000) RCB to adjust p-values for each individual 

predictor. White (2000) shows this procedure is valid for both in-sample and out-of-sample tests and 

Sullivan, Timmermann, and White (1999) apply the White (2000) procedure to out-of-sample forecasting 

regressions.  
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and both raw and Romano and Wolf (2016) adjusted p-values. Interestingly, the out-of-

sample R-squared values in Table 6 highlight many of the same predictors that performed 

well in Table 3 in the in-sample analyses. Analogous to Table 3, we report the time-series 

mean of the betas from these regressions in addition to the out-of-sample 𝑅𝑂𝑆
2  statistic. 

Indeed, Z-score and Asset Turnover have out-of-sample R-squared values that are positive 

and economically meaningful at the three-month, six-month, and twelve-month horizons. 

Once again, Asset Turnover exhibits impressive results with an out-of-sample R-squared 

value of 17.5% at the twelve-month horizon. Because the out-of-sample 𝑅𝑂𝑆
2  statistic 

measures the proportional reduction in mean squared forecast error that results from using 

the predictor (relative to the benchmark model), its magnitude is also useful for interpreting 

the economic significance of these findings. For the variables listed above, the out-of-

sample 𝑅𝑂𝑆
2  statistic suggests economically large return predictability.  

However, many of these conclusions change after adjusting for multiple testing. 

Table 7 summarizes the results. We fail to reject the null of no predictably at all forecasting 

horizons for all predictors using the Romano and Wolf (2016) stepdown procedure. In 

Panel A the results are consistent across all of the alternate samples (Predictors from 

Existing Papers, Raw Predictors, Raw Predictors + First Diff., and All Possible 

Predictors). As a result, our conclusions are not sensitive to the number of variables 

considered in the Romano and Wolf calculation. In Panels B and C, we again find no 

predictability. The conclusions are not significantly different when we examine false 

discovery rates, shown in Table IA.II of the internet appendix. At the 1-month and 3-month 

horizons, none of the predictors are significant in any of the samples. At longer horizons, 

we find limited evidence of predictability. For example, at the 12-month horizon, we find 

that 2 out of the predictors from the existing literature remain significant. Overall, the 

results in this subsection echo the conclusions of subsection B. Many predictors exhibit 

strong out-of-sample t-statistics. However, once multiple hypothesis testing is considered, 

the results are weaker and we find little evidence that cross-sectional predictors, in general, 

contain systematic information. 
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V. Conclusion 

There is a large literature examining the cross-sectional determinants of stock 

returns. Similarly, many time series variables have been proposed as predictors of the 

equity risk premium. While these literatures have evolved largely independently, at least 

26 papers have proposed certain cross-sectional variables as candidates for time-series 

predictability. Using various samples of cross-sectional predictors and accounting for the 

number of predictors and their interdependence, we examine the link between cross-

sectional and time-series predictability. Our analyses provide new information on the 

nature of return predictability.  

We find plenty of evidence that, in isolation, certain cross-sectional variables make 

great time series predictors. Some of these variables, like Z-Score and Asset Turnover, have 

never been proposed as time-series variables. However, these results largely disappear once 

we account for the data snooping bias arising from the plethora of predictive variables 

considered. Moreover, when we examine out-of-sample forecasting regressions, we 

continue to find little evidence of return predictability.  

If each of our 140 cross-sectional predictors were examined by different 

econometricians, it is likely that several articles would be written discussing the powerful 

in-sample time-series information in cross-sectional variables. Claims of predictability in 

these articles would likely be bolstered by out-of-sample Goyal and Welch (2008) tests. 

Indeed, several such articles exist. In this paper, we take a different approach. Once we 

consider the set of all existing cross-sectional variables documented in the extant literature, 

the difference in conclusions is stark. The evidence no longer suggests that cross-sectional 

variables contain information about the systematic component of returns. 
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Figure 1 

In-Sample Relation between Cross-Sectional and Time-Series Predictors 
The figure displays a plot of the relation between cross-sectional and time-series predictors. For each 

predictor, we plot the t-statistic from a cross-sectional regression (shown on the horizontal axis) and the 

t-statistic from value-weighted in-sample time series regressions (shown on the vertical axis). Panel A 

examines 1-month time-series regressions, while panels B, C, and D examine 3-month, 6-month, and 

12-month regressions, respectively. In each panel, the diagonal black line denotes a linear trendline.  

 

Panel A: 1 month 
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Table 1 

Summary Statistics 
The table displays summary statistics across all of the cross-sectional variables from which we construct 

time-series predictors. To construct time-series predictors out of cross-sectional variables, we calculate 

the value-weighted and equal-weighted mean across all stocks on each date. The first row displays 

statistics for variables already examined in the existing literature on time-series return predictability 

(Predictors from Existing Papers), the second row shows statistics for all possible variables derived from 

the cross-sectional literature (All Possible), and the remaining rows examine sub-samples formed on the 

ten most statistically significant cross-sectional predictors (Best Cross-Sectional) and two different 

groupings from the categories in McLean and Pontiff (2016): (1) Opinion and (2) Valuation. We display 

the mean and median values of cross-sectional t-statics as well as the number of citations for each 

predictor from Google Scholar as of 2018. 

 
  Cross-Sectional t-statistic  Citations 

Type N Mean Median  Mean Median 

Predictors from Existing Papers 26 4.26 3.26  3,312 1,531 

All Possible 140 3.03 2.71  1,432 517 

Best Cross-sectional  10 8.38 7.96  854 740 

Opinion 22 2.97 2.48  798 689 

Valuation 15 3.14 2.88  2262 273 
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Table 2 

Summary of In-Sample Performance using Unadjusted p-values 
The table displays a count of the number of predictive variables that are statistically significant at the 

10% level or better, as a fraction of the total number of variables examined. We calculate statistical 

significance using bootstrap p-values. For each anomaly, we estimate an in-sample predictive regression 

of the form: 

rt:t+h = α + βxt + εt:t+h for t = 1, . . . ,T −h, 

where rt:t+h = (1/h)(rt+1 +···+rt+h), rt is the continuously compounded S&P 500 return for month t from 

CRSP including dividends and excess of the monthly risk-free rate from Goyal and Welch (2008), h 

indicates the forecast horizon in months, and xt is one of the 140 predictor variables. To construct time-

series predictors out of cross-sectional predictors, we calculate the value-weighted and equal-weighted 

mean across all stocks on each date resulting in 280 possible predictors. In Panel A, we consider four 

different definitions: (1) Predictors from Existing Papers uses only those variables that are used in the 

existing literature on time-series return predictability. (2) Raw Predictors examines every possible 

variable for which we reject the null that the raw variable is non-stationary. (3) Raw Predictors + First 

Diff. examines every possible variable however if a variable is not stationary in raw form, we then 

examine whether it is non-stationary in first-differenced form. If we fail to reject the null that the first 

differenced variable is non-stationary, we drop the variable. (4) All Possible Predictors examines every 

possible variable. If we fail to reject the null that a variable is non-stationary, we calculate deviations 

from a linear trend model. If we fail to reject the null that the linearly detrended variable is non-

stationary, we calculate the first-difference. If we fail to reject the null that the first differenced variable 

is non-stationary, we drop the variable. In Panel B, we examine subsamples of the variables in Raw 

Predictors + First Diff. formed on the ten most statistically significant cross-sectional predictors (Best 

Cross-Sectional), and two different groupings based on the categories in McLean and Pontiff (2016): 

(1) Opinion and (2) Valuation. In Panel C we examine equal-weighted vs. value-weighted predictors 

for the variables in Raw Predictors + First Diff.  

  Return Horizon (h) 

Predictive Variable  h=1  h=3  h=6  h=12 

Panel A: Candidate Predictors (number significant / total examined) 

Predictors from Existing Papers  6/51  7/51  6/51  10/51 

Raw Predictors  19/137  21/137  30/137  37/137 

Raw Predictors + First Diff.  27/253  27/253  36/253  43/253 

All Possible Predictors  34/269  43/269  45/269  54/269 

Panel B: By Subcategory (number significant / total examined) 

Best Cross-sectional   1/20  1/20  1/20  2/20 

Opinion  4/38  3/38  2/38  3/38 

Valuation  0/24  0/24  2/24  6/24 

Panel C: By Aggregation Method (number significant / total examined) 

Equal-Weighted Predictors  10/125  8/125  14/125  17/125 

Value-Weighted Predictors  17/128  19/128  22/128  26/128 
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Table 3 

Best In-Sample Predictive Regression Results using Romano and Wolf p-values 
The table reports the ordinary least squares estimate of β, p-values, and the 𝑅2 statistic from in-sample predictive 

regression models of the form: 

rt:t+h = α + βxt + εt:t+h for t = 1, . . . ,T −h, 

where rt:t+h = (1/h)(rt+1 +···+rt+h), rt is the continuously compounded S&P 500 return for month t from CRSP including 

dividends and excess of the monthly risk-free rate from Goyal and Welch (2008), h indicates the forecast horizon in 

months, and xt is the predictor variable shown in columns 2 and 9. For each horizon, we run 253 regressions using the 

variables in the Raw Predictors + First Diff. set of predictors. Panel A displays results for the 1-month horizon, Panel 

B shows the 3-month horizon, Panel C shows the 6-month horizon, and Panel D shows the 12-month horizon. Within 

each panel, predictors are sorted by their Romano and Wolf p-value and then their unadjusted p-value. We report all 

predictors that have unadjusted p-values less than 10% for a given horizon. Unadjusted p-values are shown in columns 

6 and 13 and Romano and Wolf (2016) adjusted p-values are shown in columns 7 and 14. 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

  EW       EW     

  or   Raw RW   or   Raw RW 

Rank Predictor VW �̂� 𝑹𝟐 p-Value Rank Predictor VW �̂� 𝑹𝟐 p-Value 

Panel A: 1 Month Horizon 

1 Z-Score VW -0.0056 1.6% 0.00 0.83 15 Amihud'S Measure EW 0.0026 0.4% 0.03 1.00 
2 Asset Turnover VW 0.0053 1.5% 0.00 0.89 16 Cash Flow Variance EW 0.0034 0.6% 0.07 1.00 

3 Z-Score EW -0.0052 1.4% 0.00 0.91 17 ΔRec. + Accrual EW -0.0046 1.1% 0.03 1.00 

4 LT Reversal VW -0.0046 0.7% 0.01 0.92 18 Spreads EW 0.0026 0.4% 0.06 1.00 
5 ΔNC Op. Assets VW -0.0036 0.7% 0.03 0.98 19 Capex Growth VW -0.0032 0.5% 0.07 1.00 

6 Stock Split EW -0.0026 0.4% 0.10 1.00 20 SEO VW -0.0042 0.9% 0.01 1.00 

7 ΔTax to Assets EW 0.0055 1.6% 0.00 1.00 21 Asset Growth VW -0.0035 0.7% 0.02 1.00 
8 Volume / MV EW -0.0044 1.0% 0.05 1.00 22 Moment Lt Reversal VW 0.0025 0.2% 0.06 1.00 

9 Coskewness EW 0.0036 0.7% 0.04 1.00 23 Sustainable Growth VW -0.0031 0.5% 0.06 1.00 

10 Secure / Total Debt VW 0.0040 0.9% 0.03 1.00 24 Coskewness VW 0.0037 0.8% 0.07 1.00 
11 Spinoffs VW -0.0040 0.9% 0.05 1.00 25 % Operating Accrual VW -0.0038 0.9% 0.10 1.00 

12 Pension Funding VW -0.0035 0.7% 0.01 1.00 26 Forecast Dispersion VW 0.0032 0.6% 0.04 1.00 

13 IPOs VW 0.0035 0.7% 0.05 1.00 27 ΔRec. + Accrual VW -0.0049 1.3% 0.05 1.00 
14 Target Price EW -0.0054 1.7% 0.05 1.00        

              

Panel B: 3 Month Horizon 

1 Z-Score VW -0.0055 4.6% 0.00 0.33 15 Spreads VW 0.0028 1.2% 0.06 0.99 
2 Asset Turnover VW 0.0056 4.7% 0.00 0.33 16 Abn. Analyst Intense EW -0.0026 1.0% 0.01 1.00 

3 LT Reversal VW -0.0048 2.2% 0.02 0.41 17 Reverse Split EW -0.002 0.6% 0.08 1.00 
4 Z-Score EW -0.0046 3.1% 0.00 0.69 18 ΔTax to Assets EW 0.0044 2.9% 0.00 1.00 

5 SEO VW -0.0045 3.1% 0.00 0.72 19 Volume VW -0.002 0.4% 0.09 1.00 

6 Target Price EW -0.0062 6.0% 0.01 0.84 20 Inventory Growth VW -0.0023 0.8% 0.08 1.00 
7 ΔNC Op. Assets VW -0.0033 1.8% 0.04 0.84 21 Secure / Total Debt VW 0.0021 0.7% 0.08 1.00 

8 Asset Growth VW -0.0036 2.1% 0.01 0.85 22 Dividend Omission EW 0.0026 1.0% 0.07 1.00 

9 Coskewness VW 0.0036 2.1% 0.04 0.85 23 Spreads EW 0.0024 0.9% 0.05 1.00 
10 % Operating Accrual VW -0.0045 3.4% 0.05 0.93 24 Reverse Split VW 0.0028 1.3% 0.08 1.00 

11 Sustainable Growth VW -0.0033 1.7% 0.03 0.95 25 Accruals VW 0.0029 1.3% 0.07 1.00 

12 Cash Flow Variance EW 0.0033 1.7% 0.06 0.99 26 Share Issues PW VW -0.0031 1.4% 0.09 1.00 
13 Capex Growth VW -0.0032 1.6% 0.06 0.99 27 Moment Lt Reversal VW 0.0022 0.4% 0.08 1.00 

14 ΔRec. + Accrual VW -0.0037 2.1% 0.06 0.99        
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Table 3 - Continued 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 
  EW       EW     

  or   Raw RW   or   Raw RW 

Rank Predictor VW �̂� 𝑹𝟐 p-Value Rank Predictor VW �̂� 𝑹𝟐 p-Value 

Panel C: 6 Month Horizon 

1 Asset Turnover VW 0.0059 9.7% 0.00 0.07 19 Volume Trend EW 0.0032 3.0% 0.08 0.94 

2 Z-Score VW -0.0057 9.1% 0.00 0.10 20 Spreads EW 0.0026 2.0% 0.01 0.94 
3 LT Reversal VW -0.0049 4.6% 0.00 0.13 21 Reverse Split VW 0.0029 2.6% 0.01 0.94 

4 Z-Score EW -0.0044 5.2% 0.00 0.46 22 Moment-reverse VW -0.0026 1.2% 0.07 0.94 

5 Asset Growth VW -0.0037 3.9% 0.00 0.60 23 ΔSales-ΔInventory  EW -0.0026 2.0% 0.04 0.95 
6 Spreads VW 0.0035 3.7% 0.00 0.61 24 Share Issues PW VW -0.0028 2.1% 0.07 0.95 

7 ΔNC Op. Assets VW -0.0032 3.1% 0.03 0.64 25 R&D/MV EW 0.0026 2.0% 0.07 0.96 

8 Sustainable Growth VW -0.0036 3.8% 0.01 0.64 26 Cash Flow Variance EW 0.0029 2.6% 0.05 0.96 
9 % Operating Accrual VW -0.0047 6.7% 0.02 0.66 27 Dividend Omission EW 0.0021 1.3% 0.09 0.99 

10 SEO VW -0.0038 4.0% 0.01 0.73 28 Org. Capital EW 0.0023 1.5% 0.07 0.99 

11 Target Price EW -0.0052 7.0% 0.01 0.90 29 Profit Margin VW 0.0025 1.7% 0.09 0.99 

12 ΔTax to Assets EW 0.0048 6.0% 0.00 0.92 30 Abn. Analyst Intense EW -0.0012 0.4% 0.05 1.00 

13 ΔCapex-ΔInd Capex EW -0.0029 2.4% 0.00 0.92 31 Share Issues DT EW -0.0021 1.2% 0.05 1.00 

14 Capex Growth VW -0.0031 3.0% 0.06 0.92 32 Cash to Assets VW 0.0014 0.6% 0.04 1.00 
15 Accruals VW 0.0029 2.4% 0.03 0.92 33 ΔTax to Assets VW 0.0028 2.0% 0.09 1.00 

16 ΔCapex-ΔInd Capex VW -0.0029 2.5% 0.02 0.92 34 Share Issues DT VW -0.0017 0.8% 0.06 1.00 

17 Price VW -0.0028 1.4% 0.09 0.92 35 ΔSales-ΔSG&A EW 0.0019 1.0% 0.09 1.00 
18 Coskewness VW 0.0027 2.2% 0.06 0.93 36 Cash Flow Variance VW 0.002 1.2% 0.10 1.00 

              

Panel D: 12 Month Horizon 

1 Z-Score VW -0.0058 18.5% 0.00 0.02 23 ΔSales-ΔInventory  EW -0.0022 2.8% 0.03 0.95 
2 Asset Turnover VW 0.0058 17.8% 0.00 0.03 24 Moment-reverse VW -0.0022 1.7% 0.06 0.95 

3 LT Reversal VW -0.0044 7.3% 0.00 0.13 25 R&D/MV EW 0.0022 2.5% 0.08 0.97 

4 Z-Score EW -0.0043 9.8% 0.00 0.28 26 Cash Flow Variance EW 0.0023 3.0% 0.05 0.97 
5 Sustainable Growth VW -0.0039 8.3% 0.00 0.30 27 Reverse Split VW 0.0022 2.8% 0.03 0.97 

6 ΔNC Op. Assets VW -0.0035 6.8% 0.01 0.31 28 Exchange Switch VW -0.0019 2.1% 0.04 0.97 

7 Asset Growth VW -0.0037 7.7% 0.00 0.36 29 Coskewness VW 0.0019 2.1% 0.06 0.97 
8 Spreads VW 0.0035 7.2% 0.00 0.37 30 Share Issues DT EW -0.0018 1.8% 0.03 0.99 

9 Price VW -0.0036 4.1% 0.02 0.45 31 E/P EW -0.0017 1.7% 0.08 0.99 

10 % Operating Accrual VW -0.0046 12.2% 0.01 0.47 32 Amihud'S Measure EW 0.0018 1.8% 0.09 0.99 
11 Capex Growth VW -0.0034 7.1% 0.02 0.63 33 Hybrid Covar. Risk VW 0.0018 2.0% 0.10 0.99 

12 ΔCapex-ΔInd Capex EW -0.003 5.2% 0.00 0.70 34 M/B and Accruals VW -0.002 2.3% 0.09 0.99 

13 Spreads EW 0.0027 4.2% 0.00 0.77 35 Stock Split EW -0.0017 1.8% 0.08 1.00 
14 ΔCapex-ΔInd Capex VW -0.0028 4.6% 0.00 0.77 36 ΔTax to Assets EW 0.0029 4.0% 0.01 1.00 

15 Org. Capital EW 0.003 4.9% 0.01 0.79 37 Coskewness EW 0.001 0.6% 0.03 1.00 

16 Employee Growth VW -0.0027 4.3% 0.04 0.80 38 E/P VW 0.0008 0.4% 0.04 1.00 
17 Volume Trend EW 0.003 5.0% 0.03 0.86 39 CF/MV VW 0.0007 0.3% 0.06 1.00 

18 LT Reversal EW -0.0025 2.3% 0.05 0.86 40 ΔSales-ΔSG&A EW 0.0016 1.5% 0.09 1.00 

19 Share Issues PW VW -0.0027 4.0% 0.06 0.87 41 Δ # Institut. Owners VW -0.0015 1.3% 0.09 1.00 
20 ΔAsset Turn VW 0.0028 4.2% 0.02 0.87 42 ΔPrice Forecast VW -0.0011 0.5% 0.10 1.00 

21 Target Price EW -0.0043 8.7% 0.03 0.92 43 Moment Lt Reversal VW 0.0015 0.8% 0.03 1.00 

22 SEO VW -0.0026 3.6% 0.08 0.93        
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Table 4 

Summary of In-Sample Performance using Romano and Wolf p-values 
The table displays a count of the number of predictive variables that are statistically significant at the 

10% level or better, as a fraction of the total number of variables examined. We calculate statistical 

significance using Romano and Wolf adjusted p-values. For each anomaly, we estimate an in-sample 

predictive regression of the form: 

rt:t+h = α + βxt + εt:t+h for t = 1, . . . ,T −h, 

where rt:t+h = (1/h)(rt+1 +···+rt+h), rt is the continuously compounded S&P 500 return for month t from 

CRSP including dividends and excess of the monthly risk-free rate from Goyal and Welch (2008), h 

indicates the forecast horizon in months, and xt is one of the 140 predictor variables. To construct time-

series predictors out of cross-sectional predictors, we calculate the value-weighted and equal-weighted 

mean across all stocks on each date resulting in 280 possible predictors. In Panel A, we consider four 

different definitions: (1) Predictors from Existing Papers uses only those variables that are used in the 

existing literature on time-series return predictability. (2) Raw Predictors examines every possible 

variable for which we reject the null that the raw variable is non-stationary. (3) Raw Predictors + First 

Diff. examines every possible variable however if a variable is not stationary in raw form, we then 

examine whether it is non-stationary in first-differenced form. If we fail to reject the null that the first 

differenced variable is non-stationary, we drop the variable. (4) All Possible Predictors examines every 

possible variable. If we fail to reject the null that a variable is non-stationary, we calculate deviations 

from a linear trend model. If we fail to reject the null that the linearly detrended variable is non-

stationary, we calculate the first-difference. If we fail to reject the null that the first differenced variable 

is non-stationary, we drop the variable. In Panel B, we examine subsamples of the variables in Raw 

Predictors + First Diff. formed on the ten most statistically significant cross-sectional predictors (Best 

Cross-Sectional), and two different groupings based on the categories in McLean and Pontiff (2016): 

(1) Opinion and (2) Valuation. In Panel C we examine equal-weighted vs. value-weighted predictors 

for the variables in Raw Predictors + First Diff. 

  Return Horizon (h) 

Predictive Variable  h=1  h=3  h=6  h=12 

Panel A: Candidate Predictors (number significant / total examined) 

Predictors from Existing Papers  0/51  0/51  1/51  3/51 

Raw Predictors  0/137  0/137  2/137  2/137 

Raw Predictors + First Diff.  0/253  0/253  2/253  2/253 

All Possible Predictors  0/269  0/269  1/269  3/269 

Panel B: By Subcategory (number significant / total examined) 

Best Cross-sectional   0/20  0/20  1/20  1/20 

Opinion  0/38  0/38  0/38  0/38 

Valuation  0/24  0/24  0/24  1/24 

Panel C: By Aggregation Method (number significant / total examined) 

Equal-Weighted Predictors  0/125  0/125  0/125  0/125 

Value-Weighted Predictors  0/128  0/128  3/128  2/128 
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Table 5 

Summary of Out-of-Sample Performance using Unadjusted p-values 
The table displays a count of the number of predictive variables that are statistically significant at the 

10% level or better, as a fraction of the total number of variables examined. We calculate statistical 

significance using bootstrap p-values. For each anomaly, we estimate an out-of-sample predictive 

regression of the form: 

rt:t+h = α + βxt + εt:t+h for t = 1, . . . ,T −h, 

where rt:t+h = (1/h)(rt+1 +···+rt+h), rt is the continuously compounded S&P 500 return for month t from 

CRSP including dividends and excess of the monthly risk-free rate from Goyal and Welch (2008), h 

indicates the forecast horizon in months, and xt is one of the 140 predictor variables. We estimate 

expanding rolling window regressions using only information available on each date. To construct time-

series predictors out of cross-sectional predictors, we calculate the value-weighted and equal-weighted 

mean across all stocks on each date resulting in 280 possible predictors. In Panel A, we consider four 

different definitions: (1) Predictors from Existing Papers uses only those variables that are used in the 

existing literature on time-series return predictability. (2) Raw Predictors examines every possible 

variable for which we reject the null that the raw variable is non-stationary. (3) Raw Predictors + First 
Diff. examines every possible variable however if a variable is not stationary in raw form, we then 

examine whether it is non-stationary in first-differenced form. If we fail to reject the null that the first 

differenced variable is non-stationary, we drop the variable. (4) All Possible Predictors examines every 

possible variable. If we fail to reject the null that a variable is non-stationary, we calculate deviations 

from a linear trend model. If we fail to reject the null that the linearly detrended variable is non-

stationary, we calculate the first-difference. If we fail to reject the null that the first differenced variable 

is non-stationary, we drop the variable. In Panel B, we examine subsamples of the variables in Raw 

Predictors + First Diff. formed on the ten most statistically significant cross-sectional predictors (Best 

Cross-Sectional), and two different groupings based on the categories in McLean and Pontiff (2016): 

(1) Opinion and (2) Valuation. In Panel C we examine equal-weighted vs. value-weighted predictors 

for the variables in Raw Predictors + First Diff. 

  Return Horizon (h) 

Predictive Variable  h=1  h=3  h=6  h=12 

Panel A: Candidate Predictors (number significant / total examined) 

Predictors from Existing Papers  0/51  5/51  9/51  11/51 

Raw Predictors  4/137  24/137  32/137  36/137 

Raw Predictors + First Diff.  7/253  30/253  39/253  44/253 

All Possible Predictors  7/269  32/269  41/269  45/269 

Panel B: By Subcategory (number significant / total examined) 

Best Cross-sectional   0/20  2/20  3/20  3/20 

Opinion  1/38  3/38  1/38  0/38 

Valuation  0/24  0/24  0/24  1/24 

Panel C: By Aggregation Method (number significant / total examined) 

Equal-Weighted Predictors  3/125  10/125  16/125  17/125 

Value-Weighted Predictors  4/128  20/128  23/128  27/128 
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Table 6 

Best Out-of-Sample Predictive Regression Results using Romano and Wolf p-values 
The table reports the mean of the ordinary least squares estimate of β, p-values, and the Campbell and 

Thompson (2008) 𝑅𝑂𝑆
2  statistic from out-of-sample predictive regression models of the form: 

rt:t+h = α + βxt + εt:t+h for t = 1, . . . ,T −h, 

where rt:t+h = (1/h)(rt+1 +···+rt+h), rt is the continuously compounded S&P 500 return for month t from CRSP 

including dividends and excess of the monthly risk-free rate from Goyal and Welch (2008), h indicates the 

forecast horizon in months, and xt is the predictor variable in the first column. �̂� (column 4) is the time-series 

mean of the coefficient estimates for each predictor. The Campbell and Thompson 𝑅𝑂𝑆
2  statistic (columns 5 

and 12) is calculated as 1 minus the proportional reduction in mean squared forecast error (MSFE) at the h-

month horizon for a predictive regression forecast of the S&P 500 log excess return based on the predictor 

variable in the first column vis-a-vis the prevailing mean benchmark forecast. For each horizon, we run 253 

out-of-sample regressions using the variables in the Raw Predictors + First Diff. set of predictors. Panel A 

displays results for the 1-month horizon, Panel B shows the 3-month horizon, Panel C shows the 6-month 

horizon, and Panel D shows the 12-month horizon. Within each panel, predictors are sorted by their Romano 

and Wolf p-value and then their unadjusted p-value. We report all predictors that have unadjusted p-values 

less than 10% for a given horizon. Unadjusted p-values are shown in columns 6 and 13 and Romano and 

Wolf (2016) adjusted p-values are shown in columns 7 and 14. 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

  EW       EW     

  or   Raw RW   or   Raw RW 

Rank Predictor VW �̂� 𝑹𝟐 p-Value Rank Predictor VW �̂� 𝑹𝟐 p-Value 

Panel A: 1 Month Horizon 

1 Asset Turnover VW 0.0070 0.3% 0.04 1.00        

2 ΔRec + Accrual VW -0.0029 1.1% 0.04 1.00        
3 Z-score EW -0.0043 0.5% 0.04 1.00        

4 Z-score VW -0.0049 0.7% 0.05 1.00        

5 ΔTax to Assets EW 0.0065 -0.9% 0.06 1.00        
6 Pension Funding VW -0.0043 -0.4% 0.08 1.00        

7 Coskewness EW 0.0045 0.0% 0.09 1.00        

              

Panel B: 3 Month Horizon 

1 Idio Risk VW -0.0015 1.11 0.00 0.99 16 Z-Score EW -0.0039 1.43 0.04 1.00 

2 Volume EW -0.0005 0.57 0.00 1.00 17 Exchange Switch VW -0.0034 -0.91 0.04 1.00 
3 Asset Turnover VW 0.0073 3.83 0.00 1.00 18 Δ # Institut. Owners VW 0.0036 -13.43 0.04 1.00 

4 ST Reversal EW -0.0002 0.39 0.00 1.00 19 Cash Flow Variance VW 0.0042 -0.03 0.05 1.00 

5 ST Reversal VW -0.0007 0.30 0.00 1.00 20 LT Reversal VW -0.0066 -0.61 0.05 1.00 
6 Z-Score VW -0.0048 3.25 0.01 1.00 21 Cash Flow Variance EW 0.0020 1.09 0.05 1.00 

7 Lag Moment VW -0.0013 0.79 0.01 1.00 22 Age EW 0.0163 -106.82 0.07 1.00 

8 Max VW -0.0014 1.15 0.01 1.00 23 Moment Lt Reversal VW 0.0021 0.34 0.08 1.00 
9 Abn. Analyst Intense EW -0.0073 -0.11 0.02 1.00 24 Age VW 0.0019 -0.07 0.08 1.00 

10 Lag Moment EW -0.0010 0.61 0.02 1.00 25 Reverse Split VW 0.0048 -0.10 0.08 1.00 

11 ΔNC Op. Assets VW -0.0013 1.63 0.02 1.00 26 ΔTax to Assets EW 0.0051 2.18 0.08 1.00 
12 Price VW -0.0040 0.97 0.02 1.00 27 ΔRec. + Accrual VW -0.0030 1.45 0.09 1.00 

13 Volume VW -0.0018 0.69 0.03 1.00 28 Capex Growth VW -0.0024 1.29 0.09 1.00 

14 Size EW 0.0000 0.30 0.03 1.00 29 Max EW -0.0001 0.36 0.09 1.00 
15 Coskewness VW 0.0055 1.43 0.03 1.00 30 Moment-reverse VW -0.0009 0.50 0.10 1.00 
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Table 6 - Continued 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 
  EW       EW     

  or   Raw RW   or   Raw RW 

Rank Predictor VW �̂� 𝑹𝟐 p-Value Rank Predictor VW �̂� 𝑹𝟐 p-Value 

Panel C: 6 Month Horizon 

1 ST Reversal EW 0.0000 0.28 0.00 0.92 21 Cash Flow Variance EW 0.0018 2.39 0.03 0.86 

2 Volume EW -0.0003 0.90 0.00 1.00 22 LT Reversal EW -0.0028 1.45 0.03 1.00 
3 Idio Risk VW -0.0020 1.56 0.00 0.98 23 Exchange Switch VW -0.0041 -1.94 0.04 1.00 

4 Size VW 0.0004 0.39 0.00 1.00 24 Reverse Split VW 0.0043 -1.32 0.04 1.00 

5 ST Reversal VW 0.0003 0.34 0.00 1.00 25 Spreads VW 0.0080 -2.32 0.04 1.00 
6 Asset Turnover VW 0.0075 9.63 0.00 1.00 26 Idio Risk EW -0.0001 1.31 0.04 1.00 

7 Moment Lt Reversal VW 0.0008 1.18 0.00 1.00 27 Moment-reverse EW -0.0011 1.19 0.04 1.00 

8 Volume VW -0.0017 0.69 0.00 1.00 28 Age VW 0.0019 -0.10 0.05 1.00 
9 Moment-reverse VW -0.0024 2.19 0.00 1.00 29 Coskewness VW 0.0046 1.42 0.05 1.00 

10 Price VW -0.0036 1.88 0.01 1.00 30 Dividends EW 0.0000 1.01 0.06 1.00 

11 Max EW -0.0014 0.80 0.01 1.00 31 Z-Score EW -0.0041 1.91 0.06 1.00 
12 Max VW -0.0024 1.46 0.01 1.00 32 ΔCapex-ΔInd Capex VW -0.0037 0.02 0.06 1.00 

13 Size EW 0.0005 0.23 0.01 1.00 33 Price EW -0.0023 0.48 0.06 1.00 

14 Z-Score VW -0.0050 7.37 0.01 0.95 34 Dividends VW 0.0000 0.97 0.06 1.00 
15 Lag Moment VW -0.0015 1.94 0.01 1.00 35 ΔCapex-ΔInd Capex EW -0.0038 -0.07 0.06 1.00 

16 LT Reversal VW -0.0064 1.15 0.01 1.00 36 Capex Growth VW -0.0026 3.07 0.07 1.00 

17 Spreads EW 0.0120 -1.61 0.02 1.00 37 ΔSales-ΔInventory  EW -0.0042 -4.29 0.08 1.00 
18 ΔNC Op. Assets VW -0.0009 3.32 0.02 1.00 38 Asset Growth VW 0.0003 0.97 0.09 1.00 

19 Lag Moment EW -0.0012 1.57 0.02 1.00 39 Abn. Analyst Intense EW -0.0043 -0.66 0.09 1.00 

20 Cash Flow Variance VW 0.0057 0.26 0.03 1.00        
              

Panel D: 12 Month Horizon 

1 Volume EW 0.0000 0.25 0.00 0.95 23 Max EW -0.0003 -0.31 0.03 1.00 

2 Volume VW -0.0002 0.15 0.00 0.99 24 Dividends EW 0.0000 1.69 0.03 1.00 
3 Lag Moment VW -0.0020 4.36 0.00 1.00 25 Dividends VW 0.0000 1.68 0.03 1.00 

4 Size VW 0.0009 -0.19 0.00 1.00 26 Z-Score VW -0.0053 15.01 0.03 0.91 

5 Moment Lt Reversal EW 0.0009 3.85 0.00 0.98 27 ΔNC Op. Assets VW -0.0008 7.35 0.03 1.00 

6 Moment Lt Reversal VW 0.0013 4.00 0.00 0.94 28 Age VW 0.0021 -1.17 0.03 1.00 

7 Reverse Split VW 0.0028 -2.50 0.00 1.00 29 Exchange Switch VW -0.0040 -2.26 0.04 1.00 

8 Lag Moment EW -0.0011 2.90 0.00 1.00 30 Moment-reverse EW -0.0006 1.06 0.05 1.00 
9 Price VW -0.0047 2.99 0.00 1.00 31 Sustainable Growth VW -0.0021 2.31 0.05 1.00 

10 Moment-reverse VW -0.0020 2.70 0.00 1.00 32 ΔCapex-ΔInd Capex EW -0.0025 2.46 0.05 1.00 

11 Spreads EW 0.0096 1.51 0.00 1.00 33 ΔCapex-ΔInd Capex VW -0.0030 0.41 0.07 1.00 
12 Max VW -0.0013 1.08 0.00 1.00 34 Cash Flow Variance VW 0.0062 -0.76 0.07 1.00 

13 Asset Turnover VW 0.0079 17.46 0.00 1.00 35 Org. Capital EW 0.0027 4.62 0.07 1.00 

14 ST Reversal VW 0.0011 -0.95 0.01 1.00 36 Volume / MV VW -0.0012 0.02 0.09 1.00 
15 ST Reversal EW 0.0010 -1.01 0.01 1.00 37 Price EW -0.0030 -0.83 0.09 1.00 

16 Spreads VW 0.0067 1.58 0.01 1.00 38 Volume Trend EW 0.0031 2.61 0.09 1.00 

17 Size EW 0.0010 -1.30 0.01 1.00 39 Momentum EW 0.0007 -1.55 0.09 1.00 
18 LT Reversal VW -0.0052 6.09 0.01 1.00 40 Asset Growth VW 0.0001 3.07 0.09 1.00 

19 LT Reversal EW -0.0025 3.61 0.01 1.00 41 ΔSales-ΔInventory  EW -0.0024 -4.57 0.09 1.00 

20 Idio Risk VW 0.0005 -0.84 0.01 1.00 42 Coskewness VW 0.0039 0.18 0.09 1.00 
21 Capex Growth VW -0.0034 7.55 0.02 1.00 43 % Operating Accrual VW -0.0046 9.75 0.10 1.00 

22 Cash Flow Variance EW 0.0013 4.44 0.02 0.75 44 IPOs VW -0.0018 -1.26 0.10 1.00 
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Table 7 

Summary of Out-of-Sample Performance using Romano and Wolf p-values 
The table displays a count of the number of predictive variables that are statistically significant at the 

10% level or better, as a fraction of the total number of variables examined. We calculate statistical 

significance using Romano and Wolf adjusted p-values. For each anomaly, we estimate an out-of-

sample predictive regression of the form: 

rt:t+h = α + βxt + εt:t+h for t = 1, . . . ,T −h, 

where rt:t+h = (1/h)(rt+1 +···+rt+h), rt is the continuously compounded S&P 500 return for month t from 

CRSP including dividends and excess of the monthly risk-free rate from Goyal and Welch (2008), h 

indicates the forecast horizon in months, and xt is one of the 140 predictor variables. We estimate 

expanding rolling window regressions using only information available on each date. To construct time-

series predictors out of cross-sectional predictors, we calculate the value-weighted and equal-weighted 

mean across all stocks on each date resulting in 280 possible predictors. In Panel A, we consider four 

different definitions: (1) Predictors from Existing Papers uses only those variables that are used in the 

existing literature on time-series return predictability. (2) Raw Predictors examines every possible 

variable for which we reject the null that the raw variable is non-stationary. (3) Raw Predictors + First 
Diff. examines every possible variable however if a variable is not stationary in raw form, we then 

examine whether it is non-stationary in first-differenced form. If we fail to reject the null that the first 

differenced variable is non-stationary, we drop the variable. (4) All Possible Predictors examines every 

possible variable. If we fail to reject the null that a variable is non-stationary, we calculate deviations 

from a linear trend model. If we fail to reject the null that the linearly detrended variable is non-

stationary, we calculate the first-difference. If we fail to reject the null that the first differenced variable 

is non-stationary, we drop the variable. In Panel B, we examine subsamples of the variables in Raw 

Predictors + First Diff. formed on the ten most statistically significant cross-sectional predictors (Best 

Cross-Sectional), and two different groupings based on the categories in McLean and Pontiff (2016): 

(1) Opinion and (2) Valuation. In Panel C we examine equal-weighted vs. value-weighted predictors 

for the variables in Raw Predictors + First Diff. 

  Return Horizon (h) 

Predictive Variable  h=1  h=3  h=6  h=12 

Panel A: Candidate Predictors (number significant / total examined) 

Predictors from Existing Papers  0/51  0/51  0/51  0/51 

Raw Predictors  0/137  0/137  0/137  0/137 

Raw Predictors + First Diff.  0/253  0/253  0/253  0/253 

All Possible Predictors  0/269  0/269  0/269  0/269 

Panel B: By Subcategory (number significant / total examined) 

Best Cross-sectional   0/20  0/20  0/20  0/20 

Opinion  0/38  0/38  0/38  0/38 

Valuation  0/24  0/24  0/24  0/24 

Panel C: By Aggregation Method (number significant / total examined) 

Equal-Weighted Predictors  0/125  0/125  0/125  0/125 

Value-Weighted Predictors  0/128  0/128  0/128  0/128 
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