
Economics of Ransomware: Risk Interdependence and

Large-Scale Attacks

Terrence August∗, Duy Dao†, Marius Florin Niculescu‡

Nov 5, 2021

Forthcoming in Management Science

Earlier versions presented at WISE 2017, CIST 2018, and WEIS 2019

Abstract

Recently, the development of ransomware strains as well as changes in the marketplace
for malware have greatly reduced the entry barrier for attackers to conduct large-scale
ransomware attacks. In this paper, we examine how this mode of cyberattack impacts
software vendors and consumer behavior. When victims face an added option to miti-
gate losses via a ransom payment, both the equilibrium market size and the vendor’s
profit under optimal pricing can actually increase in the ransom demand. Profit can
also increase in the scale of residual losses following a ransom payment (which reflect
the trustworthiness of the ransomware operator). We show that for intermediate levels
of risk, the vendor restricts software adoption by substantially hiking up price. This
lies in stark contrast to outcomes in a benchmark case involving traditional malware
(non-ransomware) where the vendor decreases price as security risk increases. Social
welfare is higher under ransomware compared to the benchmark in both sufficiently
low and high-risk settings. However, for intermediate risk, it is better from a social
standpoint if consumers do not have an option to pay ransom. We also show that
the expected ransom paid is non-monotone in risk, increasing when risk is moderate
in spite of a decreasing ransom-paying population. For ransomware attacks on other
vectors (beyond patchable vulnerabilities), there can still be an incentive to hike price.
However, market size and profits instead weakly decrease in the ransom amount. When
studying a generalized model that includes both traditional and ransomware attacks,
our results remain robust to a wide range of scenarios, including threat landscapes
where ransomware has only a small presence.

∗Rady School of Management, University of California, San Diego, La Jolla, CA 92093-0553. E-mail:
taugust@ucsd.edu.

†Haskayne School of Business, University of Calgary, Calgary, Alberta T2N 1N4. E-mail:
duy.dao@ucalgary.ca.

‡Scheller College of Business, Georgia Institute of Technology, Atlanta, Georgia 30308. E-mail:
marius.niculescu@scheller.gatech.edu.



1 Introduction

In recent years, ransomware has evolved to become a prevalent class of malware due to im-

proved use of encryption and attack vectors as well as increased maturity of cryptocurrency-

based payment systems. Ransomware is an extortion-based attack that infects a computer

system and subsequently prevents either access to the system (i.e., locker ransomware) or

access to files or data (i.e., crypto ransomware) (Savage et al. 2015). Victims are typically

threatened with permanent loss of access unless they pay a ransom. Having an additional

decision for consumers1 (i.e., whether to pay ransom) disrupts the economics underlying soft-

ware usage and patching behaviors, and therefore ransomware may necessitate management

strategies and policies that conflict with what served prior environmental characteristics well.

Over the past decade, ransomware experienced tremendous growth and even held the

crown as the fastest growing cybersecurity threat (Cybersecurity Insiders 2017). The rate

of ransomware attacks on businesses has been accelerating from one attack every 40 seconds

in 2016 to one attack every 14 seconds in 2019 (Kaspersky 2016, Morgan 2019). Moreover,

ransomware has continued to evolve to cause increased downtime, now averaging over 16

days (Palmer 2020). The overall damage that businesses incur from ransomware attacks

(including payments, remediation, and downtime) is estimated to have exceeded $74 billion

in 2020 (Emsisoft Malware Lab 2021).

Preventative actions are the best defense against ransomware (FBI 2016, U.S. Depart-

ment of Justice 2017, No More Ransomware Project 2017). In fact, the U.S. Department

of Health and Human Services delineates what healthcare providers are required to do to

prevent ransomware infection in order to be HIPAA compliant (U.S. Department of Health

and Human Services 2016). Timely patching of systems, as well as responsible access and

communication management are considered among best practices, but many consumers re-

grettably do not comply. Sadly, this state of affairs has been the defining characteristic of

security vulnerabilities for decades, and ransomware similarly exploits the same poor risk

management practices.

Consider the example of WannaCry, one of the most prevalent ransomware attacks ob-

served in the last few years which leveraged NSA-leaked infiltration and exploit tools (Sanders

2019). Microsoft had released a patch on March 14, 2017, yet two months later a sizeable

number of unpatched systems enabled WannaCry to spread laterally fast, indiscriminately

affecting over 230,000 computers across 150 countries in a day (Microsoft 2017, Cooper 2018).

Even in 2019, WannaCry attacks still accounted for over six times as many detections com-

1Throughout the paper, we use “consumers” to refer to both businesses and individuals who employ the
software in question.
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pared to attacks from all other ransomware variants combined (Sanders 2019, Trend Micro

Research 2019). These incidents highlight how large populations of unpatched consumers

encourage the development of ransomware, facilitate its spread, and also keep the threat

current. As software vendors and government agencies grapple with the significant losses

being incurred, they have sought to understand how to respond to and operate in this new

environment where affected consumers now face a ransom demand that can possibly mitigate

losses.

Large-scale ransomware campaigns can also spread via unpatchable vectors such as phish-

ing attacks and zero-day vulnerabilities. Phishing attacks bait consumers into action (e.g.,

opening attachments laced with malware, clicking on fake banner ads or malicious URLs). As

an example, in August and September of 2017, Locky ransomware was pushed via multiple

massive phishing campaigns to millions of consumers (Cabuhat et al. 2017; Palmer 2017),

exploiting a long-known Microsoft Office vulnerability that Microsoft only permanently dis-

abled in December 2017. In another example in 2019, attackers exploited a zero-day vul-

nerability in the widely used Oracle WebLogic server to install Sodinokibi and GandCrab

ransomware on vulnerable machines, which necessitated no user interaction at all (Goddin

2019); this is among the first known cases where bad actors used a single attack to distribute

two ransomware payloads (Splinters 2019).

Consumers facing large-scale cyberattacks, including ransomware, are also exposed to

interdependent security risks. A larger at-risk population increases the risk for all individuals

within the population. This can happen through a variety of mechanisms. Ransomware

worms, such as ZCryptor, WannaCry, or Bad Rabbit, have the ability to self-replicate and

travel laterally to other unprotected systems on the same computer network without any

additional interaction or hacker intervention (Barkly 2017). In other instances, hackers

install scanners on compromised systems to harvest credentials that enable them to more

broadly infiltrate the corporation and possibly its partners and clients (Barak 2020). Lastly,

having more consumers at risk can attract increased attention from malicious hackers. For

these reasons, the risk of ransomware infection is characterized by network externalities.

Hacker motivations span human curiosity, a desire for fame, an anti-establishment agenda,

economic objectives, hacktivism, and even cyberwarfare (Thomas and Stoddard 2012). Both

WannaCry and NotPetya, the recent and largest ransomware attacks in history, were at-

tributed to state actors, i.e., Russia and North Korea, respectively (Chappell and Neuman

2017; Marsh 2018). On the other hand, attackers using SamSam, Sodinokibi, Dharma or

Ryuk ransomware tools appear to be more economically motivated, collecting millions of dol-

lars in ransom payments according to FBI (Abrams 2020). In the case of Ryuk ransomware

alone, attackers are estimated to have received over $150 million in ransom crypto payments
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(Kremez and Carter 2021).

In that state actors’ motivations are typically political in nature, those responsible for

NotPetya and WannaCry did not bother to properly set up and configure effective processes

to receive payments and return decryption keys to those who paid (Greenberg 2018).2 Never-

theless, they clearly proved the feasibility of launching large-scale and disruptive ransomware

attacks. An interesting question is whether these attacks could have caused greater economic

damages had the ransom payment and decryption key delivery process actually been func-

tional. For Dharma or Ryuk, which were clearly motivated by revenue generation, an open

question is how would the scaling of such attacks to harness risk interdependence impact

revenues, as consumers adjust their patching and usage strategies to risk expectations. This

question has become more salient as some ransomware tools (e.g., Ryuk) initially designed

for highly targeted attacks have evolved to include self-replicating capabilities (Arntz 2021).

It is easy to see that the actual potential of ransomware has yet to be observed, and the

economic models we develop in this paper help provide insight into what lies on the horizon.

Most prior work on how a software firm and its consumers react to security risk tends

to model both patching costs and security losses (August and Tunca 2006; Cavusoglu et al.

2008; Dey et al. 2015). Ransomware presents a potential efficiency gain by offering a loss-

mitigating payment opportunity, whereas in models of traditional attacks, victims typically

do not have this opportunity and instead incur large valuation-dependent losses. To explore

the impact of this cybersecurity threat, we construct a series of models that include the

primitive elements that uniquely define ransomware. We then examine how the threat of

ransomware affects consumers’ choices as they face trade-offs between ex-ante security pro-

tection efforts like patching and ex-post ransom payments to agents with unlawful motives.

The option to pay ransom shifts consumer strategies and modifies the network external-

ity stemming from at-risk usage which fundamentally alters the decision problem that the

vendor faces. These trade-offs become even more complex when both ransomware and tra-

ditional attacks are commingled in a single framework. In totality, we seek to understand

how ransomware characteristics affect software pricing, usage and security in the presence

of interdependent risk, and reflect on whether a shift in attack trends toward increased

representation from the ransomware class is helpful or hurtful to the economy.

2As of Dec 2019, only 430 WannaCry victims paid the ransom demand (WebTitan 2019).
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2 Literature Review

This work contributes to several research streams falling under the general topic of eco-

nomics of information security, namely (i) economics of ransomware, (ii) network security

externalities due to interdependent risks, and (iii) disaster recovery. Moreover, due to the

peculiarities of ransomware attacks, this work is directly related to the research stream on

(iv) economic dynamics of hostage taking and negotiation.

Ransomware attacks are perpetrated based on the concept of holding hostage a digital

asset and demanding a ransom for its release (Young and Yung 1996). There exists an estab-

lished research stream on hostage taking, ensuing negotiations, and outcomes in scenarios

involving human victims. Several empirical studies explore the effect of deterrence policies

and concession making on recurrence of hijacking events (Brandt and Sandler 2009, Brandt

et al. 2016) and factors impacting the attackers’ perpetration and negotiation effectiveness

(Gaibulloev and Sandler 2009). Other studies take a behavioral approach to understand

terrorist actions in hostage-taking events (e.g., Wilson 2000). Early game-theoretical studies

on this topic focus on the dynamics of the interaction between rational terrorists and nego-

tiators on the part of victims (governments, families, or other interested parties). Lapan and

Sandler (1988) look at multi-period scenarios where the terrorists are considering an attack

each period and there are potential reputation effects propagating through time, based on

government concessions during negotiations in prior attacks. They abstract the number of

victims and their model characterizes attack outcomes as constant regardless of how many

victims are affected. Selten (1988) explores an extension with multiple attackers and vic-

tims but each instance of an attack represents a game with an isolated outcome in which

the attacker will proceed with attacking each victim separately and only if he expects some

benefit from the attack.

Drawing parallels to cyberattacks, such modeling approaches can be used to characterize

attacks that are to some extent isolated (small-scale) and targeted. In contrast, in the

case of large-scale attacks, the brunt of the impact is due to security interdependence as

discussed in the Introduction.3 In these attacks, perpetrators move laterally across at-risk

systems, oftentimes in an untargeted way potentially accelerated through the implementation

of worm-like self-propagation; in any case, the attacker need not work through a process of

decision-making for every potential breach. Observationally, in several of these attacks, the

ransom demanded is hardcoded a priori to a default level rather than being adjusted based

on the value of the compromised digital asset to the consumer.4 Furthermore, theoretical

3This can be true even if the onset of the attack is targeted.
4WannaCry, Bad Rabbit, and ZCryptor prompted victims to pay $300-$500, 0.05 BTC, and 1.2 BTC per
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kidnapping models usually involve dynamics between two parties (negotiators and attackers).

In contrast, many cyberattacks are enabled by vulnerabilities in an information system sold

by a legitimate software vendor. The vendor is partially responsible for how secure its

product is and can strategically create financial incentives for the adoption and patching

of the system by consumers. Considering these dimensions, our framework accommodates

large-scale attacks with interdependent security risks and endogenizes the role of the vendor

in influencing the size of the consumer population that is vulnerable to the attack. Beyond

the existence (Young and Yung 1996) and observation of cryptovirological attacks, our work

focuses on their impact on software markets and the economic incentives that govern their

efficacy.

The research agenda on the economics of information security has been extensively de-

veloped along multiple directions such as patching management and incentives (Cavusoglu

et al. 2008, Ioannidis et al. 2012, Dey et al. 2015, August et al. 2019, Lelarge 2009), software

liability (August and Tunca 2011, Kim et al. 2011), network security (August and Tunca

2006, Chen et al. 2011, August et al. 2014), piracy (August and Tunca 2008, Lahiri 2012,

Kannan et al. 2016, Kim et al. 2018, Dey et al. 2019), vulnerability disclosure (Cavusoglu

and Raghunathan 2007, Arora et al. 2008, Choi et al. 2010, Mitra and Ransbotham 2015),

security investments (Grossklags et al. 2008), cyber-insurance (Böhme and Schwartz 2010,

Johnson et al. 2011), and markets for information security and managed security services

(Kannan and Telang 2005, Dey et al. 2012, Gupta and Zhdanov 2012, Ransbotham et al.

2012, Dey et al. 2014, Cezar et al. 2017). With regard to economic modeling of security in

particular, the focus is often on the ex ante costly decisions (e.g., investments in patching,

protection, reliability, insurance, etc.) that impact loss distributions.

On the other hand, the focus of cybersecurity recovery is often on planning and business

continuity (IBM 2014, Bartock et al. 2016). The academic literature that explores eco-

nomics of cybersecurity recovery is currently relatively sparse. We highlight how our work

contributes to this nascent area. Chen et al. (2017) formalizes an ex-post recovery decision

in the context of an infrastructure game where the designer can create redundant links for

protection or add links back to the network post-attack as a means to recovery. In their

model, whether and to what extent to heal the network is a recovery decision that must

be made. Yang et al. (2019) consider a model with an advanced persistent threat (APT)

where organizations attempt to mitigate the impact of APT via a dynamic quarantine and

recovery (QAR) scheme. In APT settings, the timing of an attack event is necessarily more

opaque, hence security actions tend to be governed by an optimal control problem specifying

affected system, respectively. Certain version of Locky prompted consumers to pay 0.25 BTC.
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both a quarantine cost function and a recovery cost function. In a recent work that is the

closest to ours, Cartwright et al. (2019) formally study the tradeoff between exerting ex ante

costly effort to avoid an attack versus exerting ex post costly effort to recover. Their exper-

iment assesses the impact of framing effects on this security trade-off. Notably, their study

is motivated by ransomware where paying ransom is a means of recovery. The contribution

of our paper is similarly more general being the first to examine a downstream endogenous

recovery decision that influences an upstream security decision (i.e., patching) where these

behaviors fundamentally alter the risk all agents face due to network externalities.

The study of economic dynamics of markets affected by ransomware also remains rela-

tively sparse. Different from other types of cyberattacks where the full loss is realized if the

attack is successful, ransomware attacks present victims with a post-attack choice: pay ran-

som (and hopefully retrieve access to the locked resource) or incur the full losses associated

with giving up on that digital asset. From the perspective of consumers, the game is more

complex. Laszka et al. (2017) explore security investments in risk mitigation (e.g, backups)

and the strategic decision of whether to pay ransom. They abstract away from preventive

effort investments by consumers (patching, firewalls, etc). In their study, the attacker’s ef-

fort is customized to the victim, thus matching the dynamics of targeted attacks. In our

study, in the case of large-scale, untargeted attacks with risk interdependence, preventive

actions effectively lessen the spreading of the attack. Cartwright et al. (2019) adapt models

by Lapan and Sandler (1988) and Selten (1988) to ransomware attacks and explore bar-

gaining and deterrence strategies. In particular, they show that the likelihood of irrational

aggression in the absence of payment and credible commitment to return files upon receipt

of payment plays a key role in incentivizing victims to pay the ransom. Both Laszka et al.

(2017) and Cartwright et al. (2019) consider the bargaining nature of the ransom game,

where the victims have the ability to propose a counter offer to the demanded ransom and

engage in negotiation. Such a modeling approach is relevant to targeted attacks on a smaller

scale, where the effort is minimal on the side of the attacker to customize his handling of

each victim. As mentioned above, many larger scale untargeted ransomware attacks do not

allow for bargaining as the ransom is fixed and possibly hardcoded prior to the attack taking

place. Hence, in our study, we focus on the consumer decision of whether to pay the ransom

or not in the absence of a bargaining option.

Similar to our study, Cartwright and Cartwright (2019) and Li and Liao (2020) study

untargeted ransomware attacks without an option for bargaining. In the former paper,

the authors consider a repeated infinite-horizon game where a malicious agent attacks a

randomly chosen victim each period. In the latter, in a setting with multiple victims, the

focus is on hackers potentially engaging in an additional harmful action, that of selling
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victims data. Both papers consider the role of attacker reputation given its impact on

victim response and overall payoff. In contrast, our results are consequentially impacted by

consumer usage, protection, and ransom payment decisions that define relevant consumer

segments in equilibrium, and together give rise to overall market risk. We explore the

strategic pricing decisions of software vendors as well as welfare implications associated with

ransomware in this context.

Finally, neither the hostage-taking literature nor the extant literature on economics of

ransomware capture the possibility of negative security network externalities which often

characterize large-scale cyberattacks. Cartwright et al. (2019) mention potential spillover

effects of deterrence when there are two customer categories, but it is important to materially

tie these effects to the size of the vulnerable population. Interdependent security risks have

been explored in several other papers (e.g., Kunreuther and Heal 2003, Gal-Or and Ghose

2005, Johnson et al. 2010, August and Tunca 2011, Hui et al. 2012, Zhao et al. 2013). We

extend this literature by modeling risk interdependencies in the context of ransomware.

3 Ransomware Attacks on Patchable Vulnerabilities

We begin our study by focusing on classes of ransomware risk spread via patchable vulnera-

bilities (e.g., WannaCry). In Section 4, we then examine classes of ransomware attacks that

spread via unpatchable vectors (e.g., phishing scams, zero-day vulnerabilities). Then, in Sec-

tion 5 and Section A.3 of the Appendix, we bring other types of traditional, non-ransomware

attacks into the model to demonstrate how even a limited amount of ransomware can greatly

affect the strategies of software firms and social welfare.

3.1 Model Description

We study the market for a software product that exhibits security vulnerabilities exploitable

by ransomware attacks. We assume a unit-mass continuum of consumers whose valuations

v for the software lie uniformly on V = [0, 1]. Each consumer makes a decision to buy,

B, or not buy, NB. Consumers who purchase pay a price p set by the vendor for the

product. When a security vulnerability arises, the vendor develops a security patch and

makes it freely available to all consumers of the software.5 Each purchasing consumer makes

a decision to patch, P , or not patch, NP . Consumers who decide to patch do so in a timely

5For software that is currently within its support period, the norm in the software industry is to make
security patches widely available for free to all consumers in order to reduce risk, a policy that is cognizant
of the security externalities that exist.

7



manner thereby incurring an expected patching cost of cp > 0. Consumers who either do

not patch or delay patching beyond a critical window face the risk of being hit by an attack.

If operating unpatched, then a consumer gets hit with aggregated probability πru, where

πr > 0 is the probability the vulnerability is exploited and u is the size of the unpatched

population of consumers (which is endogenous to the model). Using this specification of a

network externality, we capture risk interdependence associated with ransomware attacks.6

We focus on large-scale, ransomware attacks. If successfully attacked, the consumer

can either pay the ransom, R, or choose not to pay ransom, NR. The ransomware operator

demands a single ransom R> 0 across all victims, which is consistent with many ransomware

attacks in this family, including WannaCry, ZCryptor, and Bad Rabbit (Symantec 2016,

F-Secure 2016, Barkly 2017). A ransomware victim with type v who chooses not to pay

ransom incurs losses of αv, where α> 0.7 The parameter α can capture a wide range of loss

scenarios. First, there are operational and recovery related losses. For software that drives

systems that can easily be backed up and re-deployed with minimal downtime and disruption,

α can be small. On the other hand, for systems characterized by more intermittent back-ups

or even their absence, α can be relatively large. Recovery efforts can include hiring external

providers to perform a forensic analysis of the attack and attempt to recover encrypted data

without negotiating with attackers. Second, there can be potential losses associated with

reputation, trust, goodwill, future business, and sensitive consumer data/privacy violations.8

As a result, losses resulting from an attack can even go beyond the direct loss of usage and

attain higher levels (i.e., α> 1).9

Even consumers who pay ransom face a risk that the attacker may not release a working

decryption key. According to Sussman (2020), 32% of the victims who pay ransom do not

6It is worth noting that a single decision maker (such as a corporate IT department) who derives indepen-
dent valuations from multiple systems can make separate (and possibly different) purchasing and patching
decisions for each system. For example, Boeing took such a granular approach to patching for WannaCry;
this led to some systems in its Commercial Airplanes division becoming infected because they were still
unpatched almost a year after WannaCry had emerged (Gates 2018). In cases like these, the aggregate valu-
ation to a corporation is simply the sum of the individual valuations. If the role of the system is specifically
to support a single, corporate individual, decision rights can be delegated to that agent. The only model
requirement is that the decision maker only manages a countable set of systems.

7Ransomware financially impacts both businesses and individuals. Huang et al. (2018) tracked victims,
ransomware operators and ransomware payments using end-to-end measurement, accounting for more than
$16 million in payments by 19,750 likely victims over 2 years. They found that 74.5% of the infected IP
addresses were residential whereas 3.5% were businesses at that time. The remaining share was composed
of colleges, hosting and others.

8For example, attackers using Maze ransomware threatened those who did not pay ransom with leakage
of stolen data, and even followed through on that promise (Krebs on Security 2019).

9Note, however, that expected losses are necessarily less than the consumer’s valuation. The consumer
only makes trade-offs between paying ransom and incurring losses at the last stage of the game, consistent
with sub-game perfection.
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immediately regain access to their data, and 22% never do. This can happen for multiple

reasons that interact with the wide-ranging attacker motivations discussed in Section 1. For

example, an economically-motivated attacker may not release the key because he aims to

extract more out of the victims (Siwicki 2016). Firm survey data suggests that as many as

10% of firms that pay an initial ransom are demanded a second ransom (Sussman 2020). Or

perhaps not releasing decryption keys is a result of unintentional failures in either a manual

process for producing and releasing keys or in the systems that process ransom payments

(Abrams 2016; Chuang 2016; Chuang 2018). Attackers with either political agendas or

other motivations may not have any intention to produce or release the keys in the first

place (Frenkel et al. 2017, Marsh 2018).

Because consumers face uncertain ransomware risks based on unclear attacker motiva-

tions, we parameterize the primary loss characteristics faced by consumers. This provides

the ability to analyze outcomes across the varied motivations that underlie hacker activ-

ity. In particular, consumers who pay ransom still incur some residual valuation-dependent

losses in expectation. We model them as scaled losses by a factor δ ∈ (0, 1). For example, a

high δ can represent a case where the ransomware operator has little intention of releasing

working decryption keys upon payment, and a small δ represents the opposite case where

the operator uses a well-functioning and automated release system so that residual losses to

paying consumers are minimal.10

The consumer action space is S= {(B,P ), (B,NP,R), (B,NP,NR), (NB)} and for a

given strategy profile σ : V → S, the expected utility function for consumer v is given by:

URW (v, σ),






v − p− cp if σ(v) = (B,P ) ;

v − p− πru(σ)(R + δαv) if σ(v) = (B,NP,R) ;

v − p− πru(σ)αv if σ(v) = (B,NP,NR) ;

0 if σ(v) = (NB) ,

(1)

where u(σ),
∫
V 11{σ(v)∈{(B,NP,R),(B,NP,NR)}} dv is the size of the unpatched population in the

presence of the ransomware threat. Without loss of generality, we assume that πr ∈ (0, 1],

cp ∈ (0, 1), R ∈ (0,∞), and α ∈ (0,∞).11 It is worth noting that the above modeling

10In general, one can vary over the (R, δ) parameter space to map to hacker motivations and gain insights
into the equilibria that unfold under ransomware consistent with each motivation. This parametric approach
is preferable here because the wide-ranging and disparate motivations behind observed ransomware would
make objective specification (in malicious agent modeling) untenable (see Section 6 where we discuss the
limitations). Moreover, it permits broader insights into a threat landscape that is dynamic in nature; the
version and intent of ransomware seen recently in WannaCry and NotPetya may look starkly different than
the successful ransomware campaign of tomorrow which our model also intends to inform upon.

11For consumers in our model, at the point of decision making on whether to pay ransom they are only
trading off ransom and residual losses, R + δαv, and full valuation-dependent losses, αv; all other costs are
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framework can also examine targeted attacks with valuation-dependent ransom demands via

a parameter transformation.12

3.2 Consumption Subgame

Before examining the impact of ransomware on the vendor’s decision, we first characterize

how consumers behave in equilibrium (in the consumption subgame) for a given price. There

are two factors that complicate their decisions. First, the level of risk upon being unpatched

is endogenously determined by the actions of all consumers. Second, this risk includes the

behavior of both those who would pay ransom as well as those who would not. Thus, we

first focus on understanding the effect of their strategic interactions on equilibrium behavior

due to the externality generated by both subpopulations. The consumer with valuation v

selects an action that solves the following maximization problem: max
s∈S

URW (v, σ) , where

the strategy profile σ is composed of σ−v (which is taken as fixed) and the choice being

made, i.e., σ(v) = s. We denote the optimal action that solves her problem with s∗(v).

Further, we denote the equilibrium strategy profile with σ∗, and it satisfies the requirement

that σ∗(v) = s∗(v) for all v ∈V. We next characterize the structure of equilibrium consumer

behavior in the subgame.

Lemma 1. [Consumption Subgame] Given a price p and a set of parameters πr, α, cp, R,

and δ, there exists a unique equilibrium strategy profile σ∗ that is characterized by thresholds

vnr, vr, vp ∈ [0, 1]. For each v ∈V, it satisfies

σ∗(v) =





(B,P ) if vp <v≤ 1 ;

(B,NP,R) if vr <v≤ vp ;

(B,NP,NR) if vnr <v≤ vr ;

(NB) if 0≤ v≤ vnr .

(2)

Lemma 1 establishes that the equilibrium consumer behavior in the subgame has a thresh-

old structure. The highest-valuation consumers have the most value to lose if attacked, so

they patch in equilibrium when risk is high. Those with lower valuations remain unpatched.

Of those who are unpatched, those with higher valuations are the ones who pay ransom to

reduce the impact of being unpatched on their valuation-dependent losses. Importantly, it

sunk at that point in time. In that α can be greater than 1 when the attacks greatly affect firms, R can
analogously be larger than 1 in situations where attackers are capitalizing on the ex-post value consumers
are now concerned with mitigating.

12Specifically, suppose that the valuation-dependent ransom demand is expressed as R(v) = R0 + R1v,
satisfying R0 > 0 and R1 + δα < α. Then, we obtain the same model as in (1) with the transformations
R† = R0 and δ† = R1+δα

α
.
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can be the case that no unpatched consumer (if R or δ is sufficiently high) pays ransom or

even all unpatched consumers pay ransom (if R or δ is sufficiently low).

3.3 Pricing Subgame

Next, we turn our attention to the optimal pricing problem that the vendor faces in the

first stage. We characterize the equilibrium in the pricing subgame which is the game being

posed in its entirety. We denote the vendor’s profit function by

Π(p) = p

∫

V
1{σ∗(v|p)∈{(B,NP,NR),(B,NP,R)(B,P )}}dv , (3)

noting that marginal costs are negligible. In the pricing subgame, the vendor sets a price

p for the software by solving the following problem: max
p∈[0,1]

Π(p), such that (vnr, vr, vp) are

given by σ∗(· | p). With the optimal price p∗ that solves the vendor’s problem, we denote the

associated profits by Π∗ , Π(p∗).

Because our model parameter space induces many different equilibria including those not

commonly found in practical settings, we focus our analysis on the more relevant subspaces.

As an example, it is natural that, in equilibrium, if patching costs (cp) are too high, then no

consumer patches; however, this outcome is not characteristic of settings that are commonly

observed. To better focus on regions where key trade-offs are active, we assume the following:

Assumption 1. 0 < cp < 2−
√
3 , and

Assumption 2. 2
(1−cp)2

− 2 < α < 2(2− cp)
2 .

While costs of patching include downtime during the patching process, patch distribu-

tion and installation processes have been greatly streamlined and sometimes even partially

automated. When patching is done properly and in tandem with fail-safe measures (e.g.,

restoration capabilities / backups) the associated business costs are usually within reasonable

ranges. Similarly, such fail-safe measures can reduce the extent of damage of a ransomware

(or other type of malware) attack. For simplicity, we assume that patching is effective at

preventing the exploitation of the vulnerability. Moreover, the assumptions on cp and α

above are sufficient conditions to obtain the findings in our paper, which can extend well

beyond this focal region.

A software producer like Microsoft is keenly aware of the value of security that its products

offer consumers (see, e.g., Microsoft’s (2021) value of security calculator). This affects the

total value proposition to consumers which is a fundamental factor in pricing. Over the

years, Microsoft has also shown an understanding of how a lack of patching can impact
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Region (E) [Not Using / Not Paying Ransom / Paying Ransom]
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Figure 1: Characterization of the consumer market equilibrium structure under the vendor’s
optimal pricing across regions in the ransom demanded (R) and security loss factor (πr).
Region labels describe the consumer segments that arise in each region in order of increasing
consumer valuations (from left to right). Patching costs (cp=0.12), security loss factor
(α=0.8), and residual loss factor (δ=0.05) are selected to ensure all consumer patching and
ransom-paying behaviors are present for some sub-region.

security for its entire consumer base; it has even taken stances to force updates in certain

cases (Newman 2015, Khalili 2020). Given this backdrop, it is useful to understand how the

vendor influences consumers via pricing dependent upon characteristics of the ransomware

setting, e.g. size of the ransom demand R and security risk factor level πr. Figure 1 provides

a helpful illustration of how the equilibrium in the consumer market is affected. It depicts

an instance of the focal region we study and serves as a reference for the reader to keep

in mind which structures are in play.13 In the figure, we can see that when R and πr are

13Some subsequent figures study vertical and horizontal slices across Figure 1 which can also be visualized
here. For consistency, the capital letter labels in these cases refer back to the region labels of Figure 1.
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sufficiently low, then prices are set such that all consumers remain unpatched and pay the

ransom if hit. Overall, the expected losses are sufficiently low in Region (A) that consumers

do not find it worthwhile to incur the cost to protect themselves by patching, and, if hit,

they also prefer to pay the ransom because R is relatively low. At the other extreme, if R

and πr are sufficiently high, unpatched consumers are no longer willing to pay ransom. This

is seen in Region (D), in which the equilibrium outcome is 0<vnr <vp < 1. In a setting with

a high security risk factor πr, higher-valuation consumers have a strong incentive to protect

themselves from risk by patching. Those with lower valuations prefer to remain unpatched

and do not pay high ransom demands; this results in the described market outcome. In

the middle ground between these two scenarios, we see that the equilibrium outcome aligns

well with observations of today’s world. In particular, in Region (C) the consumer market

is characterized by 0<vnr <vr <vp< 1, in which all consumer segments emerge. If the risk

factor is not as high as in Region (C), then one might expect 0<vnr <vr < 1 to arise in

equilibrium, in which no consumer patches and higher-valuation consumers pay ransom if

hit. Such a region does arise, and it is depicted as Region (E). Similarly, with a high risk

factor but a smaller expected ransom demand, the outcome 0<vr <vp < 1 in which the

highest-valuation consumers patch and all unpatched consumers pay the ransom if hit also

arises, depicted as Region (B). Lastly, when the risk factor is low but the ransom amount is

high, consumers no longer have an incentive to patch and, if struck by an attack, they will

not pay the high ransom, inducing an equilibrium 0<vnr < 1, as seen in Region (F).

3.4 Impact of Ransomware Characteristics

In this paper, we discuss the central role R and δ play in shaping the vendor’s pricing

strategy and, ultimately, consumer decisions. In the main body, we focus on the impact of

the ransom demand under low residual losses. We then broaden our scope to explore higher

residual losses (which can stem from diverse hacker motivations) - due to length limitations,

this complete analysis is provided in Section A.1 of the Appendix.

3.4.1 Role of Ransom Amount and Risk

With the newfound understanding of how the equilibrium outcome unfolds across different

regions of the parameter space, we next investigate regions of interest in more depth. In the

rest of this section, we describe and illustrate several insights into ransomware economics.

For example, one might expect that a higher ransom demand would negatively impact the

vendor and reduce the market share of the affected product. However, that is not always the

case, as is shown in the first proposition. For the majority of results and discussions in this
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paper, we focus on residual losses for ransom-paying consumers being reasonably low (i.e.,

δ satisfying an upper bound) such that paying ransom can be incentive compatible. This

scenario matches more recent ransomware trends (Disparte 2018).14 To gain a broader view

into diverse motivations and provide an overall more complete analysis, we discuss scenarios

of intermediate and high residual losses in Appendix A.1.

Proposition 1. There exists δ̃ > 0 such that if δ < δ̃ and πr > π̄r, then:

(a) if 0<R<R1, then equilibrium consumption satisfies 0<vr < 1. As R increases, so does

the vendor’s price but market size and profits decrease;

(b) if R1≤R<R2, then equilibrium consumption satisfies 0<vr <vp< 1. As R increases,

the vendor’s price, market size, and profits all decrease;

(c) if R2 ≤R<R3, then equilibrium consumption satisfies 0<vnr <vr <vp < 1. As R in-

creases, the vendor’s price, market size, and profits all increase;

(d) if R≥R3, then equilibrium consumption satisfies 0<vnr <vp < 1, and there exists ω>R3

such that, as R increases,

(i) the vendor’s price and profits increase while the market size decreases on R<ω;

(ii) the vendor’s price, market size, and profits are constant on R≥ω.15

Proposition 1 is illustrated in Figure 2 which depicts how the consumer choices, vendor

price and profit react to changes in the ransom amount, R.16 For the parameters used

in Figure 2, the thresholds identified in Proposition 1 are computed to be approximately

R1=0.34, R2=0.41, R3=0.58, and ω=0.59. When the ransom demand is not too low and

the potential losses from the attack are sufficiently high, then high-valuation consumers elect

to patch ex ante. This patching behavior can be seen entering into panel (a) of Figure 2 for

R≥ 0.34. The trade-off here centers on cp versus πru(σ)(R + δαv) (i.e., the expected costs

14An economically-motivated hacker would generally deploy ransomware with characteristics satisfying
such conditions because the hacker’s goal is to generate ransom payments which would be negatively impacted
by post-payment malicious behavior. Despite ransom-paying consumers requiring some belief about “honor
among thieves”, for certain classes of hacker motivations, maintaining this honor would be in everyone’s best
interest (Fleishman 2016).

15The existence, characterization, and relative ordering (e.g., 0<R1 <R2 <R3) of the presented bounds
are formally established in the proof under the focal region (see Assumptions 1 and 2), noting that

R1 → (2−cp)cp
(1−cp)2πr

, R2 → α
2−cp

, R3 → α
√
πr+

√
α(16cp+απr)

4
√
πr

, and π̄r → cp(2−cp)
2

α(1−cp)2
as δ becomes small.

16The impact to the consumer market structure itself can also be viewed as a cross-section of Figure 1
horizontally at πr = 0.75.
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Figure 2: Impact of ransom demand (R) on equilibrium consumption, vendor’s price, and
the vendor’s profit. The parameter values are cp =0.12, α=0.8, δ=0.05, and πr =0.75. The
capitalized letter region labels correspond to region labels in Figure 1. The legend in panel
(b) also applies to panel (c).

under a ransom-paying strategy), with a patching population emerging only when R is large

relative to cp.

When ransom demands are small, part (a) of Proposition 1 establishes that a patching

strategy does not emerge. Consumers remain unpatched and all pay ransom if an attack

arises, as depicted in panel (a) of Figure 2 for R< 0.34, which falls within Region (A)

of Figure 1. Hence, in equilibrium, all purchasing consumers are directly and negatively

impacted by a higher R. In this situation, the vendor elevates price in order to reduce the

size of the unpatched population and help mitigate the risk of an attack. Throughout this

region, increases in R will hurt vendor profits.

Part (b) of Proposition 1 covers a region in which the ransom demand is still low enough

that all unpatched consumers simply pay the ransom if hit but not so low that nobody

patches. This can be observed for 0.34≤R< 0.41 in Figure 2, which falls under Region (B)

of Figure 1. Higher valuation consumers now patch, which provides risk relief to unpatched

consumers. The vendor has less incentive to use a high price to contain risk via a reduced
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consumer population, therefore as R moves from Region (A) to Region (B), it chooses to

drop price and expand the market. Nevertheless, within Region (B), as R increases further,

to reduce the additional burden on lower valuation consumers it gradually decreases price

without completely compensating for the increase in expected losses. The net effect of a

decreasing price and market size ultimately hurt profitability as is depicted in panel (c) of

Figure 2.

As R moves relatively higher (part (c) of Proposition 1), all three adopter segments

emerge, with the unpatched population splitting into sub-populations of ransom payers and

non-payers. This is captured in Figure 2 for 0.41≤R< 0.58 and falls under Region (C) of

Figure 1. An increase in R incentivizes some unpatched consumers who would have paid

ransom to strictly prefer patching over risking being hit with ransomware. On the other

hand, unpatched consumers with lower valuations are not directly impacted by an increase

in R because they do not pay ransom anyway. However, these consumers are still indirectly

impacted by R because the negative externality that they endure upon remaining unpatched

is reduced by the increased patching behavior of high valuation consumers. As a result,

low valuation unpatched consumers are now better off under a higher ransom demand being

charged. The market size therefore expands in R, as non-adopters now find it beneficial to

adopt the product. In turn, the vendor is able to profitably extract additional surplus by

charging a higher price.

Finally, when the ransom demand is sufficiently high (i.e., R≥ 0.58 in Figure 2 which falls

under Region (D) of Figure 1), then no unpatched consumer pays ransom if hit. There are

two cases. At the highest level of R, it becomes naturally cost prohibitive from the consumer

perspective, hence market size and vendor price and profit do not change in R. However,

prior to reaching this level and corresponding to R<ω in part (d.i) of Proposition 1, price

and vendor profit are increasing in R despite the absence of ransom-paying consumers. Very

close to the transition point, the ransom-paying option is still viable for consumers; hence,

setting too high of a price would instead encourage some would-be patching consumers to

pay ransom, leading to a suboptimal risk level in the market. Therefore, the vendor prices

at the highest point that just prevents consumers from paying ransom. This price hike

compensates for the loss in market size, thereby increasing profits.

By offering victims a chance to reduce their losses, ransomware attackers can sometimes

segment the unpatched population into two interdependent tiers. The expansion or reduction

of either tier indirectly impacts both tiers simultaneously because all unpatched hosts are

potential vectors for the spread of ransomware. But now, in contrast to traditional modes of

attack, an increase in the ransom demand may directly affect only a single tier which helps

the vendor to discriminate. Because of these characteristics, ransomware can give rise to
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some unique pricing strategies. Next, we explore how the market changes as the inherent

risk (πr) of the software being breached increases.

Proposition 2. There exist bounds δ̃ > 0 and ω̂ > α
2−cp

such that if δ < δ̃, then:

(a) if 0<R≤ R̂1, then the vendor’s price is continuously decreasing in πr;

(b) if R̂1<R≤ R̂2, then the vendor’s price is piecewise decreasing in πr on adjacent intervals

(0, π1) and (π1, 1) while jumping downward at π1;

(c) if R̂2<R≤ ω̂, then there exists π̂ such that the vendor’s price is piecewise decreasing in

πr on adjacent intervals (0, π̂), (π̂, π̃), and (π̃, 1). Its strategy is discontinuous in πr: the

price should be jumped up at π̂ and significantly jumped down at π̃.17

When the level of ransom demand is low (R≤ R̂1), all consumers prefer to remain un-

patched and pay ransom if hit. Therefore, as risk increases, all purchasing consumers are

directly affected by the associated increase in expected ransom payments. In order to throt-

tle consumers from discontinuing use while also ensuring the risk level stays in check, the

vendor gradually decreases price in a controlled way.

At slightly higher ransom levels (R̂1<R≤ R̂2), once risk passes a certain threshold, π1,

high valuation consumers now find it incentive compatible to patch, leading to a consumer

market characterized by 0<vr <vp< 1. As risk transitions into this region, the vendor

discontinuously drops its price to expand market coverage at the lower end. From there, the

vendor manages further increases in risk through gradual downward price adjustments.

Once ransom demands increase to a range characterized by richer trade-offs (R̂2≤R≤ ω̂),

a more complex pricing strategy unfolds. Figure 3 illustrates this particular scenario, with

panel (b) explicitly capturing the price sensitivity with respect to risk. The correspond-

ing cutoff points are π̂≈ 0.424 and π̃≈ 0.568. When the inherent risk factor is low, i.e.,

πr < π̂, consumers do not patch. However, the higher ransom demand in this region in-

duces consumers to segment: the unpatched population separates into those who pay and

those who do not pay ransom if hit leading to a consumer market outcome characterized

by 0<vnr <vr < 1. This outcome corresponds to Region (E) in panel (a) of Figure 3. As

the inherent risk factor increases through this range, the vendor mitigates the impact of

increased risk on its consumers by lowering price.

17The existence, characterization, and relative ordering of the presented bounds are formally established

in the proofs under the focal region, noting that R̂1 → 1
(1−cp)2

−1, R̂2 → α
2 , π1 → (2−cp)cp

(1−cp)2R
, and π2 → cpα

R2−cpRα

as δ becomes small, and π̃= min(π1, π2). Implicit bounds ω̂ and π̂ are characterized as such in Lemma B.4
of Section B.1.2 of the Appendix.
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Figure 3: Impact of the risk factor (πr) on the equilibrium market outcome, vendor’s price,
size of the market segment willing to pay ransom if hit, endogenous risk level, and expected
total ransom paid. The parameter values are cp =0.12, α=0.8, δ=0.05, and R=0.43.

However, when the risk factor increases further and crosses the threshold at π̂, there is

a significant and strategic change in the equilibrium pricing behavior of the vendor. This is

the primary message contained in part (c) of Proposition 2: when the risk factor lies in a

middle range (i.e., πr ∈ (π̂, π̃)), the vendor implements a strategically higher price to focus

only on higher-valuation consumers. This pricing strategy changes the consumer market

characterization to 0<vr < 1 in which all purchasing consumers remain unpatched and pay

ransom if hit, illustrated by Region (A) in panel (a) of Figure 3. Lower-valuation consumers

drop out of the market due to the increased risk and higher price. Notably, as discussed in

Section 5 and Section A.2 of the Appendix, such a strategic discontinuous increase in pricing

is not observed in a comparative setting where ransomware is not present in the market.

Finally, as the inherent risk factor increases further to exceed π̃, consumers naturally have

a stronger incentive to patch. To facilitate consumer patching, reduce the security externality,

and substantially increase usage of its software, the vendor discontinuously lowers price at

π̃, and employs gradual price reductions as risk increases thereafter.
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When examining the impact of the risk factor on the software market, one question of

interest is how the expected, total ransom paid by victims is affected. Although the size

of the consumer population willing to pay ransom if hit always shrinks as the risk factor

increases (as seen in panel (c) of Figure 3), the total, expected ransom paid is non-monotone

and exhibits greater complexity (as seen in panel (e)).

Proposition 3. Under the conditions of Proposition 2,

(a) the vendor’s profit and market size are piecewise decreasing in πr;

(b) if 0<R<R2, then the total, expected ransom paid is piecewise increasing in πr. More-

over, the size of the ransom-paying population decreases in πr if and only if πr ∈ (π̂, π1);

(c) if R2≤R< ω̂, then the total, expected ransom paid is piecewise increasing in πr on (0, π2)

and decreasing in πr on (π2, 1). The size of the ransom-paying population is piecewise

weakly decreasing in πr everywhere.18

First, it is natural that the vendor’s profit and market size decrease in πr because every

unpatched segment (whether paying ransom or not) is directly affected by the increased

prospect of an attack. In that overall risk is endogenous, there will always be a segment of

unpatched consumers in the market who are sensitive to ransomware attacks.

The more material takeaway lies in parts (b) and (c) of Proposition 3 where we establish

a risk region in which the total, expected ransom paid increases in πr while the ransom-

paying population size decreases. We focus our discussion on the scenario presented in part

(c) which is illustrated in Figure 3. Panel (c) plots the size of the consumer segment that

pays ransom if hit, r(σ∗).19 Panel (d) illustrates the endogenous risk level, πru(σ
∗).20 Panel

(e) illustrates the total, expected ransom paid, i.e., T (σ∗) , πru(σ
∗)r(σ∗)R. The key point

to note here is that the externality u(σ∗) depends on all unpatched consumers, including

those who are not willing to pay the ransom. When the ransom demand R is moderate,

the unpatched population splits into the two tiers under low risk (πr), resulting in a market

structure 0<vnr <vr < 1. This is depicted in Region (E) of panel (a) of Figure 3. The

valuation of the indifferent consumer, between paying and not paying ransom (v = R
α(1−δ)

),

is independent of the risk factor because the tradeoff is between incurring a loss of αv and

incurring a loss of R+ δαv. Since consumers who remain unpatched but do not pay ransom

18See footnote 17 for further specification of the bounds. A more comprehensive statement of Proposition
3 can be found in Section B.5 of the Appendix.

19r(σ∗) measures the mass of consumers whose equilibrium strategy is (B,NP,R).
20u(σ∗) measures the total mass of consumers who remain unpatched in equilibrium, choosing either

(B,NP,NR) or (B,NP,R).
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have valuations even lower than this threshold, they are the ones to drop out of the market

first as πr increases. Consequently, the size of the consumer population willing to pay ransom

if hit remains constant in πr at first (see Region (E) of panel (c)). Although u(σ∗) necessarily

shrinks, the overall risk πru(σ
∗) increases as πr increases (same region of panel (d)) such that

the expected total paid by victims is also increasing in πr (same region of panel (e)).

When the vendor strategically increases price (at the boundary between Regions (E) and

(A) in Figure 3), these same low-valuation consumers drop out of the market. Additionally,

the size of the ransom-paying group shrinks which now becomes the only segment present

in the market (i.e., the market structure is given by 0<vr < 1). As the market structure

changes, the overall risk externality πru(σ
∗) = πrr(σ

∗) also suddenly drops. The net impact

of these two effects is a drop in the size of the expected total ransom paid by victims, which

can be seen at πr = π̂ in Figure 3. Nevertheless, as risk further increases within this range

of the risk factor (i.e., πr ∈ (π̂, π2)), the ransom-paying population does not decrease steeply

which is depicted in Region (A) of panel (c). Hence, the expected total ransom paid by

victims remains monotonically increasing in πr, albeit initially trailing behind the levels just

prior to the change in market structure.

At the junction between Regions (A) and (C), as described in part (c) of Proposition 2, the

vendor finds it profitable to significantly cut price so that all three market segments emerge

in equilibrium (i.e., 0<vnr <vr <vp < 1). This shift in pricing strategy invites additional

consumers to enter at the low end of the market, who naturally remain unpatched. The

increased risk they create induces high valuation consumers to shield themselves from risk by

patching. In aggregate, the ransom-paying population r(σ∗) shrinks because more consumers

switch from paying ransom to patching. The sudden jump in the unpatched population u(σ∗)

compensates for the drop in r(σ∗), and overall the total, expected ransom paid momentarily

jumps upward. Notably, a change in monotonicity occurs. As the risk increases even further,

higher-valuation consumers who were willing to just pay ransom if hit switch to patching at

a much steeper rate such that those low-valuation consumers who do not pay ransom are

only marginally impacted by the increased risk. Moreover, as discussed before, the marginal

consumer indifferent between paying and not paying ransom is not affected by the overall risk

level. Thus, both the ransom-paying population r(σ∗) and the overall unpatched population

u(σ∗) keep shrinking. Nevertheless, unlike in regions of lower risk (i.e., Regions (E) and (A)

in Figure 3), this dual shrinking effect dominates the increase in the risk factor (πr) and the

expected overall ransom paid decreases.

While the option to pay ransom offers a recourse to mitigate value-dependent losses, it

also involves a secondary risk. When considering the ransom payment, victims in general

are not sure a priori whether the attacker will deliver the promised decryption keys. As
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mentioned in Section 3.1, this secondary risk is captured by the parameter δ to account for

these residual losses. We study how δ impacts the vendor’s profit, expected aggregate losses

incurred by the unpatched population, and aggregate consumer surplus. When all market

segments are observed in equilibrium, the vendor benefits from a higher δ because it can then

charge a premium for a safer product that is patched by a greater percentage of consumers.

On the other hand, once δ becomes too high, a shift away from paying ransom reduces the

impact that ransomware-specific characteristics (R, δ) have on outcome measures. To see

this analysis, we direct the reader to Section A.1 of the Appendix. Our formal findings on

the role of residual losses have been carried there in an effort to keep the main body concise.

4 Other Ransomware Attack Vectors

In the prior section, we studied threats on patchable vulnerabilities. Ransomware can also

operate via other infection vectors such as zero-day vulnerabilities and social engineering

campaigns including phishing (Gendre 2019a; Goodin 2019). One vector employed in recent

years is Microsoft’s collaboration platform SharePoint (Guida 2018; Gatlan 2019; Gendre

2019b). Attackers send potential victims links to SharePoint documents, which upon being

clicked lead these victims to spoofed Office 365 login pages. By stealing credentials, at-

tackers can then send additional phishing emails or SharePoint documents with ransomware

attached from within the victim’s organization to other organizations (such as suppliers or

clients). Because SharePoint documents are passed, Microsoft cannot blacklist links to these

documents without negatively impacting consumers’ ability to collaborate. Consequently,

all consumers are faced with this risk, and as more consumers use the service, the more at-

tractive the attack vector becomes. We also discussed in the Introduction other ransomware

attacks on Microsoft Office and Oracle WebLogic server software that were not patchable.

In all of these instances, only adopters of a particular software or service are vulnerable to

such an attack, which means interdependent risk is being induced by the entire consumer

population.21

We construct a modified model to capture the unique aspects of other common ran-

somware attack vectors and refer to it as RW-OV (ransomware, other vectors):

21There are other types of unpatchable attacks that are not at the application level (e.g., phishing cam-
paigns designed to syphon credentials by rerouting to a copy-cat web page replicating that of an official
service provider). Such attacks are not captured through the lens of an economic decision to adopt a single
software package in isolation, as they in general also impact non-users of that particular package.
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URW−OV (v, σ),





v − p− πrn(σ)(R + δαv) if σ(v) = (B,R) ;

v − p− πrn(σ)αv if σ(v) = (B,NR) ;

0 if σ(v) = (NB) ,

(4)

where n(σ),
∫
V 11{σ(v)∈{(B,R),(B,NR)}} dv is the total size of the adopting population in the

presence of this class of ransomware threat. Unlike in the case of an attack on a patchable

vulnerability, all consumers are exposed to this risk; hence, risk interdependence is tied

directly to usage.

One of the primary goals of this section is to make meaningful comparisons of outcomes

under RW-OV with those established in Section 3 under RW . Analogous to Assumption 2

in Section 3, we similarly focus on a sub-range of the loss factor (specifically, α∈ (
√
3, 6)) to

place the models on similar footing.22

Lemma 2. Under RW-OV, given a price p and a set of parameters πr, α, R, and δ, there

exists a unique equilibrium consumer strategy profile σ∗ that is characterized by thresholds

vnr and vr ∈ [0, 1]. For each v∈V, it satisfies:

σ∗(v) =





(B,R) if vr <v≤ 1 ;

(B,NR) if vnr <v≤ vr ;

(NB) if 0≤ v≤ vnr .

(5)

For this structure, some of the consumer segments may not appear as thresholds collapse

into each other; however, if they appear, the segments will be ordered as presented in equation

(5). Figure 4 illustrates the market outcome (under equilibrium pricing) in an analogous

manner to Figure 1, using the same region labels - (A), (E), (F ). The market structures

that emerge under RW-OV are relatively less complex and are formally presented in the

following proposition.

Proposition 4. Under RW-OV, there exist bounds δ̃ > 0 and R̃1 ≤α(1−δ) such that if δ < δ̃,

then:

(a) if R≤ R̃1, then equilibrium consumption satisfies 0<vr < 1. As R increases, so does the

vendor’s price but market size and profits decrease;23

22In Assumption 2, the lower bound on α is increasing in cp, while the upper bound on α is decreasing in
cp. Thus, taking the upper bound on cp in Assumption 1, i.e., 2 −

√
3, and replacing in Assumption 2, we

obtain the interval (
√
3, 6) which is nested inside ( 2

(1−cp)2
− 2, 2(2− cp)

2) for any cp satisfying Assumption

1. Therefore, for any such cp, we can compare and contrast the outcomes under RW and RW-OV directly
provided that α ∈ (

√
3, 6).

23The characterization of R̃1 is provided in Lemma B.9 of Section B.1.2 of the Appendix.
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(b) If R>R̃1, then equilibrium consumption satisfies 0<vnr <vr < 1 when R<α(1− δ) and

0<vnr < 1 when R≥α(1 − δ). As R increases, the vendor’s price, market size, and

profits are constant in R.

In part (c) of Proposition 1 (depicted by Region (C) in Figure 2), we learned that with

ransomware attacks on patchable vulnerabilities, it is possible for the vendor’s price, market

size and profits to simultaneously increase in R. Under RW-OV, such a comparative static

can no longer arise, as we further explain below. This highlights the importance that the

patching option has on the vendor’s strategy when facing a ransomware threat. Specifically,

the market can expand and the vendor can be better off with increasing ransoms only in a

context of ransomware attacks on patchable vulnerabilities.

In Figure 5, we illustrate how market structure, price, and vendor profit change in R

under RW-OV. For the parameter set being used, R̃1 is approximately 0.47. In Region (A),

when the ransom amount is low, all adopters would prefer to pay the ransom if successfully

attacked. Within this region, as the ransom level increases, the firm controls risk in the

market by maintaining a high price and gradually increasing it. This, together with the

increasing ransom level, effectively reduces the market size, and hence interdependent risk.

However, profits are declining in R because the limited increase in price does not compensate

for the large reduction in market size. Beyond R̃1, this strategy is no longer tenable. Instead,

the firm lowers price in an effort to expand the market to consumers who balk at the size

of the ransom request. The marginal consumer’s valuation satisfies v − πr(1 − v)αv = p,
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Figure 5: Impact of ransom demand (R) on the equilibrium market outcome, vendor’s price,
and profit. The parameter values are α = 0.8, δ = 0.05, and πr = 0.75. The capitalized
letter region labels correspond to region labels in Figure 4. The legend in panel (b) also
applies to panel (c).

which is no longer impacted by the ransom amount. As such, market size, price and profits

become insensitive to R in Regions (E) and (F).

In the next two propositions, we establish that some primary comparative statics we

characterize using our main model (RW ) are robust to the class of ransomware attacks being

modeled under RW-OV. First, we examine how the inherent risk factor impacts the vendor’s

price for ransomware in the presence of alternative vectors to patchable vulnerabilities.

Proposition 5. Under RW-OV, there exists δ̃ > 0 such that if δ < δ̃, then:

(a) if 0<R≤ R̃2, then equilibrium consumption satisfies 0<vr < 1. Price is continuous in

πr, and if α> 2 and R> 1, then it decreases in πr on (0, 1
R
) and increases in πr on [ 1

R
, 1).

Otherwise, it only decreases in πr.
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(b) if R̃2<R< R̃3, then:

(i) if 0<πr <π′, then equilibrium consumption satisfies 0<vnr <vr < 1. Price de-

creases in πr.
24

(ii) if π′ ≤ πr < 1, then equilibrium consumption satisfies 0<vr < 1. If R> 1, then price

decreases in πr on (π′, 1
R
) and increases in πr on [ 1

R
, 1). Otherwise, it decreases in

πr.

(iii) the vendor discontinuously hikes price at πr = π′.25

We visually present the essence of Proposition 5 in panels (a) and (b) of Figure 6 where

we have chosen a ransom level to satisfy part (b) of the proposition statement. Under that

parameter set, π′ is approximately 0.42. As can be seen when moving from Region (E) to

(A), the vendor still discontinuously raises price which is consistent with our earlier finding

in part (c) of Proposition 2. Therefore, this inherent incentive for the vendor to strategically

raise price at a higher level of ransom demand is quite robust to the class of ransomware

attacks being studied. Moreover, it is this price hike that sets vendor strategies in the

presence of a ransomware threat apart from strategies employed in its absence, as we will

further see in Section 5.

It is also interesting to contrast RW and RW-OV. In a context of patchable vulnerabil-

ities, as the risk factor increases, consumers have greater incentives to patch their systems

as a means of protection. This leads to a second discontinuous and strategic price shift by

the vendor (this time downward) as it can expand the market when more systems are being

patched. We illustrated this point earlier in Region (C) of panels (a) and (b) of Figure 3.

On the other hand, for ransomware vectors that do not target patchable vulnerabilities as

in RW-OV, this strategic behavior cannot arise and is absent from Proposition 5.

From panels (c) and (e) of Figure 6, it can be observed that the expected ransom paid

increases piecewise in πr even as the segment of consumers willing to pay ransom shrinks

with the risk factor. In contrast, as mentioned in part (c) of Proposition 3 and illustrated

in panel (e) of Figure 3, under patchable vulnerabilities, the expected ransom paid would

decrease in the risk factor over region (C) which corresponds to high risk. The following

result formalizes this argument:

Proposition 6. Under RW-OV and the same conditions as Proposition 5,

(a) if 0<R≤ R̃2, then:

24The characterization of π′ provided in Lemma B.10 of Section B.1.2 of the Appendix.
25The characterizations of R̃2 and R̃3 are provided in Lemma B.10 of Section B.1.2 of the Appendix.
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Figure 6: Impact of risk factor (πr) on the equilibrium market outcome, vendor’s price, size
of the market segment willing to pay ransom if hit, endogenous risk level, and total expected
ransom paid. The parameter values are α = 0.8, δ = 0.05, and R = 0.43.

(i) if α≤ 2, or α> 2 and R≤ 1, then the total, expected ransom paid is increasing

in πr. Otherwise, the total, expected ransom paid increases in πr on (0, 1
R
) and

decreases in πr on [ 1
R
, 1).

(b) if R̃2<R< R̃3, then:

(i) if 0<πr <π′, then the size of the population willing to pay ransom is constant in

πr while the total, expected ransom paid increases in πr;

(ii) if π′ ≤ πr < 1 and if R≤ 1, then the size of the population willing to pay ransom

shrinks in πr while the total, expected ransom paid increases. On the other hand, if

R> 1, then the size of the population willing to pay ransom shrinks in πr while the

total, expected ransom paid increases in πr for πr <
1
R
and decreases for πr ≥ 1

R
.

(iii) the vendor’s price hike at πr =π′ reduces usage risk to the extent that the total,

expected ransom paid decreases at the discontinuity as well.
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The vendor’s profit and market size are decreasing in πr on each of the specified intervals

above, regardless of R.

The primary differences between the equilibrium outcomes under patchable vulnerabil-

ities (RW ) and unpatchable vulnerabilities (RW-OV ) are due to the fact that Region (C)

arises under RW . This particular region corresponds to all segments being present in the

market, which is commonly observed in practice. Thus, increases in either ransom value or

risk shift consumers who were previously willing to pay ransom toward either patching or no

longer paying the ransom demanded while remaining unpatched. The opportunity to patch

significantly alters the economics of the situation.

5 Multiple Classes of Threats on Patchable Vulnera-

bilities

In this section, we extend our main model to account for the possibility of other attacks in

addition to ransomware. We examine attacks whose exploits share a common vulnerabil-

ity. For example, EternalRocks and WannaCry are both worms that rely on NSA-leaked

tools EternalBlue (for lateral propagation) and DoublePulsar (for backdoor implantation)

to exploit a Windows Server Message Block vulnerability. However, WannaCry delivers a

ransomware payload whereas EternalRocks does not (Ng 2017). In fact, there are over a

dozen known large-scale malware campaigns that weaponized EternalBlue to facilitate lat-

eral spread (Keshet 2020).

We explore how the presence of ransomware alters software firm strategies and market

outcomes even when it is among other threats. For a consumer of type v, we fix the payload

impact from the attack to be the same, i.e., αv, for both ransomware and non-ransomware

attacks. This enables us to tease out the effect of having a ransom-paying option associated

with one of the threats without creating a confounding effect due to differences in payload.26

Given that the same vulnerability is exploited, we assume interdependent security risks

under all threats, parameterizing the risk factor associated with a non-ransomware payload

uniquely as πn such that a successful non-ransomware attack occurs with probability πnu(σ).

By permitting πr and πn to vary freely, we can examine different attack profiles.

We denote this model of multiple threats with MT and express the consumer’s utility

26Different payload magnitudes can be accommodated via a transformation. If the payload impact from
the non-ransomware attack is αnv with αn 6= α, then we can define π̄n = πnαn/α, ensuring that πnαn = π̄nα
and we transform the model into one with equivalent payloads from both types of attacks and risk factor π̄n

for the non-ransomware attack.
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function as follows:

UMT (v, σ),






v − p− cp if σ(v) = (B,P ) ;

v − p− πru(σ)(R+ δαv)− πnu(σ)αv if σ(v) = (B,NP,R) ;

v − p− (πr + πn)u(σ)αv if σ(v) = (B,NP,NR) ;

0 if σ(v) = (NB) ,

(6)

where u(σ),
∫
V 11{σ(v)∈{(B,NP,R),(B,NP,NR)}} dv is the size of the unpatched population in the

presence of the security threat which facilitates both attacks. Similar to before, we assume

that δ ∈ (0, 1), πr, πn ∈ [0, 1], cp ∈ (0, 1), R ∈ (0,∞), and α ∈ (0,∞).

We begin by exploring the differences in market dynamics between ransomware and non-

ransomware threats in the presence of negative security externalities. We study the following

two scenarios which serve to highlight the impact of having ransomware present versus absent

from the threat landscape:

• Scenario 1: only a ransomware threat is present. In this special case, πn =0 and MT

becomes equivalent to the main model in Section 3, i.e., UMT ≡ URW .

• Scenario 2: only a non-ransomware threat is present. In this special case, πr =0 and

MT becomes equivalent to a benchmark model (henceforth denoted BM) specified in

August and Tunca (2006).27 That is, UMT ≡ UBM .

In this way, MT is a generalization that integrates ransomware and non-ransomware threats

while preserving the integrity of the models that inform the respective components.

In order for the comparisons we make to be meaningful, we hold πr +πn = π as constant

with π > 0. Under scenario 1, we specify πr = π and πn =0, whereas under scenario 2,

we specify πr =0 and πn = π. Thus, we focus in both cases on similar attack vectors for

infiltration and spread within networks. By comparing outcomes between the two scenarios

given a common risk factor, any difference in the nature and magnitude of outcomes is

attributable to the additional option consumers have in scenario 1 (which is to pay ransom)

and the strategic behavior that results from its presence.

27Their model captures fundamental characteristics of software markets in the presence of mal-
ware attacks with no ransom option. Specifically, they study three potential consumer strategies,
SBM = {(B,P ), (B,NP ), (NB,NP )} and capture the network externalities that exist. For a given strategy
profile σ : V → S, the expected utility function for consumer v is given by:

UBM (v, σ),






v − p− cp if σ(v)= (B,P ) ;
v − p− πnuBM (σ)αv if σ(v)= (B,NP ) ;

0 if σ(v)= (NB) ,
(7)

where uBM (σ),
∫
V 11{σ(v)∈{(B,NP )}} dv is the size of the unpatched population under the benchmark case.
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Figure 7: Sensitivity of equilibrium consumer market structure and price with respect to risk
factor π under both benchmark and ransomware cases. The parameter values are cp = 0.12,
α = 0.8, δ = 0.05, and R = 0.43.

Similar to the discussion in Section 3, the more interesting comparative analysis occurs

for low δ which describes ransomware designed with revenue generation in mind. First, we

explore how the vendor’s optimal pricing strategy is different under the two scenarios.

Proposition 7. There exist δ̃, ω̂ > 0 and non-overlapping intervals with bounds satisfying

0 < π̃L < π
˜M

< π̃M < π
˜H

< 1 such that if δ ≤ δ̃ and R2<R< ω̂: 28

(a) if 0<π< π̃L, then p∗RW = p∗BM ;

(b) if π
˜M

<π< π̃M , then p∗RW > p∗BM ;

(c) if π
˜H

<π< 1, then p∗RW < p∗BM .

Proposition 7 is illustrated in Figure 7. For the ransomware scenario, Figure 7 depicts a

cross-section of Figure 1 in the π-direction at R = 0.43. In particular, for π ranging from 0

to 1, this slice cuts through Regions (E), (A), and (C) of Figure 1; these region labels are

also provided in panel (b) of Figure 7. When the risk factor (π) is sufficiently small, whether

ransomware is present in the landscape or not, no consumer has any incentive to patch

28R2 appears in Proposition 1 and is defined in Lemma B.3.
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Figure 8: Sensitivity of vendor’s profit, consumer market size, endogenous total risk level
(πu), and social welfare in equilibrium with respect to the risk factor (π) under both bench-
mark and ransomware scenarios. The parameter values are cp = 0.12, α = 0.8, δ = 0.05 and
R = 0.43.

since expected losses are small relative to the cost of patching. Under RW , the unpatched

consumer indifferent between paying ransom and not paying ransom (vr) derives strictly

positive utility in equilibrium. Thus, the emerging market structure is 0<vnr <vr < 1 (as

seen in panel (b) of Figure 7 to the left of π ≈ 0.31). Low-valuation consumers who adopt

under the given risk circumstances face expected losses that are small enough that paying

ransom is not incentive-compatible for them. Hence, the lowest-valuation adopter under

RW is unaffected by small perturbations of the ransom demand, although she is affected

by the overall unpatched population size. Since the vendor cares about the entire adopter

population, the optimal price, profit, and total market size under both RW and BM are

the same in this region. This can be seen in Figures 7 and 8. In particular, panels (a) and

(b) of Figure 8 show the impact of π on the vendor’s profit and equilibrium market size,

M(σ∗),
∫
V 11{σ∗(v)∈{(B,NP,NR),(B,NP,R),(B,P )}} dv.

As π increases into moderate and high ranges, we see differences in pricing strategy (and

30



corresponding market outcomes) between the two threat landscapes. While in both scenarios

the price remains piecewise decreasing, the two pricing strategies present jumps at points

of discontinuity (corresponding to changes in market structure) that highlight significant

differences in the vendor’s approach toward mitigating risk via pricing. Under BM , when

the risk factor first reaches a moderate level (π ≈ 0.31), the endogenous security risk πu in

equilibrium has also become relatively high (as can be seen from panel (c) of Figure 8). At

such a risk level, the vendor has an incentive to significantly drop its price (a discontinuous

reduction, illustrated in panel (c) of Figure 7) in a strategic manner to profitably increase the

market size. Facing a larger unpatched population, the highest-valuation consumers opt to

patch, which insulates them from the added externality introduced by more lower-valuation

consumers joining the market but not patching.

However, in the vicinity of π ≈ 0.31, this dynamic does not occur under RW . In par-

ticular, if the vendor were to drop the price, some of the highest-valuation consumers would

not patch, even when facing this increased risk. Instead, they would still opt to just pay

the ransom and bear the valuation-dependent losses δαv. As long as these highest-valuation

consumers remain unpatched, they continue to impose a negative externality on all other

unpatched consumers in the market. Because of that, the vendor cannot profitably expand

the market through a significant drop in price; thus, p∗RW > p∗BM in this region.

In stark contrast to the benchmark scenario, under RW the vendor actually has an

incentive to hike the price altogether to a higher range as risk increases further. This happens

for π between 0.42 and 0.57, as can be seen in panel (c) of Figure 7. This outcome and the

trade-offs that drive it have been analyzed in Proposition 2 and the related discussion. This

is an important point of contrast specific to ransomware; notably, under BM , the vendor

never discontinuously hikes price when changing the market structure from 0<vnr < 1 to

0<vnr <vp< 1 as the risk factor increases. This is because lower-valuation consumers who

do not patch would be strongly impacted since there is not an option to pay ransom in order

to mitigate losses. As such, a price increase would hurt the unpatched population even more,

leading to a significant drop in market size and lower profits.29

In a similar way, once the risk factor becomes sufficiently high, then the vendor drops

price significantly under RW as well, even below that seen in the benchmark level. This

occurs near π ≈ 0.57 in panel (c) of Figure 7. This move expands the market significantly

at the low end, inviting a large mass of unpatched consumers to join the market with a

29In Appendix A.1, we consider the robustness of our results. Specifically, in Figure A.3 we plot the
vendor’s equilibrium price under BM over the entire space of patching costs (cp) and the effective security
loss factor (πnα) to demonstrate that a price hike does not occur. The only price discontinuity occurs when
the vendor significantly scales back price as the loss factor exceeds a threshold. At that point, the vendor’s
price provides the right incentives for a patching population to emerge in equilibrium.
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sizable fraction of them opting to not pay the ransom if hit, as seen in panel (b) of Figure

7. This behavior introduces significant overall risk to the market which is depicted in panel

(c) of Figure 8. As a result of this endogenous increase in aggregate risk, high-valuation

consumers find it optimal to protect themselves by patching. Consequently, the resulting

consumer market equilibrium outcome is 0<vnr <vr <vp < 1, which most closely resembles

today’s software markets.

Interestingly, panel (a) of Figure 8 shows that, once the risk factor is high enough

(π > 0.31), the vendor is strictly better off in scenario 2 (benchmark) than in scenario

1 (ransomware). As π increases from 0.31 to 0.42, under RW , the market keeps shrinking

even though the price is dropping. In contrast, under BM , the big drop in price leads to a

significant expansion in market size. This enables the vendor to obtain higher profits. When

π ranges from 0.42 to 0.57, under RW , the vendor strategically and significantly increases

price. As π increases through this region, the vendor is better off letting usage shrink rather

than lowering the price. Moreover, the unpatched group that pays ransom is highly elastic

to risk in this region. On the other hand, under BM , the overall population remains rel-

atively stable (only slightly decreasing), as the presence of security risk alters the sizes of

the patched and unpatched groups in opposite directions in a balanced way. With prices

relatively inelastic in this region, the profit under the benchmark is superior. When the risk

factor is even higher (π > 0.57), the gap between the two profit levels is shrinking but the

profit under the benchmark scenario still dominates.

Lastly, we study the impact of ransomware on social welfare. Under RW , we denote the

expected losses incurred by unpatched consumers who do not pay ransom with NLRW ,∫
V1{σ∗(v)=(B,NP,NR)}πu(σ

∗)αvdv . Similarly, we denote the expected losses incurred by un-

patched consumers who pay ransom with RLRW ,
∫
V1{σ∗(v)=(B,NP,R)}× πu(σ∗)(R+ δαv)dv .

The aggregate expected patching costs are given by PLRW ,
∫
V1{σ∗(v)=(B,P )}× cpdv . Sum-

ming these components, the expected security-related losses are LRW ,NLRW + RLRW +

PLRW . Social welfare is then given by WRW ,
∫
V1{σ∗(v)∈{(B,NP,NR),(B,NP,R),(B,P )}}vdv −

LRW . Similarly, for the benchmark case, we define NLBM ,
∫
V 1{σ∗(v)=(B,NP )}πu(σ

∗)αvdv ,

PLBM ,
∫
V1{σ∗(v)=(B,P )}cpdv , LBM ,NLBM+PLBM , WBM ,

∫
V 1{σ∗(v)∈{(B,NP ),(B,P )}}vdv−

LBM . The presence of an option to pay ransom can have a significantly impact welfare in

complex ways, which we illustrate in the next result.

Proposition 8. There exist δ̃, ω̂ > 0, c̃p ∈ (0, 2 −
√
3), and non-overlapping intervals with

bounds satisfying 0< π̃L <π
˜M

< π̃M <π
˜H

< 1 such that if δ≤ δ̃, cp> c̃p, α> 1
cp
, and R2 <R< ω̂:

(a) if 0<π< π̃L, then WRW >WBM ;

(b) if π
˜M

<π< π̃M , then WRW <WBM ;
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(c) if π̃H <π< 1, then WRW >WBM .

When risk is sufficiently low, consumers do not have strong incentives to patch. Whether

they have the option to pay ransom or not, consumers remain unpatched and, as discussed

before, the optimal price and market size are identical under the two scenarios, as seen in

panels (b) and (c) of Figure 8 for π < 0.31. The only difference is that, under RW , unpatched

consumers with higher valuations counter the potentially high valuation-dependent losses by

paying ransom. Therefore, overall losses are lower under RW , which leads to higher social

welfare as can be seen in panel (d) of Figure 8.

Social welfare is also higher under RW when risk is high (π > 0.57) but for a different

reason. In this region, high-valuation consumers patch under both scenarios. However, in

the face of ransomware, the vendor employs a significantly lower price and achieves a larger

market size, including a larger unpatched population. Moreover, some of the unpatched

consumers are able to reduce their losses by paying ransom instead. Combining these two

effects leads to higher social welfare under RW in comparison to BM . Notably, in the high-

risk region, the vendor’s interests are not aligned with the scenario that yields higher social

welfare. Instead, the vendor actually prefers that consumers do not have the recourse of

paying ransom. This in turn places additional pressure on consumers, leading to a reduced

unpatched population, and ultimately enabling the vendor to charge a higher price.

When the risk is within an intermediate range (π between 0.31 and 0.57 in Figure 7),

the vendor sets a higher price under RW relative to BM , resulting in a market size that is

significantly lower. While most (and sometimes all) unpatched consumers pay ransom and

nobody patches, the significant difference in market size under RW and BM pushes social

welfare higher in the latter case, also matching the vendor’s scenario preference.

In Section A.1 of the Appendix, we also study how a higher level of residual losses, δ,

which may be associated with political motivations, impacts outcomes. We demonstrate

that benchmark and ransomware outcomes are equivalent. Said differently, consumers cease

paying ransom, hence an open question is whether a politically-motivated hacker could inflict

greater damage by more appropriate tuning of residual losses. We show that the hacker can

indeed minimize welfare at a moderate range of residual losses that encourages ransom

payments to occur.30

We also perform a robust analysis of the results presented in this paper. In our discussion

of Proposition 7 and Figure 7, an important contrast in the benchmark case is that the vendor

only drops price in response to increasing risk (as opposed to the price hike observed with

ransomware). In Section A.2, we demonstrate that this contrasted pricing behavior in the

30A numerical illustration of this result can be found in Figure A.2 in the Appendix.
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benchmark case is robust over a wide range of risk and patching costs.

Second, it is important to show that our results extend broadly to the general scenario

with multiple classes of threats (MT ). We examine this formally in Section A.3 of the

Appendix. A common theme that emerges from this robustness analysis is that ransomware

need not be the sole (or even dominant) form of security attack in the market for our

results to be applicable. In particular, some of the effects that we establish are specific to

the existence of ransomware, and, moreover, these effects only require a small proportion

(or likelihood) of ransomware to be in play to already take hold. Since these effects alter

the strategic decisions of the software vendor, even the existence of ransomware in a given

software market should warrant careful consideration.

6 Conclusion

With the rise of cryptocurrency-based payment systems, malicious hackers are finding it

increasingly profitable to conduct ransomware attacks. Modern ransomware variants have

exhibited the capability to spread laterally across unprotected systems leading to large scale

reach and damage. In this paper, we study the impact of ransomware attacks on software

markets. The presence of ransomware in a software product’s threat landscape can qualita-

tively change the nature of the consumer market structure that obtains in equilibrium. In

particular, by giving consumers an opportunity to mitigate their losses by paying ransom,

ransomware operators segment the unpatched population into two interdependent tiers. Ran-

somware directly impacts the ransom-paying consumer segment while indirectly impacting

all market segments through the negative security externality that all unpatched consumers

generate. This segmentation of consumer behavior drives unexpected findings. For exam-

ple, both the equilibrium market size and the vendor’s profit under equilibrium pricing can

increase in the ransom demand. Also, the vendor’s profit can increase in the residual loss fac-

tor (related to the trustworthiness of the ransomware operator). Furthermore, we also show

that the expected total ransom paid is non-monotone in the risk of success of the attack,

increasing when the risk is moderate in spite of a decreasing ransom-paying population.

In order to properly assess the market changes induced by the option to pay ransom,

we also compare and contrast market outcomes in the ransomware case to similar outcomes

under a benchmark scenario where consumers do not have the option to mitigate the losses

by paying ransom. For intermediate levels of risk, the vendor under the ransomware case

restricts software adoption by hiking the price to a significantly high level. This lies in stark

contrast to outcomes in the benchmark case where any jump in price as security risk increases
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will be downward. While in low and high-risk settings, social welfare is higher under the

ransomware case compared to the benchmark, it turns out that for intermediate risks levels,

it is better from a social standpoint for consumers to not have an option to pay ransom.

We expand our study in two dimensions by exploring (i) other variants of ransomware

whose attacks are not specific to patchable vulnerabilities (e.g., phishing attacks and zero-

day attacks), and (ii) other classical attacks on patchable vulnerabilities in addition to

ransomware in a generalized model of multiple, concomitant classes of threats. The first

expansion clarifies that while the impact of the ransom amount and risk level on equilibrium

measures have a similar nature, some important findings are specific to the presence of ran-

somware risk related to patchable vulnerabilities. For example, the opportunity highlighted

where price, market size and profits can all increase in the ransom amount hinges on the

impact to patching incentives. Similarly, while strategic price hikes can be observed in the

presence of ransomware whether the vulnerability is patchable or not, a strategic price drop

that is observed with patchable vulnerabilities requires a higher incentive to patch that oc-

curs in higher risk regions. Overall, the insights we obtain in our primary study are quite

robust to generalized attacks in a wide range of scenarios, including threat landscapes where

ransomware has only a small presence. Said differently, a little ransomware in the risk profile

can be quite influential.

From our findings, we provide some practical guidance to consumers of vulnerable soft-

ware and the software firms that produce it. First, for consumers, the upside of economically-

motivated ransomware (in comparison to traditional attacks) is possessing another option to

choose from when minimizing losses. However, when many consumers substitute away from

patching toward paying ransom as a means to reduce losses, risk can increase because more

consumers remain unpatched. From the interaction of these forces with properties of the

ransomware environment (such as the size of ransom amount and the likelihood of an attack),

we demonstrate how consumers must carefully adjust their usage and patching strategies in

response to the changing environment and connected strategic price adaptations. To make

this concrete, panel (a) in Figure 2 shows how a consumer with a valuation near the lower

threshold of being in or out of the market would choose to be: (in market, pay ransom) →
(out of market) → (in market, pay ransom) → (in market, not pay ransom), as the ransom

amount increased across its range. Notably, in Region (C) of the figure, the vendor strategi-

cally raises price in response to larger ransoms but the steep increase in patching behavior

by consumers makes the product more secure and encourages more consumers at the low

end of valuations to enter the market. Our findings provide guidance to consumers on how

to manage their software in a setting with security interdependence.

Second, our findings help provide guidance to software vendors on how pricing can help

35



mitigate risk via a richer understanding of consumer incentives. While the pricing of software

products is a complex affair involving many relevant factors, our model aims to inform on the

directional pressure on price from relevant cybersecurity factors. We highlight the extent to

which pricing can influence consumption and security behaviors, making it a powerful tool

in the arsenal to shape cybersecurity defense. Specifically, in risk contexts where consumers

do not have sufficient incentives to patch and instead bear risk and pay ransom, we find that

vendors can effectively raise prices to better serve a smaller consumer population by providing

an inherently reduced risk level. As ransomware attacks continue on, if the economic returns

to hacker activity ultimately lead to an increased rate of attacks, this would be detrimental

to vendor profits and we recommend that vendors focus their attention on reducing patching

costs to counter such perverse incentives.

One may desire to model a specific type of hacker motivation and endogenize that hacker’s

decisions, in hopes of yielding insights into how the vendor and consumers strategically in-

teract with the hacker. There are two issues that arise. First, our model captures security

externalities which cause a significant increase in complexity, e.g., the consumer market

threshold characterization is governed by a nonlinear system and the thresholds themselves

are the roots of higher order polynomials. Layering the vendor’s pricing optimization prob-

lem on top of this foundation already requires asymptotic analysis. Adding more decision

variables exacerbates this complexity issue and makes it impossible to characterize the equi-

librium across a significant portion of the parameter space. Therefore, such an effort would

heavily rely on numerical analysis. Second, one has to give up on other common hacker

motivations in order to make that specification which results in a fundamental loss in model

generality and applicability. That is, vendors and consumers are facing a diverse mix of

hackers which makes it difficult to apply insights drawn from an analysis of a single hacker

class. This becomes even more salient if one contrasts the incentives of a profit-motivated

hacker to a state actor; their approach to residual losses would essentially be bipolar. The

advantage of our model lies in its ability to examine any R and δ that could result from

any practically-relevant model of hacker behavior - such a model would ultimately need to

prescribe weights across hacker “types” (motivations) which would then result in a large

range of expectations for ransoms and residual losses. This is exactly what our model can

examine. Our intention in this research is to inform vendors and consumers on strategies

and market outcomes in the presence of a generic ransomware threat, without zooming in

on one particular type of hacker. An interesting and rich direction for future research would

be a focused exploration of specific markets that are characterized primarily by a single

hacker motivation (whether that is profit, disruption, etc.). For such markets, studying how

a hacker specifies ransom amounts and residual damages may lead to further insights.

36



References

Abrams, L. (2016). Ultracrypter not providing decryption keys after payment. Launches
help desk. Bleeping Computer News article, Jun 16, https://www.bleepingcomputer.
com/news/security/ultracrypter-not-providing-decryption-keys-after-payment-
launches-help-desk/ (Accessed on Apr 18, 2018).

Abrams, L. (2020). FBI says $140+ million paid to ransomware, offers defense tips.
Bleeping Computer, Feb 27. https://www.bleepingcomputer.com/news/security/fbi-
says-140-million-paid-to-ransomware-offers-defense-tips/ (Accessed on May 22, 2021).

Arntz, P. (2021). Ryuk ransomware develops worm-like capability. Malwarebytes
Labs blog, Mar 2, https://blog.malwarebytes.com/malwarebytes-news/2021/03/ryuk-
ransomware-develops-worm-like-capability/.

Arora, A., R. Telang, and H. Xu (2008). Optimal policy for software vulnerability disclo-
sure. Management Science 54 (4), 642–656.

August, T., R. August, and H. Shin (2014). Designing user incentives for cybersecurity.
Communications of the ACM 57 (11), 43–46.

August, T., D. Dao, and K. Kim (2019). Market segmentation and software security:
Pricing patching rights. Management Science 65 (10), 4451–4949.

August, T. and T. I. Tunca (2006). Network software security and user incentives. Man-
agement Science 52 (11), 1703–1720.

August, T. and T. I. Tunca (2008). Let the pirates patch? An economic analysis of software
security patch restrictions. Information Systems Research 19 (1), 48–70.

August, T. and T. I. Tunca (2011). Who should be responsible for software security? A
comparative analysis of liability policies in network environments. Management Sci-
ence 57 (5), 934–959.

Barak, I. (2020). Cybereason’s newest honeypot shows how multistage ransomware at-
tacks should have critical infrastructure providers on high alert. Cybereason, Jun.
11, https://www.cybereason.com/blog/cybereason-honeypot-multistage-ransomware
(Accessed on Jun 15, 2020).

Barkly (2017). Ransomware statistics. https://blog.barkly.com/ransomware-statistics-
2017 (Accessed on Jun 29, 2018).

Bartock, M., J. Cichonski, M. Souppaya, M. Smith, G. Witte, and K. Scarfone (2016,
June). Guide for cybersecurity event recovery. National Institute of Standards and
Technology (NIST) Special Publication 800-184 .
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Appendix A. Residual Losses and Robustness

A.1 Impact of Residual Losses

In the context of ransomware attacks on patchable vulnerabilities (RW ), we explore how δ

impacts the vendor’s profit, expected aggregate losses incurred by the unpatched population,

and aggregate consumer surplus. The latter two measures are defined by:

UL ,

∫

V
1{σ∗(v)=(B,NP,NR)}πru(σ

∗)αvdv +

∫

V
1{σ∗(v)=(B,NP,R)}πru(σ

∗)(R + δαv)dv ,

CS ,

∫

V
1{σ∗(v)∈{(B,NP,NR),(B,NP,R),(B,P )}}URW (v, σ∗)dv.

Proposition A.1. There exists a bound δ̃ > 0 such that if δ < δ̃, R ∈ (R2, R3) and πr > π̄r
31

are satisfied, then:

(a) the vendor’s profit is increasing in δ;

(b) the market size, aggregate unpatched losses, and consumer surplus are all decreasing

in δ.

Proposition A.1 characterizes a market scenario that falls within Region (C) of Figure

1, in which case 0<vnr <vr <vp < 1 characterizes the equilibrium outcome. The results

in Proposition A.1 can be observed in the range 0<δ < 0.301 in Figure A.1. The vendor

benefits from an increase in residual loss factor δ for the same reason for which it benefits

when R increases (as discussed in part (c) of Proposition 1). An increase in δ only directly

impacts ransom-paying unpatched consumers, providing a disincentive for them to adopt this

strategy. As some consumers who were paying ransom switch to patching due to an increased

risk of not receiving working decryption keys, the aggregate risk externality decreases and

the vendor can increase its price while keeping the overall market relatively steady, extracting

additional surplus.. When all market segments are present in equilibrium (depicted in the

left-hand portion of the panels in Figure A.1), the vendor clearly prefers greater potential

residual losses (whether stemming from failures with payment systems or decryption keys as

well as mixed motivations of hackers) because it presents an unusual and counter-intuitive

opportunity to charge a premium for higher potential residual losses in the market without

losing too many consumers.

31The bounds π̄r, R2, and R3 are the same as in Proposition 1.
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Figure A.1: Impact of the residual loss factor (δ) on the equilibrium market outcome, ven-
dor’s pricing, vendor’s profit, aggregate unpatched consumer losses, and consumer surplus.
The parameter values are cp = 0.12, α = 0.8, R = 0.43, and πr = 0.75.

Furthermore, in this range of residual losses, the vendor would prefer that consumers

have the worst possible perception regarding the trustworthiness of the attacker whereas

an economically-driven hacker would prefer the opposite. Reports suggest that, compared

to the early days of ransomware attacks, the market for such attacks has become efficient

and the success rate in retrieving access to compromised assets following a ransom pay-

ment increased dramatically, highlighting prevalent economic motivations among attackers

(Disparte 2018). But, in many cases, corporate victims that pay ransom do not publicize

their actions (Cimpanu 2017), which makes it easier for the vendor to vilify attackers in an

amplified way even when decryption keys are often returned. Even a small number of failed

interactions can damage the hacker’s reputation and effectively cut off its revenue stream.

Proposition A.1 further shows that the vendor’s expected profit can be the lowest at the

same δ that concomitantly gives the greatest losses to the unpatched population and the

highest overall consumer surplus, as seen in panel (d) of Figure A.1. As δ increases, both the

ransom-paying population shrinks as consumers at both ends of this segment choose different

strategies (higher-valuation consumers choose to patch, while lower-valuation consumers

choose not to pay ransom). Moreover, the overall unpatched population shrinks as well, thus

A.2



lowering the security risk externality. The redistribution of consumers among segments and

the reduced risk result in the expected losses to the unpatched population to be decreasing

in δ. Even though these unpatched losses are decreasing, the vendor employs a higher price

to further throttle the population size and help mitigate the increased magnitude of residual

losses. Given the relatively stable (but slightly shrinking) size of the market when δ < 0.301,

the reduction in losses to the unpatched population is dominated by the larger premium,

hence consumer surplus also decreases in δ.

We next turn our attention to the case where residual losses become high. An economically-

motivated hacker may aptly be characterized as having a lower δ because revenue generation

requires a mass of consumers to pay ransom in equilibrium. In particular, a lower δ helps to

make this strategy incentive compatible for some. On the other hand, a politically-motivated

hacker is less concerned with capping residual, as with attacks such as WannaCry or Not-

Petya (Greenberg 2018). In that generating ransom payments is no of primary concern, the

practical range of δ for hackers with such motivations is much broader.

Proposition A.2. When the residual loss factor is high, satisfying δ > 1− R
α
, the vendor’s

equilibrium price, the size of the market, and equilibrium profit are constant in R and δ.

The equilibrium outcome is given by 0<vnr < 1 when patching costs are high (πrα < cp) and

0<vnr <vp< 1 when patching costs are low ( cp(2−3cp)
1−2cp

< πrα).

Proposition A.2 demonstrates that as residual losses become high, consumers react in a

predictable way in that paying ransom is no longer incentive compatible. Instead, consumers

will either all remain unpatched and risk losses if the cost of patching is prohibitive or,

otherwise, split between staying unpatched and patching. Note that in the absence of a

ransom-paying population, these equilibrium structures are the only two that can arise, each

being possible. As can be seen in the right-hand side of Figure A.1’s panels, the relevant

measures become constant in δ once the residual loss factor exceeds a threshold; for that

particular parameter set, patching costs are low, leading to some consumers patching in

equilibrium.

Because no one pays ransom, the ransomware and benchmark scenarios (as laid out in

Section 5) essentially converge once δ exceeds a threshold. In other words, the remain-

ing feasible strategies for consumers match in the scenarios, which gives rise to equivalent

equilibrium measures in both cases. In particular, if δ > 1− R
α
, then p∗RW = p∗BM . And conse-

quently, Π∗
RW =Π∗

BM and WRW =WBM . Viewed differently, if politically-motivated hackers

are utilizing ransomware attacks with high residual losses, then they need not employ ran-

somware at all; traditional attacks result in equivalent outcomes. However, given that high δ

ransomware is actually deployed, this equivalence brings forth the question of whether such

ransomware could be even more harmful depending on the motivation of the hacker. For

example, if a politically-motivated hacker targeted total losses associated with the software,

then lowering δ to induce some ransom payments would actually be more effective. Panel

(a) of Figure A.2 illustrates a case where lowering δ to a medium range, i.e., δ∈ (0.64, 0.76),

increases expected losses relative to the higher range, i.e., δ > 0.76.
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Figure A.2: Impact of residual loss factor (δ) on total expected losses and social welfare.
The common parameter values are cp = 0.12, α = 0.8, and πr = 0.75. Panels (a) and (b)
illustrate comparative statics for R = 0.1, while panels (c) and (d) do the same for R = 0.43.

In contrast, at a higher level of ransom demand, a politically-motivated hacker focused

on total expected losses might benefit from a minimal δ which greatly boosts total expected

losses as is illustrated in panel (c) of Figure A.2. In this case, the behavior of politically-

motivated and economically-motivated hackers actually coincides unlike in the case of a lower

ransom demand shown in panel (a). On the other hand, as we discussed earlier, it is not

easy to translate politically-motivated to an objective goal. For instance, perhaps politically-

motivated could instead mean focused on reducing social welfare. In that case, a high level

of residual losses where equivalence with the benchmark is achieved would be more effective

at reducing welfare, which is illustrated in panel (d) of Figure A.2. This case highlights the

inherent difficulty with hacker motivations: one gets polarizing predictions depending on

how even a single motivation (such as being political) gets operationalized. Layering on that

there are many diverse hacker motivations, this issue gets further compounded. In light of

these issues, our analysis aims to provide insights across a broader set of these motivations by

exploring varying levels of R and δ in different regimes. Panel (b) of Figure A.2 underscores

the complexity that arises by depicting how a lower boundary value of δ is suddenly the

most effective at reducing welfare once ransom demand falls to a lower level.
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Figure A.3: Equilibrium price for the benchmark (BM) as influenced by the magnitude of
the patching cost and effective loss factor.

A.2 Benchmark Case - Robustness of Pricing Strategy

In the main body of the paper, Proposition 7 formalizes a comparison of pricing behavior be-

tween ransomware and benchmark scenarios. In our discussion of these differences, depicted

in Figure 7, an important contrast we highlight is that the vendor only drops price in re-

sponse to increasing risk in the benchmark case whereas it may hike price in the ransomware

case. In this section, we demonstrate that this contrasted pricing behavior observed in the

benchmark case is robust over a wide range of risk and patching costs.

Figure A.3 captures a robustness analysis of the vendor’s equilibrium price in the bench-

mark case over the entire space of patching costs (cp) and the effective security loss factor

(πnα). The figure illustrates that the only price jump that occurs is when the vendor signif-

icantly scales back price as the loss factor exceeds a threshold. At that point, the vendor’s

price provides the right incentives for a patching population to emerge in equilibrium.
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Parts (a-d) of Proposition 1 hold
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Figure A.4: Robustness of Proposition 1 to multiple classes of threats. The parameter values
are cp = 0.12, α = 0.8, and δ = 0.05.

A.3 Robustness of Results under Multiple Threats Sce-

narios

In this section, we investigate the robustness of several of our key findings on patch-mitigated

ransomware threats with respect to the general scenario with multiple classes of threats

presented in Section 5. Specifically, we examine to what extent the nature of our comparative

statics results in R and πr (Propositions 1, 2, 3, 7, and 8) continue to hold when we allow for

the concomitant presence of more traditional threats in the security landscape (i.e., moving

from RW to MT ). Due to the additional complexity of MT , it is necessary to perform the

comparisons using numerical analysis. To better illustrate our results, we define π, πr + πn

as the overall risk level and ρ, πr/π ∈ (0, 1] as the prevalence of ransomware in the threat

landscape.

First, we explore the parameter region (πr, πn) under which parts (a)-(d) of Proposition 1

still hold in essence (i.e., we encounter precisely four regions with the same market structures,

in the same sequence with respect to R, and the monotonicity of vendor’s price, market size,

and profits with respect to R is the same in each of these regions as in Proposition 1). As

illustrated in Figure A.4, the results for Proposition 1 hold for a wide region of (πr, πn), with

πn spanning [0, 0.31] and ρ spanning the entire interval (0, 1] (i.e., all shades are observed). In

particular, in the left portion of this region, risk is induced predominantly by non-ransomware

threats, with a minority contribution from the ransomware threat (ρ< 0.5). This highlights
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that ransomware, while necessary in the threat landscape, need not be the most prevalent

threat for our results to hold. Moreover, part (c) of Proposition 1 qualifies the existence of

a region in R where all three consumer segments are present, which has significant practical

relevance. In this region, the vendor’s price, market size, and profits all increase in R, and

notably the range of (πr, πn) where the equivalent region exists under MT (the generalized

model) is considerably larger than the region shown in Figure A.4 (which is governed by a

stricter requirement).

Similarly, we have numerically investigated and confirmed that the results in Propositions

2 and 3 are robust to the presence of traditional threats. For example, under the same

parameters as in Figure 3, the essence of Propositions 2 and 3 is satisfied for πn ∈ [0, 0.30].

For levels of πn in this range, the behavior exhibited is similar to that in Figure 3 (hence,

we omit a matching illustration for brevity).

Last, we explore the robustness of our results in Propositions 7 and 8. For the comparisons

to be sensible, we compare and contrast the general model (MT ) outcomes under parameters

(πr, πn) to the outcomes under the benchmark model (BM) with a matching aggregate risk

factor of π. Controlling for overall risk enables us to tease out how the presence of a ransom

paying option alters market dynamics. We explore the differences between outcomes under

the two scenarios for a continuum of ratios ρ∈ (0, 1] as well as a continuum of overall risk

levels, π ∈ (0, 1]. The results of this exploration are depicted in panels (a) and (b) of Figure

A.5, with the overall risk level, π, on the x-axis, and prevalence of ransomware threat relative

to overall risk, ρ, on the y-axis.32

The essence of Propositions 7 and 8 can be visualized by the top, horizontal regions (when

ρ=1) of panels (a) and (b) of Figure A.5. As we move away from a ransomware only scenario

toward a mixed-threat scenario MT , we incorporate a risk that is a weighted combination

of the individual risks in the RW and BM models. As can be seen, the dynamics induced

by the presence of a ransom option (at all levels of ρ> 0) lead to similar strategic pricing

decisions and welfare outcomes as the ones described in Section 5. Panel (a) highlights the

robustness of Proposition 7. When the overall risk in the market is low, then nobody patches

and MT and BM scenarios induce the same pricing and market size. As the overall risk in

the market increases, we notice at all levels of ρ> 0 the presence of a region where p∗MT >p∗BM

and this region shrinks in width as ρ decreases; this can be expected since, as ρ approaches 0,

scenarioMT converges to BM . The boundary between the leftmost region and middle region

is a straight line, corresponding to the π value at which p∗BM drops (which is independent

of the change in ρ characterizing the mix of threats under MT ). As the overall risk in the

market grows large, we observe p∗MT <p∗BM because the presence of a ransom option provides

consumers with a means to mitigate risk. This remains true even when ransomware is not

the only threat, provided that the security externality permits expansion at the lower end of

the market. In panel (b), we observe the same sequence of welfare ordering as we formally

32In Figure A.5, we illustrate the analysis for the same parameter set that was used to generate Figures
7 and 8. We also conducted a separate sensitivity analysis on each parameter and found that the nature of
the regions depicted remains consistent over a broad range of each parameter’s values.
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(a) Price Comparison

0 0.2 0.4 0.6 0.8 1
π

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(b) Welfare Comparison

p∗BM = p∗MT p∗BM > p∗MT

p∗BM < p∗MT
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MT
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Figure A.5: Price and welfare comparison of ransomware and benchmark settings across risk
scenarios. The parameter values are cp = 0.12, α = 0.8, R = 0.43, and δ = 0.05.

established in Proposition 8 for all levels of ρ. For low and high overall risk in the market,

scenario MT induces a higher social welfare compared to BM , whereas the opposite is true

for intermediate levels of overall risk. We have extensively discussed the market forces that

lead to these outcomes in our analysis of the RW and BM scenarios in Section 5. Similar

arguments continue to motivate the outcomes in the generalized model.

A.8



Appendix B. Proofs of Lemmas and Propositions

B.1 Main model RW

We begin with our main model of ransomware. We solve the equilibrium via backward in-

duction. In Section B.1.1, we present the consumption subgame (the last stage of the game)

and characterize consumer choices for every possible price and set of parameters. Proposi-

tion B.1 sets up the groundwork for the vendor’s pricing problem by establishing the price

intervals (and the associated consumer segments they induce) that the vendor may select

from for each set of the nine distinct, exogenous parameter regions organized by R and πr.

In Section B.1.2, for each region of the parameter space, we then solve the pricing subgame

to characterize the unique equilibrium price and consumer market outcome.

B.1.1 Consumption Subgame

Proposition B.1. There exist sets of mutually exclusive conditions on R, α, δ, πr and cp
that cover the parameter space and organize the equilibrium outcome by price. Under each of

these parameter sets, the feasible space for price p can be split into adjacent intervals, each

of them with a single structure that characterizes the unique consumption subgame outcome.

(i) R ≥ α(1− δ) and πr ≤ cp
α
:

• 0 ≤ p < 1 : (0 < vnr < 1)

(ii) R ≥ α(1− δ) and πr >
cp
α
:

• 0 ≤ p < (1−cp)(−cp+πrα)

πrα
: (0 < vnr < vp < 1)

• (1−cp)(−cp+πrα)
πrα

≤ p < 1 : (0 < vnr < 1)

(iii)

(
R ≤ α(cp − δ) or πr ≤ cp

R+αδ

)
and πr <

1−δ
−R+α(1−δ)

and R < α(1− δ):

• 0 ≤ p < R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

: (0 < vnr < vr < 1)

• R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

≤ p < 1 : (0 < vr < 1)

(iv)

(
πr ≤ cpα(1−δ)2

R2 or R ≤ cpα(1− δ)

)
and R > α(cp − δ) and

cp
R+αδ

< πr ≤ cpα(1−δ)

(−R+α(1−δ))(R+αδ)
:

• 0 ≤ p < (R+α(−cp+δ))(−cp+(R+αδ)πr)

(R+αδ)2πr
: (0 < vnr < vr < vp < 1)
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• (R+α(−cp+δ))(−cp+(R+αδ)πr)
(R+αδ)2πr

≤ p < R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

: (0 < vnr < vr < 1)

• R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

≤ p < 1 : (0 < vr < 1)

(v) cpα(1− δ) < R < α(1− δ) and cpα(1−δ)2

R2 < πr ≤ cpα(1−δ)
(−R+α(1−δ))(R+αδ)

:

• 0 ≤ p ≤ (−R+cpα(1−δ))(cpα(1−δ)2−R2πr)

R2πrα(1−δ)
: (0 < vnr < vp < 1)

• (−R+cpα(1−δ))(cpα(1−δ)2−R2πr)
R2πrα(1−δ)

< p < (R+α(−cp+δ))(−cp+(R+αδ)πr)
(R+αδ)2πr

: (0 < vnr < vr < vp < 1)

• (R+α(−cp+δ))(−cp+(R+αδ)πr)
(R+αδ)2πr

≤ p < R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

: (0 < vnr < vr < 1)

• R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

≤ p < 1 : (0 < vr < 1)

(vi) cpα(1− δ) < R < α(1− δ) and πr > max
(

cpα(1−δ)
(−R+α(1−δ))(R+αδ)

, cpα(1−δ)2

R2

)
:

• 0 ≤ p ≤ (−R+cpα(1−δ))(cpα(1−δ)2−R2πr)

R2πrα(1−δ)
: (0 < vnr < vp < 1)

• (−R+cpα(1−δ))(cpα(1−δ)2−R2πr)
R2πrα(1−δ)

< p <
R

(
2(1−δ)δ+Rπr−

√
πr(4cpαδ(1−δ)2+R2πr)

)

2αδ(1−δ)2
:

(0 < vnr < vr < vp < 1)

•
R

(
2(1−δ)δ+Rπr−

√
πr(4cpαδ(1−δ)2+R2πr)

)

2αδ(1−δ)2
≤ p < 1−cp− cp(R+αδ(1−cp))

(R+αδ)2πr
: (0 < vr < vp < 1)

• 1− cp − cp(R+αδ(1−cp))
(R+αδ)2πr

≤ p < 1 : (0 < vr < 1)

(vii)

((
πr <

(1−δ)δ
−R+cpα(1−δ)

and R ≤ cpα(1−δ)
)
or
(
R > cpα(1−δ)

))
and πr >

cpα(1−δ)
(−R+α(1−δ))(R+αδ)

and

(
R ≤ cpα(1− δ) or πr ≤ cpα(1−δ)2

R2

)
and R < α(1− δ):

• 0 ≤ p <
R
(
2(1−δ)δ+Rπr−

√
πr(4cpαδ(1−δ)2+R2πr)

)

2αδ(1−δ)2
: (0 < vnr < vr < vp < 1)

•
R

(
2(1−δ)δ+Rπr−

√
πr(4cpαδ(1−δ)2+R2πr)

)

2αδ(1−δ)2
≤ p < 1−cp− cp(R+αδ(1−cp))

(R+αδ)2πr
: (0 < vr < vp < 1)

• 1− cp − cp(R+αδ(1−cp))

(R+αδ)2πr
≤ p < 1 : (0 < vr < 1)

(viii) R ≤ cpα(1− δ) and πr ≥ (1−δ)δ
−R+cpα(1−δ)

and πr >
cp(R+αδ(1−cp))
(1−cp)(R+αδ)2

:

• 0 ≤ p < 1− cp − cp(R+αδ(1−cp))

(R+αδ)2πr
: (0 < vr < vp < 1)

• 1− cp − cp(R+αδ(1−cp))

(R+αδ)2πr
≤ p < 1 : (0 < vr < 1)

(ix) R < α(1− δ) and 1−δ
−R+α(1−δ)

≤ πr ≤ cp(R+(1−cp)αδ)
(1−cp)(R+αδ)2

:

• 0 ≤ p < 1 : (0 < vr < 1)

Under each of these parameter sets, setting p = 1 leads to the trivial outcome of no one

purchasing.
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Remarks

As can be seen above, in each of the nine sets of mutually exclusive conditions on parame-

ters, there is anywhere from one to four contiguous intervals of price that give rise to a single

type of equilibrium characterization. For example, in part (ix), only 0<vr < 1 can arise

which is to say that all consumers who are in the market remain unpatched and pay ransom.

The parameter set that defines a region, together with a specific price interval, compose

the validity conditions under which the corresponding structure (associated with that price

interval) is in play. In determining the equilibrium price for a particular region, the vendor

will compare profits across the price intervals (hence across the structures in play) to deter-

mine the price that maximizes profits. In proving our main propositions, we will establish

the conditions under which the optimal price falls into any interval (hence giving rise to its

associated structure in equilibrium) and refer to these as profit-maximizing conditions.

To prove Proposition B.1, we take the following strategy. First, in Lemma B.1, we estab-

lish the conditions under which each of the six consumer market structures (with positive

consumption) can arise. Each set of conditions presented in this lemma come from the

consumer’s utility maximization problem. Specifically, we show that a threshold market

structure arises in equilibrium and that only one of six market outcomes can emerge for

any given price p < 1. Second, in Lemma B.2, we provide a simplification of these sets of

conditions that makes it easier to see how we arrive at the nine parameter sub-regions listed

in Proposition B.1. Finally, we derive those sub-regions and prove that they form a partition

of the parameter space so that any set of conditions gives rise to one and only one region

outcome in the equilibrium of the consumption subgame.

Lemma B.1. The complete threshold characterization of the consumption subgame is as

follows:

(I) (0 < vnr < 1), where vnr =
πrα−1+

√
1+πrα(−2+4p+πrα)

2πrα
if the following conditions hold:

(a) p < 1,

(b) R ≥ α(1− δ),

(c) 1 + πrα ≤ 2cp +
√
1 + πrα(−2 + 4p+ πrα);

(II) (0 < vnr < vp < 1), where vnr is the largest positive root of the cubic f1(x) , πrαx
3 +

(1− (cp + p)πrα)x
2 − 2px+ p2 and vp = vnr +

vnr−p

πrαvnr
, if the following conditions hold:

(a) cpα(R− cpα(1− δ))(1− δ)2 ≤ R2(R− α(cp + p)(1− δ))πr,

(b) R − cpα(1− δ) > 0,

(c) (−1 + cp + p)πrα < −cp + c2p;

(III) (0 < vnr < vr < 1), where vnr =
πrα−1+

√
1+πrα(−2+4p+πrα)

2πrα
and vr = R

α(1−δ)
, if the

following conditions hold:
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(a) −2Rπr + (1− δ)(−1 + πrα +
√

1 + πrα(−2 + 4p+ πrα)) < 0,

(b) R < α(1− δ),

(c) 2cpα + (R + αδ)(
√
1 + πrα(−2 + 4p+ πrα)− (1 + πrα)) ≥ 0;

(IV) (0 < vnr < vr < vp < 1), where vnr is the largest positive root of the cubic f2(x) ,

δπrαx
3 + (δ + Rπr − (cp + pδ)πrα)x

2 − (2δ + Rπr)px + p2δ and vr = R
α(1−δ)

and

vp = vnr +
vnr−p

πrαvnr
, if the following conditions hold:

(a) R > pα(1− δ),

(b) R2(R− (cp + p)α(1− δ))πr > −(R− pα(1− δ))2δ(1− δ),

(c) α(cp − δ) + α2πr(cp(πrα+ 2p− 2) + δ(α(p− 1)πr − 3p+ 2)) +√
πrα(πrα + 4p− 2) + 1(α(πrα(cp + δ(p − 1)) − cp + δ) + α(p − 1)πrR + R) +

R(πrα(α(p− 1)πr − 3p+ 2)− 1) < 0,

(d) Either

• αcp(δ − 1)3(2πrαp+ 1) +
√

(δ − 1)2 + 2(δ − 1)πr(2α(δ − 1)p+R) + π2
rR

2 ×
(αcp(δ − 1)2 + (δ − 1)R(πrα(cp + p) + 1) + πrR

2)+(δ−1)πrR
2(πrα(cp+p)+

2) + (δ − 1)2R(2πrαcp + 3πrαp+ 1) + π2
rR

3 < 0, and

• δ +
√
4α(δ − 1)2pπr + (δ + πrR − 1)2 < πrR + 1,

or

• αcp(δ − 1)3(2πrαp+ 1) +
√

(δ − 1)2 + 2(δ − 1)πr(2α(δ − 1)p+R) + π2
rR

2 ×
(−αcp(δ − 1)2 − (δ − 1)R(πrα(cp + p) + 1)− πrR

2)+(δ−1)πrR
2(πrα(cp+p)+

2) + (δ − 1)2R(2πrαcp + 3πrαp+ 1) + π2
rR

3 > 0, and

• πr(R− 2α(1− δ)p) > −δ +
√

4α(δ − 1)2pπr + (δ + πrR− 1)2 + 1;

(V) (0 < vr < 1), where vr =
−1−Rπr+δπrα+

√
4δπrα(p+Rπr)+(1+Rπr−δπrα)2

2δπrα
, if the following

conditions hold:

(a) p < 1,

(b) cp

(
αδπr +

√
2πr(αδ(2p− 1) +R) + π2

r(αδ +R)2 + 1 + πrR + 1
)
≥ 2(1−p)πr(αδ+

R),

(c) Either

• 2δ +
√
4πrαδ(p+ πrR) + (−πrαδ + πrR + 1)2 ≤ πrαδ + πrR + 1,

or

• 2δ +
√
4πrαδ(p+ πrR) + (−πrαδ + πrR + 1)2 > πrαδ + πrR + 1, and

• πrαδ+
√

4πrαδ(p+πrR)+(−πrαδ+πrR+1)2−Rπr−1

2πrαδ
≤ − 2δp

(πrα−2)δ−
√

4πrαδ(p+πrR)+(−πrαδ+πrR+1)2+πrR+1
;
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(VI) (0 < vr < vp < 1), where vr is the largest positive root of the cubic f3(x) = α2δ2πrx
3+

(αδ(1+2Rπr−(cp+p)δπrα))x
2+(R2πr−2αδ(p+(cp+p)Rπr))x+p2αδ−(cp+p)R2πr

and vp = vr +
vr−p

(R+vrαδ)πr
, if the following conditions hold:

(a)
(
αδπr +

√
4αδπr(p+ πrR) + (−αδπr + πrR + 1)2 + πrR− 1

)2
×

(
πr(−(αδ(2cp + 2p− 1) +R)) +

√
4αδπr(p+ πrR) + (−αδπr + πrR + 1)2 − 1

)
+

2
(
αδπr − 2αδpπr +

√
4αδπr(p+ πrR) + (−αδπr + πrR + 1)2 −Rπr − 1

)2
> 0,

(b)
αδπr+

√
4αδπr(p+πrR)+(−αδπr+πrR+1)2−Rπr−1

2αδπr
> p,

(c) Either

• πrαcp + δ2 ≥ αδπr(cp + p) + δ + πrR,

or

• πrαcp + δ2 < αδπr(cp + p) + δ + πrR, and

• either

–
(

R
α(1−δ)

≤ p
)
,

or

– R
α(1−δ)

> p, and

– πrR
2(α(δ − 1)(cp + p) +R) ≤ (δ − 1)δ(α(δ − 1)p+R)2, and

– R
α−αδ

< cp + p.

(VII) (0 < 1) (in which no one purchases), if the following condition holds:

• p = 1

Proof of Lemma B.1: First, we establish the general threshold-type equilibrium struc-

ture. Given the size of unpatched population u, the net payoff of the consumer with type v

for strategy profile σ is written as

URW (v, σ),





v − p− cp if σ(v) = (B,P ) ;

v − p− πru(σ)(R + δαv) if σ(v) = (B,NP,R) ;

v − p− πrαu(σ)v if σ(v) = (B,NP,NR) ;

0 if σ(v) = (NB,NP ) ,

(B.1)

where

uRW (σ),

∫

V
11{σ(v)∈{(B,NP,R),(B,NP,NR)}} dv . (B.2)
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Note σ(v) = (B,P ) if and only if

v − p− cp ≥ v − p− πru(σ)(R + δαv) ⇔ v ≥ cp − Rπru(σ)

δπrαu(σ)
, and

v − p− cp ≥ v − p− πrαu(σ)v ⇔ v ≥ cp
πrαu(σ)

, and

v − p− cp ≥ 0 ⇔ v ≥ cp + p,

which can be summarized as

v ≥ max

(
cp − Rπru(σ)

δπrαu(σ)
,

cp
πrαu(σ)

, cp + p

)
. (B.3)

By (B.3), if a consumer with valuation v0 buys and patches the software, then ev-

ery consumer with valuation v > v0 will also do so. Hence, there exists a threshold

vp ∈ (0, 1] such that for all v ∈ V, σ∗(v) = (B,P ) if and only if v ≥ vp. Similarly,

σ(v) ∈ {(B,P ), (B,NR), (B,R)}, i.e., the consumer of valuation v purchases one of these

alternatives, if and only if

v − p− cp ≥ 0 ⇔ v ≥ cp + p, or

v − p− πrαu(σ)v ≥ 0 ⇔ v ≥ p

1− πrαu(σ)
, or

v − p− πru(σ)(R+ δαv) ≥ 0 ⇔ v ≥ p+Rπru(σ)

1− δπrαu(σ)
,

which can be summarized as

v ≥ min

(
cp + p,

p

1− πrαu(σ)
,
p+Rπru(σ)

1− δπrαu(σ)

)
. (B.4)

Let 0 < v1 ≤ 1 and σ∗(v1) ∈ {(B,P ), (B,NR), (B,R)}, then by (B.4), for all v > v1,

σ∗(v) ∈ {(B,P ), (B,NR), (B,R)}, and hence there exists a v ∈ (0, 1] such that a consumer

with valuation v ∈ V will purchase the software if and only if v ≥ v.

By (B.3) and (B.4), v ≤ vp holds. Moreover, if v < vp, consumers with types in [v, vp]

choose either (B,NR) or (B,R). A purchasing consumer with valuation v will prefer (B,R)

over (B,NR) if and only if

v − p− πru(σ)(R+ δαv) ≥ v − p− πrαu(σ)v ⇔ v ≥ R

α(1− δ)
. (B.5)

Next, we characterize in more detail each outcome that can arise in equilibrium of the

consumption subgame, as well as the corresponding parameter regions. For Case (I), in which

all consumers who purchase choose to be unpatched and not pay ransom, i.e., 0 < vnr < 1,

based on the threshold-type equilibrium structure, we have u(σ) = 1 − vnr. We prove the
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following claim related to the corresponding parameter region in which Case (I) arises.

Claim 1. The subgame outcome that corresponds to case (I) arises if and only if the following

conditions are satisfied:

p < 1 and R ≥ α(1 − δ) and 1 + πrα ≤ 2cp +
√

1 + πrα(−2 + 4p+ πrα). (B.6)

The consumer indifferent between not purchasing at all and purchasing and remaining

unpatched, vnr, satisfies vnr − p − πrαu(σ)vnr = 0. To solve for the threshold vnr, using

u(σ) = 1− vnr, we solve

vnr =
p

1− πrαu(σ)
=

p

1− πrα(1− vnr)
. (B.7)

For this to be an equilibrium, we have that vnr ≥ 0. This rules out the smaller root of the

quadratic as a solution. Given the underlying model assumptions, the other root is strictly

positive, so the root characterizing vnr is

vnr =
πrα− 1 +

√
1 + πrα(−2 + 4p+ πrα)

2πrα
(B.8)

For this to be an equilibrium, the necessary and sufficient conditions are that 0 < vnr < 1,

type v = 1 weakly prefers (B,NR) to both (B,R) and (B,P ).

For vnr < 1, it is equivalent to have p < 1.

For v = 1 to prefer (B,NR) over (B,P ), we need 1 ≤ cp
πrα(1−vnr)

. Simplifying, this

becomes 1 + πrα ≤ 2cp +
√

1 + πrα(−2 + 4pπrα).

For v = 1 to prefer (B,NR) over (B,R), we need 1 ≤ R
α(1−δ)

. Simplifying, this becomes

R ≥ α(1− δ). The conditions above are given in (B.6). �

Next, for case (II), in which the lower tier of purchasing consumers is unpatched and does

not pay ransom while the upper tier patches, i.e., 0 < vnr < vp < 1, we have u = vp − vnr.

Following the same steps as before, we prove the following claim related to the corresponding

parameter region in which case (II) arises.

Claim 2. The subgame outcome that corresponds to case (II) arises if and only if the fol-

lowing conditions are satisfied:

cpα(R− cpα(1− δ))(1− δ)2 ≤ R2(R− α(cp + p)(1− δ))πr and

R− cpα(1− δ) > 0 and (−1 + cp + p)πrα < −cp + c2p. (B.9)

To solve for the thresholds vnr and vp, using u = vp − vnr, note that they solve

vnr =
p

1− πrα(vp − vnr)
, and (B.10)
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vp =
cp

πrα(vp − vnr)
. (B.11)

Solving for vp in terms of vnr in (B.10), we have

vp = vnr +
vnr − p

πrαvnr
. (B.12)

Substituting this into (B.11), we have that vnr must be a zero of the cubic equation:

f1(x) , πrαx
3 + (1− πrα(cp + p))x2 − 2px+ p2. (B.13)

To find which root of the cubic vnr must be, note that the cubic’s highest order term

is πrαx
3, so lim

x→−∞
f1(x) = −∞ and lim

x→∞
f1(x) = ∞. We find f1(0) = p2 > 0, and f1(p) =

−cpπrαp
2 < 0. Since vnr − p > 0 in equilibrium, we have that vnr is uniquely defined as the

largest root of the cubic, lying past p. Then (B.12) characterizes vp.

For this to be an equilibrium, the necessary and sufficient conditions are 0 < vnr < vp < 1

and type v = vp weakly prefers (B,P ) over (B,R). Type v = vp preferring (B,P ) over (B,R)

ensures v > vp also prefer (B,P ) over (B,R), by (B.3). Moreover, type v = vp is indifferent

between (B,P ) and (B,NR), so this implies that v = vp weakly prefers (B,NR) over (B,R).

This implies that all v < vnr strictly prefer (B,NR) over (B,R) by (B.5).

For vp < 1, first note that from (B.10), we have πrα(vp−vnr) = 1− p

vnr
while from (B.11)

we have πrα(vp − vnr) =
cp
vp
. So then solving for vp, we have

vp =
cpvnr
vnr − p

. (B.14)

Then using (B.14), a necessary and sufficient condition for vp < 1 to hold is vnr >
p

1−cp
.

This is equivalent to f3(
p

1−cp
) < 0, since p

1−cp
> p. This simplifies to (−1 + cp + p)πrα <

−cp + c2p.

For vp > vnr, no conditions are necessary since vp was defined in (B.12), and vnr > p by

definition of vnr as the largest root of (B.13).

Similarly, vnr > 0, by definition of vnr.

To ensure that no consumer has incentive to pay ransom, it suffices to make sure that

v = vp prefers to not pay ransom over paying ransom. By (B.5), we will need vp ≤ R
α(1−δ)

.

Using (B.14), this is equivalent to vnr(R − cpα(1 − δ)) ≥ Rp. If R − cpα(1 − δ) ≤ 0, then

no vnr would satisfy this condition in equilibrium. Hence, R− cpα(1− δ) > 0 is a necessary

condition and we need vnr ≥ Rp

R−cpα(1−δ)
. This simplifies to f [ Rp

R−cpα(1−δ)
] ≥ 0, which is

equivalent to cpα(R − cpα(1 − δ))(1 − δ)2 ≤ R2(R − α(cp + p)(1 − δ))πr. The conditions

above are summarized in (B.9). �

Next, for case (III), in which there are no patched users while the lower tier chooses to

not pay ransom and the upper tier pays ransom, i.e., 0 < vnr < vr < 1, we have u = 1− vnr.

Following the same steps as before, we prove the following claim related to the corresponding
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parameter region in which case (III) arises.

Claim 3. The subgame outcome that corresponds to case (III) arises if and only if the

following conditions are satisfied:

p > 0 and α
(
− 2Rπr + (1− δ)(−1 + πrα+

√
1 + πrα(−2 + 4p+ πrα))

)
< 0 and

R < α(1− δ) and 2cpα + (R + αδ)(
√
1 + πrα(−2 + 4p+ πrα)− (1 + πrα)) ≥ 0. (B.15)

To solve for the thresholds vnr and vr, using u = 1− vnr, note that they solve

vnr =
p

1− πrα(1− vnr)
, and (B.16)

vr =
R

α(1− δ)
, (B.17)

where the expression in (B.17) comes from (B.5).

Solving for vnr in (B.16), we have

vnr =
−1 + πrα±

√
1 + πrα(−2 + 4p+ πrα)

2πrα
. (B.18)

Note that
−1+πrα−

√
1+πrα(−2+4p+πrα)

2πrα
< p while

−1+πrα+
√

1+πrα(−2+4p+πrα)

2πrα
> p, and since

vnr > p in equilibrium, it follows that

vnr =
−1 + πrα +

√
1 + πrα(−2 + 4p+ πrα)

2πrα
. (B.19)

For this to be an equilibrium, the necessary and sufficient conditions are 0 < vnr < vr < 1

and that type v = 1 weakly prefers (B,R) over (B,P ). Type v = 1 preferring (B,R) over

(B,P ) ensures v < 1 also prefer (B,R) over (B,P ), by (B.3). Moreover, type v = vr is

indifferent between (B,R) and (B,NR), so this implies that v = vr strictly prefers (B,NR)

over (B,P ). This implies that all v < vnr strictly prefer (B,NR) over (B,P ) as well, again

by (B.3).

Note vnr > 0 is satisfied if p > 0 since vnr > p under the preliminary model assumptions.

For vnr < vr, from (B.19) and (B.17), this simplifies to α
(
− 2Rπr + (1− δ)(−1 + πrα+√

1 + πrα(−2 + 4p+ πrα))
)
< 0.

For vr < 1, from (B.17), this simplifies to R < α(1− δ).

For v = 1 to weakly prefer (B,R) over (B,P ), we need 1 ≤ cp−Rπr(1−vnr)
πrαδ(1−vnr)

. Substituting in

(B.19) and simplifying, this becomes 2cpα+(R+αδ)(
√

1 + πrα(−2 + 4p+ πrα)−(1+πrα)) ≥
0. The conditions above are summarized in (B.15). �

Next, for case (IV), in which the top tier of consumers patches, the middle tier pays

ransom, and the bottom tier remains unpatched and does not pay ransom, i.e., 0 < vnr <

B.9



vr < vp < 1, we have u = vp−vnr. Following the same steps as before, we prove the following

claim related to the corresponding parameter region in which case (IV) arises.

Claim 4. The subgame outcome that corresponds to case (IV) arises if and only if the

following conditions are satisfied:

R > pα(1− δ) and R2(R− (cp + p)α(1− δ))πr > −(R − pα(1− δ))2δ(1− δ) and

α(cp − δ) + α2πr(cp(πrα + 2p− 2) + δ(α(p− 1)πr − 3p+ 2))+
√

πrα(πrα + 4p− 2) + 1(α(πrα(cp + δ(p− 1))− cp + δ) + α(p− 1)πrR +R)+

R(πrα(α(p− 1)πr − 3p+ 2)− 1) < 0 and

either

((
αcp(δ − 1)3(2πrαp+ 1) +

√
(δ − 1)2 + 2(δ − 1)πr(2α(δ − 1)p+R) + π2

rR
2×

(
αcp(δ − 1)2 + (δ − 1)R(πrα(cp + p) + 1) + πrR

2
)
+ (δ − 1)πrR

2(πrα(cp + p) + 2)+

(δ − 1)2R(2πrαcp + 3πrαp+ 1) + π2
rR

3 < 0
)
and

(
δ +

√
4α(δ − 1)2pπr + (δ + πrR− 1)2 < πrR + 1

))
, or

((
αcp(δ − 1)3(2πrαp+ 1) +

√
(δ − 1)2 + 2(δ − 1)πr(2α(δ − 1)p+R) + π2

rR
2×

(
−αcp(δ − 1)2 − (δ − 1)R(πrα(cp + p) + 1)− πrR

2
)
+ (δ − 1)πrR

2(πrα(cp + p) + 2)+

(δ − 1)2R(2πrαcp + 3πrαp+ 1) + π2
rR

3 > 0
)
and

(
πr(R− 2α(1− δ)p) > −δ +

√
4α(δ − 1)2pπr + (δ + πrR − 1)2 + 1

))
. (B.20)

To solve for the thresholds vnr and vp, using u = vp − vnr, note that they solve

vnr =
p

1− πrα(vp − vnr)
, and (B.21)

vp =
cp − Rπr(vp − vnr)

δπrα(vp − vnr)
, (B.22)

Note that vr solves

vr =
R

α(1− δ)
, (B.23)

where the expression in (B.23) comes from (B.5).

Solving for vp in (B.21), we have

vp = vnr +
vnr − p

vnrπrα
. (B.24)
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Substituting this into (B.22), we have that vnr must be a zero of the cubic equation:

f2(x) , δπrαx
3 + (δ + πr(R− α(cp + δp)))x2 − p(2δ +Rπr)x+ p2δ. (B.25)

To find which root of the cubic vnr must be, note that the cubic’s highest order term

is δπrαx
3, so lim

x→−∞
f2(x) = −∞ and lim

x→∞
f2(x) = ∞. We find f2(0) = δp2 > 0, and

f2(p) = −cpπrαp
2 < 0. Since vnr−p > 0 in equilibrium, we have that vnr is uniquely defined

as the largest root of the cubic, lying past p. Then using (B.24), we solve for vp.

For this to be an equilibrium, the necessary and sufficient conditions are 0 < vnr < vr <

vp < 1.

The condition vnr > 0 is satisfied without further conditions, since vnr is the largest root

of the cubic greater than p by definition.

For vnr < vr to hold, we need vr > p and f2(vr) > 0. These conditions are equivalent to

R > pα(1− δ) and R2(R− (cp + p)α(1− δ))πr > −(R − pα(1− δ))2δ(1− δ).

For vr < vp to hold, we need R
α(1−δ)

< vnr +
vnr−p

πrαvnr
by (B.23) and (B.24). Simplifying,

this becomes (1 − δ)πrαv
2
nr + (1 − δ − Rπr)vnr − (1− δ)p > 0. Then vnr needs to be larger

than the larger root of this quadratic or smaller than the smaller root. The two roots of the

quadratic are given by
−1+δ+Rπr±

√
4pπrα(1−δ)2+(1−δ−Rπr)2

2πrα(1−δ)
. If vnr is larger than the larger root,

then a necessary condition is that this larger root is smaller than vr. On the other hand, if

vnr is smaller than the smaller root, then a necessary condition is that the smaller root is

larger than p, since by definition vnr > p.

Consider the first sub-case in which vnr is larger than the larger root of the quadratic. The

conditions are vnr >
−1+δ+Rπr+

√
4pπrα(1−δ)2+(1−δ−Rπr)2

2πrα(1−δ)
and

−1+δ+Rπr+
√

4pπrα(1−δ)2+(1−δ−Rπr)2

2πrα(1−δ)
<

R
α(1−δ)

. For vnr >
−1+δ+Rπr+

√
4pπrα(1−δ)2+(1−δ−Rπr)2

2πrα(1−δ)
, either

−1+δ+Rπr+
√

4pπrα(1−δ)2+(1−δ−Rπr)2

2πrα(1−δ)
≤

p, or
−1+δ+Rπr+

√
4pπrα(1−δ)2+(1−δ−Rπr)2

2πrα(1−δ)
> p and f2(

−1+δ+Rπr+
√

4pπrα(1−δ)2+(1−δ−Rπr)2

2πrα(1−δ)
) < 0.

The condition
−1+δ+Rπr+

√
4pπrα(1−δ)2+(1−δ−Rπr)2

2πrα(1−δ)
≤ p simplifies to R ≤ αp(1 − δ). However,

R > pα(1− δ) from vr > p. Since R > αp(1− δ), a necessary condition is

f2(
−1+δ+Rπr+

√
4pπrα(1−δ)2+(1−δ−Rπr)2

2πrα(1−δ)
) < 0, which simplifies to αcp(δ − 1)3(2πrαp + 1) +√

(δ − 1)2 + 2(δ − 1)πr(2α(δ − 1)p+R) + π2
rR

2 ×
(αcp(δ − 1)2 + (δ − 1)R(πrα(cp + p) + 1) + πrR

2) + (δ − 1)πrR
2(πrα(cp + p) + 2) + (δ −

1)2R(2πrαcp + 3πrαp + 1) + π2
rR

3 < 0. Lastly for this sub-case, we need that the quadratic

root
−1+δ+Rπr+

√
4pπrα(1−δ)2+(1−δ−Rπr)2

2πrα(1−δ)
< vr =

R
α(1−δ)

. This condition simplifies to

δ +
√
4α(δ − 1)2pπr + (δ + πrR− 1)2 < πrR + 1. Altogether, these form the first set of

conditions in (C) of case (IV).

In the second sub-case in which vnr is smaller than the smaller root of the quadratic,

the necessary and sufficient conditions are that
−1+δ+Rπr+

√
4pπrα(1−δ)2+(1−δ−Rπr)2

2πrα(1−δ)
> p and

vnr <
−1+δ+Rπr+

√
4pπrα(1−δ)2+(1−δ−Rπr)2

2πrα(1−δ)
. Note that the second condition is equivalent to
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f2(
−1+δ+Rπr+

√
4pπrα(1−δ)2+(1−δ−Rπr)2

2πrα(1−δ)
) > 0 since f2(x) > 0 for any x > vnr. The condition

that
−1+δ+Rπr+

√
4pπrα(1−δ)2+(1−δ−Rπr)2

2πrα(1−δ)
> p simplifies to

πr(R− 2α(1− δ)p) > −δ +
√
4α(δ − 1)2pπr + (δ + πrR− 1)2 + 1.

The condition that f2(
−1+δ+Rπr+

√
4pπrα(1−δ)2+(1−δ−Rπr)2

2πrα(1−δ)
) > 0 simplifies to αcp(δ−1)3(2πrαp+

1) +
√
(δ − 1)2 + 2(δ − 1)πr(2α(δ − 1)p+R) + π2

rR
2 ×

(−αcp(δ − 1)2 − (δ − 1)R(πrα(cp + p) + 1)− πrR
2) + (δ − 1)πrR

2(πrα(cp + p) + 2) + (δ −
1)2R(2πrαcp + 3πrαp + 1) + π2

rR
3 > 0. Altogether, these form the second set of conditions

in (C) of case (IV).

Lastly, we need vp < 1. Using (B.24), this simplifies to πrαv
2
nr + (1 − πrα)vnr < p.

Then vnr needs to be between the two roots of that quadratic,
−1+πrα±

√
1−2πrα+4pπrα+(πrα)2

2πrα
.

But note that the smaller of the roots not positive, from 0 ≤ p ≤ 1 and πrα > 0.

Therefore, vnr >
−1+πrα−

√
1−2πrα+4pπrα+(πrα)2

2πrα
is satisfied without further conditions. For

vnr <
−1+πrα+

√
1−2πrα+4pπrα+(πrα)2

2πrα
, f2(

−1+πrα+
√

1−2πrα+4pπrα+(πrα)2

2πrα
) > 0 is a necessary and

sufficient condition since
−1+πrα+

√
1−2πrα+4pπrα+(πrα)2

2πrα
> p. This simplifies to α(cp − δ) +

α2πr(cp(πrα+2p− 2)+ δ(α(p− 1)πr − 3p+2))+
√

πrα(πrα + 4p− 2) + 1(α(πrα(cp+ δ(p−
1))− cp + δ) + α(p− 1)πrR+R) +R(πrα(α(p− 1)πr − 3p+ 2)− 1) < 0, which is condition

(B) of case (IV). Altogether, the conditions above are given in (B.20). �

Next, for case (V), in which there are no patched users while all consumers who purchase

are unpatched and pay ransom, i.e., 0 < vr < 1, we have u = 1 − vr. Following the same

steps as before, we prove the following claim related to the corresponding parameter region

in which case (V) arises.

Claim 5. The subgame outcome that corresponds to case (V) arises if and only if the fol-

lowing conditions are satisfied:

p < 1 and

cp

(
αδπr +

√
2πr(αδ(2p− 1) +R) + π2

r(αδ +R)2 + 1 + πrR + 1
)
≥ 2(1− p)πr(αδ +R),

and either 2δ +
√

4πrαδ(p+ πrR) + (−πrαδ + πrR + 1)2 ≤ πrαδ + πrR + 1, or

2δ +
√

4πrαδ(p+ πrR) + (−πrαδ + πrR + 1)2 > πrαδ + πrR + 1 and

πrαδ +
√
4πrαδ(p+ πrR) + (−πrαδ + πrR + 1)2 −Rπr − 1

2πrαδ
≤

− 2δp

πrαδ − 2δ −
√

4πrαδ(p+ πrR) + (−πrαδ + πrR + 1)2 + πrR + 1
. (B.26)

To solve for the thresholds vr, using u = 1− vr, note it solves

vr =
p+Rπr(1− vr)

1− δπrα(1− vr)
(B.27)
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Then vr is one of the two roots of the equation above,
−1−Rπr+δπrα±

√
4δπrα(p+Rπr)+(1+Rπr−δπrα)2

2δπrα
.

However, the smaller of the two roots is negative, so vr must be the larger of the two roots

in equilibrium. Hence, we have

vr =
−1− Rπr + δπrα+

√
4δπrα(p+Rπr) + (1 +Rπr − δπrα)2

2δπrα
. (B.28)

For this to be an equilibrium, the necessary and sufficient conditions are p < vr < 1, and

no consumer prefers to patch or not pay ransom over paying ransom.

For vr > p, using (B.28), this simplifies to p < 1. For vr > p, using (B.28), this also

simplifies to p < 1. Similarly, vr < 1 also simplifies to p < 1.

For no consumer to strictly prefer patching over paying ransom, it suffices to have type

v = 1 weakly prefer paying ransom to patching. This is given as 1 ≤ cp−Rπr(1−vr)
δπrα(1−vr)

. Using

(B.28), this simplifies to cp

(
αδπr +

√
2πr(αδ(2p− 1) +R) + π2

r (αδ +R)2 + 1 + πrR + 1
)
≥

2(1− p)πr(αδ +R).

For no consumer to strictly prefer not paying ransom over paying ransom, it suffices to

have v = vr weakly prefer not to buy over buying and not paying ransom (since type v = vr
is indifferent between the option of not purchasing and the option of purchasing, remaining

unpatched, and paying ransom). Now if 1 − πrαu[σ] ≤ 0, then v(1 − πrαu[σ]) − p < 0, so

that everyone would prefer (NB,NP ) over (B,NP,NR). In this case, no further conditions

are needed. On the other hand, if 1 − πrαu[σ] > 0, then we will need the condition vr ≤
p

1−πrα(1−vr)
for v = vr to weakly prefer not buying over buying but not paying ransom.

In the first sub-case, the condition v(1− πrαu[σ])− p < 0 simplifies to

2δ +
√
4πrαδ(p+ πrR) + (−πrαδ + πrR + 1)2 ≤ πrαδ + πrR + 1, using (B.28).

In the second sub-case, the conditions 1 − πrαu[σ] > 0 and vr ≤ p

1−πrα(1−vr)
simplify to

2δ +
√
4πrαδ(p+ πrR) + (−πrαδ + πrR + 1)2 > πrαδ + πrR + 1 and

πrαδ+
√

4πrαδ(p+πrR)+(−πrαδ+πrR+1)2−Rπr−1

2πrαδ
≤ − 2δp

πrαδ−2δ−
√

4πrαδ(p+πrR)+(−πrαδ+πrR+1)2+πrR+1
. The

conditions above are summarized in (B.26). �

Lastly, for case (VI), in which the top tier patches while lower tier of the market remains

unpatched but pays the ransom, i.e., 0 < vr < vp < 1, we have u = vp − vr. Following the

same steps as before, we prove the following claim related to the corresponding parameter

region in which case (VI) arises.

Claim 6. The subgame outcome that corresponds to case (VI) arises if and only if the
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following conditions are satisfied:

(
αδπr +

√
4αδπr(p+ πrR) + (−αδπr + πrR + 1)2 + πrR− 1

)2
×

(
πr(−(αδ(2cp + 2p− 1) +R)) +

√
4αδπr(p+ πrR) + (−αδπr + πrR + 1)2 − 1

)
+

2
(
αδπr − 2αδpπr +

√
4αδπr(p+ πrR) + (−αδπr + πrR + 1)2 − Rπr − 1

)2
> 0 and

αδπr +
√

4αδπr(p+ πrR) + (−αδπr + πrR + 1)2 − Rπr − 1

2αδπr

> p and either
(
πrαcp + δ2 ≥ αδπr(cp + p) + δ + πrR

)
, or

((
πrαcp + δ2 < αδπr(cp + p) + δ + πrR

)
and

(( R

α(1− δ)
≤ p
)
or

( R

α(1− δ)
> p and πrR

2(α(δ−1)(cp+p)+R) ≤ (δ−1)δ(α(δ−1)p+R)2 and
R

α− αδ
< cp+p

)))
.

(B.29)

To solve for the thresholds vr and vp, using u(σ) = vp − vnr, we solve

vr =
p+Rπru(σ)

1− δπrαu(σ)
=

p+Rπr(vp − vr)

1− δπrα(vp − vr)
, and (B.30)

vp =
cp − Rπru(σ)

δπrαu(σ)
=

cp − Rπr(vp − vr)

δπrα(vp − vr)
. (B.31)

Solving for vp in terms of vr in (B.30), we have

vp = vr +
vr − p

(R + vrαδ)πr

. (B.32)

Substituting this into (B.31), we have that vr must be a zero of the cubic equation:

f3(x) , δ2α2πrx
3 − αδ(−1− 2Rπr + (cp + p)δπrα)x

2 + (R2πr − 2αδ(p+ (cp + p)Rπr))x+

p2αδ − (cp + p)R2πr. (B.33)

To find which root of the cubic vr must be, note that the cubic’s highest order term is

δ2α2πrx
3 > 0, so lim

x→−∞
f3(x) = −∞ and lim

x→∞
f3(x) = ∞. Note f3(− R

αδ
) = αδ

(
p+ R

αδ

)2
> 0,

f3(p) = −cp(R + pαδ)2πr < 0, and f3(cp + p) = c2pαδ > 0. Then the root between p and

cp + p is the largest positive root of the cubic. Since vr − p > 0 in equilibrium, we have that

vr is uniquely defined as the largest root of the cubic, lying past p. Then using (B.32) to

define vp, we have vp.

For this to be an equilibrium, the necessary and sufficient conditions are 0 < vr < vp < 1

and no consumer strictly prefers to not pay the ransom over either (B,P ) or (B,R).
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First, note that vr > p implies both vr > 0 and vp > vr, from (B.32).

For vp < 1, using (B.32), this is equivalent to δπrαv
2
r + (1 + Rπr − δπrα)vr − Rπr < p.

For this quadratic in vr to be less than a constant, vr needs to be between the two roots of

the quadratic,
−1−Rπr+δπrα±

√
4δπrα(p+Rπr)+(1+Rπr−δπrα)2

2δπrα
. Both roots exist since the radicand

is strictly positive.

Note that since p ≤ 1, then
−1−Rπr+δπrα−

√
4δπrα(p+Rπr)+(1+Rπr−δπrα)2

2δπrα
≤ p. Since we

already have conditions for vr > p, this implies that vr is larger than the smaller root of the

quadratic above.

Then the conditions we need for vp < 1 are vr <
−1−Rπr+δπrα+

√
4δπrα(p+Rπr)+(1+Rπr−δπrα)2

2δπrα

and
−1−Rπr+δπrα+

√
4δπrα(p+Rπr)+(1+Rπr−δπrα)2

2δπrα
> p. The latter condition is given in (B) of

case (VI). With
−1−Rπr+δπrα+

√
4δπrα(p+Rπr)+(1+Rπr−δπrα)2

2δπrα
> p, it follows that a necessary and

sufficient for vr <
−1−Rπr+δπrα+

√
4δπrα(p+Rπr)+(1+Rπr−δπrα)2

2δπrα
is

f3(
−1−Rπr+δπrα+

√
4δπrα(p+Rπr)+(1+Rπr−δπrα)2

2δπrα
) > 0. This is given in (A) of case (VI).

Lastly, we need to ensure that no consumer has an incentive to choose to not patch

and not pay ransom. If 1 − πrαu(σ) ≤ 0, then v(1 − πrαu(σ)) ≤ 0 for all v so that

everyone would weakly prefer (NB,NP ) over (B,NR). In this case, we do not need further

conditions. Specifically, using (B.32), we have that u(σ) = vp − vr = vr−p

(R+vrδα)πr
. So the

condition that 1 − πrαu(σ) ≤ 0 is equivalent to vr ≥ R+pα

α(1−δ)
. Since R+pα

α(1−δ)
> p, this is

equivalent to f3(
R+pα

α(1−δ)
) ≤ 0, which boils down to πrαcp + δ2 ≥ αδπr(cp + p) + δ + πrR.

On the other hand, if πrαcp + δ2 < αδπr(cp + p) + δ + πrR so that 1 − πrαu(σ) > 0,

then a necessary and sufficient condition for no one to strictly prefer (B,NR) over the other

options is for type v = vr to weakly prefer (NB,NP ) over (B,NR). This would imply that

all v < vr also have the same preference, from (B.4). Also, since v = vr is indifferent between

(NB,NP ) and (B,R), it follows that v = vr weakly prefers (B,R) over (B,NR). Then since

only higher-valuation consumers would prefer paying ransom from (B.5), it follows that all

v > vr would also have the same preference. The condition that v = vr weakly prefers

(NB,NP ) over (B,NR) is vr ≤ p

1−πrα( vr−p

(R+vrαδ)πr
)
. This simplifies to vr ≥ R

α(1−δ)
.

Now if R
α(1−δ)

≤ p, then no further conditions are needed since vr > p by definition of vr.

On the other hand, if R
α(1−δ)

> p, then a necessary and sufficient condition for vr ≥ R
α(1−δ)

is for f3(
R

α(1−δ)
) ≤ 0 and R

α(1−δ)
< cp (since vr < cp by construction). This simplifies to

πrR
2(α(δ − 1)(cp + p) +R) ≤ (δ − 1)δ(α(δ − 1)p+R)2 and R

α−αδ
< cp + p.

Claim 7. The subgame outcome that corresponds to case (VII) arises if and only if the

following conditions are satisfied:

p = 1. (B.34)

When p = 1, then the choice NB dominates all the other choices for every consumer in

[0, 1]. Consequently, the outcome when p = 1 is that no one purchases.
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This concludes the proof of the equilibrium characterization of the consumption subgame.

�

Proof of Lemma 1: This follows directly from Lemma B.1. �

Next, we provide a simpler characterization of the conditions provided in Lemma B.1. This

will be helpful for proving Proposition B.1.

Lemma B.2. The complete threshold characterization of the consumption subgame is as

follows:

(I) (0 < vnr < 1), where vnr =
πrα−1+

√
1+πrα(−2+4p+πrα)

2πrα
, iff the following conditions hold:

(a) (1−cp)(−cp+πrα)
πrα

≤ p < 1, and

(b) R ≥ α(1− δ).

(II) (0 < vnr < vp < 1), where vnr is the largest positive root of the cubic f1(x) , πrαx
3 +

(1− (cp + p)πrα)x
2 − 2px+ p2 and vp = vnr +

vnr−p

πrαvnr
, iff the following conditions hold:

(a) Either

(
R ≥ α(1− δ) and 0 ≤ p < (1−cp)(−cp+πrα)

πrα

)
, or

(b)

(
cpα(1− δ) < R < α(1− δ) and 0 ≤ p ≤ (−R+cpα(1−δ))(cpα(1−δ)2−R2πr)

R2πrα(1−δ)

)

(III) (0 < vnr < vr < 1), where vnr =
πrα−1+

√
1+πrα(−2+4p+πrα)

2πrα
and vr = R

α(1−δ)
, iff the

following conditions hold:

(a) Either

(
πr ≤ 2cp−1

α
and R < α(1− δ) and 0 ≤ p < R(1−δ+πr(R−α(1−δ)))

α(1−δ)2

)
, or

(b)

(
πr >

2cp−1
α

and R ≤ α
(

2cp
απr+1

− δ
)

and 0 ≤ p < R(1−δ+πr(R−α(1−δ)))
α(1−δ)2

)
, or

(c)

(
πr >

2cp−1
α

and α
(

2cp
απr+1

− δ
)
< R < α(1− δ) and

(α(δ−cp)+R)(πr(αδ+R)−cp)
πr(αδ+R)2

≤ p < R(1−δ+πr(R−α(1−δ)))
α(1−δ)2

)

(IV) (0 < vnr < vr < vp < 1), where vnr is the largest positive root of the cubic f2(x) ,

δπrαx
3+(δ+Rπr−(cp+pδ)πrα)x

2−(2δ+Rπr)px+p2δ,vr =
R

α(1−δ)
,and vp = vnr+

vnr−p

πrαvnr
,

iff the following conditions hold:
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(a) Either

(
α
(

2cp
απr+1

− δ
)
< R ≤ (1−δ)(

√
8αcpπr+1−1)
2πr

and

0 ≤ p < min

(
(α(δ−cp)+R)(πr(αδ+R)−cp)

πr(αδ+R)2
,
R
(

−
√

πr(4αcp(1−δ)2δ+πrR2)+2(1−δ)δ+πrR
)

2α(1−δ)2δ

))
, or

(b)

(
R > max

(
α
(

2cp
απr+1

− δ
)
,
(1−δ)(

√
8αcpπr+1−1)
2πr

)
and

(−R+αcp(1−δ))(αcp(1−δ)2−πrR
2)

α(1−δ)πrR2 <

p < min

(
(α(δ−cp)+R)(πr(αδ+R)−cp)

πr(αδ+R)2
,
R
(

−
√

πr(4αcp(1−δ)2δ+πrR2)+2(1−δ)δ+πrR
)

2α(1−δ)2δ

))

(V) (0 < vr < 1), where vr =
−1−Rπr+δπrα+

√
4δπrα(p+Rπr)+(1+Rπr−δπrα)2

2δπrα
, iff the following

conditions hold:

(a) R < α(1− δ) and max
(

R(1−δ+πr(R−α(1−δ)))
α(1−δ)2

, 1− cp − cp(α(1−cp)δ+R)
πr(αδ+R)2

)
≤ p < 1

(VI) (0 < vr < vp < 1), where vr is the largest positive root of the cubic f3(x) = α2δ2πrx
3+

(αδ(1+2Rπr−(cp+p)δπrα))x
2+(R2πr−2αδ(p+(cp+p)Rπr))x+p2αδ−(cp+p)R2πr

and vp = vr +
vr−p

(R+vrαδ)πr
, iff the following conditions hold:

(a)
R
(

−
√

πr(4αcp(1−δ)2δ+πrR2)+2(1−δ)δ+πrR
)

2α(1−δ)2δ
≤ p < 1− cp − cp(α(1−cp)δ+R)

πr(αδ+R)2

(VII) (0 < 1) (in which no one purchases), if the following condition holds:

• p = 1

Proof of Lemma B.2: First, we simplify the conditions from condition set (I) of Lemma

B.1. Consider the condition 1+πrα ≤ 2cp+
√

1 + πrα(−2 + 4p+ πrα). For the radicand to

be non-negative, we just need p ≥ − (1−πrα)2

4πrα
, which is always true since α > 0 and πr > 0.

If 1 + πrα− 2cp ≤ 0, then no further conditions are needed. Otherwise, we can square both

sides and rewrite the condition as p ≥ (1−cp)(−cp+πrα)
πrα

. Note that this lower bound on p is no

longer positive when πr ≥ cp
α
. Moreover, cp

α
< −1+2cp

α
from 0 < cp < 1, so then this condition

altogether just becomes p ≥ (1−cp)(−cp+πrα)
πrα

. Combining this with the conditions R ≥ α(1−δ)

and p < 1 from (I) of Lemma B.1 yields the conditions for condition set (I) of Lemma B.2.

Next, we simplify the conditions from condition set (II) of Lemma B.1. In this case,

there are two upper bounds on p, which can be written as p < (1−cp)(−cp+πrα)
πrα

(which requires

πr > cp
α

for the upper bound to be positive) and p ≤ (−R+cpα(1−δ))(cpα(1−δ)2−R2πr)
R2πrα(1−δ)

(which

requires R > (1− δ)
√

cpα

πr
and R > cpα(1− δ) for the upper bound to be positive). Then we

compare these two bounds on p. The inequality (−R+cpα(1−δ))(cpα(1−δ)2−R2πr)
R2πrα(1−δ)

≥ (1−cp)(−cp+πrα)
πrα

only holds if R ≥ α(1 − δ). Note that α(1 − δ) > cpα(1 − δ), so the conditions then

simplify into two cases, depending on the range of R. If R ≥ α(1 − δ), then (1−cp)(−cp+πrα)
πrα

is the smaller upper bound on p. On the other hand, if cpα(1 − δ) < R < α(1 − δ), then
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(−R+cpα(1−δ))(cpα(1−δ)2−R2πr)
R2πrα(1−δ)

is the smaller upper bound on p. This comprises the two cases

for condition set (II) of Lemma B.2.

Next, we simplify the conditions from condition set (III) of Lemma B.1. The condition

−2Rπr + (1 − δ)(−1 + πrα +
√

1 + πrα(−2 + 4p+ πrα)) < 0 simplifies to the conditions

p < R(1−δ+πr(R−α(1−δ)))
α(1−δ)2

. The other condition on p of condition set (III) of Lemma B.1 is given

as 2cpα+(R+αδ)(
√
1 + πrα(−2 + 4p+ πrα)− (1+πrα)) ≥ 0. This simplifies to either R ≤

α
(
−δ + 2cp

1+πrα

)
or p ≥ (α(δ−cp)+R)(πr(αδ+R)−cp)

πr(αδ+R)2
. This then gives a lower bound on p that we

have to compare to the upper bound we found earlier. The inequality α(1−δ) ≤ α(−δ+ 2cp
1+πrα

)

holds if and only if πr ≤ −1+2cp
α

. Then if πr ≤ −1+2cp
α

, the bound R ≤ α
(
−δ + 2cp

1+πrα

)
is

implied by the condition R < α(1 − δ). Otherwise, if πr > −1+2cp
α

, then whether the lower

bound on p is less than 0 depends on whether R > α
(
−δ + 2cp

1+πrα

)
. Then altogether, these

give the three mutually exclusive conditions provided in condition set (III) of Lemma B.2

into the three cases defined in the lemma.

Next, we simplify the conditions from condition set (IV) of Lemma B.1. Rewriting the

condition in terms of p, condition (a) of condition set (IV) of Lemma B.1 can be rewrit-

ten p < R
α(1−δ)

. Rewriting condition (b) gives p <
R
(

−
√

πr(4αcp(δ−1)2δ+πrR2)−2(δ−1)δ+πrR
)

2α(δ−1)2δ
.

Note that
R
(

−
√

πr(4αcp(δ−1)2δ+πrR2)−2(δ−1)δ+πrR
)

2α(δ−1)2δ
< R

α(1−δ)
follows from 0 < cp < 1, α > 0,

πr > 0, R > 0, and 0<δ < 1, so condition (b) gives a tighter upper bound on p. For

condition (c), we can use the substitution u = −1 + πrα +
√

1 + πrα(−2 + 4p+ πrα) to

isolate p in terms of u, resulting in p = u(2+u−2πrα)
4πrα

. Substituting this expression for p

back into the original inequality yields u2(2cpα + (R + αδ)(u − 2πrα)) < 0. Simplify-

ing and re-expressing this in terms of p again, this becomes
√
1 + πrα(−2 + 4p+ πrα) <

1 + πrα − 2cpα
R+αδ

. This requires the right-hand side to be positive, which gives the condition

R > α(−δ+ 2cp
1+πrα

). Then simplifying in terms of p, we have p < (R−α(cp−δ))(−cp+(R+αδ)πr)

(R+αδ)2πr
. So

then altogether, condition (c) becomes R > α(−δ + 2cp
1+πrα

) and p < (R−α(cp−δ))(−cp+(R+αδ)πr)
(R+αδ)2πr

.

Similarly, solving for p in condition (d) from condition set (IV) of Lemma B.1 yields: R ≤
(1−δ)(

√
8αcpπr+1−1)
2πr

or

(
R >

(1−δ)(
√

8αcpπr+1−1)
2πr

and p >
(αcp(δ−1)+R)(αcp(δ−1)2−πrR

2)
α(δ−1)πrR2

)
. Then al-

together, this gives the two cases for condition set (IV) of Lemma B.2.

Next, we simplify the conditions from condition set (V) of Lemma B.1. Rewriting the

conditions in terms of p, condition (b) of condition set (V) of Lemma B.1 can be rewritten as:

p ≥ 1− cp+
cp(α(cp−1)δ−R)

πr(αδ+R)2
or p ≥ 1+ 1

2
cp

(
− 1

αδπr+πrR
− 1
)
. This can be further simplified by

noting that 1−cp+
cp(α(cp−1)δ−R)

πr(αδ+R)2
= 0 for πr =

cp(R+αδ(1−cp))
(1−cp)(αδ+R)2

while 1+ 1
2
cp

(
− 1

αδπr+πrR
− 1
)
= 0

for πr =
cp

(2−cp)(αδ+R)
and that cp(R+αδ(1−cp))

(1−cp)(αδ+R)2
> cp

(2−cp)(αδ+R)
follows from 0 < cp < 1, α > 0, δ >

0, πr > 0, and R > 0. Consequently, 1−cp+
cp(α(cp−1)δ−R)

πr(αδ+R)2
≤ 1+ 1

2
cp

(
− 1

αδπr+πrR
− 1
)
, and the

smaller lower bound on p is 1−cp+
cp(α(cp−1)δ−R)

πr(αδ+R)2
. Then condition (b) of the original condition

set can be written as p ≥ 1 − cp +
cp(α(cp−1)δ−R)

πr(αδ+R)2
. Similarly, condition (c) of the original
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condition set can be written in terms of p as R(−δ+πr(α(δ−1)+R)+1)
α(δ−1)2

≤ p < 1 and R < α(1− δ)

(which guarantees R(−δ+πr(α(δ−1)+R)+1)
α(δ−1)2

< 1). Combining this with the previous condition,

this becomes: R < α(1− δ) and max
(
1− cp − cp(α(1−cp)δ+R)

πr(αδ+R)2
, R(1−δ+πr(−α(1−δ)+R))

α(1−δ)2

)
≤ p < 1.

Altogether, this gives the condition set (V) of Lemma B.2.

Lastly, we simplify the conditions from (VI) of Lemma B.1. From the condition (a) of

that condition set is equivalent to max(− R
αδ
,
πr(2αδ−πr(αδ+R)2−2R)−1

4αδπr
) ≤ p < cp(α(cp−1)δ−R)

πr(αδ+R)2
−

cp + 1. Since 0 > max(− R
αδ
,
πr(2αδ−πr(αδ+R)2−2R)−1

4αδπr
) follows from R > 0, α > 0, δ > 0,

and πr > 0, this condition simplifies to p < cp(α(cp−1)δ−R)

πr(αδ+R)2
− cp + 1. Next, condition (b)

from condition set (VI) of Lemma B.1 simplifies to p < 1. This bound is implied by

the previous one (1 > cp(α(cp−1)δ−R)

πr(αδ+R)2
− cp + 1), from 0 < cp < 1 and the other parame-

ters being positive. Lastly, condition (c) from condition set (VI) of Lemma B.1 simpli-

fies to either p ≥ R
(

−
√

πr(4αcp(δ−1)2δ+πrR2)−2(δ−1)δ+πrR
)

2α(δ−1)2δ
or R ≤ (δ−1)(δ−αcpπr)

πr
. Note that

R
(

−
√

πr(4αcp(δ−1)2δ+πrR2)−2(δ−1)δ+πrR
)

2α(δ−1)2δ
≤ 0 follows from R ≤ (δ−1)(δ−αcpπr)

πr
, so we can simplify

this logical ‘or’ condition to just the first condition p ≥ R
(

−
√

πr(4αcp(δ−1)2δ+πrR2)+2(1−δ)δ+πrR
)

2α(1−δ)2δ
.

Altogether, this is
R
(

−
√

πr(4αcp(1−δ)2δ+πrR2)+2(1−δ)δ+πrR
)

2α(1−δ)2δ
≤ p < 1 − cp − cp(α(1−cp)δ−R)

πr(αδ+R)2
, the

condition set (VI) of Lemma B.2. �

Proof of Proposition B.1: The conditions of Proposition B.1 take the conditions of

Lemma B.2 and group them to clearly see how the conditions span the parameter space. Each

grouping comes from examining Lemma B.2 and observing which cases share a boundary in

p. Tracing out the different ways in which the market outcomes can change gives the nine

condition sets of Proposition B.1 for which p < 1. When p = 1 is a trivial case when no

one purchases. The R and πr conditions of each region comes from Lemma B.2 as well as

conditions comparing the p bounds in each region to each other so that those ranges of p are

non-empty.

To show that the ordering presented in Proposition B.1 forms a complete partition of the

parameter space, first note that within each of the nine condition sets for which p < 1, the

ranges of p form a partition of [0, 1). Since this is true for each of the nine parameter regions

in Proposition B.1 for which p < 1, it suffices to show that for any δ, cp, and α, the R and

πr conditions form a partition of the {(R, πr) : R ∈ (0,∞), πr ∈ (0, 1)}.
To show each region is mutually exclusive, we will consider three subregions separately:

R ≥ α(1− δ),
(
αcp(1− δ) < R < α− αδ and πr >

αcp(1−δ)2

R2

)
, and

(
R < α− αδ and

(
R ≤

αcp(1 − δ) or πr ≤ αcp(δ−1)2

R2

))
(which is the complement of the union of the other two

subregions).

First, consider the region R ≥ α(1− δ). We will show that only Regions (i) and (ii) will
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appear in this area. With the exception of Region (iv), all of the other regions require either

a condition of R < α(1− δ) or R ≤ αcp(1− δ), so none of those regions would overlap with

any region with R ≥ α(1− δ).

For Region (iv), two conditions are
((

πr ≤ αcp(1−δ)2

R2 or R ≤ αcp(1− δ)
)

and πr >
cp

αδ+R

)
.

If R ≤ αcp(1 − δ), then R < α(1 − δ), so this does not overlap with any region with

R ≥ α(1 − δ). On the other hand, suppose πr ≤ αcp(1−δ)2

R2 held. Then for πr > cp
αδ+R

to

hold as well, we need cp
αδ+R

< αcp(1−δ)2

R2 , which would require R < α− αδ. Hence, other then

Regions (i) and (ii), no other regions overlap with R ≥ α(1− δ).

Next, consider when αcp(1−δ) < R < α−αδ and πr >
αcp(1−δ)2

R2 . We will show that only

Regions (v) and (vi) are in this subregion. Regions (i) and (ii) are out due to R ≥ α − αδ

being necessary for those cases. Regions (iv) and (vii) are out due to πr ≤ αcp(1−δ)2

R2 or R ≤
αcp(1− δ) being necessary for those cases. Region (viii) is out due to R ≤ αcp(1− δ) being

necessary for Region (viii). Region (ix) is out due to πr ≥ 1−δ
α(1−δ)−R

and πr ≤ cp(α(cp−1)δ−R)
(cp−1)(αδ+R)2

being conditions, which implies R ≤ α(cp − δ), which implies R < αcp(1− δ).

Comparing Regions (i) and (ii), they are disjoint because Region (i) requries πr ≤ cp
α

while Region (ii) requires πr >
cp
α
. Comparing Regions (v) and (vi), they are disjoint because

Region (v) requires πr ≤ αcp(δ−1)
(α(δ−1)+R)(αδ+R)

while Region (vi) requires πr >
αcp(δ−1)

(α(δ−1)+R)(αδ+R)
.

To finish proving that the regions are mutually exclusive, we just need to show that

Regions (iii), (iv), (vii), (viii), and (ix) are disjoint. The nine comparisons below show that

no two regions of the five listed in the previous sentence have an overlap.

Region (iii) and Region (iv): Region (iii) requires
(
R ≤ α(cp − δ) or πr ≤ cp

αδ+R

)
while

Region (iv) requires
(
R > α(cp − δ) and πr >

cp
αδ+R

)
.

Region (iii) and Region (vii): Region (vii) requires πr ≥ αcp(δ−1)
(α(δ−1)+R)(αδ+R)

while Region

(iii) requires πr ≤ cp
αδ+R

or R ≤ α(cp − δ). There is no overlap when πr ≤ cp
αδ+R

since
cp

αδ+R
< αcp(δ−1)

(α(δ−1)+R)(αδ+R)
holds from R < α(1 − δ). If there is an overlap, then it must be

when R ≤ α(cp − δ). However, if R ≤ α(cp − δ), then R ≤ αcp(1 − δ). Then in Region

(vii), the following conditions are in play: πr < (1−δ)δ
αcp(1−δ)−R

and R ≤ αcp(1 − δ) and πr >
αcp(δ−1)

(α(δ−1)+R)(αδ+R)
. For (1−δ)δ

αcp(1−δ)−R
> αcp(δ−1)

(α(δ−1)+R)(αδ+R)
, R < α(cp − δ) has to hold. Then Region

(vii) would be: R < α(cp − δ) and αcp(δ−1)
(α(δ−1)+R)(αδ+R)

< πr <
(1−δ)δ

αcp(1−δ)−R
. Region (iii) would be:

R ≤ α(cp − δ) and πr <
1−δ

α(1−δ)−R
and R < α− αδ. In this case, 1−δ

α(1−δ)−R
< αcp(δ−1)

(α(δ−1)+R)(αδ+R)
,

so then there is no overlap in the regions, since πr <
1−δ

α(1−δ)−R
is needed for Region (iii) while

πr >
αcp(δ−1)

(α(δ−1)+R)(αδ+R)
is needed for Region (vii).

Region (iii) and Region (viii): Region (iii) requires
(
R ≤ α(cp − δ) or πr ≤ cp

αδ+R

)
andπr <

1−δ
α(1−δ)−R

while Region (viii) requires πr > cp(α(cp−1)δ−R)

(cp−1)(αδ+R)2
. If R ≤ α(cp − δ), then 1−δ

α(1−δ)−R
≤

cp(α(cp−1)δ−R)
(cp−1)(αδ+R)2

, and so there is no overlap between Region (iii) and Region (viii) in this case,

since Region (iii) requires πr <
1−δ

α(1−δ)−R
while Region (viii) requires πr >

cp(α(cp−1)δ−R)
(cp−1)(αδ+R)2

. On

the other hand, suppose πr ≤ cp
αδ+R

. Then we also do not have an overlap in this case since

πr ≤ cp
αδ+R

and πr >
cp(α(cp−1)δ−R)
(cp−1)(αδ+R)2

cannot simultaneously hold, given cp
αδ+R

< cp(α(cp−1)δ−R)
(cp−1)(αδ+R)2

.
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Region (iii) and Region (ix): Region (iii) requires πr <
1−δ

α(1−δ)−R
while Region (ix) requires

πr ≥ 1−δ
α(1−δ)−R

.

Region (iv) and Region (vii): Region (iv) requires πr ≤ αcp(δ−1)

(α(δ−1)+R)(αδ+R)
while Region

(vii) requires πr >
αcp(δ−1)

(α(δ−1)+R)(αδ+R)
.

Region (iv) and Region (viii): Region (iv) requires πr ≤ αcp(δ−1)
(α(δ−1)+R)(αδ+R)

and R > α(cp −
δ). Region (viii) requires πr ≥ (1−δ)δ

αcp(1−δ)−R
. R > α(cp − δ) is a condition of Region (iv), so

then αcp(δ−1)
(α(δ−1)+R)(αδ+R)

< (1−δ)δ
αcp(1−δ)−R

holds when the conditions of Case (iv) are met. Since,

πr ≥ (1−δ)δ
αcp(1−δ)−R

do not hold when the conditions for Region (iv) are met, there is no overlap

between Region (iv) and Region (viii).

Region (iv) and Region (ix): Region (iv) requires R > α(cp−δ) while πr ≥ 1−δ
α(1−δ)−R

and πr ≤
cp(α(cp−1)δ−R)
(cp−1)(αδ+R)2

being conditions for Region (ix) implies R ≤ α(cp − δ).

Region (vii) and Region (viii): Region (viii) has R ≤ αcp(1 − δ) and πr ≥ (1−δ)δ
αcp(1−δ)−R

while Region (vii) requires
(
(πr <

(1−δ)δ
αcp(1−δ)−R

and R ≤ αcp(1− δ)) or (R > αcp(1− δ))
)
.

Region (vii) and Region (ix): πr ≥ 1−δ
α(1−δ)−R

and πr ≤ cp(α(cp−1)δ−R)
(cp−1)(αδ+R)2

being conditions for

Region (ix) implies R ≤ α(cp− δ) and cp > δ. We will show that R > α(cp− δ) is an implied

condition for Region (vii). One condition for Region (vii) is

(
(πr < (1−δ)δ

αcp(1−δ)−R
and R ≤

αcp(1 − δ)) or (R > αcp(1 − δ))

)
. Note that αcp(1 − δ) > α(cp − δ), so if R > αcp(1 − δ),

then that would imply R > α(cp − δ). Suppose that R ≤ αcp(1 − δ) in Region (vii).

Then this would require πr < (1−δ)δ
αcp(1−δ)−R

to also hold. On the other hand, suppose that

πr < (1−δ)δ
αcp(1−δ)−R

and R ≤ αcp(1 − δ) held. Another condition of Region (vii) is πr >
αcp(δ−1)

(α(δ−1)+R)(αδ+R)
. Comparing the πr bounds: (1−δ)δ

αcp(1−δ)−R
> αcp(δ−1)

(α(δ−1)+R)(αδ+R)
needs to hold.

Then this implies R > α(cp − δ). In either case, this implies that R > α(cp − δ) for Region

(vii) to hold, which means there is no overlap with Region (ix).

Region (viii) and Region (ix): Region (viii) has πr > cp(α(cp−1)δ−R)
(cp−1)(αδ+R)2

while Region (ix)

requires πr ≤ cp(α(cp−1)δ−R)
(cp−1)(αδ+R)2

.

Altogether, the nine comparisons above along with the earlier comparisons for Regions

(i), (ii), (v), and (vi) show that the nine regions are mutually exclusive.

Next, we will show that these nine parameter regions cover the entire parameter space.

First off, note that the p conditions are clearly ordered within each region, so it suffices to

show that given any δ, α, and cp, the nine parameter regions sets cover (R, πr) space.

Any point (R, πr) such thatR ≥ α(1−δ) is fully covered by Regions (i) and (ii), depending

on whether πr ≤ cp
α
. Any point (R, πr) such that αcp(1−δ) < R < α−αδ and πr >

αcp(1−δ)2

R2

is fully covered by Regions (v) and (vi), depending on whether πr ≤ αcp(δ−1)

(α(δ−1)+R)(αδ+R)
.

It remains to show that any point withR < α−αδ and
(
R ≤ αcp(1− δ) or πr ≤ αcp(δ−1)2

R2

)

is covered by one of the remaining regions. We will πr bounds are ordered between the cases

in such a way that any point is covered in (R, πr) space. We will break the regions down
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into different regions of R: αcp(1− δ) < R < α(1− δ), max(0, α(cp − δ)) < R ≤ αcp(1− δ),

R ≤ max(0, α(cp − δ)). We will show that for each subregion of R, each point in that sub-

region is in one of the parameter regions in the proposition (specifically, in one of the five

remaining regions: Regions (iii), (iv), (vii), (viii), or (ix)).

First, consider when R > αcp(1 − δ). We will first show that the region R < α(1 −
δ) and πr ≤ αcp(δ−1)2

R2 and R > αcp(1−δ) is fully covered by one of Regions (iii), (iv) or (vii).

In Region (iii) (under the conditions of R > αcp(1 − δ) and R < α(1 − δ)), we have that

πr ≤ cp
αδ+R

is the tighter upper bound on πr. Then for any point in this subregion of the

parameter space, if πr ≤ cp
αδ+R

, then that point is in Region (iii). Region (iv)’s conditions

simplified under the assumptions of this subregion becomes: cp
αδ+R

< πr ≤ αcp(δ−1)

(α(δ−1)+R)(αδ+R)
.

Region (vii)’s conditions simplified under the assumptions of this subregion becomes: πr >
αcp(δ−1)

(α(δ−1)+R)(αδ+R)
. Hence, this subregion is fully covered by one of these three regions when

αcp(1− δ) < R < α(1− δ) and πr ≤ αcp(δ−1)2

R2 .

Now consider max(0, α(cp−δ)) < R ≤ αcp(1−δ) and πr ≤ αcp(δ−1)2

R2 . In this subregion of

the parameter space, πr ≤ cp
αδ+R

is still the tighter lower bound for Region (iii), so then Re-

gion (iii) still becomes: πr ≤ cp
αδ+R

. Region (iv) becomes: αcp(δ−1)
(α(δ−1)+R)(αδ+R)

≥ πr > cp
αδ+R

.

Region (vii) becomes: αcp(δ−1)
(α(δ−1)+R)(αδ+R)

< πr < (δ−1)δ
αcp(δ−1)+R

. Region (viii) simplifies to:

πr ≥ (δ−1)δ
αcp(δ−1)+R

and πr > cp(α(cp−1)δ−R)
(cp−1)(αδ+R)2

. Note that (δ−1)δ
αcp(δ−1)+R

> cp(α(cp−1)δ−R)
(cp−1)(αδ+R)2

under the

assumptions of this subregion, so Region (viii) simplifies to πr ≥ (δ−1)δ
αcp(δ−1)+R

. Then any

(R, πr) satisfying R < α(1 − δ) and πr ≤ αcp(δ−1)2

R2 and R < αcp(1 − δ) will fall into one of

these four regions.

Lastly, consider the scenario with R ≤ α(cp− δ), which is only under consideration when

cp > δ. Region (iii) simplifies to: πr <
1−δ

α(1−δ)−R
. Region (ix) simplifies to: 1−δ

α(1−δ)−R
≤ πr ≤

cp(α(cp−1)δ−R)
(cp−1)(αδ+R)2

. Region (viii) simplifies to: πr >
cp(α(cp−1)δ−R)
(cp−1)(αδ+R)2

and πr ≥ (δ−1)δ
αcp(δ−1)+R

. Under the

assumptions of this subregion, cp(α(cp−1)δ−R)

(cp−1)(αδ+R)2
≥ (δ−1)δ

αcp(δ−1)+R
, so then Region (viii) simplifies to:

πr > cp(α(cp−1)δ−R)
(cp−1)(αδ+R)2

. Altogether, this shows that when R ≤ α(cp − δ), there is full coverage

across all πr. Altogether, for any δ, cp, and α, for any subregion of R and πr, for any range

of p within a subregion, every point is covered by one of the parameter regions. This proves

that the parameter regions in the proposition cover the entire parameter space and that

there are no missing cases. �

B.1.2 Pricing Subgame: Equilibrium Outcomes

In this section, we complete the characterization of the equilibrium by solving the first stage,

i.e., the pricing subgame. More precisely, we characterize the optimal price and consumer

market equilibrium outcome and how they vary across regions in R and πr. In the proof,
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we leverage the validity conditions of Proposition B.1 to determine which consumer market

outcomes are feasible as the vendor changes price. Further, we use the consumer threshold

characterizations provided in Lemma B.2 (as well as in Lemma B.1) to determine the highest

profits obtainable within each feasible outcome. We then compare these profits across each

feasible outcome to determine the profit-maximizing equilibrium price.

Lemma B.3. There exists a bound δ̃ > 0 such that if δ < δ̃ and πr > π̄r (where π̄r is defined

in the proof of the lemma) then:

(a) if 0<R<R1, then the equilibrium price is p∗V and the equilibrium consumer market

structure is 0<vr < 1;

(b) if R1≤R<R2, then the equilibrium price is p∗V I and the equilibrium consumer market

structure is 0<vr <vp< 1;

(c) if R2≤R<R3, then the equilibrium price is p∗IV and the equilibrium consumer market

structure is 0<vnr <vr <vp< 1;

(d) if R3≤R<ω, then the equilibrium price is pboundary and the equilibrium consumer market

structure is 0<vnr <vp< 1;

(e) if R≥ω, then the equilibrium price is p∗II and the equilibrium consumer market structure

is 0<vnr <vp< 1,

where R1 = (2−cp)cp
(1−cp)2πr

+ κ1(δ), R2 = α
2−cp

+ κ2(δ), and R3 =
α
√
πr+

√
α(16cp+απr)

4
√
πr

+ κ3(δ). The

prices p∗V , p
∗
V I , p

∗
IV , and pboundary are characterized in the proof below, and the characteriza-

tion of p∗II is in Lemma B.5.

Proof of Lemma B.3: Given any set of parameters and a price, Lemma B.1 and the

validity conditions of Proposition B.1 ensure that a unique equilibrium in the consumption

subgame arises. Within each region of the parameter space defined by Proposition B.1, the

thresholds vnr, vr, and vp are smooth functions of the parameters, as well as the vendor’s

price p. In the cases where the thresholds are given in closed-form, this is evident. In the

cases where these thresholds are implicitly defined as the root of a polynomial, then the

smoothness of the thresholds in the parameters follows from the Implicit Function Theorem.

Specifically, for each of those cases, the threshold defined was the largest positive root v∗nr (or

v∗r) of a cubic function of vnr (or vr), f(vnr, p) = 0. Moreover, the cubic f(vnr, p) has two local

extrema in vnr and is negative to the left of v∗nr and positive to the right of it (f(v∗nr−ǫ, p) < 0

and f(v∗nr + ǫ, p) > 0 for arbitrarily small ǫ > 0). Therefore, ∂f

∂vnr
(vnr, p) 6= 0 so that the

Implicit Function Theorem applies. The thresholds being smooth in p implies that the profit

function for each case of the parameter space defined by Proposition B.1 is smooth in p.

In our proofs, we use asymptotic analysis to characterize the equilibrium prices and profits

when needed, using Taylor series representations in δ of the thresholds, price, and profit
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expressions. When writing the Taylor series, we will abuse notation by re-using the same

notation for the remainder terms throughout the paper. This is just to simplify the notation.

The remainder terms for Taylor series of different expressions are not the same.

In the proofs of the lemmas characterizing equilibrium outcomes, we find the profit-

maximizing interior solution within the compact closure of each subcase to characterize the

conditions under which each of the consumer market outcomes of Lemma B.2 could arise

in under optimal pricing and verify that the second-order condition holds for each of these

prices under the conditions of their respective regions. We then find regions of the parameter

space where there is overlap between the different cases under optimal pricing to find the

boundaries between different regions defining equilibrium outcomes. We compare the profits

obtained under optimal pricing within each feasible market outcome: these are the profit-

maximizing conditions. In the cases where a regime switch happens not at a discontinuous

price change but from the vendor choosing a boundary price, the boundary price can be

found from finding common region boundaries in Proposition B.1.

First, we specify the interior optimal price and vendor’s profit at that interior optimal

price for all market outcomes except for 0<vnr <vp< 1 (which is handled separately in

Section B.1.3 of the Appendix).

Given a price p, the region of the parameter space defining 0 < vnr < 1 is given in part

(I) of Lemma B.2. For this case, we have

vnr =
−1 + πrα +

√
1 + πrα(−2 + 4p+ πrα)

2πrα
. (B.35)

The profit function in this case is ΠI(p) = p(1 − vnr(p)). Let CI be the compact closure

of the region of the parameter space defining 0 < vnr < 1, given in part (I) of Lemma B.2.

By the Weierstrass extreme value theorem, there exists p in CI that maximizes ΠI(p). If

this p is interior to CI , the unconstrained maximizer satisfies the first-order condition. The

Weierstrass extreme value applies for all regions, and we will not state this for other regions.

Differentiating the profit function with respect to p, the first-order condition is given as:

1

2
− p√

1 + πrα(−2 + 4p+ πrα)
− −1 +

√
1 + πrα(−2 + 4p+ πrα)

2πrα
= 0. (B.36)

Solving for p in this equation and ruling out the negative root as a solution for p∗, we

have that

p∗I =
1

9

(
4− 1

πrα
− πrα+

√
1 + πrα + (πrα)3 + (πrα)4

πrα

)
. (B.37)

The second-derivative of the profit function with respect to p is given by:

d2

dp2
[ΠI(p)] = −2(1 + πrα(−2 + 3p+ πrα))

(1 + πrα(−2 + 4p+ πrα))
3
2

. (B.38)

B.24



Substituting (B.37) in for p in the above expression, the second-derivative evaluates to:

(
d2

dp2
[ΠI(p)]

) ∣∣∣∣
p=p∗

I

= −18(2 + 2πrα(−1 + πrα) +
√
1 + πrα + (πrα)3 + (πrα)4)

(5 + πrα(−2 + 5πrα) + 4
√

1 + πrα + (πrα)3 + (πrα)4)
3
2

. (B.39)

This is negative using πr > 0 and α > 0, so the second-order condition is satisfied.

Given a price p, the region of the parameter space defining 0 < vnr < vr < 1 is given in

part (III) of Lemma B.2. For this case, we have

vnr =
−1 + πrα +

√
1 + πrα(−2 + 4p+ πrα)

2πrα
. (B.40)

The profit function in this case is ΠIII(p) = p(1 − vnr(p)). Let CIII be the compact

closure of the region of the parameter space defining 0 < vnr < vr < 1, given in part (III) of

Lemma B.2. As in the previous case, there exists p in CIII that maximizes ΠIII(p). If this

p is interior to CIII , the unconstrained maximizer satisfies the first-order condition.

Differentiating the profit function with respect to p, the first-order condition is the same

as in (B.36), and solving for the positive root of the quadratic, we have that (same as in

(B.37)):

p∗III =
1

9

(
4− 1

πrα
− πrα +

√
1 + πrα + (πrα)3 + (πrα)4

πrα

)
. (B.41)

This is the same as for Case I, so the second-derivative of the profit function is the same

expression and the second-order condition is similarly satisfied at this optimal price given

πr > 0 and α > 0.

The profit corresponding to this price for this case is given by:

Π∗
III =

(
3 + 3απr −

√
5 + πrα(−2 + 5πrα) + 4

√
1 + πrα + (πrα)3 + (πrα)4

)

54(πrα)2
×

(
−1 + πrα(4− πrα) +

√
1 + πrα+ (πrα)3 + (πrα)4

)
. (B.42)

Given a price p, the region of the parameter space defining 0 < vnr < vr < vp < 1 is

given in part (IV) of Lemma B.2.

From (B.25), we have that vnr is the largest root of

f2(x) , δπrαx
3 + (δ + πr(R− α(cp + δp)))x2 − p(2δ +Rπr)x+ p2δ = 0. (B.43)

A generalization of the Implicit Function Theorem gives that vnr is not only a smooth

function of the parameters, but it is also an analytic function of the parameters so that it can

be represented locally as a Taylor series of its parameters. More specifically, since f ′
2(x) 6= 0
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at the root for which vnr is defined, there exists a δ1 > 0 such that for δ < δ1, vnr =
∞∑

k=0

akδ
k

for some sequence of coefficients αk. Substituting vnr =

∞∑

k=0

akδ
k into (B.43), we have that

−a0(a0πrαcp − a0Rπr + pRπr) +

∞∑

k=1

akδ
k = 0.

Then a0 = 0 or a0 = pR

R−αcp
are the only solutions for a0 that make the first term zero.

Now, a0 6= 0, since otherwise vnr < p for sufficiently low δ, which cannot happen. So

a0 = pR

R−αcp
. Then substituting vnr =

pR

R−αcp
+

∞∑

k=1

akδ
k into (B.43) and similarly solving for

a1, we have a1 =
cppα

2(c2pπrα−Rπr(cp+pRπr))

R(R−cpα)3π2
r

. Continuing on this way, we have that

vnr =
pR

R− cpα
+

cppα
2(−cpR + c2pα− pR2πr)δ

R(R − cpα)3πr

−

cppα
3(−cpR + c2pα− pR2πr)(cp(−2R + cpα)(−R + cpα) + pR2(R + cpα)πr)δ

2

R3(R− cpα)5π2
r

+

∞∑

k=3

akδ
k.

(B.44)

The profit function in this case is ΠIV (p) = p(1−vnr(p)). Let CIV be the compact closure

of the region of the parameter space defining 0 < vnr < vr < vp < 1, given in part (IV) of

Lemma B.2. There exists p in CIV that maximizes ΠIV (p). If this p is interior to CIV , the

unconstrained maximizer satisfies the first-order condition. Viewing (B.44) as a function of

p, substituting this into ΠIV (p) = p(1 − vnr(p)), and differentiating with respect to p, the

first-order condition can be written as:

− R3(R− cpα)
4((−1 + 2p)R + cpα)π

2
r + cppR

2α2(R− cpα)
2πr(2cp(R− cpα) + 3pR2πr)δ+

cppα
3(2c2p(R−cpα)

2(−2R+cpα)+9cppR
3(−R+cpα)πr−4p2R4(R+cpα)π

2
r)δ

2+
∞∑

k=3

akδ
k = 0.

(B.45)

Expanding the price as a Taylor series in δ, we can then characterize the asymptotic

expansion of the optimal price in the same way we had done above with vnr. Omitting the

algebra, we have that the interior solution satisfying the FOC above is given by

p∗IV =
R− cpα

2R
+

cpα
2(4cp + 3Rπr)δ

8R3πr

+

cpα
3(16c3pα− 4R3π2

r + cpR
2πr(−18 + 5πrα) + 2c2pR(−8 + 9πrα))δ

2

16R5(R− cpα)π2
r

+

∞∑

k=3

akδ
k. (B.46)
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The asymptotic expression for the second-derivative of the profit function with respect

to p is given by:

d2

dp2
[ΠIV (p)] = − 2R

R − cpα
+

2cpα
2(cpR− c2pα + 3pR2πr)

R(R− cpα)3πr

δ +
∞∑

k=2

akδ
k. (B.47)

This is negative for any p for sufficiently small δ (including (B.46)) using R > cpα (which

is a condition for the price in (B.46)) to be positive for sufficiently small δ), so the second-

order condition is satisfied for sufficient small δ when (B.46)) is positive.

The profit associated with this price is given by

Π∗
IV =

R− cpα

4R
+

cpα
2(2cp +Rπr)δ

8R3πr

+

cpα
3(32c3pα− 4R3π2

r + 8c2pR(−4 + 3πrα) + cpR
2πr(−24 + 5πrα))δ

2

64R5(R− cpα)π2
r

+

∞∑

k=3

akδ
k. (B.48)

Given a price p, the region of the parameter space defining 0 < vr < 1 is given in part

(V) of Lemma B.2.

From (B.28), we have that

vr =
−1− Rπr + δπrα+

√
4δπrα(p+Rπr) + (1 +Rπr − δπrα)2

2δπrα
. (B.49)

The vendor’s profit function is given as ΠV (p) = p(1 − vr(p)). Differentiating the profit

function with respect to p, the first-order condition is given as:

1− p√
4αδπr(p+Rπr) + (1 +Rπr − αδπr)2

−

−1− Rπr + αδπr +
√

4αδπr(p+Rπr) + (1 +Rπr − αδπr)2

2αδπr

= 0. (B.50)

Solving for p in the first-order condition and looking at only the positive root gives

p∗V =

(
− 1− 2Rπr + 4δπrα− R2π2

r − 2Rδαπ2
r − (δπrα)

2+

(1 +Rπr + δπrα)
√
1 + πr(2R− δα + (R + δα)2πr)

)(
9δπrα

)−1

. (B.51)

The asymptotic expression for the second-derivative of the profit function with respect

to p is given by:

d2

dp2
[ΠV (p)] = − 2

1 +Rπr

+
2πrα(−1 + 3p+Rπr)

(1 +Rπr)3
δ +

∞∑

k=2

akδ
k. (B.52)
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This is negative for any p (including (B.51)) for sufficiently small δ, so the second-order

condition is satisfied.

Substituting (B.51) into the profit function of this case yields the associated maximal

profit of this case. Characterizing this profit expression in terms of a Taylor Series expansion,

Π∗
V =

1

4(1 +Rπr)
+

∞∑

k=1

akδ
k. (B.53)

Given a price p, the region of the parameter space defining 0 < vr < vp < 1 is given in

part (VI) of Lemma B.2. From (B.33), we have that vr is the largest root of

δ2α2πrx
3 − αδ(−1− 2Rπr + (cp + p)δπrα)x

2 + (R2πr − 2αδ(p+ (cp + p)Rπr))x+

p2αδ − (cp + p)R2πr = 0. (B.54)

Characterizing the asymptotic expansion of vr as we had done for earlier cases, we have

that

vr = cp + p−
c2pαδ

R2πr

+
2(c3pα

2 + c3pRα2πr + c2ppRα2πr)δ

R4π2
r

+
∞∑

k=3

akδ
k. (B.55)

The profit function for this case is given by ΠV I = p(1 − vr(p)). Viewing (B.55) as a

function of p, substituting this into ΠV I(p) = p(1 − vr(p)), and differentiating with respect

to p, the first-order condition can be written as:

(1− cp − 2p) +
c2pα

R2πr

δ −
2(c2pα

2(cp + (cp + 2p)Rπr))

R4π2
r

δ2 +
∞∑

k=3

akδ
k = 0. (B.56)

Expanding the price as a Taylor series in δ, we can then characterize the asymptotic

expansion of the optimal price in the same way we had done above with vr. The root of

(B.56) is characterized by:

p∗V I =
1− cp

2
+

c2pα

2R2πr

δ +

∞∑

k=2

akδ
k. (B.57)

The asymptotic expression for the second-derivative of the profit function with respect

to p is given by:
d2

dp2
[ΠV I(p)] = −2− 4(cpα)

2

R3πr

δ +
∞∑

k=2

akδ
k. (B.58)

This is negative for any p (including (B.57)) for sufficiently small δ, so the second-order

condition is satisfied.

B.28



The corresponding profit is given by

Π∗
V I =

1

4
(1− cp)

2 +
(1− cp)c

2
pα

2R2πr

δ +

∞∑

k=2

akδ
k. (B.59)

Now that we have found the interior optimal prices for these regions, we use Proposition

B.1 to find conditions under which the interior optimal price for a case lies within the set of

conditions defining that case. When more than one interior optimal price is within the price

range defining that case, then we have to compare the profits of those cases. In what follows

below, we will go through each relevant region in Proposition B.1.

First, we examine Region (i) of Proposition B.1. Below are the conditions from Region

(i) of Proposition B.1 to help the reader.

(i) R ≥ α(1− δ) and πr ≤ cp
α
:

• 0 ≤ p < 1 : (0 < vnr < 1)

This region cannot arise under the assumptions of Proposition 1 (namely the πr condi-

tion). Specifically, when πr > π̄r (defined in later (B.64)) for sufficiently small δ, then πr ≤ cp
α

cannot hold since π̄r >
cp
α
for sufficiently small δ. This rules out this region from arising under

the conditions of this lemma (which are the same as the conditions of Proposition 1).

Next, we examine Region (ii) of Proposition B.1. Below are the conditions from Region

(ii) of Proposition B.1 to help the reader.

(ii) R ≥ α(1− δ) and πr >
cp
α
:

• 0 ≤ p < (1−cp)(−cp+πrα)
πrα

: (0 < vnr < vp < 1)

• (1−cp)(−cp+πrα)
πrα

≤ p < 1 : (0 < vnr < 1)

We will show that under the conditions of the lemma, the interior optimal price of

0 < vnr < 1 would lie below the range of p that defines the case in this region. Specifically,

we will show that for sufficiently low δ under the conditions of this region, p∗I (from B.37) is

below (1−cp)(−cp+πrα)
πrα

. Then we show that the vendor’s price in the case of 0<vnr <vp< 1 is

be interior to the range of p that defines it in this region to show that this is the equilibrium

outcome in this region.

To have p∗I ≥ (1−cp)(−cp+πrα)
πrα

would be equivalent to the condition πr ≤ (2−3cp)cp
α(1−2cp)

. However,
(2−3cp)cp
α(1−2cp)

< (2−cp)2cp
(1−cp)2α

using the focal region assumptions on cp (namely, 0 < cp < 2 −
√
3), so

then (2−3cp)cp
α(1−2cp)

< π̄r for sufficiently low δ.

Next, we will show that (1−cp)(−cp+πrα)
πrα

is above an upper bound for the equilibrium price

when 0<vnr <vp< 1 arises. By Lemma B.6, vnr ≤ 1+cp
2

when 0<vnr <vp< 1 arises in

equilibrium, and by (B.97) the vendor’s optimal price can be expressed as in the following
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way: p∗II = 1
2
vnr

(
2 + πrαvnr −

√
πrα(4cp + πrαv2nr)

)
. In Lemma B.5, we show that this

expression as a function of vnr is increasing in vnr. Consequently, an upper bound on the

vendor’s price in this case can be found by substituting vnr =
1+cp
2

into the price expression.

This is given below:

p̄II =
1

8
(1 + cp)

(
4 + (1 + cp)πrα−

√
πrα(16cp + (1 + cp)2πrα)

)
. (B.60)

For sufficiently small δ, when πr > π̄r, then p̄II <
(1−cp)(−cp+πrα)

πrα
. Altogether, this shows

that under the assumptions of Proposition 1, when we are in Region (ii), then 0<vnr <vp < 1

is the equilibrium outcome.

Next, we examine Region (iii) of Proposition B.1. Below are the conditions from Region

(iii) of Proposition B.1 to help the reader.

(iii)

(
R ≤ α(cp − δ) or πr ≤ cp

R+αδ

)
and πr <

1−δ
−R+α(1−δ)

and R < α(1− δ):

• 0 ≤ p < R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

: (0 < vnr < vr < 1)

• R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

≤ p < 1 : (0 < vr < 1)

First, we will show that for sufficiently small δ, under the conditions of this region (as

well as the focal region assumptions and the assumptions of this lemma), the interior optimal

price of 0<vnr <vr < 1 is above the range of p that defines it above. Then we will show that,

under the same assumptions, the interior optimal price of 0<vr < 1 is inside of the range of

p that defines it in this region to show that this is the equilibrium outcome in this region.

The interior optimal price of 0<vnr <vr < 1 was given in (B.41). We will show that

this is larger than R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

for sufficiently small δ. For sufficiently small δ, this

bound would become arbitrarily close to R(1+(R−α)πr)
α

. The condition p∗III < R(1+(R−α)πr)
α

is equivalent to R >
−3+3πrα+

√

5+πrα(−2+5πrα)+4
√

1+πrα+(πrα)3+(πrα)4

6πr
. Under the focal region

assumptions on cp and α, this bound as a function of πr is strictly increasing. The this implies

that if p∗III < R(1+(R−α)πr)
α

, then a lower bound on R is just the bound above evaluated at

πr = π̄r. Specifically, this implies that for p∗III < R(1+(R−α)πr)
α

to hold for πr > π̄r for

sufficiently small δ, we have R >

(
−3+3πrα+

√

5+πrα(−2+5πrα)+4
√

1+πrα+(πrα)3+(πrα)4

6πr

)∣∣∣∣
πr=π̄r

.

Define this bound as R̄III .

At the same time, a condition of Region (iii) is (R ≤ α(cp− δ) or πr ≤ cp
R+αδ

). First, note

that cpα < R̄III under the focal region assumptions of cp and α, so if R < cpα holds, then

p∗III cannot be interior to the range of p defining this case for sufficiently small δ. On the

other hand, suppose πr ≤ cp
R+αδ

) holds. Along with πr > π̄r, this implies that a condition of

this region for sufficiently small δ is R < (1−cp)α
(2−cp)2

. However, (1−cp)α
(2−cp)2

< R̄III under the focal
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region assumptions. Therefore, when Region (iii) occurs for sufficiently low δ under πr > π̄r,

then p∗III cannot be interior to the range of p defining that case.

Next, we will show that p∗V is interior to the range of p that defines it in Region (iii).

The p∗V was given in (B.51), and an asymptotic expression of this for sufficiently small δ can

be given as

p∗V =
1

2
− απr

8(1 +Rπr)2
δ +

∞∑

k=2

akδ
k. (B.61)

We want to show that for sufficiently small δ, this falls in R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

≤ p <

1. That p∗V < 1 is satisfied for sufficiently small δ follows from 1
2
< 1. To have p∗V ≥

R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

for sufficiently small δ, this is equivalent to πr >
−2R+α
2R(R−α)

. That −2R+α
2R(R−α)

<

(2−cp)2cp
(1−cp)2α

follows from the focal region assumptions, πr > π̄r, and

(
R ≤ αcp or πr ≤ cp

R

)

(which comes from the conditions of Region (iii) for sufficiently small δ). Therefore, for

sufficiently small δ, πr > π̄r implies that p∗V ≥ R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

. Consequently, when

πr > π̄r and the Region (iii) conditions hold, then 0<vr < 1 is the equilibrium outcome with

p∗V as the vendor’s price.

Next, we examine Region (iv) of Proposition B.1. Below are the conditions from Region

(iv) of Proposition B.1 to help the reader.

(iv)

(
πr ≤ cpα(1−δ)2

R2 or R ≤ cpα(1− δ)

)
and R > α(cp − δ) and

cp
R+αδ

< πr ≤ cpα(1−δ)
(−R+α(1−δ))(R+αδ)

:

• 0 ≤ p < (R+α(−cp+δ))(−cp+(R+αδ)πr)
(R+αδ)2πr

: (0 < vnr < vr < vp < 1)

• (R+α(−cp+δ))(−cp+(R+αδ)πr)

(R+αδ)2πr
≤ p < R(1−δ+(R−α(1−δ))πr )

α(1−δ)2
: (0 < vnr < vr < 1)

• R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

≤ p < 1 : (0 < vr < 1)

Under the conditions of this region, we will show that interior optimal prices for 0<vnr <vr < 1

and 0<vnr <vr <vp < 1 and are both outside of the ranges of p that define those cases. Then

we show that the interior optimal price for 0<vr < 1 is interior to the range of p that defines

that case to show that this is the equilibrium outcome in this region.

First, we will show that p∗IV > (R+α(−cp+δ))(−cp+(R+αδ)πr)
(R+αδ)2πr

for sufficiently small δ. The

asymptotic expression for p∗IV in δ is given in (B.46). Taking the limit of this as δ → 0, the

limit of p∗IV is R−cpα

2R
. The limit of the upper bound of p for this case is (R−cpα)(−cp+Rπr)

R2πr
.

The inequality R−cpα

2R
> (R−cpα)(−cp+Rπr)

R2πr
is equivalent to (R − cpα)(−2cp + Rπr) < 0.

Taking the limit as δ → 0 of the region conditions gives that we need R > cpα and

πr ≤ min
(

cpα

π2
r
, cpα

R(α−R)

)
to hold for sufficiently small δ to be in this region. Under these

conditions, we have that (R − cpα)(−2cp + Rπr) < 0. Therefore, for sufficiently small δ,

p∗IV > (R+α(−cp+δ))(−cp+(R+αδ)πr)

(R+αδ)2πr
holds, and so the vendor’s price in this region is not p∗IV .
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To show that p∗III is larger than the upper bound of the range of p that defines that case

is identical to the analysis in the previous region and will be omitted for brevity. Combined

with the previous analysis, this means that the vendor’s price in this region is at least
R(1−δ+(R−α(1−δ))πr )

α(1−δ)2
(the price boundary between 0<vnr <vr < 1 and 0<vr < 1).

To show that the vendor’s price is not at the boundary, we show that p∗V ∈ (R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

, 1)

(the range of p that defines this case). For sufficiently small δ, for p∗V to be interior to the

range of p defining it requires the same πr condition as in the previous region since the p

boundary for this case in this region is identical to that of the previous region. Specifically, we

need πr >
−2R+α
2R(R−α)

to hold. This condition follows from the focal region assumptions, πr > π̄r,

and

(
R ≤ αcp or πr ≤ cp

R

)
(which comes from the conditions of Region (iv) for sufficiently

small δ). Therefore, for sufficiently small δ, πr > π̄r implies that p∗V ≥ R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

.

Altogether, when πr > π̄r and the Region (iv) conditions hold, then 0<vr < 1 is the

equilibrium outcome with p∗V as the vendor’s price.

Next, we examine Region (v) of Proposition B.1. Below are the conditions from Region

(v) of Proposition B.1 to help the reader.

(v) cpα(1− δ) < R < α(1− δ) and cpα(1−δ)2

R2 < πr ≤ cpα(1−δ)
(−R+α(1−δ))(R+αδ)

:

• 0 ≤ p ≤ (−R+cpα(1−δ))(cpα(1−δ)2−R2πr)
R2πrα(1−δ)

: (0 < vnr < vp < 1)

• (−R+cpα(1−δ))(cpα(1−δ)2−R2πr)
R2πrα(1−δ)

< p < (R+α(−cp+δ))(−cp+(R+αδ)πr)
(R+αδ)2πr

: (0 < vnr < vr < vp < 1)

• (R+α(−cp+δ))(−cp+(R+αδ)πr)
(R+αδ)2πr

≤ p < R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

: (0 < vnr < vr < 1)

• R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

≤ p < 1 : (0 < vr < 1)

First, we will show that 0<vnr <vr < 1 has its price outside of the range defining this

case (specifically, that it is lower than the lower bound on p defining this case in this region).

Then we characterize the conditions under which p∗IV is interior to the range of p defining

this case. Specifically, we show that p∗IV is always below its upper bound but may not be

above its lower bound if R is high enough. We show that when p∗IV is interior, then the

equilibrium price of 0<vnr <vp< 1 is above the upper bound of the range of p defining that

case. Lastly, we compare Π∗
V to Π∗

IV as well as to the profit at the price boundary between

0<vnr <vp< 1 and 0<vnr <vr <vp < 1 to show that Π∗
V is dominated by Π∗

IV when p∗IV is

interior and dominated by a boundary profit when p∗IV is below its lower bound. Altogether

in this region, if p∗IV is interior to the range of p defining it in this region (namely, when R is

smaller than an R bound R3 we will characterize), then 0<vnr <vr <vp < 1 is the outcome.

Then slightly above R3, we will be at a boundary price (since neither 0<vnr <vp < 1 nor

0<vnr <vr <vp < 1 have their interior optimal prices within the ranges of p defining these

cases in some range of R above R3). For some sufficiently large R (ω in Proposition 1), then

the price will be interior to the range of p defining 0<vnr <vp < 1 since the upper bound of

the range of p for 0<vnr <vp< 1 goes to ∞ as R → ∞.
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First, we show that 0<vnr <vr < 1 is lower than the lower bound of the range of p

defining this case. For p∗III (in (B.41)) to be larger than the lower bound of p for this case

for sufficiently small δ, we need p∗III >
(R−cpα)(−cp+Rπr)

R2πr
. This is equivalent to the R condition

6cpα

3+3πrα+
√

5+πrα(−2+5πrα)+4
√

1+πrα+(πrα)3+(πrα)4
< R <

6cpα

3+3πrα−
√

5+πrα(−2+5πrα)+4
√

1+πrα+(πrα)3+(πrα)4
.

Under the conditions of the focal region, the upper bound on this R range is decreasing in

πr. This means that an upper bound on R for this to hold for any πr > π̄r is that upper bound

evaluated at πr = π̄r. Define R̄V I =

(
6cpα

3+3πrα−
√

5+πrα(−2+5πrα)+4
√

1+πrα+(πrα)3+(πrα)4

)∣∣∣∣
πr=π̄r

,

so that we need R < R̄V I for p∗III to be interior for πr > π̄r.

At the same time, the conditions for this region as δ → 0 are cpα < R < α and
cpα

R2 < πr ≤ cpα

R(α−R)
. We also need πr > π̄r to hold (since that is the πr condition for

this lemma and for Proposition 1). Together with this region’s conditions, this implies that

R > max

(
(1−cp)α
2−cp

,
α(2−cp+

√
(4−3cp)cp)

2(2−cp)

)
. Call this lower bound RV I , so that we need R > RV I

for the conditions of this region to hold for πr > π̄r. Then note that R̄V I < RV I under the

focal region assumptions on cp and α. Therefore, R < R̄V I and R > RV I cannot simulta-

neously hold for πr > π̄r, and so p∗III will be less than the lower bound of the range of p

defining this case in this region.

Next, we find the conditions under which p∗IV is interior for sufficiently low δ. For suffi-

ciently low δ, (−R+cpα(1−δ))(cpα(1−δ)2−R2πr)
R2πrα(1−δ)

< p < (R+α(−cp+δ))(−cp+(R+αδ)πr)
(R+αδ)2πr

becomes the condi-

tion (−R+cpα)(cpα−R2πr)
R2πrα

< p < (R−cpα)(−cp+Rπr)
R2πr

. For this to hold with p = p∗IV for sufficiently

low δ, with p∗IV → R−cpα

2R
as δ → 0, we need Rπr > 2cp for R−cpα

2R
< (R−cpα)(−cp+Rπr)

R2πr
and

R < α
4
+

√
α(16cp+πrα)

4
√
πr

for R−cpα

2R
> (−R+cpα)(cpα−R2πr)

R2πrα
. The condition of this region πr ≤ cpα

R(α−R)

is equivalent to R ≥ πrα+
√

πrα(−4cp+πrα)

2πr
. Since

πrα+
√

πrα(−4cp+πrα)

2πr
> 2cp

πr
under this region’s

conditions along with πr > π̄r, then R > 2cp
πr

is implied by πr ≤ cpα

R(α−R)
. Therefore, p∗IV is

always below its upper bound. However, in this region, it may be the case that p∗IV is below

its lower bound, depending on R. Specifically, in this region, there is a bound R3 where

R3 → α
4
+

√
α(16cp+πrα)

4
√
πr

as δ → 0 such that p∗IV is interior for R < R3.

Next, we show that under the conditions of this region, if the price of 0<vnr <vr <vp < 1

is interior, then the vendor’s interior optimal price in the case of 0<vnr <vp < 1 is out-

side of the range that defines it (in particular, it is bigger than the upper bound of the

range of p defining 0<vnr <vp< 1). This shows that if p∗IV is interior to the range of

p defining it in this region (namely, when R < R3), then Π∗
IV is greater than the profit

at any price in 0<vnr <vp< 1. For 0<vnr <vp< 1, the range of p is given as 0 ≤ p ≤
(−R+cpα(1−δ))(cpα(1−δ)2−R2πr)

R2πrα(1−δ)
. Taking the limit as δ → 0 of the upper bound, this becomes

(−R+cpα)(cpα−R2πr)
R2πrα

. Note that this is the lower bound of 0<vnr <vr <vp < 1 since they

are adjacent market outcomes in p. Call this price pboundary, the boundary price between

0<vnr <vp< 1 and 0<vnr <vr <vp< 1 (written below for sufficiently small δ outside of the
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limit):

pboundary =
(R− cpα)(−cpα +R2πr)

R2απr

+

∞∑

k=1

akδ
k. (B.62)

The proof of Lemma B.5 shows that the price p∗II(vnr) is increasing in vnr, and so a lower

bound on the equilibrium price in the case of 0<vnr <vp < 1 is p∗(vnr) evaluated at a lower

bound on vnr. Lemma B.5 shows that a lower bound on vnr is 1
2
. Using (B.97) evaluated

at vnr = 1
2
, we have that a lower bound on p∗II is 1

8

(
4 + πrα−

√
πrα(16cp + πrα)

)
. The

condition 1
8

(
4 + πrα−

√
πrα(16cp + πrα)

)
≥ (−R+cpα)(cpα−R2πr)

R2πrα
is equivalent to R > α

2
and

πr ≤ 2cpα

2R2−Rα
under the conditions of this region. But the condition πr ≤ 2cpα

2R2−Rα
with R > α

2

is equivalent to the condition R ≤ α
4
+

√
α(16cp+πrα)

4
√
πr

. Since R < α
4
+

√
α(16cp+πrα)

4
√
πr

for sufficiently

small δ implies that p∗IV is interior to the range of p that defines 0<vnr <vr <vp< 1, this

means that whenever p∗IV is interior, then p∗II is above the range that defines 0<vnr <vp < 1.

Next, we compare the profit at the interior optimal solution p∗V with the profit at the

interior optimal solution p∗IV as well as with the profit at the boundary of 0<vnr <vp < 1

and 0<vnr <vr <vp< 1 to show that Π∗
V is dominated in this region. First, suppose that

R < R3 so that p∗IV is interior. Then comparing Π∗
V (shown in (B.53)) with Π∗

IV (shown

in (B.48)) as δ → 0, we want to show that R−cpα

4R
> 1

4(1+Rπr)
holds. This is equivalent

to R > 1
2

(
cpα +

√
cpα(4+cpπrα)

πr

)
. Recall again that the region condition (in the limit as

δ → 0) πr ≤ cpα

R(α−R)
is equivalent to R ≥ πrα+

√
πrα(−4cp+πrα)

2πr
. That

πrα+
√

πrα(−4cp+πrα)

2πr
>

1
2

(
cpα +

√
cpα(4+cpπrα)

πr

)
follows from the focal region assumptions, πr > π̄r, and this region’s

conditions. Therefore, when p∗IV is interior, then Π∗
IV > Π∗

V .

On the other hand, suppose that R ≥ R3. First, assume that R = R3. We will show

that at this point, the boundary profit between 0<vnr <vp< 1 and 0<vnr <vr <vp < 1 is

higher than Π∗
V . Then we will show that this boundary profit strictly increases in R up

to the point that it reaches p∗II (the interior optimal price of 0<vnr <vp< 1) while Π∗
V

strictly decreases in R. This will show that the boundary profit dominates Π∗
V even for

R > R3. At p∗IV , the equilibrium vnr in 0<vnr <vr <vp< 1 approaches 1
2
as δ → 0 (from

substituting (B.46) into (B.44) and taking the limit). Then evaluating the profit function

(as a function of vnr, written in (B.99)) of 0<vnr <vp< 1 at vnr = 1
2
, comparing that to

Π∗
V , and expressing that in terms of R, we want to show that R >

−α(1−4cp)+
√

α(α+ 16cp
πr

)
4+2(1−2cp)πrα

.

That α
4
+

√
α(16cp+πrα)

4
√
πr

>
−α(1−4cp)+

√

α(α+ 16cp
πr

)
4+2(1−2cp)πrα

for all πr > π̄r follows from the focal region

assumptions on cp and α. Therefore, at R = R3, then R >
−α(1−4cp)+

√

α(α+ 16cp
πr

)
4+2(1−2cp)πrα

holds.

Then for R > R3, note that profit at the boundary price between the 0<vnr <vp < 1 and

0<vnr <vr <vp < 1 weakly increases as the upper bound on the range of p for 0<vnr <vp < 1

increases in R (the feasible ramge of p expands in R). For some sufficiently large R (denoted
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ω in Proposition 1), then the interior optimal price of 0<vnr <vp< 1 will indeed be interior

to the range of p defining this case since the upper bound of the range of p for 0<vnr <vp < 1

goes to ∞ as R → ∞. We can write ω as:

ω = {R : pboundary(R) = p∗II}. (B.63)

There is a unique R in that set defining ω since pboundary(R) is an increasing function of

R under this region’s conditions and the focal region assumptions while p∗II does not depend

in R. At the same time Π∗
V strictly decreases in R for sufficiently small δ. Hence, even for

R > R3, Π
∗
V is dominated by either the boundary profit or the profit at the interior optimal

p∗II .

Altogether, if the conditions of this region are met, then if R < R3 where R3 → α
4
+√

α(16cp+πrα)

4
√
πr

as δ → 0, then 0<vnr <vr <vp < 1 is the equilibrium outcome. If R3 ≤ R < ω,

then the outcome is 0<vnr <vp < 1 (with the price being at pboundary). If R ≥ ω, then the

outcome is 0<vnr <vp < 1 with the price being the interior optimal price of this case.

Next, we examine Region (vi) of Proposition B.1. Below are the conditions from Region

(vi) of Proposition B.1 to help the reader.

(vi) cpα(1− δ) < R < α(1− δ) and πr > max
(

cpα(1−δ)
(−R+α(1−δ))(R+αδ)

, cpα(1−δ)2

R2

)
:

• 0 ≤ p ≤ (−R+cpα(1−δ))(cpα(1−δ)2−R2πr)
R2πrα(1−δ)

: (0 < vnr < vp < 1)

• (−R+cpα(1−δ))(cpα(1−δ)2−R2πr)
R2πrα(1−δ)

< p <
R

(
2(1−δ)δ+Rπr−

√
πr(4cpαδ(1−δ)2+R2πr)

)

2αδ(1−δ)2
:

(0 < vnr < vr < vp < 1)

•
R

(
2(1−δ)δ+Rπr−

√
πr(4cpαδ(1−δ)2+R2πr)

)

2αδ(1−δ)2
≤ p < 1−cp− cp(R+αδ(1−cp))

(R+αδ)2πr
: (0 < vr < vp < 1)

• 1− cp − cp(R+αδ(1−cp))
(R+αδ)2πr

≤ p < 1 : (0 < vr < 1)

We will rely on the analysis of the previous region to show that 0<vnr <vp< 1 will be

the outcome for R ≥ R3. Then for R < R3 for each of the remaining possible outcomes,

there are overlaps in the region of the parameter space when the price of case is interior to

the range of p defining it. When there is an overlap in which more than one interior solution

is indeed interior to the range of p defining that case, we compare the profits at those interior

solutions to find the conditions under which one profit dominates.

The price boundary between 0<vnr <vp < 1 and 0<vnr <vr <vp < 1 is the same as in

the previous case. Relying on the analysis of the previous region, we have that when R > R3,

then p∗IV will not be interior to the range of p defining 0<vnr <vr <vp < 1. For R > R3, the

analysis is the same as in Region (v), with R = ω defined to be the point at which p∗II is

interior to the range of p defining 0<vnr <vp < 1. When R ≤ R3, then p∗II of 0<vnr <vp < 1

will not be interior to the range of p defining the case.
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Focusing on R < R3, then one of the other cases will arise. For 0<vnr <vr <vp < 1, the

interior optimal price p∗IV needs to satisfy the condition (−R+cpα(1−δ))(cpα(1−δ)2−R2πr)
R2πrα(1−δ)

< p <

R

(
2(1−δ)δ+Rπr−

√
πr(4cpαδ(1−δ)2+R2πr)

)

2αδ(1−δ)2
to indeed be interior to the range of p defining this case.

Taking the limit as δ → 0, this condition in the limit becomes (R−cpα)(−cpα+R2πr)
R2πrα

< p∗IV <

−cp +
R
α
. The condition (R−cpα)(−cpα+R2πr)

R2πrα
< p∗IV as δ → 0 leads to the condition R < R3.

The condition p∗IV < −cp +
R
α
as δ → 0 leads to R > R̃2, where R̃2 → α

2
as δ → 0. That

α
2
< R3 follows from the focal region conditions along with πr > π̄r.

For 0<vr <vp < 1, the interior optimal price p∗V I (given in (B.57)) needs to fall in the

price range given by
R

(
2(1−δ)δ+Rπr−

√
πr(4cpαδ(1−δ)2+R2πr)

)

2αδ(1−δ)2
≤ p < 1−cp− cp(R+αδ(1−cp))

(R+αδ)2πr
to indeed

be interior to the range of p defining this case. Taking the limit as δ → 0, this condition

in the limit becomes −cp +
R
α

< p∗V I < 1 − cp

(
1 + 1

Rπr

)
. The condition −cp +

R
α

< p∗V I

as δ → 0 leads to the condition R < R̃3 where R̃3 → α
2
(1 + cp) as δ → 0. The condition

p∗V I < 1 − cp

(
1 + 1

Rπr

)
as δ → 0 leads to R > R̃4, where R̃4 → 2cp

πr(1−cp)
as δ → 0. That

R̃4 < R̃3 follows from the focal region conditions along with πr > π̄r.

For 0<vr < 1, the interior optimal price p∗V (given in (B.51)) needs to fall in the price

range given by 1− cp − cp(R+αδ(1−cp))
(R+αδ)2πr

≤ p < 1 to indeed be interior to the range of p defining

this case. Taking the limit as δ → 0, this condition in the limit becomes 1− cp

(
1 + 1

Rπr

)
<

p∗V < 1. The condition 1− cp

(
1 + 1

Rπr

)
< p∗V as δ → 0 leads to the condition R < R̃5 where

R̃5 → 2cp
πr(1−2cp)

as δ → 0. The condition p∗V < 1 as δ → 0 leads to 1
2
< 1, which is satisfied

without further conditions.

From the above, we see that there will be an overlap in the parameter space for when p∗V
is interior and p∗V I is interior, since R̃5 > R̃4 under the focal region assumptions on cp and

α. There will also be an overlap when p∗V I is interior and p∗IV is interior since R̃2 < R̃3 under

the focal region assumptions on cp and α. There may also be an overlap between when p∗V
and p∗IV are interior, but as was the case in Region (v), Π∗

IV > Π∗
V , so when p∗IV is interior,

then Π∗
IV dominates the profit of 0<vr < 1.

Consequently, we need to compare Π∗
V with Π∗

V I and Π∗
V I with Π∗

IV . These expressions

are given in (B.53), (B.59), and (B.48). Comparing (B.59) and (B.48) in the limit as δ → 0,

we have that R−cpα

4R
> 1

4
(1− cp)

2 if R > α
2−cp

, so for sufficiently small δ, Π∗
IV > Π∗

V I if R > R2

where R2 → α
2−cp

as δ → 0. That R̃2 < R2 < R̃3 for sufficiently small δ follows from the

focal region assumptions on cp and α.

Comparing (B.59) and (B.53) in the limit as δ → 0, we have that 1
4(1+Rπr)

> 1
4
(1 − cp)

2

if R < (2−cp)cp
(1−cp)2πr

, so for sufficiently small δ, Π∗
V > Π∗

V I if R < R1 where R1 → (2−cp)cp
(1−cp)2πr

as

δ → 0. That R̃4 < R1 < R̃5 for sufficiently small δ follows from the focal region assumptions

on cp and α. That R2 < R3 for sufficiently small δ follows from the focal region assumptions

on cp and α. That R1 < R2 follows from πr > π̄r where π̄r → (2−cp)2cp
(1−cp)2α

as δ → 0. We can

define the πr bound as:
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π̄r =
(2− cp)

2cp
(1− cp)2α

+

∞∑

k=1

akδ
k, (B.64)

Altogether for this region, if R < R1, then 0<vr < 1 is the equilibrium outcome. If

R1 ≤ R < R2, then 0<vr <vp< 1 is the equilibrium outcome. If R2 ≤ R < R3, then

0<vnr <vr <vp < 1 is the equilibrium outcome. If R3 ≤ R < ω, then 0<vnr <vp < 1 is the

equilibrium outcome, with the price at pboundary (the boundary price between 0<vnr <vp < 1

and 0<vnr <vr <vp < 1). If R ≥ ω, then 0<vnr <vp < 1 is the equilibrium outcome, with

the price at the interior optimal solution of 0<vnr <vp< 1.

Next, we examine Region (vii) of Proposition B.1. Below are the conditions from Region

(vii) of Proposition B.1 to help the reader.

(vii)

((
πr < (1−δ)δ

−R+cpα(1−δ)
and R ≤ cpα(1 − δ)

)
or
(
R > cpα(1 − δ)

))
and πr >

cpα(1−δ)
(−R+α(1−δ))(R+αδ)

and

(
R ≤ cpα(1− δ) or πr ≤ cpα(1−δ)2

R2

)
and R < α(1− δ):

• 0 ≤ p <
R
(
2(1−δ)δ+Rπr−

√
πr(4cpαδ(1−δ)2+R2πr)

)

2αδ(1−δ)2
: (0 < vnr < vr < vp < 1)

•
R

(
2(1−δ)δ+Rπr−

√
πr(4cpαδ(1−δ)2+R2πr)

)

2αδ(1−δ)2
≤ p < 1−cp− cp(R+αδ(1−cp))

(R+αδ)2πr
: (0 < vr < vp < 1)

• 1− cp − cp(R+αδ(1−cp))
(R+αδ)2πr

≤ p < 1 : (0 < vr < 1)

We will show that the interior optimal price of 0<vnr <vr <vp< 1 is outside of the range

of p that defines it in this region. Then we will find the R boundary between when 0<vr < 1

and 0<vr <vp< 1 arise, since both outcomes can have their respective prices interior to the

range of p defining each of them under same parameter conditions.

First, note that for sufficiently small δ, the upper bound of the range of p for 0<vnr <vr <

vp < 1 is R−cpα

α
. Also note that for sufficiently small δ, the conditions of this region becomes

cpα < R < α and cpα

R(−R+α)
< πr <

cpα

R2 . Under these conditions, R−cpα

α
< R−cpα

2R
(which is the

limit of p∗IV as δ → 0) so that p∗IV (in (B.46)) is above the upper bound of the range of p

that defines this case.

Next, we find conditions under which p∗V I (defined in (B.57)) lies inside the range of p

that defines it. Taking the limit as δ → 0 of the range of p defining this case, we need

conditions for which R−cpα

α
< p∗V I < 1− cp− cp

Rπr
. The limit of p∗V I as δ → 0 is 1−cp

2
, and since

1−cp
2

> R−cpα

α
holds under cpα < R < α and cpα

R(−R+α)
< πr <

cpα

R2 , it follows that p
∗
V I is above

its lower bound for sufficiently small δ. Comparing it to its upper bound, for sufficiently

small δ, we need 1−cp
2

< 1 − cp − cp
Rπr

. This becomes R > 2cp
πr(1−cp)

. Then this is the only

condition needed for p∗V I to be interior to the range of p defining it in this region.

Similarly, we find conditions under which p∗V (given in (B.51)) lies inside the range of p

that defines it. Taking the limit as δ → 0, we have p∗V → 1
2
. Also taking the limit of the

lower bound of p that defines this case in this region, we have that the condition for p∗V to be
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interior to the range of p that defines if for sufficiently small δ is 1− cp− cp
Rπr

< p∗V < 1. This

simplifies to R < 2cp
πr(1−2cp)

(noting that cp <
1
2
from the focal region conditions on cp). Since

1
2
< 1 holds, p∗v will be less than the upper bound of the range of p that defines this case for

sufficiently small δ. Hence, the only condition needed for p to be interior is R < 2cp
πr(1−2cp)

.

Then note that 2cp
πr(1−2cp)

> 2cp
πr(1−cp)

, so there is a region over which both prices are interior

to the range of p defining their respective cases. This means that we have to compare the

interior optimal profits within each of the cases to find conditions under which one case

dominates the other when 2cp
πr(1−2cp)

> 2cp
πr(1−cp)

holds. The profit at p∗V is given in (B.53) while

the profit at p∗V I is given in (B.59). The limit of Π∗
V as δ → 0 is 1

4(1+Rπr)
while the limit of

Π∗
V I is

1
4
(1−cp)

2. Since 1
4(1+Rπr)

≥ 1
4
(1−cp)

2 iff R ≤ (2−cp)cp
(1−cp)2πr

, this implies that for sufficiently

small δ, there is a threshold R1 such that Π∗
V ≥ Π∗

V I iff R ≤ R1, where R1 → (2−cp)cp
(1−cp)2πr

as

δ → 0. Lastly, note that 2cp
πr(1−cp)

< (2−cp)cp
(1−cp)2πr

< 2cp
πr(1−2cp)

holds from πr ∈ (0, 1) and the focal

region assumption on cp.

Altogether, this means that when the conditions of this region arise, if R ≤ R1 (where

R1 → (2−cp)cp
(1−cp)2πr

as δ → 0), then the equilibrium outcome is 0<vr < 1 and the vendor’s price

is p∗V , which is given in (B.51). Otherwise, if R > R1, then the equilibrium outcome is is

0<vr <vp< 1 and the vendor’s price is p∗V I , which is given in (B.57).

Next, we examine Region (viii) of Proposition B.1. Below are the conditions from Region

(viii) of Proposition B.1 to help the reader.

(viii) R ≤ cpα(1− δ) and πr ≥ (1−δ)δ
−R+cpα(1−δ)

and πr >
cp(R+αδ(1−cp))

(1−cp)(R+αδ)2
:

• 0 ≤ p < 1− cp − cp(R+αδ(1−cp))
(R+αδ)2πr

: (0 < vr < vp < 1)

• 1− cp − cp(R+αδ(1−cp))
(R+αδ)2πr

≤ p < 1 : (0 < vr < 1)

The analysis for the two cases of this region is nearly identical to that of the previous

region and will be omitted for brevity. The difference here is that 0<vnr <vr <vp < 1 is

no longer feasible for any p in this region, which was shown in Proposition B.1. When

the conditions of this region arise, if R ≤ R1 (where R1 → (2−cp)cp
(1−cp)2πr

as δ → 0), then the

equilibrium outcome is 0<vr < 1 and the vendor’s price is p∗V , which is given in (B.51).

Otherwise, if R > R1, then the equilibrium outcome is is 0<vr <vp< 1 and the vendor’s

price is p∗V I , which is given in (B.57).

Lastly, we examine Region (ix) of Proposition B.1. Below are the conditions from Region

(ix) of Proposition B.1 to help the reader.

(ix) R < α(1− δ) and 1−δ
−R+α(1−δ)

≤ πr ≤ cp(R+(1−cp)αδ)

(1−cp)(R+αδ)2
:

• 0 ≤ p < 1 : (0 < vr < 1)

If the parameter conditions are such that this region arises, then the equilibrium outcome

is 0<vr < 1 and the vendor’s price p∗V is given in (B.51).
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Altogether, across all the regions of Proposition B.1, we can define the following bounds

on R and πr for sufficiently small δ:

π̄r =
(2− cp)

2cp
(1− cp)2α

+
∞∑

k=1

akδ
k, (B.65)

R1 =
(2− cp)cp
(1− cp)2πr

+

∞∑

k=1

akδ
k, (B.66)

R2 =
α

2− cp
+

∞∑

k=1

akδ
k, (B.67)

R3 =
α

4
+

√
α(16cp + απr)

4
√
πr

+
∞∑

k=1

akδ
k, (B.68)

and

ω = {R : pboundary(R) = p∗II}. (B.69)

For πr > π̄r,

(a) if 0 < R<R1, then the equilibrium consumer market structure is 0<vr < 1;

(b) if R1≤R<R2, then the equilibrium consumer market structure is 0<vr <vp < 1;

(c) if R2≤R<R3, then the equilibrium consumer market structure is 0<vnr <vr <vp < 1;

(d) if R≥R3, then the equilibrium consumer market structure is 0<vnr <vp < 1.

Furthermore, when R3 ≤ R < ω (defined in (B.63)), then the price is at pboundary (given in

(B.62) the boundary price between 0<vnr <vp < 1 and 0<vnr <vr <vp< 1. When R ≥ ω,

then the equilibrium price is the interior optimal price of 0<vnr <vp< 1.

This concludes the proof of the lemma. �

Lemma B.4. There exist bounds δ̃ > 0 and ω̂ > R2 such that if δ < δ̃, then:

(a) if 0<R ≤ R̂1, then the equilibrium price is p∗V and the equilibrium consumer market

structure is 0<vr < 1 for any πr;

(b) if R̂1<R ≤ R̂2, then the equilibrium price is p∗V and the equilibrium consumer market

structure is 0<vr < 1 for πr ∈ (0, π1). For πr ∈ [π1, 1], the equilibrium price is p∗V I and

the equilibrium outcome is 0<vr <vp< 1;

(c) if R̂2<R ≤ R2, then the equilibrium price is p∗III and the equilibrium consumer market

structure is 0<vnr <vr < 1 for πr ∈ (0, π̂). For πr ∈ [π̂, π1), the equilibrium price

is p∗V and the equilibrium consumer market structure is 0<vr < 1. For πr ∈ [π1, 1], the

equilibrium price is p∗V I and the equilibrium consumer market structure is 0<vr <vp < 1;
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(d) if R2 <R ≤ ω̂, then the equilibrium price is p∗III and the equilibrium consumer mar-

ket structure is 0<vnr <vr < 1 for any πr ∈ (0, π̂). For πr ∈ [π̂, π2), the equilib-

rium price is p∗V and the equilibrium consumer market structure is 0<vr < 1. For

πr ∈ [π2, 1], the equilibrium price is p∗IV and the equilibrium consumer market struc-

ture is 0<vnr <vr <vp < 1,

where the bounds on R and πr are characterized in the proof below. The equilibrium prices

p∗V , p
∗
V I , p

∗
III , and p∗IV are characterized in the proof of the previous lemma.

Proof of Lemma B.4: The proof of this lemma follows closely from the proof of Lemma

B.3. Recall again that Lemma B.3 assumed that πr > π̄r (in (B.64)). In this lemma, we

span across all πr while focusing on R ≤ ω̂, an R bound bigger than R2 of Lemma B.3 that

we show the existence of in the proof of this lemma. We first restate the results from Lemma

B.3 in terms of πr bounds instead of R bounds, focusing on the relevant boundaries that hold

with R ≤ ω̂. After restating the results from Lemma B.3 in terms of relevant πr bounds,

then we characterize what happens for πr ≤ π̄r for R ≤ ω̂. Combining the two scenarios

(πr > π̄r and πr ≤ π̄r), we can characterize what happens across all πr for R ≤ ω̂.

The below comes directly from Lemma B.3, ignoring Regions (i) and (ii) since those

regions cannot arise for sufficiently small δ under the conditions of this lemma. Specifically,

Regions (i) and (ii) require the condition R ≥ α(1−δ) so that R < α
2−cp

cannot hold in these

regions for sufficiently small δ. The bound R < α
2−cp

comes from R < R2 from Lemma B.3

for sufficiently small δ. In what follows below, we first restate the results Lemma B.3 (with

slight modifications due to the lemma’s assumption R ≤ ω̂ for some ω̂ > R2), re-expressing

region boundaries in terms of πr instead of R.

When πr > π̄r (Restating Outcomes from Lemma B.3): First, we examine Region

(iii) of Proposition B.1.

When πr > π̄r and the Region (iii) conditions hold, then 0<vr < 1 is the equilibrium

outcome with p∗V as the vendor’s price.

Next, we examine Region (iv) of Proposition B.1.

When πr > π̄r and the Region (iv) conditions hold, then 0<vr < 1 is the equilibrium

outcome with p∗V as the vendor’s price.

Next, we examine Region (v) of Proposition B.1.

When πr > π̄r and the Region (v) conditions hold, then if R < R3 where R3 → α
4
+√

α(16cp+πrα)

4
√
πr

as δ → 0, then 0<vnr <vr <vp< 1 is the equilibrium outcome. Note R3 >
α

2−cp

for sufficiently small δ for all πr due to the focal region assumptions. Since ω̂ can be chosen

to be any R in (R2, R̃2) (where R̃2 will be defined later as the intersection of two region

boundaries), then we can find ω̂ sufficiently close to R2 so that when πr > π̄r and the Region

(v) conditions hold, then 0<vnr <vr <vp< 1 is the equilibrium outcome.

Next, we examine Region (vi) of Proposition B.1.
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Altogether for this region when πr > π̄r, if R < R1, then 0<vr < 1 is the equilibrium

outcome. If R1 ≤ R < R2, then 0<vr <vp< 1 is the equilibrium outcome. If R2 ≤ R < R3,

then 0<vnr <vr <vp < 1 is the equilibrium outcome. Recall again that we can find ω̂ such

that R2 < ω̂ < R3, so we can focus on R ≤ ω̂ in this last case.

Re-expressing the bounds in terms of πr, recall R1 from (B.66) has an asymptotic expan-

sion in δ given by:

R1 =
(2− cp)cp
(1− cp)2πr

+
∞∑

k=1

akδ
k. (B.70)

Taking the derivative with respect to πr, the derivative is given by:

d

dπr

[R1] = − (2− cp)cp
(1 − c2p)π

2
r

+
∞∑

k=1

akδ
k. (B.71)

That d
dπr

[R1] < 0 for sufficiently small δ means that this boundary (when viewing R as

a function of πr) is decreasing in πr.

In terms of πr, we can define π† as the solution of (B.66):

π† =
(2− cp)cp
(1− cp)2R

+

∞∑

k=1

akδ
k. (B.72)

Then define:

π1 = min(π†, 1). (B.73)

Since (B.72) is strictly decreasing in R for sufficiently small δ, the smallest R value at

this boundary is when πr = 1. We define R̂1 to be R1 in (B.70) evaluated at πr = 1:

R̂1 =
(2− cp)cp
(1− cp)2

+
∞∑

k=1

akδ
k. (B.74)

Note that π̄r < π1 from R ∈ (R̂1, R2) and the focal region assumptions on cp and α.

Then within this region for πr > π̄r,

(a) if 0<R ≤ R̂1, then the equilibrium outcome is 0<vr < 1 for any πr > π̄r;

(b) if R̂1<R ≤ R2, then the equilibrium outcome is 0<vr < 1 for πr ∈ (π̄r, π1), and the

equilibrium outcome is 0<vr <vp < 1 for πr ∈ [π1, 1];

(c) if R2<R ≤ ω̂, then the equilibrium outcome is 0<vnr <vr <vp< 1 for πr ≥ π̄r,

Next, we examine Region (vii) of Proposition B.1.

When the conditions of Region (vii) arise along with πr > π̄r, if R ≤ R1 (where R1 →
(2−cp)cp
(1−cp)2πr

as δ → 0), then the equilibrium outcome is 0<vr < 1 and the vendor’s price is

p∗V , which is given in (B.51). Otherwise, if R > R1, then the equilibrium outcome is is

0<vr <vp< 1 and the vendor’s price is p∗V I , which is given in (B.57). In essence, this is
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the same as Region (vi), with the same πr boundary between 0<vr < 1 and 0<vr <vp < 1,

given in (B.72).

Next, we examine Region (viii) of Proposition B.1.

When the conditions of this region arise and πr > π̄r, if R ≤ R1 (where R1 → (2−cp)cp
(1−cp)2πr

as δ → 0), then the equilibrium outcome is 0<vr < 1 and the vendor’s price is p∗V , which is

given in (B.51). Otherwise, if R > R1, then the equilibrium outcome is is 0<vr <vp< 1 and

the vendor’s price is p∗V I , which is given in (B.57). This gives the same boundary between

0<vr < 1 and 0<vr <vp < 1 as in the previous two regions.

Next, we examine Region (ix) of Proposition B.1.

If the parameter conditions are such that this region arises, then the equilibrium outcome

is 0<vr < 1 and the vendor’s price p∗V is given in (B.51).

Now that we have characterized the part of this lemma for πr > π̄r, we now characterize

what happens for πr ≤ π̄r within each of these relevant regions. Most of the analysis is the

same as in Lemma B.3, and we will omit the analysis that is the same as in the proof of

that lemma. The main difference between the outcomes in πr > π̄r and the outcomes in

πr ≤ π̄r is that now the interior-optimal price of 0<vnr <vr < 1 can indeed now be interior

to the range of p defining that case. We will see how that impacts the characterization of the

equilibrium outcomes below, and then we will combine the two sets of results (for πr > π̄r

and πr ≤ π̄r) to get the statement of this lemma.

When πr ≤ π̄r: First, we examine Region (iii) of Proposition B.1.

In this region, we will show that there is an overlap in the region of the parameter space

over which p∗III and p∗V are interior to their respective regions. Therefore the boundary

between the two cases will be determined by the isoprofit curve (found by finding when the

profits of the two cases are equal at their interior optimal prices).

First, note that for sufficiently small δ, we want to find conditions so that p∗III is in

0 ≤ p < R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

. The upper bound goes to R(1−(α−R)πr)
α

as δ → 0, so we want

to find conditions so that p∗III ∈ (0, R(1−(α−R)πr)
α

) (where p∗III is in (B.41)). That p∗III > 0

follows from the focal region assumptions on cp and α. The condition p∗III <
R(1−(α−R)πr)

α
is

equivalent to R >
−3+3πrα+

√

5+πrα(−2+5πrα)+4
√

1+πrα+(πrα)3+(πrα)4

6πr
.

Next, recall p∗V was given earlier in (B.51). The limit of (B.51) as δ → 0 is 1
2
, so

for sufficiently small δ, p∗V < 1. The condition p∗V ≥ R(1−(α−R)πr)
α

is equivalent to R ≤
−1+πrα+

√
1+(πrα)2

2πr
. That

−1+πrα+
√

1+(πrα)2

2πr
>

−3+3πrα+
√

5+πrα(−2+5πrα)+4
√

1+πrα+(πrα)3+(πrα)4

6πr

follows from the focal region assumptions on cp and α. Hence, for sufficiently small δ, there

is an overlap in the regions of the parameter space over which p∗III is interior to the range of

p defining 0<vnr <vr < 1 and p∗V is interior to the range of p defining 0<vr < 1.

We can find the R boundary (or equivalently, the πr boundary, as subsequently shown)

between these two cases by equating their profits, (B.42) and (B.53). For sufficiently low δ,
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the boundary between these two cases can be expressed as

R̃1 = A0 +

∞∑

k=1

akδ
k, where (B.75)

A0 =

(
− 6α3π3

r + 2απr(9 + 3
√
1 + απr + α3π3

r + α4π4
r−

4

√
5 + απr(−2 + 5απr) + 4

√
1 + απr + α3π3

r + α4π4
r )−

2(−1+
√
1 + απr + α3π3

r + α4π4
r )(−3+

√
5 + απr(−2 + 5απr) + 4

√
1 + απr + α3π3

r + α4π4
r )+

α2π2
r(−9 + 2

√
5 + απr(−2 + 5απr) + 4

√
1 + απr + α3π3

r + α4π4
r )

)
×

(
2πr(−1 + απr(4− απr) +

√
1 + απr + α3π3

r + α4π4
r )(−3− 3απr+

√
5 + απr(−2 + 5απr) + 4

√
1 + απr + α3π3

r + α4π4
r )

)−1

. (B.76)

A0 as a function of πr is strictly increasing for πr > 0, so this means that (viewing the

boundary as a function of πr so that R̃1 = f(πr) is the boundary between the two regions),

the function is invertible for sufficiently small δ. Define

π̂ , f−1(R̃1) (B.77)

as the inverse of this R boundary above. Note π̂ > 0 for R > R2 since 0 < A0|πr=0 < R2 and

A0 is increasing in πr. Then for πr < π̂, the profit of 0<vnr <vr < 1 dominates the profit

under 0<vr < 1, while 0<vr < 1 dominates 0<vnr <vr < 1 for πr > π̂. Note that π̂ < π̄,

since 0<vnr <vr < 1 did not arise for πr > π̄r.

Since the boundary between 0<vnr <vr < 1 and 0<vr < 1 (given in (B.77)) is strictly

increasing in πr, it follows that the smallest R value at this boundary is when πr = 0.

Evaluating (B.76) at πr = 0, we define R̂2 as

R̂2 =
α

2
+

∞∑

k=1

akδ
k. (B.78)

Altogether within this region for πr ≤ π̄r,

(a) if 0<R ≤ R̂2, then the equilibrium outcome is 0<vr < 1 for any πr ≤ π̄r;

(b) if R > R̂2, then the equilibrium outcome is 0<vnr <vr < 1 for πr ∈ (0, π̂), and the

equilibrium outcome is 0<vr < 1 for πr ∈ [π̂, π̄r].

Next, we examine Region (iv) of Proposition B.1.
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Similar to the Proof of Lemma B.3, the interior optimal price for 0<vnr <vr <vp< 1 will

be outside of the range of p that defines this case. However, in contrast to when πr > π̄r,

when πr ≤ π̄r, then the interior optimal price of 0<vnr <vr < 1 can indeed be inside of the

range of p that defines the case.

The analysis is the same as in the previous region and will be omitted for brevity. In

particular, the boundary between 0<vnr <vr < 1 and 0<vr < 1 is given in (B.77).

Next, we examine Region (v) of Proposition B.1.

Similar to the Proof of Lemma B.3, 0<vnr <vp< 1 will only arise for R > R3 (from

(B.68)). However, for any πr, a bound ω̂ < R3 can be chosen such that ω̂ > R2 since

R2 < R3 under the focal region assumptions. Since R3 is decreasing in πr for sufficiently low

δ, we can choose ω̂ such that ω̂ < R̄3 where R̄3 = R3|πr=1 so that 0<vnr <vp < 1 does not

arise in this region in this lemma.

In contrast to when πr > π̄r, when πr ≤ π̄r, then the interior optimal price of 0<vnr <vr < 1

can indeed be inside of the range of p that defines the case. The analysis between 0<vnr <vr < 1

and 0<vr < 1 is the same as in Region (iii). In particular, the boundary between 0<vnr <vr < 1

and 0<vr < 1 is given in (B.77).

Next, we examine the boundary between 0<vr < 1 and 0<vnr <vr <vp< 1. The interior

optimal price of 0<vr < 1 is p∗V given in (B.51). As δ → 0, this approaches 1
2
, so for

sufficiently small δ, we want conditions so that this limit is in the price range defined in Region

(v) for this case: R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

≤ p < 1. Taking the limit as δ → 0 of the lower bound

gives R(1−(α−R)πr)
α

≤ p as a condition p∗V needs to satisfy to be interior. This is equivalent to

πr ≥ 2R−α
2R(α−R)

. On the other hand, for p∗IV to be interior, we need 2cp
R

< πr <
2cpα

2R2−Rα
(doing

the same algebra with p∗IV in (B.46) being in the range of p for this case). For there to be

an overlap in the parameter region over which both p∗V and p∗IV can be interior solutions, we

would need 2R−α
2R(α−R)

< 2cpα
2R2−Rα

to hold. This is equivalent to 1
2

(
α(1− cp)−

√
cp(2 + cp)α2

)
<

R < 1
2

(
α(1− cp) +

√
cp(2 + cp)α2

)
. Note that 1

2

(
α(1− cp)−

√
cp(2 + cp)α2

)
< α and

1
2

(
α(1− cp) +

√
cp(2 + cp)α2

)
> cpα under the focal region assumptions, so there is a region

of Region (v) over which p∗V and p∗IV can both be interior to their respective ranges of p.

Consequently in this region, we have to compare the profits at the interior-optimal solu-

tions of the cases to find the boundary between these cases. Equating the profits given in

(B.48) and (B.53), the boundary between 0<vr < 1 and 0<vnr <vr <vp< 1 is given by:

π2 =
cpα

R2 − cpRα
+

∞∑

k=1

akδ
k. (B.79)

Then the profit of 0 < vr < 1 dominates the profit under 0 < vnr < vr < vp < 1 if and

only if πr < π2.

We want to show that π2 > π̂ (where π̂ comes from (B.77)). It suffices to show that

sufficiently close to the boundary R = R2, we have π2 < 1 and Π∗
V − Π∗

III > 0 at πr = π2.

That π2 < 1 for sufficiently low δ follows from conditions on cp and α from the focal region
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assumptions and R ≥ R2. Similarly, taking the difference between the profits and using the

focal region assumptions, we examine the limit as δ → 0 of Π∗
V −Π∗

III for πr sufficiently close

to πr = π2 when R = R2. The limit as δ → 0 of the difference between these two profits at

πr = π2 and R = R2 is given below:

lim
δ→0

(
Π∗

V − Π∗
III

)∣∣∣∣
R=R2,πr=π2

=

((
(cp − 1)4 + (cp − 2)2cp((cp − 6)(cp − 2)cp − 4)−

((cp − 2)(cp − 1)cp + 1)
√
(cp − 2)(cp − 1)cp(cp((cp − 6)cp + 11)− 4) + 1

)(
− (cp − 1)2

(
5c2p(cp − 2)4

(cp − 1)4
− 2cp(cp − 2)2

(cp − 1)2
+

4((cp − 2)(cp − 1)cp + 1)
√
(cp − 2)(cp − 1)cp(cp((cp − 6)cp + 11)− 4) + 1

(cp − 1)4
+ 5

) 1
2

+

3cp(cp − 2)2 + 3(cp − 1)2
))(

54(cp − 2)4(cp − 1)2c2p

)−1

+
1

4
(cp − 1)2. (B.80)

The limit of this difference is positive from the focal region assumption on cp. This implies

that, for sufficiently small δ, π2 > π̂ for R sufficiently close to R2. We also have π2 being a

decreasing function of R (under the focal region assumptions and R ≥ R2) and π̂ increasing

in R (from the analysis in Region (iii)). Lastly, note that R3 (in (B.68)) is strictly decreasing

in πr for sufficiently small δ, so the smallest R3 can be is when πr = 1. Altogether, we can

define ω̂ as

ω̂ = sup
R

{R : π̂(R) ≤ π2(R) and R < R̄3}, where (B.81)

R̄3 = R3|πr=1. (B.82)

Note that ω̂ > R2, since π̂ < π2 for R sufficiently close to R2. The comparison of the

profits Π∗
IV and Π∗

III only happens for R > ω̂ due to the ordering of the profits Π∗
III , Π

∗
IV

and Π∗
V when R ≤ ω̂, so the boundary between those two cases does not appear for R ≤ ω̂.

Altogether in this region when πr ≤ π̄r and R < ω̂, then the equilibrium outcome is

0<vnr <vr < 1 for any πr ∈ (0, π̂), the equilibrium outcome is 0<vr < 1 for πr ∈ [π̂, π2), and

the equilibrium outcome is 0<vnr <vr <vp< 1 for πr ∈ [π2, π̄r].

Next, we examine Region (vi) of Proposition B.1.

We can follow the proof of Lemma B.3 to rule out 0<vnr <vp < 1 from appearing in

equilibrium in this region. Also from the proof of Lemma B.3, a condition needed for

R1 < R2 was πr > π̄r. In other words, with πr ≤ π̄r in this section, we do not have R1 < R2.

As a result, 0<vr <vp < 1 can be ruled out. Consequently, the only two cases to consider

in this region for πr < π̄r and R ≤ ω̂ are 0<vnr <vr <vp< 1 and 0<vr < 1. The analysis is

the same as in the previous region, with the same boundary between the two outcomes.
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Altogether within this region when πr ≤ π̄r and R < ω̂, then the equilibrium outcome is

0<vr < 1 for πr < π2, and the equilibrium outcome is 0<vnr <vr <vp< 1 for πr ∈ [π2, π̄r].

Next, we examine Region (vii) of Proposition B.1.

When the conditions of Region (vii) arise along with πr ≤ π̄r, then the boundaries

between regions are the same as for πr > π̄r. In particular, if R ≤ R1 (where R1 → (2−cp)cp
(1−cp)2πr

as δ → 0), then the equilibrium outcome is 0<vr < 1 and the vendor’s price is p∗V , which is

given in (B.51). Otherwise, if R > R1, then the equilibrium outcome is is 0<vr <vp< 1 and

the vendor’s price is p∗V I , which is given in (B.57). The πr boundary between 0<vr < 1 and

0<vr <vp< 1 is given in (B.72).

Next, we examine Region (viii) of Proposition B.1.

When the conditions of this region arise and πr ≤ π̄r, then the boundaries between

regions are the same as for πr > π̄r. In particular, if R ≤ R1, then the equilibrium outcome

is 0<vr < 1 and the vendor’s price is p∗V , which is given in (B.51). Otherwise, if R > R1,

then the equilibrium outcome is is 0<vr <vp < 1 and the vendor’s price is p∗V I , which is

given in (B.57). This gives the same boundary between 0<vr < 1 and 0<vr <vp < 1 as in

the previous region.

Next, we examine Region (ix) of Proposition B.1.

If the parameter conditions are such that this region arises, then the equilibrium outcome

is 0<vr < 1 and the vendor’s price p∗V is given in (B.51).

Now that we have characterized the equilibrium outcomes across all the relevant regions

that arise when R ≤ ω̂ across both πr > π̄r and πr ≤ π̄r, we can organize all of the above in

the following way. First, we list the relevant bounds on πr and R again:

π† =
(2− cp)cp
(1− cp)2R

+
∞∑

k=1

akδ
k, (B.83)

π1 = min(π†, 1), (B.84)

R̂1 =
(2− cp)cp
(1− cp)2

+

∞∑

k=1

akδ
k, (B.85)

R̃1 = A0 +

∞∑

k=1

akδ
k, where (B.86)
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A0 =

(
− 6α3π3

r + 2απr(9 + 3
√
1 + απr + α3π3

r + α4π4
r−

4

√
5 + απr(−2 + 5απr) + 4

√
1 + απr + α3π3

r + α4π4
r )−

2(−1+
√
1 + απr + α3π3

r + α4π4
r )(−3+

√
5 + απr(−2 + 5απr) + 4

√
1 + απr + α3π3

r + α4π4
r )+

α2π2
r(−9 + 2

√
5 + απr(−2 + 5απr) + 4

√
1 + απr + α3π3

r + α4π4
r )

)
×

(
2πr(−1 + απr(4− απr) +

√
1 + απr + α3π3

r + α4π4
r )(−3− 3απr+

√
5 + απr(−2 + 5απr) + 4

√
1 + απr + α3π3

r + α4π4
r )

)−1

. (B.87)

π̂ , f−1(R̃1), (B.88)

π2 =
cpα

R2 − cpRα
+

∞∑

k=1

akδ
k, (B.89)

R̂2 =
α

2
+

∞∑

k=1

akδ
k, (B.90)

R2 =
α

2− cp
+

∞∑

k=1

akδ
k, (B.91)

R3 =
α

4
+

√
α(16cp + απr)

4
√
πr

+
∞∑

k=1

akδ
k, (B.92)

R̄3 = R3|πr=1, and (B.93)

ω̂ = sup
R

{R : π̂(R) ≤ π2(R) and R < R̄3}. (B.94)

Note that R̂1 < R̂2 under the conditions of the focal region, with 0 < cp < 2 −
√
3 and

2
(1−cp)2

− 2 < α < 2(2 − cp)
2 for sufficiently small δ (namely, (2−cp)cp

(1−cp)2
< α

2
under the focal

region assumptions on cp and α). Also, R̂2 < R2 for sufficiently low δ (from α
2
< α

2−cp
). That

π1 > π̂ follows from π1 > π̄ (given in (B.64)) for R < R2 and π̂ < π̄ for R < R2 (shown in

the analysis of Region (iii) when πr < π̄r).

Altogether, for sufficiently small δ, we can find ω̂ > R2 such that:

(a) if 0<R ≤ R̂1, then the equilibrium outcome is 0<vr < 1 for any πr;

(b) if R̂1 <R ≤ R̂2, then the equilibrium outcome is 0<vr < 1 for πr ∈ (0, π1), and the

equilibrium outcome is 0<vr <vp < 1 for πr ∈ [π1, 1];
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(c) if R̂2 <R ≤ R2, then the equilibrium outcome is 0<vnr <vr < 1 for πr ∈ (0, π̂), the

equilibrium outcome is 0<vr < 1 for πr ∈ [π̂, π1), and the equilibrium outcome is

0<vr <vp < 1 for πr ∈ [π1, 1];

(d) if R2 <R ≤ ω̂, then the equilibrium outcome is 0<vnr <vr < 1 for any πr ∈ (0, π̂),

the equilibrium outcome is 0<vr < 1 for πr ∈ [π̂, π2), and the equilibrium outcome is

0<vnr <vr <vp < 1 for πr ∈ [π2, 1].

�

B.1.3 v∗nr Bounds for the Pricing Subgame

In this section, we provide supporting results for the pricing subgame analysis. In particular,

we derive bounds on the vnr threshold under optimal pricing when 0<vnr <vp < 1 arises.

This, in turn, produces bounds on the interior-optimal price that are used in the equilibrium

characterization of the pricing subgame.

Lemma B.5. Under the conditions of the focal region

(
specifically, cp ∈ (0, 2 −

√
3) and

α ∈
(

2
(1−cp)2

− 2, 2(2− cp)
2
))

, if 0 < vnr < vp < 1 arises in equilibrium under optimal

pricing of the benchmark case, then v∗nr ≥ 1
2
in equilibrium. Furthermore, if πr ≥ 1

cpα
, then

if 0 < vnr < vp < 1 arises in equilibrium under optimal pricing of the benchmark case, then

v∗nr ≥
1+c2p
2

.

Proof of Lemma B.5: Suppose that 0 < vnr < vp < 1 is induced. From (B.13), we have

that vnr is the largest root of the cubic:

f1(x) , πrαx
3 + (1− πrα(cp + p))x2 − 2px+ p2. (B.95)

Then in equilibrium, p∗IV and vnr must solve πrαv
3
nr+(1−πrα(cp+p))v2nr−2pvnr+p2 = 0,

where p∗II is the equilibrium price of this case. From this, we have that

p∗II =
1

2
vnr

(
2 + πrαvnr ±

√
πrα(4cp + πrαv2nr)

)
. (B.96)

Can p∗II = 1
2
vnr

(
2 + πrαvnr +

√
πrα(4cp + πrαv2nr)

)
? Suppose it were. Then it follows

that p∗II > 1
2
vnr (2 + πrαvnr + πrαvnr) = vnr(1 + πrαvnr). This is a contradiction, since

vnr > p∗II in equilibrium (otherwise, some purchasing consumers would derive negative utility

upon purchasing). Therefore, we have in equilibrium that

p∗II =
1

2
vnr

(
2 + πrαvnr −

√
πrα(4cp + πrαv2nr)

)
. (B.97)
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From (B.97), we have that an expression of the vendor’s equilibrium price as a function

of vnr when 0 < vnr < vp < 1 is induced in equilibrium.

We will first show that as a function of vnr, this price p(vnr) increases in vnr to prove

monotonicity for any vnr < 1 for which p(vnr) > 0. Then we will show that ΠII(vnr) increases

in vnr for all vnr <
1
2
. By the chain rule, this proves that vnr ≥ 1

2
in equilibrium whenever the

interior optimal price of 0 < vnr < vp < 1 can be achieved. Then we will show that a tighter

bound can be used when πr ≥ 1
cpα

. Note that p(vnr) > 0 only for vnr > max(0, −1+cpαπr

απr
), so

consider vnr ∈ (max(0, −1+cpαπr

απr
), 1). The derivative of the price in this case, we have:

d

dvnr
[p∗II(vnr)] = 1 + πrαvnr +

2cpαπr√
πrα(4cp + v2nrπrα)

−
√
πrα(4cp + πrαv2nr). (B.98)

The derivative is positive when 1 + πrαvnr +
2cpαπr√

πrα(4cp+v2nrπrα)
−
√

πrα(4cp + πrαv2nr) >

0. Multiplying both sides by
√

πrα(4cp + πrαv2nr) and simplifying, this is equivalent to

(1 + πrαvnr)
√
πrα(4cp + πrαv2nr) > πrα(2cp + v2nrπrα). Squaring both sides and simplifying

under the assumptions of the focal region, this simplifies to (1 + 2vnrπrα)(4cp + v2nrπrα) >

4c2pπrα. This holds under Assumption 1 of the focal region (0 < cp < 2 −
√
3) and vnr ∈

(max(0, −1+cpαπr

απr
), 1). Therefore, d

dvnr
p∗II(vnr) > 0 for all vnr ∈ (max(0, −1+cpαπr

απr
), 1). Hence,

there is a one-to-one relationship between price and vnr on this range.

Next, we show that the vendor’s profit as a function of vnr is increasing in vnr ∈
(max(0, −1+cpαπr

απr
), 1

2
). Note that 1

2
> −1+cpαπr

απr
under the cp and α assumptions of the fo-

cal region. The vendor’s profit function in this case can be written as

ΠII(vnr) = p∗II(1− vnr), (B.99)

where p∗II comes from (B.97). Taking the derivative of (B.99) with respect to vnr,

d

dvnr
[Π∗

II(vnr)] = 1− 2vnr −
απr(3vnr − 2)vnr

(√
4cp + απrv2nr − vnr

√
απr

)

2
√
4cp + απrv2nr

+

2cp(2vnr − 1)

√
απr

4cp + απrv2nr
. (B.100)

To show d
dvnr

[ΠII(vnr)] > 0, we need:

√
4cp + απrv2nr(−(απr(3vnr − 2)vnr)− 4vnr + 2) >

−√
απr

(
cp(8vnr − 4) + απr(3vnr − 2)v2nr

)
(B.101)

Both the left- and right-hand sides are positive due to the focal region assumptions and

the assumption that max(0, −1+cpπrα

πrα
) < vnr <

1
2
. Then squaring both sides, we want to have
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that

(απr(3vnr − 2)vnr + 4vnr − 2)2
(
4cp + απrv

2
nr

)
> απr

(
cp(8vnr − 4) + απr(3vnr − 2)v2nr

)2

(B.102)

This inequality is satisfied for max(0, −1+cpπrα

πrα
) < vnr <

1
2
. Hence, d

dvnr
[ΠII(vnr)] > 0 for

all vnr ∈ (max(0, −1+cpαπr

απr
), 1

2
). This proves that the profit function of this case is increasing

for all vnr <
1
2
for which p∗II(vnr) > 0.

Furthermore, we can have a tighter bound on vnr when πr ≥ 1
cpα

. The left- and right-sides

of (B.101) are still positive for all max(0, −1+cpπrα

πrα
) < vnr <

1+c2p
2

when πr ≥ 1
cpα

. Squaring

both sides gets to (B.102). Doing a substitution vnr = Q× −1+cpπrα

πrα
, this inequality becomes

(
4αcpπr +Q2(αcpπr − 1)2

)
(Q(αcpπr − 1)(απr(3cpQ− 2)− 3Q+ 4)− 2απr)

2−
(
4α2cpπ

2
r − 3Q3(αcpπr − 1)3 + 2απrQ

2(αcpπr − 1)2 − 8αcpπrQ(αcpπr − 1)
)2

> 0 (B.103)

This needs to hold for all Q such that vnr goes from −1+cpπrα

πrα
to

1+c2p
2

. This means Q

needs to range from 1 ≤ Q ≤ (1+c2p)πrα

−2+2cpπrα
. This inequality does indeed hold for this range of

Q under the focal region assumptions on cp and α. Hence, d
dvnr

[Π∗(vnr)] is positive for all

vnr ∈ (−1+cpπrα

πrα
,
1+c2p
2

) if πr ≥ 1
cpα

. Under this higher πr condition, we have a tighter lower

bound on vnr than v∗nr ≥ 1
2
(which applies for all πr under the focal region assumptions).

In either case, by the chain rule, since p∗II(vnr) is an increasing function of vnr, it also fol-

lows that the profit function is increasing in p for all p until at least vnr =
1
2
(and if πr ≥ 1

cpα
,

then the profit function is increasing in p for all p until at least vnr =
1+c2p
2

). Therefore, if

this case is induced in equilibrium under optimal pricing, then v∗nr ≥ 1
2
in equilibrium (and

if πr ≥ 1
cpα

, then v∗nr ≥
1+c2p
2

in equilibrium). �

Lemma B.6. Under the conditions of the focal region, if 0 < vnr < vp < 1 arises in

equilibrium under optimal pricing of the benchmark case, then vnr ≤ 1+cp
2

.

Proof of Lemma B.6: Again, from (B.97), we have that an expression of the vendor’s

optimal price as a function of vnr when 0 < vnr < vp < 1 is induced in equilibrium is given

by

p∗II =
1

2
vnr

(
2 + πrαvnr −

√
πrα(4cp + πrαv2nr)

)
. (B.104)

The vendor’s profit as a function of vnr is given by ΠII(vnr) = p∗II(vnr)(1−vnr). To prove

the lemma, we will show that d
dvnr

ΠII(vnr) < 0 for vnr ∈ (1+cp
2

, 1).
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Using the above expression of p∗(vnr), we have that

d

dvnr
ΠII(vnr) =

1

2

(
(−1 + vnr)πrαvnr

(
− 1 + vnr

√
πrα

4cp + πrαv2nr

)
+

(−1 + 2vnr)

(
− 2 + πrαvnr +

√
πrα(4cp + πrαv2nr)

))
. (B.105)

Now to show that this negative for all vnr ∈ (1+cp
2

, 1), we will show that it is negative when

vnr is a convex combination of 1+cp
2

and 1. In particular, substituting vnr = w+ (1−w)1+cp
2

into (B.105), we will show that this expression is negative for all w ∈ (0, 1).

In particular, d
dvnr

ΠII(vnr)|vnr=w+(1−w)
1+cp

2

< 0 is equivalent to

πrα(32cp(w + cp − wcp)− (1 + 3w(−1 + cp)− 3cp)(1 + w + cp − wcp)
2πrα) <

√
πrα (16cp + (1 + w + cp − wcp)2πrα)

(
8w(1− cp) + 8cp − πrα+

(−2 + 3w(−1 + cp)− 3cp)(w(−1 + cp)− cp)πrα

)
. (B.106)

Now we examine several subcases.

Subcase 1: w ≥ 1
3
. First, suppose that w ≥ 1

3
. This implies that πrα(32cp(w + cp −

wcp)− (1 + 3w(−1 + cp)− 3cp)(1 + w + cp − wcp)
2πrα) > 0 and

(
8w(1− cp) + 8cp − πrα+

(−2+3w(−1+ cp)−3cp)(w(−1+ cp)− cp)πrα

)
> 0 as well, for any πr, α, and cp in the focal

region. So both the left and right side of the inequailty in (B.106) are positive. We isolate

the radicand and square both sides. Simplifying and omitting the algebra, this is equivalent

to

64cp(w + cp − wcp)
2 > −(4(w(−1 + cp)− cp)(w

3(−1 + cp)
3 + (−3 + cp)cp(−1 + 3cp)+

w(−1 + cp)(1 + cp)(1 + 11cp)− w2(1− cp)
2(2 + 15cp))πrα+

w(1 + 3w(−1 + cp)− 3cp)(−1 + cp)(1 + w + cp − wcp)
3(πrα)

2) (B.107)

Now viewing the left-hand side as a constant function in α and the right-hand side as a

quadratic function in α, we want to show that the quadratic in α is smaller than a constant

in α. With w ≥ 1
3
, the coefficient on α2 on the right-hand side is negative. Then it suffices

to show that the maximum of that quadratic is less than 64cp(w+ cp−wcp)
2. Differentiating

the right-hand side of the inequality with respect to α and solving for the maximum, we find

that the maximizing α is negative. Therefore, the right-hand side of (B.107) is maximized at

α = 0, which would the right-hand side of the inequailty 0. Then to show that the inequality

above holds for all α > 0, it suffices to show that 64cp(w+ cp−wcp)
2 > 0, which is true since
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cp > 0. �

Subcase 2a: 0 ≤ w <
1
3
and 1 − 2

3(1−w)
≤ cp < 1 Now suppose that 0 ≤ w < 1

3
and

1 − 2
3(1−w)

≤ cp < 1. Going back to the original inequality we want to show, to show that
d

dvnr
ΠII(vnr)|vnr=w+(1−w)

1+cp

2

< 0, we need to show (B.107).

When 0 ≤ w < 1
3
and 1− 2

3(1−w)
≤ cp ≤ 1, then 32cp(w+ cp −wcp)− (1 + 3w(−1+ cp)−

3cp)(1 + w + cp − wcp)
2πrα > 0 and 8w(1− cp) + 8cp − πrα +

(−2 + 3w(−1 + cp) − 3cp)(w(−1 + cp) − cp)πrα > 0. Then similar to Subcase 1, both the

left-hand side and right-hand side of the inequality are positive. We isolate the radicand and

square both sides. Omitting the algebra, we again want to show the inequality (B.107).

When cp > 1− 2
3(1−w)

, the coefficient on the quadratic α term of (B.107) is negative, and

the same argument as Subcase 1 applies to show that the inequality holds for all α > 0 when

0 ≤ w < 1
3
and 1− 2

3(1−w)
≤ cp ≤ 1.

On the other hand, if cp = 1 − 2
3(1−w)

, then (B.106) reduces to πrα(1 − 3w) − (1 −
w)
√

πrα(3+πrα−w(9+πrα))
1−w

< 0, which holds for πrα > 0 and 0 ≤ w < 1
3
. �

Subcase 2b: 0 ≤ w <
1
3
and 0 < cp < 1 − 2

3(1−w)
. Lastly, consider when 0 ≤ w < 1

3

and 0 < cp < 1− 2
3(1−w)

.

Firstly, if 32cp(w + cp −wcp)− (1 + 3w(−1 + cp)− 3cp)(1 +w+ cp −wcp)
2πrα ≥ 0, then

8w(1− cp) + 8cp − πrα + (−2 + 3w(−1 + cp)− 3cp)(w(−1 + cp)− cp)πrα > 0 holds as well,

for any πr > 0, α > 0, w ∈ [0, 1], and cp ∈ (0, 1). In that case, again the inequality (B.106)

would reduce to (B.107), and the same argument from Subcase 1 would apply to show that

(B.106) holds.

On the other hand, consider if 32cp(w+ cp −wcp)− (1+ 3w(−1+ cp)− 3cp)(1+w+ cp −
wcp)

2πrα < 0. If 8w(1− cp)+8cp−πrα+(−2+3w(−1+ cp)−3cp)(w(−1+ cp)− cp)πrα ≥ 0,

then (B.106) holds without further conditions since the left-hand side would be negative

while the right-hand side would be non-negative.

However, if 8w(1−cp)+8cp−πrα+(−2+3w(−1+cp)−3cp)(w(−1+cp)−cp)πrα < 0, then

we can divide by it and isolate the radicand of (B.106). Squaring both sides and omitting

the algebra, this is equivalent to

64cp(w + cp − wcp)
2 < −(4(w(−1 + cp)− cp)(w

3(−1 + cp)
3 + (−3 + cp)cp(−1 + 3cp)+

w(−1 + cp)(1 + cp)(1 + 11cp)− w2(1− cp)
2(2 + 15cp))πrα+

w(1 + 3w(−1 + cp)− 3cp)(−1 + cp)(1 + w + cp − wcp)
3(πrα)

2) (B.108)

Since 0<cp < 1− 2
3(1−w)

, the coefficient on the quadratic α term in (B.108) is positive. So

to prove the inequality for all α, it suffices to show that the minimum of this quadratic in α is

larger than 64cp(w+cp−wcp)
2. Finding the minimizer of the quadratic in α and comparing it

to the lower bound on α given by 8w(1−cp)+8cp−πrα+(−2+3w(−1+cp)−3cp)(w(−1+cp)−
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cp)πrα < 0, we find that the quadratic is minimized at α = 8(w(1−cp)+cp)
(1+3w(−1+cp)−3cp)(1+w+cp−wcp)πr

.

The right-hand side of (B.108) evaluated at this α is indeed larger than 64cp(w+ cp −wcp)
2

when 0 < cp < 1− 2
3(1−w)

and 0 ≤ w < 1
3
. �

Then exhausting all sub-cases, it follows that (B.106) holds for all w ∈ [0, 1]. In particular,

this means that d
dvnr

ΠII(vnr) < 0 for any vnr > 1+cp
2

. Therefore, vnr ≤ 1+cp
2

whenever

0 < vnr < vp < 1 is induced in equilibrium. �

B.2 Other Ransomware Attack Vectors, RW-OV

This section contains the solutions of the consumption subgame and pricing subgame under

RW-OV.

B.2.1 Consumption Subgame

Lemma B.7. [Consumption Subgame] Under RW-OV, for a given price p, the complete

threshold characterization of the consumption subgame of the model without patching is as

follows:

(I) (0 < vnr < 1), where vnr =
πrα−1+

√
1+πrα(−2+4p+πrα)

2πrα
, if the following conditions hold:

(A) p < 1, and

(B) R ≥ α(1− δ)

(II) (0 < vnr < vr < 1), where vnr =
−1+απr+

√
1+απr(−2+4p+απr)

2απr
and vr = R

α(1−δ)
, if the

following conditions hold:

(A) R < α(1− δ), and

(B) (α− αδ)(−1 + απr +
√

1 + απr(−2 + 4p+ απr)) < 2Rαπr

(III) (0 < vr < 1), where vr =
−1−Rπr+δπrα+

√
4δπrα(p+Rπr)+(1+Rπr−δπrα)2

2δπrα
, if the following

conditions hold:

(A) p < 1, and

(B) Either

(
2δ +

√
4πrαδ(p+ πrR) + (−πrαδ + πrR + 1)2 ≤ πrαδ + πrR + 1

)
, or

(
2δ +

√
4πrαδ(p+ πrR) + (−πrαδ + πrR + 1)2 > πrαδ + πrR + 1 and

πrαδ+
√

4πrαδ(p+πrR)+(−πrαδ+πrR+1)2−Rπr−1

2πrαδ
≤ − 2δp

πrαδ−2δ−
√

4πrαδ(p+πrR)+(−πrαδ+πrR+1)2+πrR+1

)

(IV) (0 < 1) (in which no one purchases) if the following conditions hold:

(A) p = 1
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Proof of Lemma B.7: From the same argument as the proof of Lemma B.1, we have

threshold-type equilibrium structure.

Next, we characterize in more detail each outcome that can arise in the consumption

subgame, as well as the corresponding parameter regions. For the case of 0 < vnr < 1, based

on the threshold-type equilibrium structure, we have u(σ) = 1− vnr. We prove the following

claim related to the corresponding parameter region in which this case arises.

Claim 1. The subgame outcome that corresponds to case 0 < vnr < 1 arises if and only if

the following conditions are satisfied:

p < 1 and R ≥ α(1− δ). (B.109)

The consumer indifferent between not purchasing at all and purchasing and remaining

unpatched, vnr, satisfies vnr − p − πrαu(σ)vnr = 0. To solve for the threshold vnr, using

u(σ) = 1− vnr, we solve

vnr =
p

1− πrαu(σ)
=

p

1− πrα(1− vnr)
. (B.110)

For this to be an equilibrium, we have that vnr ≥ 0. This rules out the smaller root of the

quadratic as a solution. Given the underlying model assumptions, the other root is strictly

positive, so the root characterizing vnr is

vnr =
πrα− 1 +

√
1 + πrα(−2 + 4p+ πrα)

2πrα
(B.111)

For this to be an equilibrium, the necessary and sufficient conditions are that 0 < vnr < 1,

type v = 1 weakly prefers (B,NR) to both (B,R).

For vnr < 1, it is equivalent to have p < 1.

For v = 1 to prefer (B,NR) over (B,R), we need 1 ≤ R
α(1−δ)

. Simplifying, this becomes

R ≥ α(1− δ). The conditions above are given in the lemma. �

Next, for the case of 0 < vnr < vr < 1, we have u = 1− vnr. Following the same steps as

before, we prove the following claim related to the corresponding parameter region in which

this case arises.

Claim 2. The subgame outcome that corresponds to case 0 < vnr < vr < 1 arises if and only

if the following conditions are satisfied:

p > 0 and α
(
− 2Rπr + (1− δ)(−1 + πrα +

√
1 + πrα(−2 + 4p+ πrα))

)
< 0. (B.112)

To solve for the thresholds vnr and vr, using u = 1− vnr, note that they solve

vnr =
p

1− πrα(1− vnr)
, and (B.113)

B.54



vr =
R

α(1− δ)
, (B.114)

where the expression in (B.114) comes from (B.5).

Solving for vnr in (B.16), we have

vnr =
−1 + πrα±

√
1 + πrα(−2 + 4p+ πrα)

2πrα
. (B.115)

Note that
−1+πrα−

√
1+πrα(−2+4p+πrα)

2πrα
< p while

−1+πrα+
√

1+πrα(−2+4p+πrα)

2πrα
> p, and since

vnr > p in equilibrium, it follows that

vnr =
−1 + πrα +

√
1 + πrα(−2 + 4p+ πrα)

2πrα
. (B.116)

For this to be an equilibrium, the necessary and sufficient conditions are 0 < vnr < vr < 1.

Type v = vr is indifferent between (B,R) and (B,NR), so this implies that v = vr strictly

prefers (B,NR) over (B,P ).

Note vnr > 0 is satisfied if p > 0 since vnr > p under the preliminary model assumptions.

For vnr < vr, from (B.19) and (B.17), this simplifies to α
(
− 2Rπr + (1− δ)(−1 + πrα+√

1 + πrα(−2 + 4p+ πrα))
)
< 0.

For vr < 1, from (B.17), this simplifies to R < α(1 − δ). The conditions above are

summarized in the lemma. �

Next, for case the case of 0 < vr < 1, we have u = 1 − vr. Following the same steps as

before, we prove the following claim related to the corresponding parameter region in which

this case arises.

Claim 3. The subgame outcome that corresponds to case 0 < vr < 1 arises if and only if

the following conditions are satisfied:

p < 1 and

and either 2δ +
√

4πrαδ(p+ πrR) + (−πrαδ + πrR + 1)2 ≤ πrαδ + πrR + 1, or

2δ +
√

4πrαδ(p+ πrR) + (−πrαδ + πrR + 1)2 > πrαδ + πrR + 1 and

πrαδ +
√
4πrαδ(p+ πrR) + (−πrαδ + πrR + 1)2 −Rπr − 1

2πrαδ
≤

− 2δp

πrαδ − 2δ −
√

4πrαδ(p+ πrR) + (−πrαδ + πrR + 1)2 + πrR + 1
. (B.117)

To solve for the thresholds vr, using u = 1− vr, note it solves

vr =
p+Rπr(1− vr)

1− δπrα(1− vr)
(B.118)
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Then vr is one of the two roots of the equation above,
−1−Rπr+δπrα±

√
4δπrα(p+Rπr)+(1+Rπr−δπrα)2

2δπrα
.

However, the smaller of the two roots is negative, so vr must be the larger of the two roots

in equilibrium. Hence, we have

vr =
−1− Rπr + δπrα +

√
4δπrα(p+Rπr) + (1 +Rπr − δπrα)2

2δπrα
. (B.119)

For this to be an equilibrium, the necessary and sufficient conditions are p < vr < 1, and

no consumer prefers to patch or not pay ransom over paying ransom.

For vr > p, using (B.28), this simplifies to p < 1. For vr > p, using (B.119), this also

simplifies to p < 1. Similarly, vr < 1 also simplifies to p < 1.

For no consumer to strictly prefer not paying ransom over paying ransom, it suffices to

have v = vr weakly prefer not to buy over buying and not paying ransom (since type v = vr
is indifferent between the option of not purchasing and the option of purchasing, remaining

unpatched, and paying ransom). Now if 1 − πrαu[σ] ≤ 0, then v(1 − πrαu[σ]) − p < 0, so

that everyone would prefer (NB,NP ) over (B,NP,NR). In this case, no further conditions

are needed. On the other hand, if 1 − πrαu[σ] > 0, then we will need the condition vr ≤
p

1−πrα(1−vr)
for v = vr to weakly prefer not buying over buying but not paying ransom.

In the first sub-case, the condition v(1− πrαu[σ])− p < 0 simplifies to

2δ +
√
4πrαδ(p+ πrR) + (−πrαδ + πrR + 1)2 ≤ πrαδ + πrR + 1, using (B.28).

In the second sub-case, the conditions 1 − πrαu[σ] > 0 and vr ≤ p

1−πrα(1−vr)
simplify to

2δ +
√
4πrαδ(p+ πrR) + (−πrαδ + πrR + 1)2 > πrαδ + πrR + 1 and

πrαδ+
√

4πrαδ(p+πrR)+(−πrαδ+πrR+1)2−Rπr−1

2πrαδ
≤ − 2δp

πrαδ−2δ−
√

4πrαδ(p+πrR)+(−πrαδ+πrR+1)2+πrR+1
. The

conditions above are summarized in (B.26). �

Lastly, for the case of 0 < 1 (in which no one purchases), we have the following.

Claim 4. The subgame outcome that corresponds to case 0 < 1 (in which no one purchases)

arises if and only if the following conditions are satisfied:

p = 1 (B.120)

When p = 1, then NB dominates every other option for all consumers v ∈ [0, 1]. Conse-

quently, no one purchases when p = 1.

This completes the proof of the equilibrium characterization in the consumption subgame

of the model in Section 4 of the paper. �

Lemma B.8. [Consumption Subgame] Under RW-OV, there exist sets of mutually exclusive

conditions on R, α, δ, and πr that cover the parameter space and cleanly organize the equi-

librium outcome by price. Under each of these parameter sets, the feasible space for price p

can be split into adjacent intervals, each of them with a single structure that characterizes

the unique outcome in the consumption subgame.
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(i) R ≥ α(1− δ):

• 0 ≤ p < 1 : (0 < vnr < 1)

(ii) R < α(1− δ) and 0 < πr <
1−δ

−R+α(1−δ)
:

• 0 ≤ p < R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

: (0 < vnr < vr < 1)

• R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

≤ p < 1 : (0 < vr < 1)

(iii) R < α(1− δ) and πr ≥ 1−δ
−R+α(1−δ)

:

• 0 ≤ p < 1 : (0 < vr < 1)

Under each of these parameter sets, setting p = 1 leads to the trivial outcome of no one

purchasing.

Proof of Lemma B.8: For sufficiently large cp, this comes directly from Proposition B.1.

�

B.2.2 Pricing Subgame

Lemma B.9. Under RW-OV, there exists a bound δ̃ > 0 such that if δ < δ̃, then:

(a) if 0<R ≤ R̃1 (where R̃1 is defined in the proof below), then the equilibrium consumer

market structure is 0 < vr < 1;

(b) if R̃1 < R < α(1− δ), then the equilibrium consumer market structure is 0 < vnr < vr <

1;

(c) if R ≥ α(1− δ), then the equilibrium consumer market structure is 0 < vnr < 1.

Proof of Lemma B.9: From Lemmas B.7 and B.8, we express the consumption subgame

outcomes across the parameter space in terms of intervals of price. We use this to specify

the interior optimal price and vendor’s profit at that interior optimal price for each of these

potential market outcomes.

The following expressions come from Lemma B.3 and are repeated below for the reader

to follow along the proof more easily in this lemma.

Given a price p, the region of the parameter space defining 0 < vnr < 1 is given in part

(I) of Lemma B.2. For this case, we have

vnr =
−1 + πrα +

√
1 + πrα(−2 + 4p+ πrα)

2πrα
. (B.121)
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The interior optimal price of this case is given by:

p∗I =
1

9

(
4− 1

πrα
− πrα+

√
1 + πrα + (πrα)3 + (πrα)4

πrα

)
. (B.122)

Given a price p, the region of the parameter space defining 0 < vnr < vr < 1 is given in

Lemma B.7. This also a special case of part (III) of Lemma B.2. For this case, we have

vnr =
−1 + πrα +

√
1 + πrα(−2 + 4p+ πrα)

2πrα
. (B.123)

The interior optimal price of this case is given by:

p∗III =
1

9

(
4− 1

πrα
− πrα +

√
1 + πrα + (πrα)3 + (πrα)4

πrα

)
. (B.124)

The profit corresponding to this price for this case is given by:

Π∗
III =

(
3 + 3απr −

√
5 + πrα(−2 + 5πrα) + 4

√
1 + πrα + (πrα)3 + (πrα)4

)

54(πrα)2
×

(
−1 + πrα(4− πrα) +

√
1 + πrα + (πrα)3 + (πrα)4

)
. (B.125)

Given a price p, the region of the parameter space defining 0 < vr < 1 is given in Lemma

B.7, which is a special case of part (V) of Lemma B.2.

From (B.28), we have that

vr =
−1− Rπr + δπrα +

√
4δπrα(p+Rπr) + (1 +Rπr − δπrα)2

2δπrα
. (B.126)

The interior optimal price of this case is given by:

p∗V =

(
− 1− 2Rπr + 4δπrα− R2π2

r − 2Rδαπ2
r − (δπrα)

2+

(1 +Rπr + δπrα)
√

1 + πr(2R− δα + (R + δα)2πr)

)(
9δπrα

)−1

. (B.127)

Substituting (B.127) into the profit function of this case associated maximal profit of this

case. Characterizing this profit expression in terms of a Taylor Series expansion in δ, we

have:

Π∗
V =

1

4(1 +Rπr)
+

∞∑

k=1

akδ
k. (B.128)
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That the second-order conditions are satisfied at each interior-optimal solution for each

of the cases above is given in Lemma B.3.

Now that we have found the interior optimal prices for these regions, we use Lemma B.8

to find conditions under which the interior optimal price for a case lies within the set of

conditions defining that case. When more than one interior optimal price is within the price

range defining that case, then we have to compare the profits of those cases. In what follows

below, we will go through each relevant region in Lemma B.8.

First, we examine Region (i) of Lemma B.8.

(i) R ≥ α(1− δ):

• 0 ≤ p < 1 : (0 < vnr < 1)

There is only one market outcome in this region. When the condition under which this

region arises holds, then the equilibrium outcome will be 0<vnr < 1 with the price being given

as p∗I in (B.122) (which is in the interval (0, 1) by the modified focal region assumptions on

α, namely α ∈ (
√
3, 6)).

Next, we examine Region (ii) of Lemma B.8.

(ii) R < α(1− δ) and 0 < πr <
1−δ

−R+α(1−δ)
:

• 0 ≤ p < R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

: (0 < vnr < vr < 1)

• R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

≤ p < 1 : (0 < vr < 1)

In this region, we will show that there is an overlap in the region of the parameter space

over which p∗III and p∗V are interior to their respective regions. Therefore the boundary

between the two cases will be determined by the isoprofit curve (found by finding when the

profits of the two cases are equal at their interior optimal prices).

First, note that for sufficiently small δ, we want to find conditions so that p∗III is in

0 ≤ p < R(1−δ+(R−α(1−δ))πr )
α(1−δ)2

. The upper bound goes to R(1−(α−R)πr)
α

as δ → 0, so we want

to find conditions so that p∗III ∈ (0, R(1−(α−R)πr)
α

) (where p∗III is in (B.124)). That p∗III > 0

follows from the focal region assumptions on cp and α. The condition p∗III <
R(1−(α−R)πr)

α
is

equivalent to R >
−3+3πrα+

√

5+πrα(−2+5πrα)+4
√

1+πrα+(πrα)3+(πrα)4

6πr
.

Next, recall p∗V was given earlier in (B.127). The limit of (B.127) as δ → 0 is 1
2
, so

for sufficiently small δ, p∗V < 1. The condition p∗V ≥ R(1−(α−R)πr)
α

is equivalent to R ≤
−1+πrα+

√
1+(πrα)2

2πr
. That

−1+πrα+
√

1+(πrα)2

2πr
>

−3+3πrα+
√

5+πrα(−2+5πrα)+4
√

1+πrα+(πrα)3+(πrα)4

6πr

follows from the modified focal region assumptions on α (α ∈ (
√
3, 6)). Hence, for sufficiently

small δ, there is an overlap in the regions of the parameter space over which p∗III is interior to

the range of p defining 0<vnr <vr < 1 and p∗V is interior to the range of p defining 0<vr < 1.
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We can find the R boundary (or equivalently, the πr boundary, as shown later in Lemma

B.10) between these two cases by equating their profits, (B.125) and (B.128). For sufficiently

low δ, the boundary between these two cases can be expressed as

R̃1 = A0 +

∞∑

k=1

akδ
k, where (B.129)

A0 =

(
− 6α3π3

r + 2απr(9 + 3
√
1 + απr + α3π3

r + α4π4
r−

4

√
5 + απr(−2 + 5απr) + 4

√
1 + απr + α3π3

r + α4π4
r )−

2(−1+
√
1 + απr + α3π3

r + α4π4
r )(−3+

√
5 + απr(−2 + 5απr) + 4

√
1 + απr + α3π3

r + α4π4
r )+

α2π2
r(−9 + 2

√
5 + απr(−2 + 5απr) + 4

√
1 + απr + α3π3

r + α4π4
r )

)
×

(
2πr(−1 + απr(4− απr) +

√
1 + απr + α3π3

r + α4π4
r )(−3− 3απr+

√
5 + απr(−2 + 5απr) + 4

√
1 + απr + α3π3

r + α4π4
r)

)−1

. (B.130)

A0 as a function of πr is strictly increasing for πr > 0, and since A0 < α both when πr = 0

and when πr = 1, it follows that A0 < α for all πr ∈ (0, 1). Then R̃1 < α(1−δ) for sufficiently

small δ. Also, A0 ∈ (
−3+3πrα+

√

5+πrα(−2+5πrα)+4
√

1+πrα+(πrα)3+(πrα)4

6πr
,
−1+πrα+

√
1+(πrα)2

2πr
) fol-

lows from the modified focal region assumptions on α and πr ∈ (0, 1).

Altogether for this region, for R > R̃1, the profit of 0<vnr < vr < 1 is the equilibrium

outcome with p∗III as the vendor’s price. When R ≤ R̃1, then 0<vr < 1 is the outcome and

p∗V is the vendor’s price.

Next, we examine Region (iii) of Lemma B.8.

(iii) R < α(1− δ) and πr ≥ 1−δ
−R+α(1−δ)

:

• 0 ≤ p < 1 : (0 < vr < 1)

There is only one market outcome in this region. When the condition under which this

region arises holds, then the equilibrium outcome will be 0<vr < 1 with the price being given

as p∗V in (B.127). The limit of (B.127) as δ → 0 is 1
2
, so for sufficiently small δ, p∗V falls in

the interval (0, 1).

Altogether across the three regions of Lemma B.8, for sufficiently small δ:

(a) if 0<R ≤ R̃1, then the equilibrium consumer market structure is 0 < vr < 1;
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(b) if R̃1 < R < α(1− δ), then the equilibrium consumer market structure is 0 < vnr < vr <

1;

(c) if R ≥ α(1− δ), then the equilibrium consumer market structure is 0 < vnr < 1.

�

Lemma B.10. In the setting of non-patchable ransomware, there exists a bound δ̃ > 0 such

that if R̃2 < R < R̃3:

(a) if 0<πr < π′ (where π′ is defined in the proof below), then the equilibrium consumer

market structure is 0 < vnr < vr < 1;

(b) if π′ ≤ πr ≤ 1, then the equilibrium consumer market structure is 0 < vr < 1,

where R̃2 and R̃3 are defined in the proof below.

Proof of Lemma B.10: This follows directly from Lemma B.9, viewing the character-

ization in terms of πr instead of R and focusing on a range of R values above 1
2
α(1 − δ).

Specifically, define

R̃2 = R̃1|πr=0 =
1

2
α(1− δ) (B.131)

as the value of R̃1 when πr = 0, and define

R̃3 = R̃1|πr=1 (B.132)

as the value of R̃1 when πr = 1. Also, since A0 is strictly increasing in πr, this means that

(viewing the boundary as a function of πr), the function is invertible for sufficiently small δ.

Define

π′ , max(0, R̃−1
1 (πr)) (B.133)

as the max of 0 and the inverse function R̃1(πr). Then the profit of 0 < vnr < vr < 1

dominates the profit under 0 < vr < 1 iff πr < π′ (equivalent to R > R̃1 in Lemma B.9). �

B.3 Benchmark for Multiple Classes of Threats, BM

This section contains the characterization of the consumption subgame and pricing subgame

under BM. The outcomes here can be thought of as the scenarios that would arise under the

ransomware model with δ = 1. The risk factor parameter is denoted by πn in this scenario.
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B.3.1 Consumption Subgame

Lemma B.11. [Consumption Subgame] Under BM, for a given price p, the complete thresh-

old characterization of the consumption subgame in Section 5 of the paper is as follows:

(I) (0 < vnr < 1), where vnr =
πnα−1+

√
1+πnα(−2+4p+πnα)

2πnα
if

cp ≥
1

2

(
πnα−

√
πnα(πnα + 4p− 2) + 1 + 1

)
;

(II) (0 < vnr < vp < 1), where vnr is the largest root of the cubic f(x) = πnαx
3 + (1 −

(cp + p)πnα)x
2 − 2px+ p2 and vp =

cpvnr

vnr−p
if

cp <
1

2

(
πnα−

√
πnα(πnα+ 4p− 2) + 1 + 1

)
;

(III) (0 < 1) (in which no one purchases) if p = 1.

Proof of Lemma B.11: This follows from the proof of Lemma B.2 with δ = 1. �

B.3.2 Pricing Subgame

Lemma B.12. The equilibrium outcome is given by 0<vnr < 1 when patching costs are high

(πnα < cp) and 0<vnr <vp< 1 when patching costs are low ( cp(2−3cp)

1−2cp
< πnα).

Proof of Lemma B.12: We use the general model with ransomware to characterize out-

comes in this benchmark model. Specifically, from the consumer utility function (B.1), if

δ > 1 − R
α
, then no consumer would prefer (B, NP, R) over (B, NP, NR). The equilibrium

characterization of the consumption subgame is given in Lemma B.11.

In particular, if Case (I) of Lemma B.11 holds, then 0<vnr < 1 would be the equilibrium

outcome. From the first-order condition, the interior optimal price of this case is given

in (B.37), repeated again for the reader here: p∗I =
−1+πnα(4−πnα)+

√
1+πnα+(πnα)3+(πnα)4

9πnα
. If

πnα > (2−3cp)cp
1−2cp

, then p∗I will not satisfy the cp condition in (I) of Lemma B.11. The condition
(2−3cp)cp
1−2cp

> 0 holds under the conditions of the focal region. Hence, if πnα > cp(−2+3cp)

−1+2cp
, then

0 < vnr < vp < 1 is the equilibrium outcome, and the equilibrium price is characterized in

(B.97).

The condition of Case (II) of Lemma B.11 is cp <
1
2

(
πnα−

√
πnα(πnα + 4p− 2) + 1 + 1

)
.

However, 1
2

(
πnα−

√
πnα(πnα + 4p− 2) + 1 + 1

)
< πnα from πn > 0, α > 0, and p > 0.

Therefore, if πnα < cp, then this condition cannot be met by any price p > 0.

The condition of Case (I) of Lemma B.11 is cp ≥ 1
2

(
πnα−

√
πnα(πnα + 4p− 2) + 1 + 1

)
.

Evaluating p = p∗I =
−1+πnα(4−πnα)+

√
1+πnα+(πnα)3+(πnα)4

9πnα
into right-hand side of the inequality
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gives the expression 1
6

(
3 + 3πnα−

√
5 + πnα(−2 + 5πnα) + 4

√
1 + πnα + (πnα)3 + (πnα)4

)
.

That πnα > 1
6

(
3 + 3πnα−

√
5 + πnα(−2 + 5πnα) + 4

√
1 + πnα + (πnα)3 + (πnα)4

)
fol-

lows from α > 0 and πn > 0. This means that cp ≥ 1
2

(
πnα−

√
πnα(πnα+ 4p− 2) + 1 + 1

)

holds for p = p∗I under the condition cp > πnα. In other words, under the condition cp > πnα,

p∗I is interior to the range of p defining 0<vnr < 1. Altogether, if cp > πnα in the benchmark

scenario, then the equilibrium outcome will be 0 < vnr < 1. �

B.4 Summary of Notation

To assist the reader, we have included a table summarizing the notation of boundaries

between regions defined in the lemmas of Section B.1.2 and used throughout the paper.

Result Sensitivity Bound Description
analysis in
parameter

Proposition R R1 boundary between equilibrium regions (A) and (B) in Figure 1
1 (between 0 < vr < 1 and 0 < vr < vp < 1 regions)

R2 boundary between equilibrium regions (B) and (C) in Figure 1
(between 0 < vr < vp < 1 and 0 < vnr < vr < vp < 1 regions)

R3 boundary between equilibrium regions (C) and (D) in Figure 1
(between 0 < vnr < vr < vp < 1 and 0 < vnr < vp < 1 regions)

Propositions πr π1 boundary between equilibrium regions (A) and (B) in Figure 1
2 and 3 (between 0 < vr < 1 and 0 < vr < vp < 1 regions)

π2 boundary between equilibrium regions (A) and (C) in Figure 1
(between 0 < vr < 1 and 0 < vnr < vr < vp < 1 regions)

π̂ boundary between equilibrium regions (E) and (A) in Figure 1
(between 0 < vnr < vr < 1 and 0 < vr < 1 regions)

π̃ π̃ = min(π1, π2)

Proposition R R̃1 boundary between equilibrium regions (A) and (E) in Figure 4
4 (between 0 < vr < 1 and 0 < vnr < vr < 1 regions)

Propositions πr π′ boundary between equilibrium regions (E) and (A) in Figure 4
5 and 6 (between 0 < vnr < vr < 1 and 0 < vr < 1 regions)

Table B.1: Description of bounds used in Propositions 1-6.
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B.5 Proofs of Propositions 1 - 8

Proof of Proposition 1: From Lemma B.3, we have how the equilibrium market outcome

changes in R. To complete the proof, we do comparative statics on the vendor’s equilibrium

price, profits, and market size with respect to R for each of the market outcomes.

For R < R1, the equilibrium market outcome is 0 < vr < 1. The vendor’s equilibrium

price for sufficiently small δ has a Taylor series expansion of the form

p∗V =
1

2
− απr

8(1 +Rπr)2
δ +

∞∑

k=2

akδ
k. (B.134)

From (B.53), we have the an asymptotic expression in δ of the vendor’s equilibrium profit.

Finally, the market size of this case is 1− v∗r , and this has an asymptotic expansion given by

M∗
V =

1

2(1 +Rπr)
+

∞∑

k=1

akδ
k. (B.135)

Taking the derivatives of p∗V , Π
∗
V , and M∗

V with respect to R, we have:

d

dR
[p∗V ] =

απ2
r

4(1 +Rπr)3
δ +

∞∑

k=2

akδ
k, (B.136)

d

dR
[Π∗

V ] = − πr

4(1 +Rπr)2
+

∞∑

k=1

akδ
k, (B.137)

d

dR
[M∗

V ] = − πr

2(1 +Rπr)2
+

∞∑

k=1

akδ
k. (B.138)

This show that for sufficiently low δ, the vendor’s price in this case increases in R while

the vendor’s profit and market size decrease.

For R in R1 ≤ R < R2, the equilibrium market outcome is 0<vr <vp < 1. The vendor’s

equilibrium price in this case is given by (B.57), and the vendor’s profit at this price is given

by (B.59). The market size of this case is given by 1 − v∗r , and this has an asymptotic

expansion given by

M∗
V I =

1− cp
2

+
c2pα

2R2πr

δ +

∞∑

k=2

akδ
k. (B.139)

Taking the derivatives of p∗V I , Π
∗
V I , and M∗

V I with respect to R, we have:

d

dR
[p∗V I ] = −

c2pα

R3πr

δ +
∞∑

k=2

akδ
k, (B.140)

B.64



d

dR
[Π∗

V I ] = −
(1− cp)c

2
pα

R3πr

δ +

∞∑

k=2

akδ
k, (B.141)

d

dR
[M∗

V I ] = −
c2pα

R3πr

δ +
∞∑

k=2

akδ
k. (B.142)

This shows that for sufficiently low δ, the vendor’s price, profit, and market size all

decrease in R.

For R in R2 ≤ R < R3, the equilibrium market outcome is 0<vnr <vr <vp < 1. The

vendor’s equilibrium price in this case is given by (B.46), and the vendor’s profit at this

price is given by (B.48). The market size of this case is given by 1 − v∗nr, and this has an

asymptotic expansion given by

M∗
IV =

1

2
− cpα

2

8(R(R− cpα))
δ +

∞∑

k=2

akδ
k. (B.143)

Taking the derivatives of p∗IV , Π
∗
IV , and M∗

IV with respect to R, we have:

d

dR
[p∗IV ] =

cpα

2R2
+

∞∑

k=1

akδ
k, (B.144)

d

dR
[Π∗

IV ] =
cpα

4R2
+

∞∑

k=1

akδ
k, (B.145)

d

dR
[M∗

IV ] = −cpα
2(−2R + cpα)

8R2(R − cpα)2
δ +

∞∑

k=2

akδ
k. (B.146)

Note that R > R2 in this region, where R2 =
α

2−cp
+

∞∑

k=1

akδ
k. Also note that cpα

2
< α

2−cp

for all α > 0 and 0 < cp < 1. This shows that for sufficiently low δ, the vendor’s price, profit,

and market size all increase in R in this region since R > R2.

For R ∈ [R3, ω), the equilbrium market outcome is 0<vnr <vp < 1, and the comparative

statics with respect to R are still driven by movement of pboundary in (B.62). In that region of

R, the vendor’s price at the boundary increases in R, and the vendor’s profit increases in R

as pboundary moves toward the interior optimal p∗II of this case (which does not change in R)

instead of being constrained by a boundary condition with 0<vnr <vr < 1. In the proof of

Lemma B.5, we show that p∗II(vnr) is a strictly increasing function of vnr. Since the market

size is 1− vnr, it follows that the market size shrinks as R increases.

For R ≥ ω, the consumer market equilibrium is again 0<vnr <vp < 1, and the vendor

can achieve this using its interior optimal price. At this point, the pricing is no longer driven

by boundary pricing, and the vendor’s price, market size, and profits remain constant in R.
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Regarding continuity of the vendor’s equilibrium profit as a function of R, this follows

from Berge’s Maximum Theorem. For any R, the set of feasible prices for the vendor is just

the closed, compact set [0, 1]. Consequently, the mapping between the set of values R can

be and the set of feasible prices is a constant, compact-valued correspondence. Because this

correspondence is non-empty and constant (the set of feasible prices is always [0, 1] regardless

of R), it is continuous. Then by Berge’s Maximum Theorem, the optimal value function is

continuous in R. Regarding the optimal price as a function of R, the optimal price function

is upper hemicontinuous in R from Berge’s Maximum Theorem as well.

This completes the proof of Proposition 1. �

Proof of Proposition 2: From Lemma B.4, we have how the equilibrium market outcome

changes in πr for all R ≤ ω̂. The upper hemicontinuity of the optimal price as a function of πr

follows from the Berge Maximum Theorem in the same way that the optimal price function

is upper hemicontinuous in R from Proposition 1. To complete the proof, we do comparative

statics on the vendor’s equilibrium price with respect to πr for each of the market outcomes

and compare the price values at the πr values marking the regime switches.

For R ≤ R̂1, the equilibrium outcome is 0<vr < 1. The vendor’s price of this case is

given in (B.51). This has an asymptotic expression in δ given by

p∗V =
1

2
− πrα

8(1 +Rπr)2
δ +

∞∑

k=2

akδ
k. (B.147)

In this low range of R, there is no strategic price jump or drop to induce another market

outcome, and taking the derivative with respect to πr, we have that:

d

dπr

[p∗V ] =
α(−1 +Rπr)

8(1 +Rπr)3
δ +

∞∑

k=2

akδ
k. (B.148)

This shows that d
dπr

[p∗V ] < 0 for all πr ∈ (0, 1
R
). From (B.74), R̂1 =

1
(1−cp)2

−1+
∞∑

k=1

akδ
k.

Note that 1
(1−cp)2

− 1 < 1 holds for the focal region assumptions on cp (0 < cp < 2−
√
3), so

this means that the price is decreasing in πr for all πr < 1 in this region of R for sufficiently

low δ.

For R̂1<R ≤ R̂2, the equilibrium outcome is 0<vr < 1 for πr < π1 by Lemma B.4. Here,

π1 is given in (B.72) and (B.73), which is given by π1 = (2−cp)cp
(1−cp)2R

+

∞∑

k=1

akδ
k. That π1 < 1

R

for sufficiently low δ follows from R > 0 and 0 < cp < 2 −
√
3. The derivative of p∗V with

respect to πr is given in (B.148), so that d
dπr

[p∗V ] < 0 for all πr ∈ (0, 1
R
). Since π1 < 1

R
, the

price is decreasing for all πr < π1 in this region of R.

On the other hand, still for R̂1<R ≤ R̂2 but when for πr > π1, the equilibrium outcome

is 0<vr <vp< 1 by Lemma B.4. The price of 0<vr <vp < 1 is given in (B.57) and written
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again here for clarity: p∗V I = 1−cp
2

+
c2pα

2R2πr
δ +

∞∑

k=2

akδ
k. Taking the derivative of this with

respect to πr, we have:

d

dπr

[p∗V I ] = −
c2pα

2R2π2
r

δ +

∞∑

k=2

akδ
k. (B.149)

d
dπr

[p∗V I ] < 0 for sufficiently small δ, so this price is strictly decreasing for all πr, regardless

of R. Moreover, note that the price given in (B.57) is arbitrarily close to 1−cp
2

for sufficiently

small δ while (B.147) is strictly larger than that (being arbitrarily close to 1
2
for sufficiently

small δ). Hence, there is a price drop at πr = π1.

For R̂2 <R ≤ ω̂, there are two cases depending on whether R > R2 from Lemma B.4.

In either case, for πr < π̂ (where π̂ is given in (B.77)), the consumer market equilibrium

structure that arises under optimal pricing is 0 < vnr < vr < 1. For R̂2<R ≤ R2, then

if πr ∈ (π̂, π1), the equilibrium outcome is 0<vr < 1. For R2<R ≤ ω̂, then if πr ∈ (π̂, π2)

(where π2 is given in (B.79) and given again here for clarity as π2 = cpα

R2−cpRα
+

∞∑

k=1

akδ
k),

the equilibrium outcome is 0<vr < 1. Furthermore, note that when R̂2<R ≤ R2, then

π1 ≤ π2 under the conditions of the focal region. On the other hand, when R2<R ≤ ω̂, then

π2 ≤ π1. Hence, when R̂2 <R ≤ ω̂, we can define π̃ = min(π1, π2) as the πr cutoff above

which 0<vr < 1 no longer holds in equilibrium.

In the case of 0<vnr <vr < 1, the vendor’s price, provided in (B.41), is again given as

p∗III =
1

9

(
4− 1

πrα
− πrα +

√
1 + πrα + (πrα)3 + (πrα)4

πrα

)
. (B.150)

Note that lim
πr→0

[p∗III ] =
1

2
. Furthermore, the derivative of this price is given by:

d

dπr

[p∗III ] =
(α2π2

r − 1)
(
−2
√

α4π4
r + α3π3

r + απr + 1 + απr(2απr + 1) + 2
)

18απ2
r

√
α4π4

r + α3π3
r + απr + 1

(B.151)

d
dπr

[p∗III ] < 0 is equivalent to πr < 1
α
(using πr > 0 and α > 0). We need to show that

π̂ < 1
α
in this range of R. Recall π̂ is the unique root in πr to (B.76). To show that π̂ < 1

α
,

since the expression defining (B.76) was shown to be strictly increasing in πr, it suffices

to show that that expression evaluated at πr = 1
α
is greater than R in this region of the

parameter space. Evaluating (B.76) at πr = 1
α
yields 11α

16
. We want to show that R < 11α

16

under the conditions of this case. Using R < R2 (and recalling R2 is defined in (B.67) as

R2 =
α

2−cp
+

∞∑

k=1

akδ
k), it suffices to show that 11α

16
> α

2−cp
to show that πr <

1
α
for sufficiently

small δ. This holds for α > 0 and 0 < cp < 2 −
√
3. Therefore, p∗III is decreasing in πr
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in this range of πr when δ is sufficiently small. Moreover, combining lim
πr→0

[p∗III ] =
1

2
with

d
dπr

[p∗III ] < 0, we have p∗III <
1
2
for πr > 0 in this region.

On the other hand, when πr ∈ (π̂, π̃), the consumer market equilibrium structure that

arises under optimal pricing is 0 < vr < 1. The asymptotic expression for the vendor’s

price was provided above in (B.147). Taking the derivative with respect to πr (shown in

(B.148)), using the same argument as before, we have that d
dπr

[p∗V ] < 0 for sufficiently small

δ is equivalent to πr <
1
R
. Using that R is close to R = α

2−cp
for sufficiently small δ and using

cp <
1
2

(
2−

√
2
)
(which is implied by the conditions on cp from the focal region assumptions

since cp < 2 −
√
3 and 2 −

√
3 < 1

2

(
2−

√
2
)
), we have that Rπr < 1 so that the price

is decreasing in πr over this region. Moreover, for sufficiently small δ, p∗V is close to 1
2
.

Combined with p∗III < 1
2
for πr > 0 in this region, this implies that there is a price hike at

πr = π̂.

Lastly, when πr > min(π1, π2), the equilibrium outcome is either 0<vr <vp < 1 if R < R2

or 0 < vnr < vr < vp < 1 if R ≥ R2. In the former case, the comparative statics and price

drop at πr = π1 are the same as before when R̂1 <R<R̂2. The vendor’s price in the latter

case, provided in (B.46), is given below:

p∗IV =
R− cpα

2R
+

cpα
2(4cp + 3Rπr)δ

8R3πr

+

∞∑

k=2

akδ
k. (B.152)

Taking the derivative with respect to πr, we have:

d

dπr

[p∗IV ] = −
c2pα

2

2R3π2
r

δ +

∞∑

k=2

akδ
k. (B.153)

Therefore, d
dπr

[p∗IV ] < 0 for sufficiently small δ. Moreover, R−cpα

2R
< 1

2
for cp > 0, α > 0,

and R > 0 so that for sufficiently small δ, p∗IV < p∗V (i.e., there is a price drop at πr = π2).

�
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Full Statement of Proposition 3: Suppose the conditions of Proposition 2 are satisfied.

(a) The vendor’s profit and market size are piecewise decreasing in πr.

(b) If 0<R<R2:

(i) if 0<R ≤ R̂1, the size of the ransom-paying population decreases in πr and the

expected total ransom paid increases in πr for all πr ∈ (0, 1).

(ii) if R̂1 < R ≤ R̂2, the size of the ransom-paying population decreases in πr and the

expected total ransom paid increases in πr for πr ∈ (0, π1). On the other hand,

for πr ∈ (π1, 1), both the ransom-paying population size and the expected total

ransom paid increase in πr.

(iii) If R̂2 < R ≤ R2, the size of the ransom-paying population is constant in πr and

the expected total ransom paid increases in πr for πr ∈ (0, π̂). For πr ∈ (π̂, π1),

the ransom-paying population size decreases and the expected total ransom paid

increases in πr. For πr ∈ (π1, 1), both the ransom-paying population size and the

expected total ransom paid increase in πr.

(c) If R2≤R< ω̂, then the size of the ransom-paying segment is constant in πr and the

expected total ransom paid is increasing in πr over πr ∈ (0, π̂). If πr ∈ (π̂, π2), then the

size of the ransom-paying segment is decreasing in πr, and the expected total ransom

paid is increasing in πr. If πr ∈ (π2, 1), then both the size of the ransom-paying segment

and expected total ransom paid are decreasing in πr,

where R̂1 = 1
(1−cp)2

− 1 + κ̃1(δ), R̂2 = α
2
+ κ̃2(δ), and R2 = α

2−cp
+ κ̃3(δ). The vendor’s

profit and market size are decreasing in πr on each of the specified intervals above. Finally,

when R2 < R ≤ ω̂, there exists an open interval centered at π̃ such that the expected total

ransom paid is discontinuously higher in the upper half of in the interval in comparison to

its measure in the lower half.

Proof of Full Statement of Proposition 3: From Lemma B.4, we have how the equi-

librium market outcome changes in πr. To complete the proof, we do comparative statics

on the vendor’s equilibrium profit, market size, the ransom-paying population size, and the

expected total ransom paid with respect to πr for each of the market outcomes. We then

compare the values for the ransom-paying population size and expected total ransom paid

to the left and right of the boundary πr = π2 marking the regime switch between 0 < vr < 1

and 0 < vnr < vr < vp < 1.

Consider 0<R ≤ R̂1. By Lemma B.4, the equilibrium outcome is 0<vr < 1. For 0 <

vr < 1, the size of the consumer segment willing to pay ransom in equilibrium is given as

r(σ∗) , 1− vr. In this market structure, vr was given by (B.49). We provide it again below.

vr =
−1− Rπr + δπrα +

√
4δπrα(p+Rπr) + (1 +Rπr − δπrα)2

2δπrα
. (B.154)
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The vendor’s price p∗V for sufficiently small δ was given by (B.51).

Again, p∗V has an asymptotic expression in δ given by

p∗V =
1

2
− πrα

8(1 +Rπr)2
δ +

∞∑

k=2

akδ
k. (B.155)

Substituting this into the expression for vr and simplifying r(σ∗), we have the equilibrium

size of the consumer segment willing to pay ransom is

rV (σ
∗) =

1

2(1 +Rπr)
+

∞∑

k=1

akδ
k. (B.156)

The derivative of this with respect to πr is given by:

d

dπr

[rV (σ
∗)] = − R

2(1 +Rπr)2
+

∞∑

k=1

akδ
k. (B.157)

Then d
dπr

[rV (σ
∗)] < 0 for sufficiently small δ for R ≤ R̂1. Since 1− vr is also the market

size of this case, this implies that the market size is decreasing in πr in this case.

The vendor’s profit has an asymptotic expansion given in (B.53), written here for ref-

erence: Π∗
V = 1

4(1+Rπr)
+

∞∑

k=1

akδ
k. The derivative of the profit with respect to πr is given

as:

d

dπr

[Π∗
V ] = − R

4(1 +Rπr)2
+

∞∑

k=1

akδ
k. (B.158)

That d
dπr

[Π∗
V ] < 0 in this range of πr for sufficiently small δ follows from R > 0 and

πr > 0.

The expected total ransom paid in the case of 0 < vr < 1 is given as

TV (σ
∗) =

Rπr

4(1 +Rπr)2
+

∞∑

k=1

akδ
k. (B.159)

The derivative of this with respect to πr is given by:

d

dπr

[TV (σ
∗)] =

R(1−Rπr)

4(1 +Rπr)3
+

∞∑

k=1

akδ
k. (B.160)

That this is increasing in πr for sufficiently small δ is equivalent to Rπr < 1. Since

R ≤ R̂1 and R̂1< 1 under the cp conditions of the focal region (as shown in the proof of

the previous proposition), it follows that Rπr < 1 so that the expected total ransom paid is

increasing in πr in this range of R.
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For R̂1<R ≤ R̂2, the equilibrium outcome is 0<vr < 1 for πr <π1 and 0<vr <vp < 1

for πr ≥ π1. Note that Rπr < 1 still holds for R<R̂2 =
α
2
and πr <π1 under the conditions

of the focal region. Hence, the expected total ransom paid is still increasing in πr in this

region when 0<vr < 1 is induced in equilibrium. Moreover, the comparative statics on the

vendor’s profit, market size, and ransom-paying population remain the same as it was in the

lower R region in the preceding paragraphs.

For πr ≥ π1, the vendor’s profit is given in (B.59). For reference, the expression for the

profit of this case is provided here: Π∗
V I = 1

4
(1− cp)

2 +
(1−cp)c2pαδ

2R2πr
+

∞∑

k=2

akδ
k. Taking the

derivative with respect to πr, we have:

d

dπr

[Π∗
V I ] = −

(1− cp)c
2
pα

2R2π2
r

δ +
∞∑

k=2

akδ
k. (B.161)

This shows that for sufficiently low δ, the vendor’s profit is decreasing in πr, and the sign

of this direction does not change with the magnitude of R.

The market size can be found by plugging in the vendor’s equilibrium price, given in

(B.57), into the expression for vr, given in (B.55). This gives the expression for vr in

equilibrium under optimal pricing, and to find the market size, one would just subtract

this from 1. The asymptotic expression for the market size in this case is given below.

MV I(σ
∗) =

1− cp
2

+
c2pα

2R2πr

δ +
∞∑

k=2

akδ
k. (B.162)

Taking the derivative with respect to πr, we have:

d

dπr

[MV I(σ
∗)] = −

c2pα

2R2π2
r

δ +
∞∑

k=2

akδ
k. (B.163)

This shows that for sufficiently low δ, the equilibrium market size is decreasing in πr, and

the sign of this direction does not change with the magnitude of R.

Similarly, the equilibrium ransom-paying population size is vp−vr at the vendor’s optimal

price. The asymptotic expression for this is given below.

rV I(σ
∗) =

2cp
R(1 + cp)

− cpα

R3

(
R +

2cp
(1 + cp)2πr

)
δ +

∞∑

k=2

akδ
k. (B.164)

Taking the derivative with respect to πr, we have:

d

dπr

[rV I(σ
∗)] =

2c2pα

(1 + cp)2R3π2
r

δ +

∞∑

k=2

akδ
k. (B.165)

This shows that for sufficiently low δ, the equilibrium ransom-paying population size is

increasing in πr, and the sign of this direction does not change with the magnitude of R.
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The expected total ransom paid in this case is given by πru(σ)r(σ)R = πr(vp − vr)
2R.

The asymptotic expression for this is given below.

TV I(σ
∗) =

4c2pπr

(1 + cp)2R
+

∞∑

k=1

akδ
k. (B.166)

Taking the derivative with respect to πr, we have:

d

dπr

[TV I(σ
∗)] =

4c2p
(1 + cp)2R

+

∞∑

k=1

akδ
k. (B.167)

This shows that for sufficiently low δ, the equilibrium expected total ransom paid is

increasing in πr, and the sign of this direction does not change with the magnitude of R.

Next, consider R̂2 <R ≤ R2. By Lemma B.4, for πr < π̂, the equilibrium market outcome

is 0<vnr <vr < 1. For πr ∈ (π̂, π1), the equilibrium market outcome is 0<vr < 1. For

πr >π1, the equilibrium outcome is 0<vr <vp< 1.

For 0<vnr <vr < 1, the vendor’s equilibrium profit is given in (B.42). For reference, the

expression is given as: Π∗
III =

(

3+3απr−
√

5+πrα(−2+5πrα)+4
√

1+πrα+(πrα)3+(πrα)4
)

54(πrα)2
×(

−1 + πrα(4− πrα) +
√

1 + πrα + (πrα)3 + (πrα)4
)
. Taking the derivative of this with re-

spect to πr, we have:

d

dπr

[Π∗
III ] = ((−4απr +

απr(4απr − 1) + 1√
απr(απr − 1) + 1

+ 8)(−(4
√

α4π4
r + α3π3

r + απr + 1+

απr(5απr − 2) + 5)
1
2 + 3απr + 3))(108απ2

r)
−1+

((
√
α4π4

r + α3π3
r + απr + 1+απr(4−απr)−1)(

√
4
√
α4π4

r + α3π3
r + απr + 1 + απr(5απr − 2) + 5−

3απr − 3))(27α2π3
r)

−1+

(
√

α4π4
r + α3π3

r + απr + 1 + απr(4− απr)− 1)(3α−
α(10απr+

2απr(4απr−1)+2√
απr(απr−1)+1

−2)

2
√

4
√

α4π4
r+α3π3

r+απr+1+απr(5απr−2)+5
)

54α2π2
r

.

(B.168)

This is strictly negative under the conditions of the focal region (namely, 0 < cp < 2−
√
3

and (cp−2)2cp
(cp−1)2

< α < 2(cp − 2)2). The market size is MIII = 1 − vnr in this case, and the

equilibrium vnr can be found by plugging the vendor’s optimal price (B.41) into the expression

defining vnr in this case (B.40). The expression is given as:

MIII(σ
∗) =

−
√

4
√

α4π4
r + α3π3

r + απr + 1 + απr(5απr − 2) + 5 + 3απr + 3

6απr

. (B.169)
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The derivative of this with respect to πr is given by:

d

dπr

[MIII(σ
∗)] = −

10απr +
2απr(4απr−1)+2√

απr(απr−1)+1
− 2

12πr

√
4
√
α4π4

r + α3π3
r + απr + 1 + απr(5απr − 2) + 5

+

√
4
√
α4π4

r + α3π3
r + απr + 1 + απr(5απr − 2) + 5− 3απr − 3

6απ2
r

+
1

2πr

. (B.170)

The cp and α conditions of the focal region imply that this is negative for πr > 0, so the

market size decreases in πr in this case.

The size of the consumer segment willing to pay ransom in equilibrium is given as r(σ∗) ,

1−vr. In this market structure, vr =
R

α(1−δ)
. This is constant in πr, and so the ransom-paying

population size rIII(σ
∗) = 1− vr is constant in πr.

For the expected total ransom paid, that is given by T (σ∗) , πru(σ
∗)r(σ∗)R, where u(σ∗)

is the size of the consumer segment willing to remain unpatched. The expected total ransom

paid is TIII(σ
∗) = πru(σ

∗)r(σ∗)R. For 0 < vnr < vr < 1, u(σ∗) = 1 − vnr in equilibrium,

where the equilibrium vnr can be found by substituting the vendor’s optimal price (B.41)

into the expression defining vnr in (B.40).

TIII(σ
∗) = R

(
−
√

4
√

α4π4
r + α3π3

r + απr + 1 + απr(5απr − 2) + 5 + 3απr + 3

)

× (α(δ − 1) +R)

6α2(δ − 1)
. (B.171)

The derivative with respect to πr of this is given by:

d

dπr

[TIII(σ
∗)] = R(R − α(1− δ))

(
3α−

α

(

10απr+
2απr(4απr−1)+2√

απr(απr−1)+1
−2

)

2
√

4
√

α4π4
r+α3π3

r+απr+1+απr(5απr−2)+5

)

6α2(δ − 1)
. (B.172)

For sufficiently small δ, R(R−α(1− δ)) < 0 within this range since R ∈ (R̂2, R2), where

R̂2 = α
2
+ κ̃2(δ) and R2 = α

2−cp
+ κ̃3(δ) are asymptotic expressions of the R bounds from

Lemma B.4 that govern this region of R. The remaining factor of d
dπr

[TIII(σ
∗)] is negative

for sufficiently small δ under the focal region assumptions on cp and α, as well as πr > 0.

Consequently, d
dπr

[TIII(σ
∗)] > 0 for sufficiently small δ, so that the expected total ransom

paid is increasing in πr.

Next, for 0<vr < 1, again the comparative statics hold for the vendor’s profit, market size,

and equilibrium ransom-paying population size since those comparative statics results did

not depend on the magnitude of R for sufficiently small δ (as was shown in (B.157), (B.158),
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and (B.160)). Note that Rπr < 1 still holds for πr < π1 (where π1 =
(2−cp)cp
(1−cp)2R

+
∞∑

k=1

akδ
k from

(B.72) and (B.73)) since (2−cp)cp
(1−cp)2

< 1 using 0 < cp < 2−
√
3.

For 0<vr <vp < 1, the comparative statics still hold in the same way that they had for

R̂1<R< R̂2, since those did not depend on the value of R or any of the other parameters.

Lastly, for R2<R< ω̂, the equilibrium outcome is 0<vnr <vr < 1 for πr < π̂, 0<vr < 1

for πr ∈ (π̂, π2), and 0<vnr <vr <vp< 1 for πr ∈ (π2, 1) by Lemma B.4.

For 0<vnr <vr < 1, the comparative statics remains the same as for R < R2, since those

results did not depend on the magnitude of R, πr, or any other parameters.

For 0<vr < 1, again the comparative statics results do not change for R close to R2.

Focusing on the region of R close to R = R2, we have that the expected total ransom paid

increases in R as long as cp < 1− 1√
2
, which holds under the focal region since 1− 1√

2
< 2−

√
3.

Lastly, for 0 < vnr < vr < vp < 1, the vendor’s profit was given in (B.48). This

decreases in πr under the assumptions of the focal region. For reference, it is Π∗
IV = R−cpα

4R
+

cpα
2(2cp+Rπr)δ
8R3πr

+

∞∑

k=2

akδ
k.

Then the derivative of the profit with respect to πr is given by:

d

dπr

[ΠIV ] = −
c2pα

2

4R2π2
r

δ +
∞∑

k=2

akδ
k. (B.173)

So the profit shrinks in πr in this case.

The market size of this case is MIV = 1 − vnr. The equilibrium vnr can be found by

substituting the vendor’s optimal price (B.46) into the expression defining vnr for this case

in (B.44). The asymptotic expression for the market size of this case is given below.

MIV (σ
∗) =

1

2
− α2cp

8R2 − 8αcpR
δ +

α3cp
(
−4αc2p + cpR(6− απr) + 2πrR

2
)

16πrR3(R− αcp)2
δ2 +

∞∑

k=3

akδ
k.

(B.174)

Taking the derivative with respect to πr, we have:

d

dπr

[MIV (σ
∗)] =

α3c2p(2αcp − 3R)

8π2
rR

3(R − αcp)2
δ2 +

∞∑

k=3

akδ
k. (B.175)

Since R ∈ (R2, ω̂), R is arbitrarily close to α
2−cp

. Substituting this expression for R into

the above, the derivative of the market size within this region for this market structure is

given as:

d

dπr

[MIV (σ
∗)] = −

(cp − 2)4c2p(2(cp − 2)cp + 3)

8α(cp − 1)4π2
r

δ2 +

∞∑

k=3

akδ
k. (B.176)
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That − (cp−2)4c2p(2(cp−2)cp+3)

8α(cp−1)4π2
r

< 0 follows from the focal conditions on cp and α, as well

as πr > 0. Hence, the market size shrinks under the conditions of the focal region for

R ∈ (R2, ω̂) for sufficiently small δ.

The size of the consumer segment willing to pay ransom in equilibrium is given as r(σ∗) ,

vp − vr. In this market structure, vr and vp were given by Case (IV) in Lemma B.2. In

particular, vr = R
πrα(1−δ)

and vp = vnr +
vnr−p

πrαvnr
. The asymptotic expression for vnr is given

in (B.44). Substituting in the vendor’s price, given in (B.46) and simplifying r(σ∗), we have

the equilibrium size of the consumer segment willing to pay ransom in this case is

rIV (σ
∗) =

1

2
− R

α
+

cp
Rπr

+

∞∑

k=1

akδ
k. (B.177)

The derivative of this with respect to πr is given by

d

dπr

[rIV (σ
∗)] = − cp

Rπ2
r

+

∞∑

k=1

akδ
k. (B.178)

Hence, rIV (σ
∗) is decreasing in πr for sufficiently small δ.

For the total expected ransom paid, this is given as

TIV (σ
∗) = cp

(
1

2
− R

α
+

cp
Rπr

)
+

∞∑

k=1

akδ
k. (B.179)

The derivative of this with respect to πr is given by:

d

dπr

[TIV (σ
∗)] = −

c2p
Rπ2

r

+

∞∑

k=1

akδ
k. (B.180)

Therefore, d
dπr

[TIV (σ
∗)] < 0 for sufficiently small δ in this case.

To complete the proof of Proposition 3, we compare (B.177) to (B.156) at their πr

boundary πr = π2 when R ∈ (R2, ω̂) to show that, for sufficiently small δ, rIV (σ
∗) < rV (σ

∗)

at the πr = π2 boundary. Specifically, recall π2 = cpα

R2−cpRα
+

∞∑

k=1

akδ
k from (B.79) and

R2 = α
2−cp

+
∞∑

k=1

akδ
k from (B.67) and ω̂ is arbitrarily close to R2. Comparing the ransom-

paying population size at this πr boundary within this R range, for sufficiently small δ, we

have the following.

Substituting in πr = π2 for (B.177) gives:

rIV (σ
∗) =

1

2
− cp +

∞∑

k=1

akδ
k. (B.181)
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Substituting in πr = π2 for (B.156) gives:

rV (σ
∗) =

1

2
(1− cp)

2 +

∞∑

k=1

akδ
k. (B.182)

That 1
2
(1− cp)

2 > 1
2
− cp follows from the focal region condition on cp, so there is a drop

in r(σ∗) at this boundary.

Comparing the expected total ransom paid at this boundary, for sufficiently small δ:

Substituting in πr = π2 for (B.179) gives:

TIV (σ
∗) =

c2p(8− 8cp + 2c2p − πrα)

2(2− cp)πrα
+

∞∑

k=1

akδ
k. (B.183)

Substituting in πr = π2 for (B.159) gives:

TV (σ
∗) =

(2− cp)πrα

4(2− cp + πrα)2
+

∞∑

k=1

akδ
k. (B.184)

That
c2p(8−8cp+2c2p−πrα)

2(2−cp)πrα
> (2−cp)πrα

4(2−cp+πrα)2
follows from 0 < cp < 2−

√
3. Therefore, TIV (σ

∗) >

TV (σ
∗) at that πr boundary for sufficiently small δ. �

Proof of Proposition A.1: From Lemma B.3, under the conditions of this proposition,

the consumer market equilibrium outcome is 0 < vnr < vr < vp < 1.

If 0 < vnr < vr < vp < 1 is induced in equilibrium, then from (B.48), the asymptotic

expression for the vendor’s profit is given by

Π∗
IV =

R− cpα

4R
+

cpα
2(2cp +Rπr)δ

8R3πr

+
∞∑

k=2

akδ
k. (B.185)

Differentiating with respect to δ, we have that d
dδ
[Π∗

IV ] =
cpα

2(2cp+Rπr)
8R3πr

+

∞∑

k=1

akδ
k. It

follows that for sufficiently small δ, d
dδ
(Π∗

IV ) > 0.

For the market size to be decreasing in δ, we will show that the equilibrium vnr under

optimal pricing is increasing in δ. By substituting in (B.46) into (B.44), the asymptotic

expression for this threshold in equilibrium is given by

v∗nr =
1

2
+

cpα
2

8R(R− cpα)
δ +

∞∑

k=2

akδ
k. (B.186)

Taking the derivative of this with respect to δ and focusing on the zero-order term, we

have that d
dδ
[v∗nr] =

cpα
2

8R(R−cpα)
+

∞∑

k=2

akδ
k. This is positive for sufficiently small δ since R > cpα
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is a condition of this case (for p∗IV > 0). Hence, the market size shrinks in δ for sufficiently

small δ under the conditions of this case.

The aggregate unpatched loss measure given as

UL,

∫

V
1{σ∗(v)=(B,NP,NR)}πrαu(σ

∗)vdv +

∫

V
1{σ∗(v)=(B,NP,R)}πru(σ

∗)(R + δαv)dv .

Consequently, aggregate unpatched losses are given as

UL∗
IV =

∫ vr

vnr

πrα(vp − vnr)vdv +

∫ vp

vr

πr(vp − vnr)(R + δαv)dv . (B.187)

Substituting (B.46) into (B.44), we can characterize the equilibrium vnr threshold as

vnr(p
∗
IV ) =

1

2
+

cpα
2δ

8R(R− cpα)
+

∞∑

k=2

akδ
k. (B.188)

Then substituting (B.46) and (B.188) into (B.24), we can characterize the equilibrium vp
threshold as

vp(p
∗
IV ) =

1

2
+

cp
Rπr

+
cpα(8c

2
pα +R2πr(−4 + πrα) + 4cpR(−2 + πrα))δ

8R3(R− cpα)π2
r

+
∞∑

k=2

akδ
k. (B.189)

Finally, the asymptotic expansion of vr =
R

α(1−δ)
is given by

vr(p
∗
IV ) =

R(1 + δ)

α
+

∞∑

k=2

akδ
k. (B.190)

Substituting in (B.188), (B.190), and (B.189) into the above expression, the asymptotic

characterization of the aggregate unpatched losses is given as

UL∗
IV =

cp(8cpα− (−2R + α)2πr)

8Rπrα
+

cp

(
R(2R−α)(4R3−4cpR2α+Rα2−2cpα3)

α(−R+cpα)
− 24c2pα

π2
r

+ 2cp(4R2−8Rα+α2)
πr

)

16R3
δ +

∞∑

k=2

akδ
k. (B.191)

B.77



Taking the derivative with respect to δ, we have

d

dδ
[UL∗

IV ] =

cp

(
R(2R−α)(4R3−4cpR2α+Rα2−2cpα3)

α(−R+cpα)
− 24c2pα

π2
r

+ 2cp(4R2−8Rα+α2)

πr

)

16R3
+

∞∑

k=1

bkδ
k.

(B.192)

Under the assumptions of the focal region along with πr > π̄ and R > α
2−cp

, we have that

cp

(
R(2R−α)(4R3

−4cpR
2α+Rα2

−2cpα
3)

α(−R+cpα)
− 24c2pα

π2
r

+
2cp(4R

2
−8Rα+α2)

πr

)

16R3 < 0 for sufficiently small δ.

Similarly, denote consumer surplus as CS,

∫

V
1{σ∗(v)∈{(B,NP,NR),(B,NP,R),(B,P )}}U(v, σ)dv.

For the case of 0 < vnr < vr < vp < 1, this becomes

CS∗
IV =

∫ vr

vnr

(v − p∗IV − πrα(vp − vnr)v) dv +

∫ vp

vr

(v − p∗IV − πr(vp − vnr)(R + δαv)) dv+

∫ 1

vp

(v − p∗IV − cp) dv . (B.193)

Substituting in (B.46), (B.188), (B.190), and (B.189) into the above expression, the

asymptotic characterization of consumer surplus is given as

CS∗
IV =

1

8

(
1 + cp

(
−8 +

4R

α
+

3α

R

))
+

cp(4c
2
pα

2 + cpα(−4R2 + 4Rα− 3α2)πr +R(4R3 − 2R2α +Rα2 − 2α3)π2
r)

8R3απ2
r

δ +

∞∑

k=2

akδ
k.

(B.194)

Taking the derivative with respect to δ, we have

d

dδ
[CS∗

IV ] =

cp(4c
2
pα

2 + cpα(−4R2 + 4Rα− 3α2)πr +R(4R3 − 2R2α+Rα2 − 2α3)π2
r )

8R3απ2
r

+
∞∑

k=2

bkδ
k.

(B.195)

We will show that
cp(4c2pα

2+cpα(−4R2+4Rα−3α2)πr+R(4R3−2R2α+Rα2−2α3)π2
r)

8R3απ2
r

< 0 under the con-

ditions of the proposition. This is equivalent to 4c2pα
2+cpα(−4R2+4Rα−3α2)πr+R(4R3−
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2R2α + Rα2 − 2α3)π2
r < 0. This is a quadratic in πr, with negative second-order term for

R sufficiently close to the R = α
2−cp

boundary (R2). For this to hold, either there are two

real roots and πr is larger than the larger root of that quadratic or smaller than the smaller

root of that quadratic, or there are not two real roots (in which case the inequality is always

satisfied). Under the conditions the proposition, the larger of the two roots is given by

πr,2 =
8cpα

4R2 − 4Rα+ 3α2 +
√
−48R4 + 24R2α2 + 8Rα3 + 9α4

. (B.196)

Under the conditions of the proposition, the smaller root is negative, so we want to show

that πr > πr,2 in this case. Note that cpα

R2−cpRα
> πr,2 from the conditions of the proposition

and the focal region assumptions, and since πr > cpα

R2−cpRα
for this proposition, it follows

that πr > πr,2. Therefore, d
dδ
[CS∗

IV ] < 0 for sufficiently small δ under the conditions of the

proposition. �

Proof of Proposition A.2: From the consumer utility function (B.1), a consumer of

valuation v prefers (B, NP, R) over (B, NP, NR) if and only if v − p− πru(σ)(R + δαv) ≥
v−p−πru(σ)αv. This is equivalent to v ≥ R

α(1−δ)
. Consequently, if R

α(1−δ)
> 1 (or δ > 1− R

α
),

then no consumer would prefer (B, NP, R) over (B, NP, NR).

As (B, NP, R) is a strictly dominated option under this condition, consumers are left

with (NB), (B, NP, NR), and (B, P) as incentive-compatible choices. Consequently, when

δ > 1− R
α
, the equilibrium characterization of the consumption subgame no longer depends

on R or δ, as in Lemma B.11.

In particular, if Case (I) of Lemma B.11 holds, then 0<vnr < 1 would be the equilibrium

outcome. From the first-order condition, the interior optimal price of this case is given

by p∗I =
−1+πrα(4−πrα)+

√
1+πrα+(πrα)3+(πrα)4

9πrα
. If πrα > (2−3cp)cp

1−2cp
, then p∗I will not satisfy the

conditions in (I). Note that (2−3cp)cp
1−2cp

> 0 holds under the conditions of the focal region.

Hence, if πrα > cp(−2+3cp)

−1+2cp
and δ > 1− R

α
, then 0 < vnr < vp < 1 is the equilibrium outcome,

and no measures of interest change in R or δ.

On the other hand, the condition of Case (II) of Lemma B.11 is cp+(−1+cp+p)πrα < c2p.

Therefore, if α < cp
πr
, then this condition cannot be met by any price p > 0. Consequently, if

α < cp
πr

and δ > 1 − R
α
, then the equilibrium outcome will be 0 < vnr < 1, and no measures

of interest change in R or δ. �

Proof of Proposition 4: Lemma B.9 provides the characterization of the consumer mar-

ket equilibrium under optimal pricing as R changes. To complete the proof, we compute the

vendor’s price, profit, and market size for each market outcome to do comparative statics

with respect to R.

When 0<vr < 1 is induced in equilibrium, the vendor’s price is given in (B.127) and

given again for reference here: p∗V =

(
− 1− 2Rπr + 4δπrα− R2π2

r − 2Rδαπ2
r − (δπrα)

2 +
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(1+Rπr+ δπrα)
√

1 + πr(2R− δα + (R + δα)2πr)

)(
9δπrα

)−1

. The asymptotic expression

for this is given as:

p∗V =
1

2
− πrα

8(1 +Rπr)2
δ +

∞∑

k=2

akδ
k. (B.197)

Taking the derivative of this with respect to R gives:

d

dR
[p∗V ] =

απ2
r

4(1 +Rπr)3
δ +

∞∑

k=2

akδ
k. (B.198)

For sufficiently small δ, we have d
dR

[p∗V ] > 0 so the price increases in R.

The asymptotic expansion in δ for the vendor’s profit at this price is given in (B.128).

For reference, it is provided again here as: Π∗
V = 1

4(1+Rπr)
+

∞∑

k=1

akδ
k. The derivative of this

with respect to R is:

d

dR
[Π∗

V ] = − πr

4(1 +Rπr)2
+

∞∑

k=1

akδ
k. (B.199)

For sufficiently small δ, we have d
dR

[Π∗
V ] < 0 so the profit decreases in R.

The market size is MV = 1 − vr, and the equilibrium vr can be found by substituting

(B.127) into (B.126). This has an asymptotic expansion given by

M∗
V =

1

2(1 +Rπr)
+

∞∑

k=1

akδ
k. (B.200)

Taking the derivative with respect to R of this, we have:

d

dR
[M∗

V ] = − πr

2(1 +Rπr)2
+

∞∑

k=1

akδ
k. (B.201)

Altogether, this shows that, for sufficiently small δ, the vendor’s equilibrium price in-

creases in R while the profit and market size shrinks in R.

For the cases of 0<vnr <vr < 1 and 0<vnr < 1, the equilibrium prices are given in (B.124)

and (B.122), respectively. Note that they are equal, and neither depend on R. Hence, as R

changes, the equilibrium price remains constant across R in these regimes. It follows that

the vendor’s equilibrium profit is constant in R as well. Also, since vnr does not directly

depend on R in either market outcome (and since it does not indirectly depend on R through

the price p), it follows that the market size is also constant in R. �
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Proof of Proposition 5: Lemmas B.9 and B.10 provide the characterization of the con-

sumer market equilibrium under optimal pricing as πr changes. Lemma B.9 states that when

R ≤ R̃2, the equilibrium consumer market structure is 0<vr < 1. Lemma B.10 states that

for a higher range of R (specifically, R̃2 < R < R̃3), the market structure is 0<vnr <vr < 1

for πr < π̂ and is 0<vr < 1 otherwise. To complete the proof, it suffices to do comparative

statics on the equilibrium price for the three cases. Then we will compare the prices.

For the case of 0<vr < 1, the price comparative statics are the same as provided in

the proof of Proposition 2. In particular, for sufficiently low δ, the price decreases in πr if

πr <
1
R
. This implies that the price decreases for all πr ∈ (0, 1) if and only if R < 1. Since

R is bounded above by R̃2, for sufficiently low δ, R > 1 can only happen is α > 2. Hence,

if α > 2 and R > 1, then the vendor’s price decreases in πr for (0,
1
R
) and increases in πr for

πr >
1
R
. Otherwise, if either α ≤ 2 or R ≤ 1, then the vendor’s price will decrease in πr for

all πr.

For the case of 0<vnr <vr < 1, the equilibrium price is given in (B.122). The price is

decreasing in πr as long as πr < 1
α
(for the same reason as in Proposition 2). We want to

show that 1
α
< π′. For sufficiently low δ, this is equivalent to R < 11α

16
. For sufficiently small

δ and R sufficiently close to R = R̃2, there exists an R̃3 such that for R ∈ (R̃2, R̃3), we have

that R < 11α
16

. Hence, the price is decreasing in πr for R close to R = R̃2. Repeating the

same argument as in the proof of Proposition 2 by comparing the prices (which are the same

expressions as in Proposition 2), we have that there is a price hike at πr = π′. �

Proof of Proposition 6: Lemma B.10 provides the characterization of the consumer

market equilibrium under optimal pricing as πr changes for R ∈ (R̃2, R̃3), and Lemma B.9

provides the consumer market outcome characterization for R ≤ R̃2. To complete the proof,

we compute the vendor’s equilibrium profit, market size, the size of the population willing

to pay ransom, and the expected total ransom paid.

For the case of 0<vr < 1, the expected total ransom paid is increasing in πr for sufficiently

low δ if Rπr < 1. This is the same condition as for the price comparative statics for the

same case in the previous proposition and is also given in the proof of Proposition 2 (with

the equations for the expected total ransom paid given in (B.159) and its derivative with

respect to πr given in (B.160)). In particular, for sufficiently low δ, expected total ransom

paid increases in πr for all πr if α ≤ 2 or if α > 2 and R ≤ 1. Otherwise, the expected total

ransom paid will be non-monotonic in πr.

For 0<vnr <vr < 1, the the size of the ransom-paying population is r(σ) = 1− vr. Since

vr = R
α(1−δ)

in this case is constant in πr, it follows that the size of the ransom-paying

population is constant in πr in this case. The vendor’s profit is given in (B.125), and the

derivative of the profit is given in (B.168). The equilibrium market size is M = 1−vnr, where

the equilibrium vnr can be found by substituting (B.124) into (B.123). The expression for

the market size is given in (B.169), and its derivative with respect to πr is given in (B.170).

As was the case in Proposition 2 (and identically following the proof of that proposition),

we have that both the market size and vendor’s profit decreases in πr for any α > 0 and
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πr > 0. The expected total ransom paid in this case is T (σ) = πr(1− vnr)(1 − vr)R. Again

from Proposition 2, we have:

TIII(σ
∗) = R

(
−
√

4
√

α4π4
r + α3π3

r + απr + 1 + απr(5απr − 2) + 5 + 3απr + 3

)

× (α(δ − 1) +R)

6α2(δ − 1)
. (B.202)

and

d

dπr

[TIII(σ
∗)] = R(R − α(1− δ))

(
3α−

α

(

10απr+
2απr(4απr−1)+2√

απr(απr−1)+1
−2

)

2
√

4
√

α4π4
r+α3π3

r+απr+1+απr(5απr−2)+5

)

6α2(δ − 1)
. (B.203)

R < α (which follows from R < R̃3) and R > 1
2
α. Furthermore, the remaining factor of

d
dπr

[TIII(σ
∗)] is negative for sufficiently small δ under the focal region (as in Proposition 2),

so again we have that d
dπr

[T (σ∗)] > 0 for sufficiently small δ.

For 0<vr < 1 when R > R̃2, the vendor’s equilibrium profit is given in (B.128). The

asymptotic expression was derived in (B.53) and is provided again here for reference:

Π∗
V =

1

4(1 +Rπr)
+

∞∑

k=1

akδ
k. (B.204)

The derivative with respect to πr is given as:

d

dπr

[Π∗
V ] = − R

4(1 +Rπr)2
+

∞∑

k=1

akδ
k. (B.205)

The equilibrium market size is M = 1 − vr, where the equilibrium vr can be found by

substituting the price (B.127) into the expression of vr in this case (B.126). The asymptotic

expression in δ is given as:

MV (σ
∗) =

1

2(1 +Rπr)
+

∞∑

k=1

akδ
k. (B.206)

The derivative with respect to πr is:

d

dπr

[MV (σ
∗)] = − R

2(1 +Rπr)2
+

∞∑

k=1

akδ
k. (B.207)

From the derivatives of the market size and profit with respect to πr being negative for

sufficiently small δ, both the profit and market size decrease in πr in this case for sufficiently

small δ.
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Also, since r(σ) = 1 − vr is the same as the market size in this case, it follows that

the population willing to pay ransom decreases in πr. The expected total ransom paid is

T (σ) = πrn(σ)r(σ)R = πr(1− vr)(1− vr)R. The asymptotic expression in δ for this is given

below.

TV (σ
∗) =

Rπr

4(1 +Rπr)2
+

∞∑

k=1

akδ
k. (B.208)

The asymptotic expression for the derivative is given in (B.160) and provided again below:

d

dπr

[TV (σ
∗)] =

R(1−Rπr)

4(1 +Rπr)3
+

∞∑

k=1

akδ
k. (B.209)

That this derivative is positive in πr for sufficiently small δ holds for πr <
1
R
. If R ≤ 1,

then the expected total ransom paid is increasing in πr for all πr. Otherwise, if R > 1, then

the expected total ransom paid increases in πr for πr <
1
R
and decreases in πr for πr >

1
R
.

Finally, since there is a price hike at πr = π′ from Proposition 5, the market size shrinks

at that discontinuity so the usage risk shrinks due to the price hike. Consequently, the

expected total ransom paid decreases due to the price hike. This completes the proof. �

Proof of Proposition 7: To compare the benchmark and ransomware scenarios, we will

use a common π parameter to denote the risk factor. In the ransomware case, π = πr, and

in the benchmark case, π = πn.

We will show that for sufficiently low π, the equilibrium price of the benchmark case

and the equilibrium price of the ransomware case match. Then we will show that for an

intermediate range of π, the equilibrium price of the ransomware case is greater than the

price of the benchmark scenario. Lastly, we will show that for a high range of π, the

equilibrium price of the benchmark case is greater than that of the ransomware case.

First, by Proposition A.2, for sufficiently low π in the benchmark case, we have 0<vn < 1

as the equilibrium outcome (in which nobody patches). By Lemma B.10, for sufficiently low

π, we have that 0<vnr <vr < 1 is the equilibrium outcome under the conditions of the

proposition. Comparing the prices (B.37) and (B.41), we note that they are equal, so for

sufficiently low π, the equilibrium price of the benchmark case and the equilibrium price of

the ransomware case match.

Next, we will show that under the conditions of the proposition, whether 0 < vn < 1 or

0 < vn < vp < 1 arises under the benchmark case, we will have p∗RW > p∗BM when 0 < vr < 1

is the induced equilibrium outcome. If 0 < vn < 1 is the equilibrium outcome under the

benchmark case, then the equilibrium price would be the same as that of 0<vnr <vr < 1

(again, comparing the prices (B.37) and (B.41). We showed in Proposition 2 that there is a

price jump at the point of discontinuity. Hence, if 0 < vn < 1 is still the equilibrium outcome

under the benchmark case, then p∗RW > p∗BM .
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On the other hand, suppose that 0 < vn < vp < 1 is the equilibrium outcome under

the benchmark case. At the value of π at which point the vendor switches price to induce

0 < vn < vp < 1 instead of 0 < vn < 1 in the benchmark case, it cannot be the case that the

vendor does so by hiking the price. This is because a price hike would restrict unpatched

usage, making patching even less incentive-compatible than with lower π. Therefore, a regime

switch must be accompanied by a price drop, and the vendor’s price in 0 < vn < vp < 1 is

lower than the price in the case of 0 < vn < 1 (which was shown to be lower than the price

in the ransomware case). To sum up, whether 0 < vn < 1 or 0 < vn < vp < 1 arises under

the benchmark case, we will have p∗RW > p∗BM when 0 < vr < 1 is the induced equilibrium

outcome.

Lastly, consider when π > π2 of Lemma B.4. By Lemma B.4, the equilibrium outcome

under the ransomware case is 0<vnr <vr <vp< 1. By Proposition A.2, we have that if

π > cp(2−3cp)
α(1−2cp)

, then the equilibrium outcome under the benchmark case if 0 < vn < vp < 1.

Under the conditions of the focal region, when R is close to the boundary R = R2, then

π2 >
cp(2−3cp)
α(1−2cp)

. Hence, when R is close to R = R2 and π > π2, then the equilibrium outcome

under the ransomware case is 0<vnr <vr <vp< 1 while the equilibrium outcome under the

benchmark case is 0 < vn < vp < 1.

We compare the price of 0 < vnr < vr < vp < 1 given in (B.46) to the benchmark

price given in (B.97). Since vnr > 1
2
by Lemma B.5 and p∗II(vnr) is increasing in vnr

(shown in the proof of that lemma), it follows that a lower bound on p∗II is p∗II
(
1
2

)
=

1
8

(
4 + πrα−

√
πrα(16cp + πrα)

)
. The expression 1

8

(
4 + πrα−

√
πrα(16cp + πrα)

)
> R−cpα

2R

(where the right side of the inequality comes from the constant term of the asymptotic ex-

pansion for the price in 0 < vnr < vr < vp < 1) is equivalent to 2cpα + R(−2R + α)πr > 0.

This holds for all πr for R sufficiently close to R = R2 under the conditions of the focal

region. Hence, the benchmark price is greater than the ransomware price for π > π2 of

Lemma B.4. �

Proof of Proposition 8: Similar to Proposition 7, we will use the π notation to denote a

risk factor parameter across both the ransomware scenario as well as the benchmark scenario,

and the proof of this proposition follows a similar structure.

Under the ransomware scenario, the consumer market equilibrium across π was given in

Lemma B.4. When π is low in the ransomware scenario, then the equilibrium outcome is

0 < vnr < vr < 1 under the conditions of the proposition. By Proposition A.2, the consumer

market outcome under the benchmark scenario is 0 < vn < 1.

When the equilibrium market outcome is 0 < vnr < vr < 1, for sufficiently small πr, the

equilibrium welfare is given as

SWIII =
3

8
+

(R2 − 2Rα)πr

4α
+

∞∑

k=1

akπ
k
r . (B.210)

For 0 < vn < 1, the asymptotic expression for the welfare in πr for sufficiently small πr
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is given by

SWI =
3

8
− πrα

4
+

∞∑

k=1

akπ
k
r . (B.211)

Comparing against (B.211), we have that ransomware dominates the benchmark for

sufficiently low πr. Therefore, there exists a bound an πL > 0 such that if 0<π < πL, then

SWRW ≥ SWBM for sufficiently low δ.

Next, consider the high π case. Under ransomware, the equilibrium outcome for π > π2

(from Lemma B.4) is 0 < vnr < vr < vp < 1. As shown in the proof of Proposition 7, under

this high π range, the equilibrium outcome under the benchmark would be 0 < vn < vp < 1.

Under the ransomware scenario, the asymptotic expression in δ of the equilibrium welfare of

this case is given as

SWIV =
1

8

(
3 + cp

(
−8 +

4R

α
+

α

R

))
+

∞∑

k=1

akδ
k. (B.212)

On the other hand, in the benchmark case, the equilibrium price satisfies (B.97).

We also have that vp =
cpvnr

vnr−p
from (B.14). The welfare of this case is given by

SWII =

∫ vp

vnr

(v − πrα(vp − vnr)v) dv +

∫ 1

vp

(v − cp) dv . (B.213)

Substituting in (B.14) for vp and substituting in (B.97) for the price as a function of vnr,

we have that the welfare expression as a function of vnr is given as

SWII(vnr) =
1

4

(
v2nr

(√
α
√
πr

√
4cp + απrv2nr + απr(−vnr)− 2

)
+

cp

(√
4cp + απrv2nr√

α
√
πr

+ vnr − 4

)
+ 2

)
. (B.214)

Assuming πr > 1
cpα

and using vnr >
1+c2p
2

from Lemma B.5, that (B.214) is strictly

decreasing in vnr for vnr >
1+c2p
2

follows from the conditions on cp and α of the focal region.

Therefore, a lower bound on social welfare of this benchmark case is (B.214) evaluated at

vnr =
1+cp
2

, and an upper bound is (B.214) evaluated at vnr =
1+c2p
2

.

Focusing on high πr (πr ≈ 1) and using vnr ≥ 1+c2p
2

to get an upper bound, we have that

an upper bound of the benchmark welfare in this case is:
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SWII ≤ − 1

32

(
c2p + 1

)2
(
α + αc2p −

√
α
(
α
(
c2p + 1

)2
+ 16cp

)
+ 4

)
+

1

8
cp

(√
(
c2p + 1

)2
+

16cp
α

+ c2p − 7

)
+

1

2
. (B.215)

On the other hand, the first-order term of (B.212) (the welfare in the ransomware case

for high πr) when R = α
2−cp

gives

SWIV =
(1− cp)

2(6 + cp)

8(2− cp)
+ +

∞∑

k=1

akδ
k. (B.216)

Comparing the two expressions (the upper bound on SWII and the first-order term of

the ransomware welfare expression SWIV ), we have that the welfare of the ransomware

case is greater than the upper bound on social welfare if α > max(2cp + 1, 1
cp
) (where the

bound α > 1
cp

is needed to guarantee 1
cpα

< 1 for the πr bound to be feasible) along with

the conditions in the focal region. Note that max(2cp + 1, 1
cp
) = 1

cp
using the focal region

assumptions on cp: 0 < cp < 2 −
√
3. Also note that this is a non-empty region of the

parameter space since 1
cp

< 2(2 − cp)
2 for all 0.15 < cp < 2 −

√
3. Hence, if cp > c̃p for

some cp ∈ (0, 2−
√
3) and α > 1

cp
, then the welfare of the ransomware case is higher than the

welfare of the benchmark case for π close to 1.

Lastly, consider an intermediate range of π, for π in a range (π2 − ǫ, π2) (where π2 comes

from Lemma B.4). By Lemma B.4, the equilibrium market outcome under the ransomware

case is 0 < vr < 1. Then the equilibrium vr has an asymptotic expression given by

v∗r =

(
1− 1

2 + 2Rπr

)
+

∞∑

k=1

akδ
k. (B.217)

The welfare function of this case is given by

SW ,

∫

V
1{σ∗(v)=(B,NP,R)} (v − πru(σ

∗)(R + δαv)) dv .

Consequently, welfare is given as:

SW ∗
V =

∫ 1

vr

(v − πr(1− vnr)(R + δαv)) dv . (B.218)

Substituting in (B.217) into the above expression, the asymptotic characterization of the

welfare is given as

B.86



SW ∗
V =

3 + 2Rπr

8(1 +Rπr)2
+

∞∑

k=1

akδ
k. (B.219)

In particular, when πr = π2, then

SW ∗
V =

(R− cpα)(3R− cpα)

8R2
+

∞∑

k=1

akδ
k. (B.220)

On the other hand, in the benchmark case, the welfare of 0 < vnr < vp < 1 will be

bounded below by (B.214) evaluated at vnr =
1+cp
2

. Comparing (B.220) with SWII |vnr=
1+cp

2

at R sufficiently close to R = R2, there exists some ǫ > 0 such that the welfare under the

ransomware case is less than that of the benchmark case for πr ∈ (π2− ǫ, π2). Together with

the other two cases, this proves the proposition statement. �
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