
OPTIMAL DYNAMIC MOMENTUM STRATEGIES

KAI LI† AND JUN LIU‡

†Department of Applied Finance

Macquarie University, NSW 2109, Australia

‡Rady School of Management

University of California San Diego, La Jolla, California 92093

kai.li@mq.edu.au, junliu@ucsd.edu

Abstract. We explicitly solve for the optimal dynamic trading strategy between a riskless

asset and a risky asset with momentum. The optimal portfolio weight depends not only on

the momentum, as in Merton’s (1971) framework, but also on the historical price path; this

contrasts with Merton. Due to their path dependence, optimal portfolio weights have a wide

distribution for a given level of momentum; for example, investors may short the risky asset if

it has rebound price paths but leverage if it has hump-shaped price paths. This effect tends to

be the most significant after large price swings. Path dependence is represented with explicit

formulas as well as heuristic statistics.
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1. Introduction

The momentum effect has been studied by a tremendous number of papers, but surprisingly,

there is little research on optimal momentum strategies. In this paper, we explicitly solve the

optimal dynamic portfolio problem when a risky asset has momentum (“momentum asset”).

We show that, to optimally exploit momentum, one needs to account for path dependence, as

well as momentum. In contrast, the momentum strategies discussed in most papers exploit only

momentum.

For an asset with momentum, its optimal portfolio weights depend on a functional of the

price path, in addition to momentum. Indeed, a striking feature of momentum is that all the

past prices within the look-back period are needed to determine the price dynamics for a finite

horizon. Because of this feature, optimal portfolio weights are a functional of these prices. This

functional is different for different investment horizons; thus, we need many state variables to

construct the optimal portfolios for all horizons. This phenomenon is a consequence of the

non-Markovian nature of momentum.

More specifically, we show that the path dependence of an optimal portfolio weight can be

captured by a new horizon-dependent variable that differs from momentum. This new variable

is a weighted average of past returns, and recent returns receive higher weights than order ones.

Indeed, the distribution of the future finite-horizon return (return over a finite horizon) of a

momentum asset relies more heavily on recent returns within the look-back period because a

recent historical return can be used to predict more future returns than distant ones.

Due to their path dependence, optimal portfolio weights have a wide distribution for a given

level of momentum. This distribution becomes more concentrated as the investment horizon

decreases, and it converges to an atomic distribution concentrated on the mean-variance portfo-

lio weight as the horizon approaches zero. (We use the term mean-variance portfolio to refer to

the strategy used in most of the related empirical studies. The mean-variance portfolio weight

equals risk premium divided by return variance and can be justified by a log utility.)

In our paper, path dependence is described through explicit formulas as well as heuristic

statistics. The effect of path dependence tends to be the most significant after extreme periods,

characterized by substantial price swings. After such periods, the finite-horizon expected re-

turns are large due to momentum; hence, the optimal portfolio weight significantly differs from

portfolio weights that ignore path dependence.

More importantly, for a given level of momentum, the distribution of the certainty equivalent

wealth (CEW) of the optimal momentum strategy is also wide. It is skewed to the right,
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indicating that large profits occur occasionally. Indeed, momentum tends to generate large

price swings, and the optimal strategy yields higher returns during extreme periods by exploiting

these price swings. However, given a level of momentum, the CEW of a suboptimal strategy

that ignores path dependence follows an atomic distribution; thus, it is likely to be significantly

lower than that of the optimal strategy, which is widely distributed depending on paths.

To illustrate the path dependence of an optimal portfolio, consider two price paths that have

the same positive momentum: a rebound path (a path with an early downward trend that later

becomes an upward trend) and a hump-shaped path (a path with an early upward trend that

later becomes a downward trend). In the case of the rebound path, an investor may short

the momentum asset, even if it has positive momentum. Intuitively, each positive historical

return implies more positive future returns, and the recent part of a rebound path has more

positive returns, leading to a positive expected return over a finite horizon. An investor with a

risk aversion coefficient greater than one prefers return reversal over return momentum. Thus,

she shorts the asset with positive momentum and effectively constructs a portfolio with return

reversal. This suggests that when the asset price has recently experienced a sharp rise, investors

should hold fewer assets than the mean-variance portfolio that is always long assets with positive

momentum. The optimal portfolio weight for a hump-shaped path tends to follow the opposite

pattern.

Path dependence also gives rise to some unique optimal portfolio weight features. For ex-

ample, the optimal portfolio weight of a momentum asset is differentiable with respect to the

horizon only once, and there are many intervals of increases and decreases (horizon bumps). In

fact, the functionals of the paths are different for different horizons; hence, the path dependence

is also different, leading to horizon bumps.

Our paper extends the classic framework of Merton (1971). Merton assumes that the condi-

tional expected return (and volatility) of an asset is a function of Markovian state variables. In

this setting, price dynamics are determined by only these state variables. The optimal portfolio

weights and the CEW of all investment horizons also depend only on these variables and are

independent of price paths. Because momentum is non-Markovian, Merton’s framework cannot

be used in this context. Optimal portfolio weights depend on other state variables. As a result,

there can be arbitrary differences between Merton’s Markovian model and the momentum model

in terms of both optimal portfolio weights and the CEW. Additionally, in Merton’s framework,

the optimal portfolio weight is typically infinitely differentiable and monotonic as a function of

the horizon without a horizon bump.
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Markov prices are widely assumed in the asset pricing literature, perhaps because of tractabil-

ity. Efforts have been made to relax this simplifying assumption. Makarov and Rytchkov (2012)

show that path-dependent and non-Markovian price dynamics can naturally arise in a rational

expectations equilibrium with heterogeneous information. Hommes and Zhu (2014) find that

learning tends to generate path dependence if agents do not have perfect knowledge of the rel-

evant economic structure. These results highlight the importance of studying non-Markovian

price dynamics. Our paper adds to this body of literature by analytically deriving the optimal

dynamic investment strategy. Our solution technique can be used in broader settings where

delayed information is useful.

Momentum is one of the most prominent financial market regularities and has been ex-

tensively documented. (Jegadeesh and Titman (1993) document momentum in the case of

individual U.S. stocks. These results have been extended to stocks in other countries (Rouwen-

horst, 1998), industry portfolios (Moskowitz and Grinblatt, 1999), country indices (Asness,

Liew and Stevens, 1997), currencies (Okunev and White, 2003), commodities (Gorton, Hayashi

and Rouwenhorst, 2013), and exchange-traded futures contracts (Moskowitz, Ooi and Peder-

sen, 2012; Asness, Moskowitz and Pedersen, 2013).) However, most of the momentum trading

strategies mentioned in the existing literature are functions of momentum alone. For example,

the buy-and-hold strategy with a six-month look-back period and a six-month holding period

studied by Jegadeesh and Titman (1993), among others, sorts stocks based on only momentum.

The strategy with a twelve-month look-back period and a one-month holding period used by

Moskowitz, Ooi and Pedersen (2012) and Asness, Moskowitz and Pedersen (2013), among oth-

ers, uses the mean-variance portfolio approach. These strategies are optimal when there is no

portfolio re-balancing. Our paper shows that the optimal strategy with re-balancing depends

on price paths.

The remainder of paper is organized as follows. Section 2 discusses the momentum model.

Section 3 solves the optimal portfolio selection problem. Section 4 studies path dependence,

a striking feature of the optimal momentum strategy, Section 5 examines other properties of

the optimal strategy, and Section 6 discusses several model extensions. Section 7 concludes

this paper while Appendix A presents the main proofs. We discuss return characteristics of

momentum assets, some details regarding our calculations and properties of the optimal portfolio

weights, and model calibration in the Online Appendices.



5

2. Model Setup

2.1. The Momentum Model. Momentum refers to the tendency of an asset with a sequence

of high (low) recent past returns to continue yielding high (low) returns in the near future. To

capture this phenomenon, we study a simple model of momentum. More specifically, we assume

that the price St of a risky momentum asset at time t is given by

dSt
St

=
[
αmt + (1− α)µ+ r

]
dt+ σdBt, (2.1)

where mt is momentum, r is the short rate (which is assumed to be a constant), µ is a constant

and will be identified later as the unconditional risk premium, α measures the level of momentum

in the expected return, σ is a constant, and Bt is a standard Brownian motion.

Momentum is modelled as an equally weighted moving average (MA) of historical excess

returns over the following past time interval:

mt =
1

τ

∫ t

t−τ

(dSu
Su
− rdu

)
. (2.2)

Following the momentum literature, we call the interval [t − τ, t] the “look-back period” for

momentum.

Model (2.1)–(2.2) is a simple specification of momentum motivated by the empirical litera-

ture. In most of the related empirical studies, momentum is modelled as a MA of an asset’s

historical returns. For example, Moskowitz et al. (2012) document the time series momentum

of diverse futures and forward contracts by showing that “the past 12-month excess return of

each instrument is a positive predictor of its future return.” This evidence has been extended

to more asset classes and longer sample periods in, e.g., Georgopoulou and Wang (2017), Hurst,

Ooi and Pedersen (2017), and Goyal and Jegadeesh (2018). We acknowledge other approaches

to modelling momentum and discuss alternative models in Sections 4.4 and 6.4.

Our model captures only short-run momentum. In real-life data, asset returns also exhibit

long-run reversal (e.g., Fama and French, 1988; Poterba and Summers, 1988), which is not con-

sidered in our model. Our model could provide a good approximation of the real data-generating

process if investors explore only the past one-year returns when making their investment deci-

sions. For example, Moskowitz et al. (2012) find strong short-run (one year) return continuation

and weaker long-run reversal, and they use only the past one-year returns to construct a port-

folio.

MAs have been widely used in both practice and empirical studies. Because economic con-

ditions change over time, many fund managers use MAs in practice to capture time-varying
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expected returns (see, e.g., Hurst, Ooi and Pedersen, 2010; 2017; Lo and Hasanhodzic, 2010;

Burghardt and Walls, 2011; Narang, 2013). Empirical studies also provide convincing evidence

on the predictive power of MAs (see, e.g., Grinblatt and Moskowitz, 2004; Heston and Sadka,

2008; Lewellen, 2015; Brock, Lakonishok and LeBaron, 1992; Neely, Rapach, Tu and Zhou,

2014). In this paper, we study the optimal dynamic trading strategies if MAs can predict asset

returns as documented in the literature. Our results can be also used in other settings involving

MAs.

We rewrite (2.2) as

mt =
1

τ
(lnSt − lnSt−τ )− r +

σ2

2
. (2.3)

Therefore, momentum also depends on the cumulative return over the look-back period. A key

feature of (2.2) is that the average is taken over a moving window [t−τ, t] with a fixed length τ .

Due to this feature, the two prices in (2.3) do not occur simultaneously, which introduce non-

Markovian path dependence and mathematical complexity to solving for the optimal portfolio.

In this paper, we focus on model (2.1)–(2.2) to elaborate upon path dependence, which is a

salient feature of momentum. We will discuss several model extensions in Section 6.

It can be shown that model (2.1)–(2.2) has a unique positive solution for a given positive

initial price path over the look-back period, and the corresponding return process is stationary

if and only if −1 < α < 1. (see Online Appendix III.5.) In this paper, we consider 0 < α < 1

in order to study momentum.

2.2. Path Dependence of Finite-Horizon Returns. The price of the momentum asset in

(2.1)–(2.2) is inherently non-Markovian. To define the price process, we need to specify a

continuously infinite number of prices Su, for all u between −τ and 0 (the look-back period).

That is, an infinite number of initial values must be assigned so that the system has an infinite

number of dimensions. In contrast, in Merton’s (1971) Markovian setting, one needs to specify

only the initial values of a finite number of state variables to define the price process (such

variables could include price, and predictors of returns and volatility), and the model has a

finite number of dimensions.

Due to the non-Markovian dynamics, different historical return paths with the same level of

momentum lead to different finite-horizon expected returns and different Sharpe ratios. (Here,

finite-horizon expected returns are referred to as the expected returns over a future finite horizon.

Different paths with the same level of momentum have the same expected instantaneous return

for the next period, which is determined by momentum alone.) Figure 1 illustrates the term

structure of the expected returns and Sharpe ratios of three different price paths generated
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by the momentum model: a rebound path (a path with an early downward trend that later

becomes an upward trend), an upward-trending path, and a hump-shaped path (a path with an

early upward trend that later becomes a downward trend). (Because the price paths correspond

to a diffusion process, the signs of the instantaneous returns change an infinite number of times

within any finite interval. The rebound path generally exhibits more negative returns early on

and more positive returns later.) All three of the paths have the same beginning and ending

prices over the look-back period, and hence they have the same level of positive momentum

(the same positive cumulative returns).

With momentum, finite-horizon expected returns tend to be large in magnitude after extreme

periods with substantial price swings, such as those seen in rebound and hump-shaped paths.

Indeed, each positive historical return implies additional positive future returns; thus, since the

recent part of a rebound path has more positive returns, a highly positive return over a finite

horizon is expected. Similarly, expected finite-horizon returns tend to be very negative after

a hump-shaped path. Expected finite-horizon returns are much smaller in magnitude after an

upward-trending path.

Figure 1 also implies that, given the level of momentum, the expected return over a given

horizon is widely distributed. In contrast, if the return process is Markovian (e.g., Merton, 1971),

the expected return over a given horizon is a single value (rather than a wide distribution of

values) for all paths. Path dependence of the finite-horizon returns of momentum assets is found

in real data. For example, Da, Gurun and Warachka (2014) show that price paths contain more

information than momentum alone, and momentum strategies with finite horizons (e.g., six

months or three years) can be significantly improved by exploring the information discreteness

exhibited by paths; this suggests that returns are non-Markovian. More return characteristics

that are specific to momentum assets and not present in Markov prices are discussed in Online

Appendix I.

Model (2.1)–(2.2) is in continuous time, which leads to infinite dimensional price dynamics

of the momentum asset. In a discrete-time setting where momentum is measured by the MA

of a finite number of past returns over the look-back period, although the corresponding price

dynamics are finite dimensional, they still exhibit the path dependence as documented in this

paper. In this case, momentum is also not a sufficient statistic of the distribution of finite-

horizon returns as observed in model (2.1)–(2.2).



8

3. The Optimal Dynamic Momentum Strategy

We study the optimal dynamic trading strategy for an investor with an expected utility over

terminal wealth WT at time T and a constant relative risk aversion (CRRA) coefficient γ > 0.

The optimization problem for this investor is given by

sup
{φt}t∈[0,T ]

E0

[
W 1−γ
T

1− γ

]
, (3.1)

where φt is the portfolio weight of the risky momentum asset at time t.

Because there is no Ito’s formula for price processes with time delays, the standard dynamic

programming approach of Merton (1971) cannot be applied to solve for the optimal trading

strategy. (Ito’s formula applies to functions of the current values of some stochastic processes

but not to the functionals of the paths of processes like ours. The latter can only be addressed

with the functional Ito calculus developed recently, e.g., Cont and Fournié (2013) and the

references therein.) To the best of our knowledge, there is no known example of closed-form

solutions for such systems. (Indeed, most optimal portfolio choice problems cannot be solved

in closed form, see, e.g., Haugh, Kogan and Wang, 2006.)

To deal with the path dependence, we derive the solution piecewise. We also use the martin-

gale approach studied in, e.g., Karatzas, Lehoczky and Shreve (1987), Cox and Huang (1989,

1991), and Karatzas and Shreve (1998), which can be applied to non-Markovian prices. We

solve the optimization problem in closed form, which provides clean characterizations of the

optimal portfolio weight.

In our setting, because the market is complete, the unique state price density is given by

πt = exp
{
−
∫ t

0
rdu− 1

2

∫ t

0
θ2
udu−

∫ t

0
θudBu

}
, (3.2)

where θt is the market price of risk, which is given by

θt =
αmt + (1− α)µ

σ
. (3.3)

Because θt is path dependent, the price of a dollar at time t in each state is affected by the entire

historical return path over the look-back period [t − τ, t]. The standard martingale approach

leads to W ∗T = (λπT )−1/γ , where λ is a Lagrange multiplier. Define

ξt = exp
{
− 1

2

∫ t

0
θ2
udu−

∫ t

0
θudBu

}
, (3.4)
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which is a martingale. Let ξ̄0 = E0

[
ξ

(γ−1)/γ
T

]
. The following lemma provides the optimal wealth

and the value function. The corresponding proof is given in Appendix A.1.

Lemma 3.1. (Optimal wealth.) For an investor with the investment horizon T − t and the

constant coefficient of relative risk aversion γ, the optimal wealth process satisfies

W ∗t = W0ξ̄
−1
0 π−1

t Et
[
ξ

(γ−1)/γ
T

]
, (3.5)

and the value function satisfies J =
W 1−γ

0
1−γ ξ̄

γ
0 e

(1−γ)rT .

Given the optimal wealth W ∗t , the existence of the optimal portfolio is established in the

same way as it is in the work of, e.g., Cox and Huang (1989).

Lemma 3.2. (Optimal portfolio.) The optimal portfolio weight of the risky momentum asset

at time t is given by

φ∗t =
αmt + (1− α)µ

σ2
+

ψt
σπtW ∗t

, (3.6)

where the stochastic process ψt that is adapted to the filtration generated by Bt is governed by

πtW
∗
t = W0 +

∫ t

0
ψudBu. (3.7)

The remainder, namely, 1− φ∗t , is invested in the riskless asset.

To derive the optimal portfolio weight, we need to compute Et[ξ
(γ−1)/γ
T ] in (3.5), which de-

pends on the distribution of the future momentum. However, future momentum is not a function

of current momentum; thus, in addition to momentum, we need more (horizon-dependent) state

variables that contain additional information about future returns to span the optimal wealth

and portfolio.

3.1. Horizons Shorter Than or Equal To the Look-Back Period. We first present our

results for a case in which the investment horizon is shorter than or equal to the look-back

period 0 ≤ T − t ≤ τ . On the one hand, analyzing this case allows us to keep our proof as short

as possible. On the other hand, even in this case, the optimal momentum portfolio can feature

the path dependence, which is a salient feature of momentum and the focus of this paper. As

shown in Online Appendix I, the path dependence of future returns over long horizons exhibits

the same patterns as those over short horizons, and the marginal effect of future “momentum

cycles” on path dependence diminishes quickly to zero as the length of a horizon increases. We

study the general case covering all horizons in Section 6.3.
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Proposition 3.3. For 0 ≤ T − t ≤ τ , the optimal portfolio weight of the risky momentum asset

at time t is given by φ∗t = φMt + φHt , where

φMt =
α

γσ2

∫ t

t−τ

1

τ

(dSv
Sv
− rdv

)
+

(1− α)µ

γσ2
,

φHt =
(1− γ)α

γσ2

∫ t

t−τ
ωv

(dSv
Sv
− rdv

)
+ C1,

(3.8)

ωv is a deterministic function of v, and C1 is a constant given by (A.14), which is shown in

Appendix A.2. In addition, ωv is positive; it increases with v within v ∈ [t − τ, T − τ ] but is a

constant within v ∈ [T − τ, t].

Proposition 3.3 shows that the optimal portfolio weight consists of two components, as it

does in the Markovian setting of Merton (1971). The first component φMt is the (myopic) mean-

variance portfolio weight. It depends on momentum, which is intuitive because the expected

return of the momentum asset depends linearly on momentum. The mean-variance portfolio

is optimal for very short horizons and is used in most of the related empirical studies. It is

positive if momentum is positive.

The second component, φHt , is the product of intertemporal hedging. Unlike the mean-

variance portfolio weight, which depends on momentum (an equally weighted average of histor-

ical returns over the look-back period), φHt depends on a new variable that is an (unequally)

weighted average of historical returns. In Merton’s framework, the optimal portfolio depends

on the state variables that characterize the conditional mean and variance of the asset returns.

In contrast, when asset prices have momentum, the historical price paths of the asset provide

more information about its future returns than its momentum does. Therefore, the optimal

portfolio weight in such a situation depends not only on momentum, which is the conditional

mean, but also on other state variables that are functionals of the price paths.

Most studies rely on momentum alone to construct portfolios. Proposition 3.3 shows that this

is not optimal in a multiple-period setting if the examined investor rebalances her portfolio. The

weighted average of historical instantaneous returns in φHt gives rise to the dependence of the

optimal portfolio weight on historical return paths. Different paths, even those with the same

level of momentum, lead to different portfolio weights. This strategy significantly differs from

that in Merton’s framework, where the optimal portfolio weight depends only on the current

values of the state variables of the expected return and volatility and not on historical paths.

Proposition 3.3 shows that the weight ωv placed by φHt on the historical instantaneous return

dSv/Sv is higher for more recent historical returns. This is because the more recent returns of
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the momentum asset predict more future returns in a finite horizon. More specifically, consider

two past returns, namely, dSv/Sv and dSv+∆/Sv+∆, over the look-back period (t − τ ≤ v <

v + ∆ ≤ t). Both affect the distribution of the future momentum, which determines the value

function and optimal portfolio (see Lemmas 3.1 and 3.2). In addition, both returns appear

simultaneously in the distribution, and their relative weights geometrically increase with ∆

because of momentum. Therefore, the weights placed by φHt on these two past returns increase

with time.

Figure 2 illustrates the weights (ωv) placed by φHt on the asset’s historical instantaneous

returns. When the investment horizon is shorter than the look-back period (T − t < τ), the

left panel shows that φHt weights the recent historical returns in [t− τ, T − τ ] more heavily and

places the same high weight on all the returns in [T −τ, t]. In this case, φHt depends on the price

path over [t− τ, T − τ ] and the cumulative return (rather than price path) over [T − τ, t]. When

the investment horizon is equal to the look-back period (T − t = τ), the right panel shows that

recent historical returns receive higher weights over the entire look-back period [t− τ, t].

For a given investment horizon, the optimal momentum portfolio weight depends on a finite

number of state variables, but for different horizons, these variables are different as illustrated in

Figure 2. Since the horizon changes as time changes, we need a large number of state variables

to construct the optimal portfolios for all horizons. (Indeed, we need an infinite number of state

variables in the continuous-time setting.) This property highlights the non-Markovian nature of

momentum. In contrast, in Merton’s framework, the optimal portfolio weights for all horizons

(including the mean-variance portfolio weight) depend on the same set of state variables, and

the number of these variables is finite.

Proposition 3.3 also shows that, for an investor with a risk aversion coefficient greater than

one (γ > 1), φHt is negatively affected by the weighted average of historical returns. In addition,

the level of φHt increases with the level α of momentum (see Figure 2) and decreases with return

volatility σ. However, the effects of horizon T − t on φHt depend on the entire return path over

the look-back period.

In summary, we show that, in addition to momentum, optimal portfolio weights also depend

on a weighted average of the instantaneous returns over the look-back period, leading to path

dependence. In Sections 4–5, we explore the properties of an optimal portfolio, discussing the

novel features of the portfolio weights that are not present in Merton’s framework. Online

Appendices III.7–III.8 further discuss some of the limiting properties of the optimal portfolio
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weights with simplified expressions and the portfolio weights in terms of cumulative returns,

providing more insight into these weights.

4. Path Dependence

In this section, we study the path dependence of both the optimal portfolio weight and

portfolio performance.

4.1. Path Dependence of the Optimal Portfolio Weight. Proposition 3.3 shows that

an optimal portfolio is a functional of the price path over the look-back period. This feature

is closely related to the path dependence of the portfolio weight. In Merton’s framework,

the optimal portfolio weight is completely determined by the state variables that specify the

expected return and volatility. However, for the momentum asset, even though momentum

specifies the expected return, it does not completely determine the optimal portfolio weight

because price paths can predict future finite-horizon returns. Figure 3 plots the distributions

of the examined optimal portfolio weights. To highlight the effect of paths, we choose a fixed

value for momentum m0 = µ, i.e., its long-run mean. The results are based on 10,000 simulated

historical paths generated by model (2.1)–(2.2).

Optimal portfolio weights over a one-year investment horizon vary widely between -0.2 and

0.5. This result is intuitive. Different paths with the same level of momentum lead to different

distributions of future returns over an investment horizon, as shown in Section 2.2. Therefore,

the optimal momentum portfolio weights can be significantly different for different paths. This

wide distribution of portfolio weights leads to large deviations from the results of Merton (1971).

For example, Figure 3 illustrates the optimal portfolio weights φ̂1 for a Markovian approximation

model specified shortly in Section 4.4. Given an investment horizon, φ̂1 is the same for all the

paths. It is close to the mean-variance portfolio weight but can even be qualitatively different

from the optimal momentum portfolio weight for certain paths. Indeed, the instantaneous

return and finite-horizon return of the asset are characterized by different sets of state variables

in the momentum model but the same set of state variables in a Markovian price model.

Because the mean-variance portfolio weights depend on momentum alone, they are the same

for different paths and different investment horizons. Figure 3 shows that the distribution

of the optimal portfolio weights becomes more concentrated for shorter horizons. The optimal

portfolio weights converge to the mean-variance weight as the horizon approaches zero. Because

the level of momentum is positive for all the paths, the average optimal portfolio weight is lower

than the mean-variance weight for γ > 1.
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To shed more light on the path dependence of optimal portfolio weights, Figure 4 compares

the portfolio weight dynamics of the three historical price paths illustrated in Figure 1. The

portfolio weights are plotted against the investment horizons in the left, middle, and right panels

for the rebound, upward-trending, and hump-shaped paths, respectively.

The mean-variance portfolio weights for the three paths are the same because all the paths

have the same level of momentum (m0 = µ > 0). However, the optimal portfolio weights

differ for these three paths and depend on the investment horizons. The optimal portfolio

weight for the rebound path, which is illustrated in the left panel of Figure 4, is lower than the

mean-variance weight, indicating a negative hedging demand. For long investment horizons, the

portfolio weight can be negative (T − t > 0.5) even though the level of momentum is positive.

Indeed, each positive historical return implies more positive future returns; since the recent part

of a rebound path exhibits more positive returns, the expected return over a finite horizon is

highly positive. Accordingly, an investor with γ > 1 holds fewer risky assets. In other words,

the left panel suggests that investors should hold fewer stocks than indicated by the mean-

variance strategy when recent prices rose to the current price. The right panel shows that the

portfolio strategy for an asset with a hump-shaped path tends to follow the opposite pattern.

This suggests that an investor should hold more stocks than indicated by the mean-variance

strategy when the price has recently experienced a dramatic decline.

The short position illustrated in the left panel can also be understood as follows. Momentum

tends to generate return persistence. For example, He and Li (2015) show that momentum tends

to destabilize the price process by leading to large price swings. However, an investor with a

risk aversion coefficient greater than one prefers a reversal in returns to momentum, reflecting

an attempt to minimize the (unanticipated) variability in wealth over time (Merton, 1971).

Accordingly, such an investor shorts assets with positive momentum and effectively constructs

a portfolio with return reversal. This also causes her wealth process to exhibit fewer swings

than the price process of the momentum asset.

More importantly, Figure 4 shows that different price paths can qualitatively change the

optimal portfolio strategy. The optimal portfolio weights of assets with rebound paths and

hump-shaped paths that have the same level of momentum can even have different signs. This

further implies that the weighted average of the historical returns in the optimal portfolio

weight, which characterizes the hedging demand, shown in Proposition 3.3 can be quite large

in magnitude for extreme periods with large price swings. Figure 4 also shows that the left and
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right tails of the portfolio weight distribution in Figure 3 tend to be generated by the rebound

and hump-shaped paths, respectively.

Because the expected finite-horizon returns after an upward-trending path are much smaller

in magnitude than those after extreme periods as illustrated in Figure 1, the optimal portfolio

weight shown in the middle panel of Figure 4 has fewer deviations from the mean-variance

portfolio weight than the weights associated with the rebound and hump-shaped paths.

4.2. Heuristic Statistic of Path Dependence. The previous subsection shows that the

optimal portfolio weight significantly differs from the mean-variance weight, and this difference

tends to be the largest after extreme periods with large price swings, such as those exhibited

by rebound paths or hump-shaped paths. To capture the path dependence of this weight, we

provide a heuristic statistic in this subsection, which is defined as

Xmax = max
t′,t′′∈[t−τ, t]

{
(lnSt′ − lnSt′′)

2
}
. (4.1)

This statistic is the maximum of the squared historical cumulative returns over the look-back

period. It measures the magnitude of the price swings over the look-back period and is path-

dependent. A higher Xmax value indicates that the given asset price is more likely to exhibit

large swings.

Figure 5 plots the optimal portfolio weight φ∗ against Xmax. It shows that the devi-

ation of the optimal portfolio weight from the mean-variance weight is the largest during

extreme periods with large price swings as measured by Xmax. (We can rewrite (4.1) as

Xmax =
(

ln St
maxu∈[t−τ, t]{Su}

− ln Su
minu∈[t−τ, t]{St}

)2
, where, for τ = 1 year, St

maxu∈[t−τ, t]{Su}
mea-

sures nearness to the 52-week high, which is found to proxy for underreaction, e.g., George and

Hwang (2004) and Li and Yu (2012), and St
minu∈[t−τ, t]{Su}

is nearness to the 52-week low.)

4.3. Economic Value of Path Dependence. To assess the economic value of path depen-

dence, we compare the optimal momentum strategy to the mean-variance strategy that ignores

path dependence in terms of certainty equivalents. We define the certainty equivalent wealth

(CEW) of a strategy for an investor as the amount of wealth that makes the investor indifferent

between receiving the CEW with certainty at the terminal time T and having $1 today to invest

until time T using the strategy. Define the present value of CEW as R = e−rTCEW. Therefore,

R represents the expected gross return over the riskless return delivered by the strategy. We

compute this in Online Appendix III.1.

Given momentum (m0 = µ), Figure 6 illustrates the present value of the CEW of the optimal

momentum strategy (R∗) and that of the CEW of the mean-variance strategy (RM ). The results
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are based on 10,000 simulated historical paths generated from model (2.1)–(2.2). We set γ = 2

throughout the paper.

The left panel of Figure 6 plots the distributions of the present value of the CEW. The distri-

bution for the optimal momentum strategy (R∗) is wide, demonstrating that the performance

of the optimal strategy is crucially dependent upon the price paths. Therefore, the performance

of the optimal strategy deviates considerably from that of the strategy of Merton, in which,

given the value of the state variable (momentum), the CEW should be a single value (an atomic

distribution). Because the optimal portfolio weight depends on different state variables for dif-

ferent investment horizons, R∗ exploits these a large number of state variables when employing

the strategy until time T . The left panel shows that the CEW of the mean-variance strategy

(RM ) also depends on paths. This is due to the path dependence of the momentum asset’s

price dynamics.

As shown in the left panel of Figure 6, R∗ is greater than 1, as expected. RM is also greater

than 1, showing that the performance of the mean-variance portfolio is better than that of the

riskless asset for all the price paths, as proved by (III.2) in Online Appendix III.1. Intuitively,

the mean-variance strategy always leads to positive risk premiums. The mean values of R∗

and RM are 1.023 and 1.008, respectively, showing that exploiting paths triples the average

expected returns of the mean-variance strategy. The CEW ratios R∗/RM vary between 1.01

and 1.07; thus, accounting for paths is expected to increase returns by up to 7% per year.

Moreover, the standard deviation of R∗ is 0.01; this is much smaller than the return volatility

of the momentum asset, reflecting the return “smoothing” of the optimal strategy with γ > 1.

The right panel of Figure 6 plots the CEW ratio against Xmax, which is defined in (4.1)

and measures the magnitude of the price swings over the look-back period. It shows that

the outperformance of the optimal strategy over the mean-variance strategy tends to be the

highest after extreme periods with substantial price swings. For example, the present values

of the CEW of the optimal strategy after the rebound and hump-shaped paths illustrated in

Figure 1 are 1.07 and 1.03, respectively; however, after an upward-trending path with the

same level of momentum, the CEW is only 1.02. Indeed, momentum tends to generate large

price swings, and the optimal strategy yields higher returns by exploiting these swings. As a

result, the optimal strategy occasionally delivers large profits during these extreme periods with

large swings, leading the CEW distribution for the optimal strategy to skew to the right (with

skewness of 2.61).
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Put differently, extreme periods with large price swings, such as those exhibited by rebound

and hump-shaped paths, tend to generate higher absolute values of Sharpe ratios than upward-

trending paths with the same level of momentum, as shown in Section 2.2. Therefore, the CEW

that depends on the sum of squared Sharpe ratios (the market price of risk) over the investment

horizon tends to be highest after these extreme periods.

In summary, we show that historical price paths can be used to improve the profitability of

momentum strategies, especially in the case of extreme periods with large price swings.

4.4. Historical Average Approximation. The MA (2.2) method, though it faithfully follows

the literature and is empirically robust to implement, is non-Markovian. Because some types

of historical averages (HAs) are Markovian and thus more tractable than MAs, it is sometimes

suggested that HAs are used to approximate MAs. One such approximation could be:

dSt
St

=
[ N∑
i=1

αimit +
(

1−
N∑
i=1

αi

)
µ+ r

]
dt+ σdBt,

mit =

∫ t

−∞

1

τi
e−(t−u)/τi

(dSu
Su
− rdu

)
,

(4.2)

where αi and τi are positive constants. The HA variable, mit, follows a mean-reverting process,

namely, dmit = 1
τi

[(1−
∑N

j=1 αj)µ− (mit −
∑N

j=1 αjmjt)]dt+ σ
τi
dBt. This equation shows that

an HA with a high decay rate (1/τi) has a high level of volatility.

The price dynamics (4.2) are Markovian, and the corresponding portfolio selection problem

is within Merton’s framework. Asset price processes with mean-reverting expected returns such

as those in (4.2) have been extensively studied, e.g., by Kim and Omberg (1996), Liu (2007),

and Koijen, Rodŕıguez and Sbuelz (2009), among others. The following proposition summarizes

the optimal portfolio weight of a risky asset according to model (4.2).

Proposition 4.1. The optimal portfolio weight of a risky asset with a price of (4.2) with N

Markovian state variables is given by

φ̂Nt =
1

γσ2

[ N∑
i=1

αimit +
(

1−
N∑
i=1

αi

)
µ
]

+

N∑
i=1

1

τi

( N∑
j=1

Aijtmjt +Ait

)
, (4.3)

where Aijt and Ait are deterministic functions given by (II.1) in Online Appendix II.1.

Proposition 4.1 shows that the optimal HA portfolio weight depends on only mi and is

independent of historical price paths. Given a positive level of momentum, the hedging demand

is always negative (positive) for γ > 1 (γ < 1).
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We calibrate model (4.2) based on the size factor using the maximum likelihood method.

Estimation details are presented in Online Appendix II.3. We focus on the cases of N = 1, 2.

For both cases, coefficients of α1 and α2 are positive, and the t-statistics of them are lower than

that for the MA model (2.2).

We compare the performance of the optimal momentum strategy and the optimal HA s-

trategies. By applying the HA strategies (4.3) to the momentum asset (2.1), the left panel of

Figure 8 illustrates the distributions of the present values of the resulting CEW, R̂N , N = 1, 2.

(See Online Appendix II.2 for the calculation details regarding the CEW of the HA strategies.)

While the CEW of both the optimal momentum strategy and the mean-variance strategy is

greater than 1, as shown in Figure 6, the R̂N resulting from the HA approximations can be

less than 1, which means that the HA strategies underperform even the riskless asset for cer-

tain paths. The mean value of R̂1 is 1.001, which is lower than the mean value of R∗, namely

1.023, suggesting that exploiting paths increases the expected returns by 2% per year. We find

that including more Markovian state variables (m1t, m2t) increases the mean value of CEW

(R̂2 = 1.004). In addition, the standard deviations of the CEW of the optimal momentum

strategy, the HA strategy with N = 1, and the HA strategy with N = 2 are 0.65%, 0.78%,

and 0.74%, respectively, the skewness are 2.61, -1.73, and -1.18, respectively, and the kurtosis

are 14.07, 8.03, and 7.08, respectively. Thus, more Markovian state variables tend to increase

the expected returns and skewness of the HA strategies and decrease the return volatility and

kurtosis. Intuitively, the use of a sufficient number of HA variables in (4.2) can enable the

expected instantaneous return of the momentum asset in (2.2) to be approximated arbitrarily

well, improving the performance of the corresponding HA strategies.

The right panel of Figure 8 illustrates the CEW ratios R∗/R̂N . We also find that the coeffi-

cients from the regressions of the CEW ratios onto Xmax are highly significantly positive. Thus,

the optimal momentum strategy delivers its highest outperformance over the HA strategies dur-

ing extreme periods with large price swings, implying that the HA approximations make major

forecasting errors during such periods.

5. Other Properties of the Optimal Dynamic Momentum Strategy

5.1. Horizon Dependence. There are many intervals of increases and decreases in the port-

folio weight as a function of horizon (horizon bumps), as illustrated in Figure 4. In contrast,

the optimal portfolio weight in Merton’s framework is typically infinitely differentiable and

monotonic as a function of horizon.
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Figure 7 provides insight into these horizon bumps. The solid blue line is the logarithm of

a price path during [t − τ, t] generated from the momentum model, and the dashed red line

illustrates the optimal portfolio weights for different investment horizons T − t ∈ [0, τ ]. The

horizon bumps depend on the sign of
∂φ∗0
∂T . Online Appendix III.6 demonstrates that the portfolio

weight increases (decreases) with T when the cumulative return lnSt− lnST−τ +C6 is negative

(positive), where C6 is a constant given by (III.37). For example, lnSt− lnST−τ +C6 is positive

when T − t < 0.2, but becomes negative when 0.2 < T − t < 0.5. Accordingly, Figure 7 shows

that the portfolio weight decreases with the horizon when T − t < 0.2 while increasing when

0.2 < T − t < 0.5.

In fact, the optimal portfolio weight for different investment horizons depends on the different

state variables employed. Effectively, we need a large number of state variables to constitute a

sufficient statistic of portfolio weight if we consider horizon dependence. Changes in the sets of

state variables lead to horizon bumps.

Even though portfolio weight as a function of investment horizon exhibits bumps, it is still a

differentiable function. Corollary III.2 in Online Appendix III.6 shows that the portfolio weight

is differentiable with respect to the horizon only once. In contrast, the optimal portfolio weight

for Markovian prices is typically infinitely differentiable and monotonic as a function of horizon.

5.2. Separating Momentum and Historical Price Paths. To further our understanding

of path dependence, we develop a more general price process (than equation (2.1)), which is

given as

dst = [(α1st − α2st−τ )/τ + (1− α)(r + µ− σ2/2)]dt+ σdBt, (5.1)

where st = lnSt and α1 and α2 are parameters. For α1 = α2 = α, (5.1) reduces to the

momentum model (2.1) and (2.2) in Section 2. For α2 = 0, (5.1) becomes a Markovian process.

For α1 = 0, momentum is “turned off”and only path dependence is relevant:

dst = [−α2st−τ/τ + (1− α)(r + µ− σ2/2)]dt+ σdBt.

The corresponding optimal portfolio weight when T − t ≤ τ is given by

φ∗t =
α(r − σ2/2) + (1− α)µ− α2st−τ/τ

γσ2
.

In this case, the hedging demand disappears because the path is uncorrelated with the innovation

of asset price. This implies that the new state variable φHt in Proposition 3.3 is caused by the

joint impact of st and st−τ on the expected returns.



19

5.3. Dependence on Other Variables. When the price path Su changes to cSu for all u ∈

[t − τ, t], where c > 0 is a constant, φMt and φHt do not change. This is because momentum is

defined in terms of returns; hence, price level does not affect future returns. Thus, both demand

components depend on historical returns. This is demonstrated in Online Appendix III.9.

In addition, we find a nonmonotonic dependence of the portfolio weight on the risk aversion

coefficient γ. For γ < 1, there is a finite critical horizon
√
γτ/(2α) ln[(1 +

√
γ)/(1 − √γ)], at

which both the portfolio weight and expected utility approach infinity. This phenomenon, which

is referred to as “nirvana”, has been observed when the expected return follows an Ornstein-

Uhlenbeck process (Kim and Omberg, 1996). Our paper shows that nirvana is also possible in

the context of a momentum asset if γ is small enough.

6. Model Extensions

This section discusses several model extensions and presents the optimal portfolio weight for

any investment horizons.

6.1. Cross-Sectional Momentum. To elaborate upon path dependence, this paper focuses

on a case with a single momentum asset in model (2.1)–(2.2). Such a case is termed time series

momentum in the existing studies on this topic. In this section, we extend our model to a case

involving multiple risky assets, which can be used to study cross-sectional momentum.

6.1.1. The Model. We assume that there are K risk factors that are captured by K factor assets.

Denote dRFk,t = dSFk,t/S
F
k,t as the return of factor asset k at time t, where SFk,t is the asset’s price.

The factor asset return follows

dRFk,t = αkdt+ dBF
k,t, (6.1)

where αk is a constant and dBF
k,t is a standard Brownian motion that satisfies dBF

k,tdB
F
j,t = 0

for k 6= j. In (6.1), the returns of each factor asset are IID, and the factors are mutually

independent.

In addition to the K factor assets, there are N momentum assets. Their returns follow

dRM
t − rdt = (a+ bmt)dt+ βdRF

t + ΣdBM
t , (6.2)

where dRM
t = (dS1,t/S1,t, dS2,t/S2,t, · · · , dSN,t/SN,t)′ is a vector of the returns of the momentum

assets, Si,t is momentum asset i’s price, a and b > 0 are constants, dRF
t = (dRF1,t, dR

F
2,t, · · · , dRFN,t)′,

β is anN×K matrix of factor loadings, Σ is a volatility matrix, and dBM
t = (dBM

1,t, dB
M
2,t, · · · , dBM

N,t)
′

is a vector of standard Brownian motions. We assume that Σ is a diagonal matrix whose iith

element is given by σi. In this case, the idiosyncratic risks of the momentum assets in (6.2)
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are captured. (Our analytical results also hold for nondiagonal Σ.) This case is also studied in

the empirical literature, e.g., Grinblatt and Moskowitz (2004), Heston and Sadka (2008), and

Lewellen (2015). We assume that all the Brownian motions are mutually independent. The

mt = (m1,t,m2,t, · · · ,mN,t)
′ is a vector of momentum given by

mt =
1

τ

∫ t

t−τ
(dRM

u − rdu). (6.3)

In model (6.2), momentum predicts the cross-section of risk-adjusted returns according to cer-

tain factors (6.1).

We choose the same slope coefficient, b, for all the momentum assets. This implies cross-

sectional momentum and is also a standard assumption in the existing studies on cross-sectional

returns (e.g., Fama and MacBeth, 1973). (If b is different for different assets, the model may

not generate momentum, and assets with good relative performance may have lower expected

risk-adjusted returns than other assets. We can still derive closed-form solutions when different

assets have different coefficients.) Models of cross-sectional returns that satisfy (6.2) include

those of Grinblatt and Moskowitz (2004), Heston and Sadka (2008), and Lewellen (2015), among

others, who show that momentum positively predicts cross-sectional firm returns. In untabu-

lated results, we examine the buy-and-hold momentum strategies proposed by Jegadeesh and

Titman (1993) using the data generated from model (6.2), and we find that our model can

produce the cross-sectional momentum effect documented in the work of Jegadeesh and Titman

(1993). In this sense, we have a realistic and tractable model of cross-sectional momentum.

6.1.2. The Optimal Cross-Sectional Momentum Strategy. Now, we study optimal dynamic cross-

sectional momentum strategies. The market is complete, and the Cox-Huang approach still

applies. The market prices of risk are given by

θt = Ω−1µ, where Ω =

 I 0

β Σ

 , µ =

 α− r

a+ bm

 , (6.4)

α = (α1, α2, · · · , αK)′, and I is a K ×K identical matrix. The market price of risk is jointly

determined by all the assets’ momentum. Proposition 6.1 summarizes the optimal dynamic

cross-sectional momentum strategies that have closed-form solutions. The proof is given in

Online Appendix III.2.
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Proposition 6.1. When 0 ≤ T ≤ τ , the optimal portfolio weights of momentum assets are

given by φ∗ = φM + φH , where

φM =
1

γ

[
(Σ−2+ββ′)(a+bm+βα)−β(α−r)

]
, φH = (1−γ)(Σ−2+ββ′)

∫ 0

−τ
ωv(dRv−rdv)+C,

ωv are deterministic weights, and C is a vector of constants given by (III.17) in Online Appendix

III.2. The optimal portfolio weights of factor assets are given by φF∗ = 1
γ

[
α− r−β′(a+ bm+

βα)
]
, and the remainder, 1− 1′

 φ∗

φF∗

, is invested in a riskless asset.

Consistent with the results regarding the optimal portfolio weight for the time series momen-

tum model (2.1)–(2.2) developed in Section 2, Proposition 6.1 shows that the portfolio weights

of the momentum assets consist of two components. The first component, φM , represents the

mean-variance portfolio weights. It depends on momentum. In general, an asset that has had a

relatively good recent performance receives a higher mean-variance portfolio weight than other

assets. The second component, φH , represents the intertemporal hedging demands. It depends

on new variables, and each variable is a weighted average of the historical returns of a stock

over the given look-back period.

The key results regarding path dependence and horizon dependence observed from model

(2.1)–(2.2) also apply to optimal dynamic cross-sectional momentum strategies. Due to path

dependence, it is optimal to invest more in momentum assets and less using the mean-variance

strategy if the return path is hump-shaped; in the case of a rebound path, it is optimal to invest

less in momentum assets. As a result, the optimal strategy places more portfolio weight on a

winner asset (i.e., with a relatively good recent performance as measured by momentum) whose

positive past returns occurred more recently than those of other winners. Indeed, a key feature

of both types of momentum is the ability to predict returns with a moving average (MA) of

past returns. (Moskowitz et al. (2012) show that the predictability of assets’ monthly excess

returns by their lagged one-year returns is the main driving force of both types of momentum.

Ehsani and Linnainmaa (2021) find that factor returns exhibit time series momentum and time

series factor momentum fully subsumes cross-sectional momentum in individual stock returns.)

Model (2.1)–(2.2) characterizes this feature, and the insights provided in this paper also apply

to the cross-sectional momentum.

Proposition 6.1 shows that an asset’s portfolio weight depends not only on its own momentum

and price path but also on the momentum and price paths of other assets due to the term ββ′,

which results from the factor loadings of momentum assets. If there are no common factors
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driving all the assets’ returns, then the optimal portfolio weight of each asset depends on its

own past returns alone.

6.2. Sharpe Ratio Momentum. While the momentum literature focuses largely on price

momentum, some papers also document “Sharpe ratio momentum”, where momentum is calcu-

lated as the MA of volatility-normalized asset returns, e.g., Rachev, Jašić, Stoyanov and Fabozzi

(2007). To capture this effect, we define the normalized return process Rt as dRt = 1
σt

(dStSt −rdt),

where σt is the instantaneous volatility of the given asset returns at time t, which can be time-

varying (e.g., Kim and Omberg, 1996). In this case, a momentum asset’s price follows

dRt = [αmR
t + (1− α)µR]dt+ dBt, (6.5)

where momentum, mR
t , is defined over the normalized returns following

mR
t =

1

τ

∫ t

t−τ
dRv. (6.6)

In particular, when σt ≡ σ is a constant, model (6.5)–(6.6) reduces to (2.1)–(2.2).

We now study the optimization problem presented in (3.1), and the following proposition

summarizes the optimal Sharpe ratio momentum portfolio for this case.

Proposition 6.2. When 0 ≤ T ≤ τ , the optimal portfolio weight of a risky momentum asset

at time t is given by φR∗t = φRMt + φRHt , where

φRMt =
1

γσt

[α
τ

∫ t

t−τ
dRv + (1− α)µR

]
, φRHt =

1− γ
σt

[ ∫ t

t−τ
ωR(v, t)dRv + CR(t)

]
;

ωR(v, t) and CR(t) are deterministic functions given by (III.21) in Online Appendix III.3. In

addition, ωR is positive; it increases with v when v ∈ [t − τ, T − τ ] but is a constant when

v ∈ [T − τ, t].

Proposition 6.2 shows that the optimal Sharpe ratio momentum portfolio weight also features

path dependence as observed for price momentum. In this case, the weights in the weighted

average of the historical instantaneous returns in φRHt depend also on instantaneous return

volatilities.

6.3. Horizons Longer Than the Look-Back Period. In this paper, we mainly focus on

cases where the investment horizon is shorter than or equal to the look-back period 0 ≤ T−t ≤ τ

to illustrate path dependence. In this section, we derive the optimal portfolio weight for longer

horizons. Although the optimization problem becomes more technically involved in this context,
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we can solve it up to the solutions to ODEs. Due to path dependence, the optimal portfolio

has to be given piecewise. Proposition 6.3 summarizes the optimal portfolio weight.

Proposition 6.3. When (n − 1)τ ≤ T − t ≤ nτ , n = 1, 2, · · · , the optimal wealth fraction

invested in the risky asset is given by φ∗0 = φMt + φsHt + φpHt , where

φMt =
αmt + (1− α)µ

γσ2
, φsHt = A

(n)
11tst, φpHt =

2n−1∑
i=2

A
(n)
i1t B̃

(n)
it +A

(n)
1t , (6.7)

and the value function is given by

J(t, B̃
(n)
i : i = 1, · · · , 2n) =

W 1−γ
t

1− γ
exp

{
γ

(
1

2

2n−1∑
i=1

2n−1∑
j=1

A
(n)
ij,tB̃

(n)
i,t B̃

(n)
j,t +

2n−1∑
i=1

A
(n)
i,t B̃

(n)
i,t +B̃

(n)
2n,t+A

(n)
2n,t

)}
,

where the coefficients satisfy

Ȧ
(n)
ij,t = F(n)

ij

(
t, A

(n)
kl,t : k, l = 1, · · · , 2n − 1

)
, i, j = 1, · · · , 2n − 1,

Ȧ
(n)
i,t = F(n)

i

(
t, st−τ , A

(n)
k,t : k = 1, · · · , 2n − 1

)
, i = 1, · · · , 2n,

F(n)
ij is a quadratic function of A

(n)
kl,t, and A

(n)
kl,t = A

(n)
lk,t; F(n)

i for i = 1, · · · , 2n − 1 is a linear

function of st−τ and A
(n)
k,t ; and F(n)

2n is a quadratic function of st−τ and A
(n)
1,t and linear in

A
(n)
k,t : k = 2, · · · , 2n − 1; and B̃

(n)
i is stochastic and satisfies

B̃
(n)
1,t = st,

˙̃B
(n)
i,t = G(n)

i (t, B̃
(n)
j,t : j = 1, · · · , 2n − 1), i = 2, · · · , 2n.

G(n)
i for i = 2, · · · , 2n − 1 is linear in B̃

(n)
j,t and G(n)

2n is a quadratic function of B̃
(n)
j,t .

Proposition 6.3 reduces to Proposition 3.3 when T − t ≤ τ . In this case, s is a sufficient

statistic of φ∗, and there is no new variable B̃(1) for hedging demand in (6.7).

For longer investment horizons, the optimal portfolio weight is also of the form φ∗t = φMt +φHt ,

where the mean-variance portfolio weight φMt depends on momentum, and the hedging portfolio

weight φHt depends on a new horizon-dependent variable that is a weighted average of the

historical instantaneous returns over the look-back period. Path dependence is also a salient

feature of the optimal portfolio weight in the context of longer horizons T − t > τ . Indeed,

the path dependence of future returns over long horizons exhibits similar patterns as those

over short horizons, as shown in Online Appendix I. (Online Appendix III.10 also provides a

Monte Carlo simulation method, and we verify that the numerical solutions produced with this

method are close to the closed-form solutions for the case T − t ≤ τ . However, the case with

long investment horizon is much more difficult to study due to huge computational costs.)
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6.4. More Discussions. A general model of momentum mt can be given by

mt =

∫ t

−∞
h(t− u)

dSu
Su

, (6.8)

where h(·) is a deterministic function on [0,∞). In (6.8), momentum is a weighted average

of historical returns with the weights h(·). In this paper, we focus on model (2.2), which is a

specification of (6.8) with h(·) given by h(s) = 1
τ 1s∈[0,τ ]. Model (4.2) is another specification of

(6.8) with h(s) = 1
τi
e−s/τi . Function h(·) plays a key role in determining the relative power of

past returns in terms of predicting future returns in (2.1) and (6.8). For example, a decreasing

h(·) implies that the recent returns of an asset have stronger predicting power than the distant

returns. Different h(·) can lead to distinctly different return dynamics.

Most weighting schemes h(·) generate non-Markovian price dynamics, and only a few cases

are Markovian. In a Markovian price model, the original state variables that describe the

price dynamics are a sufficient statistic of the dynamics of the optimal wealth and portfolio.

With these state variables, one can solve the dynamic portfolio choice problem using standard

methods, e.g., the dynamic programming method. However, for a non-Markovian price model,

one needs more state variables to characterize the optimal wealth and portfolio. A challenging

(perhaps the most challenging) part of solving a non-Markovian stochastic control problem is

constructing the sufficient statistic. Unfortunately, there seems to be no unified solution for the

sufficient statistic in the case of an arbitrary function h(·). As a result, there is no standard

way to solve for the optimal portfolio in the case of the general problem (2.1) and (6.8); some

instances of this problem may not even have a solution. One can only study and compare the

specific forms of the general model (6.8), as did in our paper.

7. Conclusion

In this paper, we explicitly solve for the optimal dynamic trading strategy between a riskless

asset and a risky momentum asset. The optimal portfolio weight of the risky asset depends on

momentum as well as historical prices of the asset; for a given level of momentum, investors

may short the risky asset if it has rebound price paths but leverage if it has hump-shaped price

paths. Path dependence is represented with explicit formulas as well as heuristic statistics. In

contrast, the optimal portfolio weight in Merton’s (1971) framework is completely determined

by the momentum. The optimal strategy outperforms the mean-variance strategy, which is

widely used in the literature and ignores path dependence, especially after extreme periods

with large price swings.
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Many important problems in economics and finance involve moving averages (MAs), such as

time to build (Kydland and Prescott, 1982), post-earnings announcement drift (Bernard and

Thomas, 1989), price delays (Hou and Moskowitz, 2005), and long memory in return volatility

(Andersen, Bollerslev and Diebold, 2007). MAs are also widely used for financial practices, such

as defining the strike price of options in the context of energy markets and corporate finance

(Bouaziz, Briys and Crouhy, 1994; Dai, Li and Zhang, 2010) and computing intra-day currency

returns (Melvin and Prins, 2015). Our results can also be used in these settings.
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Appendix A. Proofs of Lemmas 3.1 and 3.2 and Proposition 3.3

A.1. Proof of Lemmas 3.1 and 3.2. It follows from (2.1) that the market price of risk is

given by (3.3), which satisfies Novikov’s condition E[exp{1
2

∫ T
0 θ2

t dt}] <∞. Thus, the state price

density is given by (3.2). Define ξt as (3.4), which is a martingale under P. The wealth process

follows dWt = Wt(r + σθtφt)dt+ σWtφtdBt, where φt is the portfolio weight of the risky asset.

Define the martingale measure Q as dQ/dP = ξT . Under the martingale measure, the wealth

process Wt follows

e−rtWt = W0 + σ

∫ t

0
e−ruWuφudB

Q
u , 0 ≤ t ≤ T, (A.1)

where BQ
t = Bt +

∫ t
0 θudu is a Brownian motion under Q. The budget constraint can be

given as E0[πTWT ] ≤W0. Then, the problem is reduced to the unconstrained maximization of

E0[
W 1−γ
T

1−γ ] + λ(W0 − E0[πTWT ]), where λ is the Lagrange multiplier. Proofs of this well-known

result can be found in the works of Harrison and Kreps (1979), Cox and Huang (1989), and

Karatzas and Shreve (1998). The first order condition leads to the following optimal terminal

wealth calculation:

WT = (λπT )−1/γ . (A.2)

Define ξ̄0 = E0

[
ξ

(γ−1)/γ
T

]
. Then W0 = E0[πTWT ] = E0[π

(γ−1)/γ
T ]λ−1/γ = ξ̄0e

(1−γ)rT/γλ−1/γ ;

hence, the Lagrange multiplier is given by λ = ξ̄γ0W
−γ
0 e(1−γ)rT . It follows from (A.2) that the

value function satisfies

J = E0

[
W 1−γ
T

1− γ

]
=

1

1− γ
W 1−γ

0 ξ̄γ0 e
(1−γ)rT . (A.3)

The optimal wealth process is then given by

Wt = π−1
t Et[πTWT ] = W0ξ̄

−1
0 ertξ−1

t Et
[
ξ

(γ−1)/γ
T

]
. (A.4)

It follows from (A.1) that d(e−rtWt) = σe−rtφtWtdB
Q
t . In addition, Ito’s formula implies that

d(e−rtWt) = d(πtξ
−1
t Wt) = ξ−1

t (πtθtWt + ψt)dB
Q
t , where ψt is governed by πtWt = W0 +∫ t

0 ψudBu. By matching the volatility, the optimal portfolio weight is given by (3.6).

A.2. Proof of Proposition 3.3. We rewrite (2.1) as dst = [(1 − α)(r + µ − σ2

2 ) + α
τ (st −

st−τ )]dt+ σdBt, where st = lnSt and hence θt = 1
σ [(1− α)µ− α(r − σ2

2 )] + α
τσ (st − st−τ ). We

define a new measure: dP∗
dP = exp

{
−
∫ T
t

γ−1
γ θudBu −

∫ T
t

(γ−1)2

2γ2 θ2
udu

}
; under this measure,

dst =

[(
r − σ2

2

)(
1− α

γ

)
+ (1− α)

µ

γ
+

α

γτ
(st − st−τ )

]
dt+ σdB∗t , (A.5)
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and

E0[ξ
γ−1
γ

T ] = E∗0
[

exp

{
1− γ
2γ2σ2

∫ T

0

[
(1− α)µ− α

(
r − σ2

2

)
+
α

τ
(su − su−τ )

]2

du

}]
. (A.6)

Suppose that 0 ≤ T ≤ τ . When t ≤ τ , st−τ is a realized log price and is known at time 0.

Thus, st in (A.5) can be treated as a Markov process. Denote

f(s, t) = E∗t
[

exp

{
1− γ
2γ2

∫ T

t

1

σ2

[
(1− α)µ− α

(
r − σ2

2

)
+
α

τ
(su − su−τ )

]2

du

}]
. (A.7)

The Feynman-Kac formula implies that

∂f

∂t
+

[(
r − σ2

2

)(
1− α

γ

)
+ (1− α)

µ

γ
+

α

γτ
(s− st−τ )

]
∂f

∂s
+
σ2

2

∂2f

∂s2

+
1− γ
2γ2σ2

[
(1− α)µ− α

(
r − σ2

2

)
+
α

τ
(s− st−τ )

]2

f = 0.

(A.8)

Its solution is given by

f(st, t) = exp{A1,ts
2
t/2 +A2,tst +A3,t}, where

Ȧ1,t = −σ2
(
A1,t

)2 − 2α

γτ
A1,t −

1− γ
γ2

α2

τ2σ2
,

Ȧ2,t = −
(
σ2A1,t +

α

γτ

)
A2,t −

[
(1− α)

µ

γ
+
(
r − σ2

2

)(
1− α

γ

)
− α

γτ
st−τ

]
A1,t −

1− γ
γ2

α

σ2τ

[
(1− α)µ+ α

(σ2

2
− r
)
− α

τ
st−τ

]
,

Ȧ3,t = −σ
2

2
A2

2,t −
σ2

2
A1,t −

[
(1− α)

µ

γ
+
(
r − σ2

2

)(
1− α

γ

)
− α

γτ
st−τ

]
A2,t

− 1− γ
2γ2σ2

[
(1− α)µ+ α

(σ2

2
− r
)
− α

τ
st−τ

]2

,

(A.9)

and terminal conditions are A1,T = A2,T = A3,T = 0. Here, the realized price st−τ in A2 and

A3 is continuous but non-differentiable. Substituting (A.9) into (A.4), we have

dWt/Wt = [θ2
t /γ + σθt(A1,tst +A2,t) + r]dt+ [θt/γ + σ(A1,tst +A2,t)]dBt,

ψt = Wtπt[(1− γ)θt/γ + σ(A1,tst +A2,t)].
(A.10)

Thus, the optimal portfolio weight at time 0 is given by φ∗t = φMt + φHt , where

φMt = θt/(γσ) and φHt = A1,tst +A2,t, (A.11)

and the optimal wealth process is given by

W ∗t = W0ξ̄
−1
0 ertξ

−1/γ
t exp{A1,t(lnSt)

2/2 +A2,t lnSt +A3,t}. (A.12)
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The hedging demand in (A.11) is given in terms of historical prices. Now we rewrite it in

terms of historical returns. The solution to the ODEs in (A.9) is given by

A1,t =
α(γ − 1)

(
1− e

2α(T−t)√
γτ

)
γσ2τ

[
(
√
γ − 1)e

2α(T−t)√
γτ + (

√
γ + 1)

] ,
A2,t =

∫ T

t

e
∫ u
t

(σ2A1,v+ α
γτ )dv

[((
r − σ2

2

)(
1− α

γ

)
+ (1− α)

µ

γ
− α

γτ
lnSu−τ

)
A1,u

+
1− γ
γ2

α

σ2τ

(
(1− α)µ− α

(
r − σ2

2

)
− α

τ
lnSu−τ

)]
du,

A3,t =

∫ T

t

[
σ2

2
A2

2,u +

((
r − σ2

2

)(
1− α

γ

)
+ (1− α)

µ

γ
− α

γτ
lnSu−τ

)
A2,u

+
σ2

2
A1,u +

1− γ
2γ2σ2

(
(1− α)µ− α

(
r − σ2

2

)
− α

τ
lnSu−τ

)2]
du,

(A.13)

where A2,t and A3,t depend on price paths over [−τ, 0]. After some manipulations, substituting

(A.13) into (A.11) produces (3.8), where

ωv =


∫ v
−τ ω̂udu, v ∈ [−τ,−τ + T ],∫ −τ+T

−τ ω̂udu, v ∈ [−τ + T, 0],

ω̂u =
γσ2

α
C0,u+τ exp

{∫ u+τ

0

[γ(1− γ)σ2τ

α
C0,û +

α

τ

]
dû

}
> 0,

C0,u =
α2
(
e

2α(T−u)√
γτ + 1

)
γ3/2σ2τ2

[
(
√
γ − 1)e

2α(T−u)√
γτ + (

√
γ + 1)

] ,
C1 =

∫ T

0

exp

{∫ u

0

[γ(1− γ)σ2τ

α
C0,û +

α

τ

]
dû

}{[ (1− α)µ− αr
γ

+ r

− σ2

2

]γ(1− γ)τ

α
C0,u + (r − σ2

2
)
(γ − 1)α

γσ2τ

}
du+ (1− γ)r

α

γσ2

∫ 0

−τ
ωvdv.

(A.14)
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Figure 1. The left panel plots the logarithms of three typical historical price paths over the look-back

period
(
lnSv for v ∈ [t− τ, t]

)
generated by the momentum model. One has a rebound shape (red solid

line), one has an upward-trending shape (black dashed line), and the other has a hump-like shape (blue

dotted line). These paths have the same level of momentum (m0 = µ) and the same beginning and

ending prices. The middle and right panels plot the term structures of the expected cumulative returns

E0[lnST − lnS0] and the Sharpe ratios, respectively. Here, τ = 1, α = 0.34, µ = 0.07, and σ = 0.36 are

expressed in annual terms and they are obtained based on the estimations of the size factor detailed in

Online Appendix IV.

Figure 2. The weight ωv placed by φHt on historical instantaneous excess return dSv/Sv − rdv as a

function of v for v ∈ [t− τ, t] for T − t = τ/2 (< τ) is shown in the left panel and for T − t = τ in the

right panel. Here, τ = 1, γ = 2, µ = 0.07, σ = 0.36, and r = 0.04 are in annual terms. The parameters

for the momentum asset are estimated based on the size factor detailed in Online Appendix IV.



34

Figure 3. Given momentum (mt = µ), this figure illustrates the distributions of the optimal portfolio

weights (φ∗) and the mean-variance portfolio weights (φM ) for two different investment horizons

(T − t = τ and T − t = τ/2). The results are based on 10,000 simulated historical paths generated by

model (2.1) and (2.2). Here, τ = 1, γ = 2, α = 0.34, µ = 0.07, σ = 0.36, and r = 0.04 are in annual

terms. The φ̂1 is the optimal portfolio weight for the historical average (HA) approximation (4.2) with

N = 1. The parameters for the momentum asset are estimated based on the size factor detailed in

Online Appendix IV.

Figure 4. This figure plots the optimal portfolio weights and the mean-variance portfolio weights

against the investment horizons for the three paths illustrated in Figure 1. The left panel shows the

rebound path, the middle panel shows the upward-trending path, and the right panel shows the

hump-shaped path. Here, τ = 1, γ = 2, α = 0.34, µ = 0.07, σ = 0.36, and r = 0.04 are in annual terms.

The parameters for the momentum asset are estimated based on the size factor detailed in Online

Appendix IV.
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Figure 5. This figure plots the optimal portfolio weight φ∗ against Xmax. The solid black line

illustrates the regression Xmax = 0.19− 0.67× φ∗ + 3.48× (φ∗)2 + ε. The results are based on 10,000

simulated historical paths generated by model (2.1) and (2.2). Here, τ = 1, γ = 2, α = 0.34, µ = 0.07,

σ = 0.36, r = 0.04, and T = 1 are in annual terms. The parameters for the momentum asset are

estimated based on the size factor detailed in Online Appendix IV.

Figure 6. The left panel plots the distributions of the present value of the certainty equivalent wealth

of the optimal momentum strategy R∗ and the mean-variance strategy RM , as well as the distribution

of their ratios R∗/RM . The right panel plots these ratios against Xmax, which measures large price

swings. The results are based on 10,000 simulated historical paths generated by model (2.1) and (2.2).

Here τ = 1, γ = 2, α = 0.34, µ = 0.07, σ = 0.36, r = 0.04, and T = 1 in annual terms. The parameters

for the momentum asset are estimated based on the size factor detailed in Online Appendix IV.
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Figure 7. This figure plots the horizon dependence of the optimal portfolio weight. The solid blue line

is the logarithm of the price path over the look-back period v ∈ [t− τ, t] generated by the momentum

model. The dashed red line illustrates the optimal portfolio weights for different investment horizons

T ∈ [0, τ ]. Here, τ = 1, γ = 2, µ = 0.07, α = 0.34, σ = 0.36, and r = 0.04 are in annual terms. The

parameters for the momentum asset are estimated based on the size factor detailed in Online Appendix

IV.

Figure 8. The left panel plots the distributions of the present value of the certainty equivalent wealth

of the optimal momentum strategy R∗, the HA strategy R̂1 with N = 1, and the HA strategy R̂2 with

N = 2, and the right panel plots the distribution of their ratios R∗/R̂N for N = 1, 2. The results are

based on 10,000 simulated historical paths generated by model (2.1) and (2.2). Here the parameters for

the momentum model are given by τ = 1, α = 0.34, µ = 0.07, and σ = 0.36, the parameters for the HA

model with N = 1 are given by τ1 = 1, α1 = 0.17, µ = 0.08, and σ = 0.36, and the parameters for the

HA model with N = 2 are given by τ1 = 1, τ2 = 10, α1 = 0.03, α2 = 0.36, µ = 0.08, and σ = 0.36.

These parameters are estimated based on the size factor detailed in Online Appendix IV. We also set

r = 0.04, γ = 2 and T = 1. All parameters are in annual terms.



37

ELECTRONIC COMPANIONS

for “Optimal Dynamic Momentum Strategies”

Appendix I. Return Characteristics of Momentum Assets

In this section, we examine the return characteristics of the momentum asset according to

(2.1) and (2.2). Define st = lnSt. Due to past dependence, the expected returns, return

volatility, and Sharpe ratios are given piecewise in the following proposition.

Proposition I.1. For T − t ∈ [nτ, (n+ 1)τ ], n = 0, 1, 2, · · · , the cumulative return of the asset

over [t, T ] is given by

sT − st =
τ

α
(1− α)

(
r + µ− σ2

2

)[ n∑
i=0

( i∑
j=0

(−α
τ )j(T − t− iτ)j

j!

)
e
α
τ

(T−t−iτ) − n− 1

]

+

[ n∑
i=0

(−α
τ )i(T − t− iτ)i

i!
e
α
τ

(T−t−iτ) − 1

]
st

− α

τ

∫ 0

−τ

[ n∑
i=1

(−α
τ )i−1(T − t− iτ − u)i−1

(i− 1)!
e
α
τ

(T−t−iτ−u)

]
st+udu

− α

τ

∫ T−t−(n+1)τ

−τ

[
(−α

τ )n[T − t− (n+ 1)τ − u]n

n!
e
α
τ

[T−t−(n+1)τ−u]

]
st+udu

+ σ
n∑
i=0

∫ T−t−iτ

0

(−α
τ )i(T − t− iτ − u)i

i!
e
α
τ

(T−t−iτ−u)dBt+u.

(I.1)

Proof. Let st = lnSt. Then, we have

mt =
1

τ
(st − st−τ )−

(
r − σ2

2

)
, (I.2)

and hence

dst =

[
(1− α)

(
r + µ− σ2

2

)
+
α

τ
(st − st−τ )

]
dt+ σdBt, (I.3)

which implies that

st =
τ

α
(1−α)

(
r+µ− σ

2

2

)[
e
α
τ
t− 1

]
+ e

α
τ
ts0−

α

τ

∫ t−τ

−τ
e
α
τ

(t−τ−v)svdv+σ

∫ t

0
e
α
τ

(t−v)dBv. (I.4)

We want to separate st into two parts: one is determined by the initial values and another

collects all the innovations. Notice that the third term in (I.4) comprises the price s over
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[−τ, t − τ ]. For t ∈ [0, τ ], the price is completely determined by the initial values; hence, we

have

st =
τ

α
(1−α)

(
r+µ− σ

2

2

)[
e
α
τ
t− 1

]
+ e

α
τ
ts0−

α

τ

∫ t−τ

−τ
e
α
τ

(t−τ−v)svdv+σ

∫ t

0
e
α
τ

(t−v)dBv. (I.5)

For t ∈ [τ, 2τ ], (I.4) becomes

st =
τ

α
(1− α)

(
r + µ− σ2

2

)[
e
α
τ
t − 1

]
+ e

α
τ
ts0

− α

τ

∫ t−τ

0
e
α
τ

(t−τ−v)svdv −
α

τ

∫ 0

−τ
e
α
τ

(t−τ−v)svdv + σ

∫ t

0
e
α
τ

(t−v)dBv.

(I.6)

Notice that for v ∈ [0, t − τ ] ⊆ [0, τ ], sv is given by (I.5). By replacing sv in the third term of

(I.6) with (I.5), we have

st =
τ

α
(1− α)

(
r + µ− σ2

2

)(
e
α
τ t + [1− α

τ
(t− τ)]e

α
τ (t−τ) − 2

)
+
[
e
α
τ t − α

τ
(t− τ)e

α
τ (t−τ)

]
s0

− α

τ

∫ 0

−τ
e
α
τ (t−τ−v)svdv +

α2

τ2

∫ t−2τ

−τ
(t− 2τ − v)e

α
τ (t−2τ−v)svdv

+ σ

∫ t

0

e
α
τ (t−v)dBv −

σα

τ

∫ t−τ

0

(t− τ − v)e
α
τ (t−τ−v)dBv.

We can rewrite (I.4) for t ∈ [nτ, (n+ 1)τ ] as

st =
τ

α
(1− α)

(
r + µ− σ2

2

)[
e
α
τ
t − 1

]
+ e

α
τ
ts0 + σ

∫ t

0
e
α
τ

(t−v)dBv

− α

τ

(∫ 0

−τ
+

∫ τ

0
+ · · ·+

∫ t−τ

(n−1)τ

)
e
α
τ

(t−τ−v)svdv.

(I.7)

By substituting sv, v ∈ [iτ, (i+1)τ ], i = 0, 1, · · · , n−1 into the last term of (I.7), we can separate

st for t ∈ [nτ, (n+1)τ ] into a component of initial values and a component of Brownian motions.

Therefore, mathematical induction implies that

st =
τ

α
(1− α)

(
r + µ− σ2

2

)[ n∑
i=0

( i∑
j=0

(−ατ )j(t− iτ)j

j!

)
e
α
τ (t−iτ) − n− 1

]

+

n∑
i=0

(−ατ )i(t− iτ)i

i!
e
α
τ (t−iτ)s0 −

α

τ

∫ 0

−τ

[ n∑
i=1

(−ατ )i−1(t− iτ − v)i−1

(i− 1)!
e
α
τ (t−iτ−v)

]
svdv

− α

τ

∫ t−(n+1)τ

−τ

[
(−ατ )n[t− (n+ 1)τ − v]n

n!
e
α
τ [t−(n+1)τ−v]

]
svdv

+ σ

n∑
i=0

∫ t−iτ

0

(−ατ )i(t− iτ − v)i

i!
e
α
τ (t−iτ−v)dBv, t ∈ [nτ, (n+ 1)τ ].
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The mean of ln(St/S0) = st − s0 is the first four terms minus s0. The variance is

Var0

[
st − s0

]
= σ2

[ ∫ 0

−τ
e−

2α
τ udu+

∫ −τ

−2τ

( 1∑
i=0

(−ατ )i(−iτ − u)i

i!
e
α
τ (−iτ−u)

)2

du+ · · ·

+

∫ −(n−1)τ

−nτ

( n−1∑
i=0

(−ατ )i(−iτ − u)i

i!
e
α
τ (−iτ−u)

)2

du+

∫ −nτ

−t

( n∑
i=0

(−ατ )i(−iτ − u)i

i!
e
α
τ (−iτ−u)

)2

du

]
.

(I.8)

�

Proposition I.1 shows that the asset returns (I.1) over [t, T ] are the weighted sum of the

historical prices su for u ∈ [t − τ, t]. Therefore, the return process depends on the historical

instantaneous returns, rather than just on the beginning and ending prices of the look-back

period.

More importantly, the weights on different historical prices in (I.1) are different. This implies

that different historical price paths, even if they have the same level of momentum, lead to

different expected returns and different Sharpe ratios. However, volatility is independent of

price paths, as shown by (I.8).

In general, the distribution of a finite-horizon return is determined by the instantaneous return

because finite-horizon returns are cumulated by instantaneous returns. If an instantaneous

return is Markovian, its conditional mean and variance constitute a sufficient statistic of the

distribution of the related finite-horizon returns. Otherwise, the sufficient statistic involves more

state variables due to path dependence. When returns exhibit momentum, this momentum is

a sufficient statistic of the instantaneous returns but it is insufficient to characterize the finite-

horizon returns. Thus, instantaneous and finite-horizon returns are characterized by different

sets of state variables in the momentum model but the same set of state variables in Merton’s

(Markovian) model.

We numerically examine the path dependence of future returns in Equation (I.1). Figure

I.1 shows that the future return lnST − lnST−τ places more weight on the recent historical

(instantaneous) returns over the look-back period [−τ, 0] than on the older returns. More

importantly, distribution of the weights of the historical returns becomes flat as T increases. This

implies that although future returns depend more heavily on recent than on distant returns as

the horizon T increases, the path dependence generated by future “momentum cycles” becomes

increasingly weaker. Figure I.1 shows that the path dependence of a cumulative return lnST −

lnS0 is mainly driven by the future return lnSτ − lnS0 over the first momentum cycle.
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Figure I.1. The weights placed by lnST − lnST−τ for T = τ , 2τ , and 3τ on
historical instantaneous returns over the look-back period. Here τ = 1 and
α = 0.34.

In addition, the weights of all the historical prices in (I.1) sum to zero. Thus, the price level

of the momentum asset does not affect its returns.

Finally, momentum increases return volatility; however, its impact on expected returns de-

pends on the related historical path, which has infinite dimensions. Although the means and

variances of the returns and the Sharpe ratios are given piecewise in Proposition I.1, we find

that they are continuous in our untabulated numerical simulations.

Appendix II. Calculation Details for the HA Model (4.2)

II.1. Proof of Proposition 4.1. For the optimization problem (3.1), the investor’s value

function, namely, J(t,W,mi), is governed by

max
φ̂

{
∂J

∂t
+W

{
φ̂
[ N∑
i=1

αimi +
(

1−
N∑
i=1

αi

)
µ
]

+ r
} ∂J
∂W

+
W 2φ̂2σ2

2

∂2J

∂W 2
+

N∑
j=1

Wφ̂
σ2

τj

∂2J

∂W∂mj

+

N∑
j=1

1

τj

[(
1−

N∑
i=1

αi

)
µ− (mj −

N∑
i=1

αimi)
] ∂J
∂mj

+
1

2

N∑
i=1

N∑
j=1

σ2

τiτj

∂2J

∂mi∂mj

}
= 0,

with the boundary condition J(T,W,mi) = W 1−γ

1−γ , where the wealth process satisfies dWt/Wt =

{φ̂t[
∑N

i=1 αimit + (1 −
∑N

i=1 αi)µ] + r}dt + σφ̂tdBt and φ̂t is the portfolio weight of the risky

asset. The solution is given by J = W 1−γ

1−γ f
γ , where f(mi, t) = exp{1

2

∑N
i=1

∑N
j=1Aijtmitmjt +∑N

i=1Aitmit + AN+1t}, Aijt and Ait are deterministic coefficients governed by the following
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ODEs:

Ȧijt +
2αi
γ

N∑
k=1

Ajkt
τk
− 2

τj
Aijt +

1− γ
γ2σ2

αiαj = 0, i, j = 1, · · · , N,

Ȧit +
αi
γ

N∑
j=1

Ajt
τj

+
µ

γ

(
1−

N∑
j=1

αj

) N∑
k=1

Aikt
τk
− Ait

τi
+

1− γ
γ2

µ

σ2

(
1−

N∑
j=1

αj

)
αi = 0, i = 1, · · · , N,

ȦN+1t +
µ

γ

(
1−

N∑
i=1

αi

) N∑
j=1

Ajt
τj

+
σ2

2

N∑
i=1

N∑
j=1

Aijt
τiτj

+
1− γ
γ

r +
1− γ
γ2

µ2

2σ2

(
1−

N∑
i=1

αi

)2
= 0,

(II.1)

with the terminal conditions AijT = 0 for i, j = 1, · · · , N and AiT = 0 for i = 1, · · · , N + 1.

The FOC leads to the optimal portfolio weight of (4.3).

II.2. The CEW of the HA Strategy. The optimal portfolio weight of a risky asset of which

the price follows the HA approximation model (4.2) is given by

φ̂Nt =
1

γσ2

[ N∑
i=1

αimit +
(

1−
N∑
i=1

αi

)
µ
]

+
N∑
i=1

1

τi

( N∑
j=1

Aijtmjt +Ait

)
, (II.2)

where N is the number of Markovian state variables and Aijt and Ait are deterministic functions

given by (II.1).

When an investor applies the HA strategy (II.2) to the momentum asset in (2.1)–(2.2), her

wealth process follows

dŴt

Ŵt

=
{
φ̂t[αmt + (1− α)µ] + r

}
dt+ σφ̂tdBt, (II.3)

where mt = 1
τ (st − st−τ )− r + σ2/2. We define a new measure, namely,

dP̃
dP

= exp

{
(1− γ)σ

∫
φ̂tdBt −

(1− γ)2σ2

2

∫
φ̂2
tdt

}
. (II.4)

Under this new measure,

dst =
[α
τ

(st − st−τ ) + (1− γ)σ2φ̂Nt + (1− α)(r + µ− σ2

2
)
]
dt+ σdB̃t,

dmit =
1

τi

[
(1−

N∑
j=1

αj)µ− (mit −
N∑
j=1

αjmjt) + (1− γ)σ2φ̂Nt

]
dt+

σ

τi
dB̃t, for i = 1, · · · , N.

The CEW in this context satisfies

CEW1−γ
φ̂N

= E0[Ŵ 1−γ
T ]

=Ẽ0

[
exp

{
(1− γ)

∫ T

0
φ̂Nt

[α
τ

(st − st−τ )− αr +
ασ2

2
+ (1− α)µ

]
+ r − γσ2

2
(φ̂Nt )2dt

}]
.
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Denote

f̃t = Ẽt
[

exp

{
(1− γ)

∫ T

t
φ̂Nu

[α
τ

(su − su−τ )− αr +
ασ2

2
+ (1− α)µ

]
+ r − γσ2

2
(φ̂Nu )2du

}]
.

By Feynman-Kac formula, f̃t satisfies the following partial differential equation:

∂f̃

∂t
+
∂f̃

∂s

[α
τ

(s− st−τ ) + (1− γ)σ2φ̂N + (1− α)(r + µ− σ2

2
)
]

+
N∑
i=1

∂f̃

∂mi

1

τi

[
(1−

N∑
j=1

αj)µ− (mi −
N∑
j=1

αjmj) + (1− γ)σ2φ̂N
]

+
σ2

2

∂2f̃

∂s2
+

N∑
i=1

∂2f̃

∂s∂mi

σ2

τi
+

N∑
i=1

∂2f̃

∂mi∂mj

σ2

2τiτj

+(1− γ)
{
φ̂N
[α
τ

(s− st−τ )− αr +
ασ2

2
+ (1− α)µ

]
+ r − γσ2

2
(φ̂N )2

}
f̃ = 0,

(II.5)

with f̃T = 1, where φ̂N given by (II.2) depends on mi (i = 1, · · · , N). Its solution is of the

form:

f̃t = exp

{
F00t

2
s2
t +

N∑
i=1

F0itstmit +
N∑
i=1

N∑
j=1

Fijt
2
mitmjt + F0tst +

N∑
i=1

Fitmit + FN+1t

}
,

with Fij = Fji, where Fij and Fi are deterministic functions of t determined by matching the

coefficients of state variables s and mi.

In our paper, we focus on the cases of N = 1, 2. When N = 1, we obtain

Ḟ00 +
2α

τ
F00 + σ2F 2

00 +
2σ2

τ1
F00F01 +

σ2

τ2
1

F 2
01 = 0,

Ḟ01 + σ2F̂1F00 +
(α
τ

+ F̂5

)
F01 + σ2F00F01 +

σ2

τ1
(F00F11 + F 2

01) +
σ2

τ2
1

F01F11 +
α

τ
F̂1 = 0,

Ḟ11 + 2σ2F̂1F01 + 2F̂5F11 + σ2F 2
01 +

2σ2

τ1
F01F11 +

σ2

τ2
1

F 2
11 −

γσ2

1− γ
F̂ 2

1 = 0,

Ḟ0 + F̂4F00 + F̂6F01 +
α

τ
F0 + σ2F00F0 +

σ2

τ1
(F00F1 + F01F0) +

σ2

τ2
1

F01F1 +
α

τ
F̂3 = 0,

Ḟ1 + F̂4F01 + F̂6F11 + σ2F̂1F0 + F̂5F1 + σ2F01F0 +
σ2

τ1
(F01F1 + F11F0) +

σ2

τ2
1

F11F1

+ F̂1F̂2 −
γσ2

1− γ
F̂1F̂3 = 0,

Ḟ2 + F̂4F0 + F̂6F1 +
σ2

2
(F00 + F 2

0 ) +
σ2

τ1
(F01 + F0F1) +

σ2

2τ2
1

(F11 + F 2
1 ) + F̂2F̂3

− γ

1− γ
σ2

2
F̂ 2

3 + (1− γ)r = 0,
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with the terminal conditions Fij,T = Fi,T = 0; additionally, the corresponding coefficients are

given by

F̂1t = (1− γ)
( α

γσ2
+
A11t

τ1

)
,

F̂2t = −α
τ
st−τ − αr +

ασ2

2
+ (1− α)µ,

F̂3t = (1− γ)
(1− α
γσ2

µ+
A1t

τ1

)
,

F̂4t = −α
τ
st−τ + σ2F̂3t + (1− α)

(
r + µ− σ2

2

)
,

F̂5t =
1− γ
γτ1

α− 1− α
τ1

+
A11t

τ1
,

F̂6t =
σ2

τ1
F̂3t +

(1− α)µ

τ1
,

where A11t and A1t are deterministic functions given by (II.1) with N = 1.

When N = 2, we obtain

Ḟ00 +
2α

τ
F00 + σ2F 2

00 +
2σ2

τ1
F00F01 +

2σ2

τ2
F00F02 +

σ2

τ2
1

F 2
01 +

σ2

τ2
2

F 2
02 +

2σ2

τ1τ1
F01F02 = 0,

Ḟ01 + (1− γ)
α

τ
F̃1 + (1− γ)σ2F̃1F00 +

α

τ
F01 +

F̃3

τ1
F01 +

F̃4

τ2
F02 + σ2F00F01 +

σ2

τ1
(F00F11 + F 2

01)

+
σ2

τ2
(F00F12 + F01F02) +

σ2

τ2
1

F01F11 +
σ2

τ2
2

F02F12 +
σ2

τ1τ2
(F01F12 + F11F02) = 0,

Ḟ02 + (1− γ)
α

τ
F̃2 + (1− γ)σ2F̃2F00 +

α

τ
F02 +

F̃5

τ1
F01 +

F̃6

τ2
F02 + σ2F00F02 +

σ2

τ1
(F00F12 + F01F02)

+
σ2

τ2
(F00F22 + F 2

02) +
σ2

τ2
1

F01F12 +
σ2

τ2
2

F02F22 +
σ2

τ1τ2
(F01F22 + F02F12) = 0,

Ḟ11 − γ(1− γ)σ2F̃ 2
1 + 2(1− γ)σ2F̃1F01 +

2F̃3

τ1
F11 +

2F̃4

τ2
F12 + σ2F 2

01 +
2σ2

τ1
F01F11

+
2σ2

τ2
F01F12 +

σ2

τ2
1

F 2
11 +

σ2

τ2
2

F 2
12 +

2σ2

τ1τ2
F11F12 = 0,

Ḟ12 − γ(1− γ)σ2F̃1F̃2 + (1− γ)σ2F̃2F01 + (1− γ)σ2F̃1F02 +
F̃5

τ1
F11 +

F̃3

τ1
F12 +

F̃6

τ2
F12 +

F̃4

τ2
F22

+ σ2F01F02 +
σ2

τ1
(F01F12 + F02F11) +

σ2

τ2
(F01F22 + F02F12) +

σ2

τ2
1

F11F12 +
σ2

τ2
2

F12F22

+
σ2

τ1τ2
(F11F22 + F 2

12) = 0,
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Ḟ22 − γ(1− γ)σ2F̃ 2
2 + 2(1− γ)σ2F̃2F02 +

2F̃5

τ1
F12 +

2F̃6

τ2
F22 + σ2F 2

02 +
2σ2

τ1
F02F12

+
2σ2

τ2
F02F22 +

σ2

τ2
1

F 2
12 +

σ2

τ2
2

F 2
22 +

2σ2

τ1τ2
F12F22 = 0,

Ḟ0 + (1− γ)
α

τ
F̃7 + F̃9F00 +

α

τ
F0 +

F̃8

τ1
F01 +

F̃8

τ2
F02 + σ2F00F0 +

σ2

τ1
(F01F0 + F00F1)

+
σ2

τ2
(F02F0 + F00F2) +

σ2

τ2
1

F01F1 +
σ2

τ2
2

F02F2 +
σ2

τ1τ2
(F01F2 + F02F1) = 0,

Ḟ1 + (1− γ)F̃1F̃10 − γ(1− γ)σ2F̃1F̃7 + F̃9F01 + (1− γ)σ2F̃1F0 +
F̃8

τ1
F11 +

F̃8

τ2
F12

+
F̃3

τ1
F1 +

F̃4

τ2
F2 + σ2F01F0 +

σ2

τ1
(F01F1 + F11F0) +

σ2

τ2
(F01F2 + F12F0) +

σ2

τ2
1

F11F1

+
σ2

τ2
2

F11F2 +
σ2

τ1τ2
(F11F2 + F12F1) = 0,

Ḟ2 + (1− γ)F̃2F̃10 − γ(1− γ)σ2F̃2F̃7 + F̃9F02 + (1− γ)σ2F̃2F0 +
F̃8

τ1
F12 +

F̃8

τ2
F22

+
F̃5

τ1
F1 +

F̃6

τ2
F2 + σ2F02F0 +

σ2

τ1
(F02F1 + F12F0) +

σ2

τ2
(F02F2 + F22F0) +

σ2

τ2
1

F12F1

+
σ2

τ2
2

F22F2 +
σ2

τ1τ2
(F12F2 + F22F1) = 0,

Ḟ3 + (1− γ)F̃10F̃7 + (1− γ)r − γ(1− γ)σ2

2
F̃ 2

7 + F̃7F0 +
F̃8

τ1
F1 +

F̃8

τ2
F2 +

σ2

τ
(F00 + F 2

0 )

+
σ2

τ1
(F01 + F0F1) +

σ2

τ2
(F02 + F0F2) +

σ2

2τ2
1

(F11 + F 2
1 ) +

σ2

2τ2
2

(F22 + F 2
2 ) +

σ2

τ1τ2
(F12 + F1F2) = 0,

with the terminal conditions Fij,T = Fi,T = 0; additionally, the corresponding coefficients are

given by

F̃1t =
α1

γσ2
+
A11t

τ1
+
A21t

τ2
, F̃2t =

α2

γσ2
+
A12t

τ1
+
A22t

τ2
,

F̃3t = −1 + α1 + (1− γ)σ2F̃1t, F̃4t = F̃3t + 1,

F̃5t = α2 + (1− γ)σ2F̃2t, F̃6t = F̃5t − 1,

F̃7t =
1− α1 − α2

γσ2
µ+

A1t

τ1
+
A2t

τ2
, F̃8t = (1− α1 − α2)µ+ (1− γ)σ2F̃7t,

F̃9t = −α
τ
st−τ + (1− γ)σ2

(1− α1 − α2

γσ2
µ+

A1t

τ1
+
A2t

τ2

)
+ (1− α)

(
r + µ− σ2

2

)
,

F̃10t = −α
τ
st−τ − αr +

ασ2

2
+ (1− α)µ,

where Aijt and Ait are deterministic functions given by (II.1) with N = 2.
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Then, the present value of the CEW is given by

R̂ = e−rTCEWφ̂N = e−rT f̃
1

1−γ
0

= exp

{
F00,0s

2
0/2 +

∑N
i=1 F0i,0stmi,0 +

∑N
i=1

∑N
j=1 Fij,0mi,0mj,0/2 + F0,0s0 +

∑N
i=1 Fi,0mi,0 + FN+1,0

1− γ
− rT

}
.

II.3. Model Calibration for the HA Model (4.2). In this paper, we focus on the cases of

N = 1, 2 for the HA model (4.2). Adding more state variables may not be a better fit for the

data given the resulting large degrees of freedom, especially when these variables are highly

correlated. As shown shortly, the HA model with N = 1 seems to be a better fit for the data

than the HA model with N = 2. (Perhaps paradoxically, the non-Markoivan model (2.1)–(2.2)

actually leads to a more tractable characterization of path dependence than a model that uses

a large number of Markovian variables. For example, the HA model with N = 3 can involve a

15-dimensional system of ODEs as shown in Online Appendix II.1–II.2.)

When N = 1, we use one Markovian state variable m1t to approximate momentum. To

obtain the time series of m1t, we approximate the integral in (4.2) according to a standard

Euler discretization by following Koijen et al. (2009):

m1t ≈
t∑

u=1

e−uRt−u+1, (II.6)

where we set τ1 = 1 and Rt is the excess return of the momentum asset at month t. Then model

(4.2) becomes

Rt+1 = (1− α1)µ+ α1m1t + σεt+1, εt+1 ∼ N(0, 1). (II.7)

WhenN = 2, two Markovian state variablesm1t andm2t are used to approximate momentum.

We set τ1 = 1 and τ2 = 10. (We choose significantly different values for τ1 and τ2 to make the

two independent variables m1t and m2t less correlated in the estimation and hence to better

span momentum.) Then model (4.2) becomes

Rt+1 = (1− α1 − α2)µ+ α1m1t + α2m2t + σεt+1, εt+1 ∼ N(0, 1), (II.8)

where m1t ≈
∑t

u=1 e
−uRt−u+1 and m2t ≈ 1

10

∑t
u=1 e

−u/10Rt−u+1.

We calibrate models (II.7) and (II.8) based on the size factor using the maximum likelihood

method. The estimated parameters are reported in Table II.1. Both coefficients of α1 and α2

are positive, and the t-statistics of them are much lower than that for the momentum model

(t-statistic = 2.85), showing that both m1t and m2t have weaker ability than momentum mt

in predicting future returns. Using the size factor, the Akaike information criteria (AIC) are
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-0.8142, -0.8078, and -0.8022 for the momentum model (2.1)–(2.2), the HA model (4.2) with

N = 1, and the HA model with N = 2, respectively. According to the AIC, the momentum

model is the best fit for the data, and the HA model with N = 1 seems to be a better fit for

the data than that with N = 2.

Table II.1. Parameter estimations for the HA models
This table reports the estimated parameters of the HA models (II.7) (N = 1) and (II.8) (N = 2) in

annual terms, as well as the related t-statistics (in brackets) based on the factor returns using the

maximum likelihood method.
N α1 α2 µ σ

1 0.17 0.08 0.36

[1.77] [4.57] [36.95]

2 0.03 0.36 0.08 0.36

[0.24] [1.95] [3.29] [36.80]

Appendix III. Proofs

III.1. Certainty Equivalent Wealth (CEW).

III.1.1. The CEW of the Optimal Momentum Strategy. The CEW is calculated as
W 1−γ

0 CEW1−γ

1−γ =

E0[
W 1−γ
T

1−γ ]. Using (A.3), the CEW of the optimal momentum strategy is given by

CEWφ∗ = ξ̄
γ/(1−γ)
0 erT = erT exp

{
γ

1− γ

(A1,0

2
(lnS0)2 +A2,0 lnS0 +A3,0

)}
, (III.1)

where the last equality follows from (A.6) and (A.9), and A1,0, A2,0 and A3,0 are given by

(A.13) in Appendix A.2. In this paper, we study the present value of CEWφ∗ , which is defined

as R∗ = e−rTCEWφ∗ .

III.1.2. The CEW of the Mean-Variance Strategy. The wealth process of an investor who uses

the mean-variance strategy follows dWt/Wt = (r+ θ2
t /γ)dt+ θt/γdBt. The corresponding value

function is given by

JMt = Et
[W 1−γ

T

1− γ

]
= e(1−γ)r(T−t)W

1−γ
t

1− γ
Et
[

exp
{∫ T

t

(2γ − 1)(1− γ)

2γ2
θ2
udu+

1− γ
γ

θudBu

}]
=e(1−γ)r(T−t)W

1−γ
t

1− γ
E∗t
[

exp

{
1− γ
2γσ2

∫ T

t

[
(1− α)µ− α

(
r − σ2

2

)
+
α

τ
(su − su−τ )

]2

du

}]
,

(III.2)
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where the last equality follows the change of measure in Appendix A.2. The Feynman-Kac

formula implies that

∂JM

∂t
+

[(
r − σ2

2

)(
1− α

γ

)
+ (1− α)

µ

γ
+

α

γτ
(s− st−τ )

]
∂JM

∂s
+
σ2

2

∂2JM

∂s2

+
1− γ
2γσ2

[
(1− α)µ− α

(
r − σ2

2

)
+
α

τ
(s− st−τ )

]2

JM = 0.

(III.3)

The solution to (III.3) is given by JM (s, t) = exp{AM1,ts2
t /2 +AM2,tst+AM3,t}, where AM1,t, A

M
2,t and

AM3,t are governed by the ODEs

ȦM1,t = −σ2
(
AM1,t

)2 − 2α

γτ
AM1,t −

1− γ
γ

α2

τ2σ2
,

ȦM2,t = −
(
σ2AM1,t +

α

γτ

)
AM2,t −

[
(1− α)

µ

γ
+
(
r − σ2

2

)(
1− α

γ

)
− α

γτ
st−τ

]
AM1,t

− 1− γ
γ

α

σ2τ

[
(1− α)µ+ α

(σ2

2
− r
)
− α

τ
st−τ

]
,

ȦM3,t = −σ
2

2

(
AM2,t

)2 − σ2

2
AM1,t −

[
(1− α)

µ

γ
+
(
r − σ2

2

)(
1− α

γ

)
− α

γτ
st−τ

]
AM2,t

− 1− γ
2γσ2

[
(1− α)µ+ α

(σ2

2
− r
)
− α

τ
st−τ

]2

,

which has the terminal conditions AM1,T = AM2,T = AM3,T = 0. Thus, the present value of the

CEW is given by

RM = (JM0 )1/(1−γ) = exp

{(AM1,0s2
0

2
+AM2,0s0 +AM3,0

)
/(1− γ)

}
.

III.2. Proof of Proposition 6.1. The market is complete, and the Cox-Huang approach ap-

plies. The market prices of risk, namely, θt, are given by (6.4), and the state price density is

given by

πt = exp
{
−
∫ t

0
rdu− 1

2

∫ t

0
θ′uθudu−

∫ t

0
θ′udBu

}
, (III.4)

where

dBt =

 dBF
t

dBM
t

 , dBF
t = (dBF

1,t, dB
F
2,t, · · · , dBF

N,t)
′. (III.5)

Define

ξt = exp
{
− 1

2

∫ t

0
θ′uθudu−

∫ t

0
θ′udBu

}
. (III.6)

We rewrite the momentum as

mt =
1

τ
(st − st−τ )− r +

1

2
(Σ21 + v), (III.7)
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where st = (lnS1,t, lnS2,t, · · · , lnSN,t)′ is a vector of log prices, 1 is an N × 1 vector of 1, and

v is an N × 1 vector whose ith element is given by the iith element of ββ′. Then, the stocks’

log price follows

dst =
[
a+

b

τ
(st − st−τ ) + βα + (1− b)r − 1− b

2
(Σ21 + v)

]
dt+ βdBF

t + ΣdBM
t . (III.8)

We define a new measure:

dP∗

dP
= exp

{
−
∫ T

t

γ − 1

γ
θ′udBu −

∫ T

t

(γ − 1)2

2γ2
θ′uθudu

}
. (III.9)

Under this measure,

dst =
[
a+

b

τ
(st − st−τ ) + βα + (1− b)r − 1− b

2
(Σ21 + v)− γ − 1

γ

(
β Σ

)
θ
]
dt

+ βdBF∗
t + ΣdBM∗

t .

(III.10)

where

θ =Ω−1µ =

 I −β′

0 Σ−1

 α− r

a+ b
τ (st − st−τ )− br + b

2(Σ21 + v)



=

 α− r − β′
[
a+ b

τ (st − st−τ )− br + b
2(Σ21 + v)

]
Σ−1

[
a+ b

τ (st − st−τ )− br + b
2(Σ21 + v)

]
 .

(III.11)

Denote

f(s, t) = Et[ξ
γ−1
γ

T ] = E∗t
[

exp
{1− γ

2γ2

∫ T

t
θ′uθudu

}]
. (III.12)

When t ≤ T , the Feynman-Kac formula leads to

∂f

∂t
+
[
a+

b

τ
(st − st−τ ) + βα + (1− b)r − 1− b

2
(Σ21 + v)− γ − 1

γ

(
β Σ

)
θ
]′∂f
∂s

+
1

2
tr
(
ΣΣ′

∂2f

∂s2

)
+

1− γ
2γ2

θ′θf = 0.

(III.13)

Following the proof in Appendix A.2, the optimal portfolio weights are given by

φ∗ =
1

γ
(ΩΩ′)−1

 α− r

a+ bm + βα

+

 0

φH

 , (III.14)

where

(ΩΩ′)−1 =

 I −β′

−β ββ′ + Σ−2

 . (III.15)
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The hedging demands for the factor assets are zero because their returns are IID. The hedging

demands for the momentum assets are given by

φH = (1− γ)(ββ′ + Σ−2)

∫ 0

−τ
ωv(dRv − 1rdv) + C, (III.16)

and

ωv =


∫ v
−τ ω̂udu, v ∈ [−τ,−τ + T ],∫ −τ+T
−τ ω̂udu, v ∈ [−τ + T, 0],

C =

∫ T

0
exp

{∫ u

0

[γ(1− γ)τ

b
Ĉû +

b

τ

]
dû

}{[a+ βα− br
γ

+ r
]γ(1− γ)τ

b
(Σ−21 + v)Ĉu

− γ(1− γ)τ

2b
Ĉu +

(γ − 1)br

γτ
(Σ−21 + v)− (γ − 1)b

2γτ

}
du+

(1− γ)br

γ
(Σ−21 + v)

∫ 0

−τ
ωvdv,

(III.17)

where

ω̂u = Ĉu+τ exp

{∫ u+τ

0

[γ(1− γ)τ

b
Ĉû +

b

τ

]
dû

}
> 0,

Ĉu =
b2
(
e

2b(T−u)√
γτ + 1

)
γ3/2τ2

[
(
√
γ − 1)e

2b(T−u)√
γτ + (

√
γ + 1)

] . (III.18)

III.3. Proof of Proposition 6.2. The wealth process follows

dWt = Wt

{
r + φRt σt

[α
τ

(Rt −Rt−τ ) + (1− α)µR
]}
dt+Wtφ

R
t σtdBt, (III.19)

where φRt is the portfolio weight of the examined risky asset. When T ≤ τ , the investor’s value

function, J(t,W,R), is governed by (Li and Liu, 2018):

max
φR

{
∂J

∂t
+W

{
r + φRσ

[α
τ

(R−Rt−τ ) + (1− α)µR
]} ∂J
∂W

+
W 2φR2σ2

2

∂2J

∂W 2

+
[α
τ

(R−Rt−τ ) + (1− α)µR
] ∂J
∂R

+WφRσ
∂2J

∂W∂R
+

1

2

∂2J

∂R2

}
= 0,

(III.20)

with the boundary condition J(T,W,R) = W 1−γ

1−γ . By conjecturing that J = W 1−γ

1−γ [f(R, t)]γ and

using FOC, we obtain

∂f

∂t
+

1− γ
γ

rf+
1− γ
2γ2

[α
τ

(R−Rt−τ )+(1−α)µR
]2
f+

1

γ

[α
τ

(R−Rt−τ )+(1−α)µR
] ∂f
∂R

+
1

2

∂2f

∂R2
= 0,
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where f(R, T ) = 1. The solution is given by f(R, t) = exp{A1(t)R2/2 +A2(t)R+A3(t)}, where

A1(t) =

γ−1
γ

α
τ tanh[ −α√γτ (T − t)]

√
γ + tanh[ −α√γτ (T − t)]

,

A2(t) =

∫ T

t

[
(1− α)µR − α

τ
Rs−τ

](1− γ
γ2

α

τ
+
A1(s)

γ

)
e
∫ s
t ( 1

γ
α
τ

+A1(v))dv
ds,

A3(t) =

∫ T

t

1− γ
γ

r +
1− γ
2γ2

[
(1− α)µR − α

τ
Rs−τ

]2
+
A2(s)

γ

[
(1− α)µR − α

τ
Rs−τ

]
+
A1(s) +A2

2(s)

2
ds.

The optimal portfolio weight of the examined risky asset is given by

φR∗ =
1

γσt

{[
αmR

t + (1− α)µR
]

+ γ[A1(t)Rt +A2(t)]
}

=
αmR

t + (1− α)µR

γσt
+

1− γ
σt

[ ∫ t

t−τ
ωR(v, t)dRv + CR(t)

]
,

where

ωR(v, t) =


∫ v+τ
t ω̂R(u, t)du, v ∈ [t− τ, T − τ ],∫ T
t ω̂R(u, t)du, v ∈ [T − τ, t],

CR(t) = (1− α)µR
∫ T

t

[1− γ
γ2

α

τ
+
A1(u)

γ

]
e
∫ u
t [ 1

γ
α
τ

+A1(v)]dv
du,

(III.21)

where ω̂R(u, t) = α
γτ

[
α
γτ + A1(u)

1−γ
]
e
∫ u
t [ 1

γ
α
τ

+A1(v)]dv
.

III.4. Proof of Proposition 6.3. When 0 ≤ T − t ≤ τ , su−τ for all u ≤ T are realized

(log) prices and are known at time t (≤ T ). In this case, the standard dynamic programming

approach applies. Let J(t,W, s) denote the indirect utility function. Bellman’s principle of

optimality leads to the following Hamilton-Jacobi-Bellman (HJB) equation (Merton, 1971) for

J :

max
φ

{
∂J

∂t
+

∂J

∂W
W
[
r +

[α(s− st−τ )

τ
− αr +

ασ2

2
+ (1− α)µ

]
φ
]

+
∂2J

∂W 2

σ2W 2φ2

2

+
∂J

∂s

[α(s− st−τ )

τ
+ (1− α)

(
r + µ− σ2

2

)]
+

∂2J

∂W∂s
σ2Wφ+

∂2J

∂s2

σ2

2

}
= 0,

(III.22)

with the boundary condition J(T,W, s) = W 1−γ

1−γ .

The solution for (III.22) is given by

J(t,W, s) =
W 1−γ

1− γ
exp

{
γ
(A(1)

11t

2
s2 +A

(1)
1t s+A

(1)
2t

)}
, (III.23)
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where

A
(1)
11t =

−γg1 tanh[ −α√γτ (T − t)]
√
γ + tanh[ −α√γτ (T − t)]

,

A
(1)
1t =

∫ T

t

[
g1

(
g3 −

α

τ
su−τ

)
+
(
g2 −

α

γτ
su−τ

)
A

(1)
11u

]
e
∫ u
t

α
γτ

+σ2A
(1)
11sdsdu,

A
(1)
2t =

∫ T

t
g4 +

τg1

2α

(
g3 −

α

τ
su−τ

)2
+
(
g2 −

α

γτ
su−τ

)
A

(1)
1u +

σ2

2
(A

(1)
1u )2 +

σ2

2
A

(1)
11udu,

(III.24)

for 0 ≤ t ≤ T , g1 = 1−γ
γ2

α
σ2τ

, g2 = 1−α
γ µ − γ−α

γ
σ2

2 + γ−α
γ r, g3 = (1 − α)µ + ασ2

2 − αr, and

g4 = 1−γ
γ r are constants. Note that A

(1)
1t and A

(1)
2t depend on the historical price path su for

u ∈ [t − τ, T − τ ]. The optimal portfolio weight is given by φ∗t = φMt + φsHt + φpHt , where the

myopic demand is given by

φMt =
αmt + (1− α)µ

γσ2
; (III.25)

additionally, the “momentum hedging demand” and “path hedging demand” are given, respec-

tively, by

φsHt = A
(1)
11tst and φpHt = A

(1)
1t ,

which are caused by time-varying momentum and price paths, respectively.

When T − t ≥ τ , the delayed variable su−τ becomes unknown at time t for u > t + τ , and

it cannot be characterized by su. As a result, the standard dynamic programming approach

cannot be applied. In this case, more state variables are needed to constitute a sufficient statistic

of the indirect utility function. We show that these state variables are different for different

investment horizons. In fact, as the horizon lengthens, the number of state variables required

increases without bound. Therefore, we can only solve this problem piecewise. For a given

investment horizon, we will first introduce some path-induced state variables that together with

the original state variables, constitute a sufficient statistic. Then, we can write down the HJB

equation with respect to all the state variables.

Now, we study the case τ < T − t ≤ 2τ , which we use to highlight the construction process

of the new state variables. When 0 ≤ t ≤ T − τ ,

Jt = max
φ

{
Et[JT ]

}
= max

φ

{
Et[JT−τ ]

}
= max

φ
Et
{
W 1−γ
T−τ

1− γ
exp

{
γ
(A(1)

11T−τ
2

s2
T−τ +A

(1)
1T−τsT−τ +A

(1)
2T−τ

)}}
.

(III.26)

The first two equalities of (III.26) follow Bellman’s principle of optimality, and the last equality

follows (III.23). Note that A
(1)
11T−τ is a (deterministic) constant, but A

(1)
1T−τ and A

(1)
2T−τ are

stochastic and are not Ft-measurable. In fact, A
(1)
1T−τ and A

(1)
2T−τ are governed by backward



52

random ODEs, so they depend on all the su of u ∈ [T − 2τ, T − τ ], which are not completely

known at time t. Thus, they lead to new state variables. In the following analysis, we first rewrite

the last equation of (III.26) by introducing new adapted state variables that are forward, then

we write the HJB equation based on these new state variables, along with the original state

variables s and W . Finally, we derive the solutions of the HJB equation.

A
(1)
1 in (III.24) can be rewritten as

A
(1)
1t =

∫ T−τ

t−τ

[
g1

(
g3 −

α

τ
su

)
+
(
g2 −

α

γτ
su

)
A

(1)
11u+τ

]
e
∫ u+τ
t

α
γτ

+σ2A
(1)
11sdsdu. (III.27)

We define a new variable, namely,

B̃
(2)
2t =

∫ t

T−2τ

[
g1

(
g3 −

α

τ
su

)
+
(
g2 −

α

γτ
su

)
A

(1)
11u+τ

]
f (1)
u du, (III.28)

for T − 2τ ≤ t ≤ T − τ , where f
(1)
u = e

∫ u+τ
T−τ

α
γτ

+σ2A
(1)
11sds is a deterministic function. Note that

B̃
(2)
2t is forward, adapted to Ft, and governed by a random ODE:

˙̃B
(2)
2t =

[
g1

(
g3 −

α

τ
st

)
+
(
g2 −

α

γτ
st

)
A

(1)
11t+τ

]
f

(1)
t , with B̃

(2)
T−2τ = 0. (III.29)

Then, we can express A
(1)
1 as B̃

(2)
2 :

A
(1)
1t = (f

(1)
t−τ )−1(B̃

(2)
2T−τ − B̃

(2)
2t−τ ). (III.30)

Similarly, we can transform A
(1)
2T−τ in (III.26) into new state variables. By substituting

(III.30) into the last equation of (III.24), we obtain

A
(1)
2T−τ = g0(B̃

(2)
2T−τ )2 + B̃

(2)
2T−τ B̃

(2)
3T−τ + B̃

(2)
4T−τ , (III.31)

where g0 =
∫ T−τ
T−2τ

σ2

2 (f
(1)
u )2du is a constant, and B̃

(2)
3 and B̃

(2)
3 are governed by

˙̃B
(2)
3t =

(
g2 −

α

γτ
st

)
f

(1)
t − σ2(f

(1)
t )2B̃

(2)
2t ,

˙̃B
(2)
4t = g4 +

τg1

2α

(
g3 −

α

τ
st

)2
−
(
g2 −

α

γτ
st

)
f

(1)
t B̃

(2)
2t +

σ2

2
A

(1)
11t+τ +

σ2

2
(f

(1)
t )2(B̃

(2)
2t )2,

(III.32)

for T − 2τ ≤ t ≤ T − τ , with B̃
(2)
3T−2τ = B̃

(2)
4T−2τ = 0. Note that A

(1)
2T−τ leads to the introduction

of two more state variables due to the coefficient of B̃
(2)
2T−τ and the term that is independent of

B̃
(2)
2T−τ in (III.31).

The new state variables B̃
(2)
i for i = 2, 3, 4, which are induced by price paths, together

with the original state variables s and W , constitute a sufficient statistic of the indirect utility
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function. The last equation of (III.26) can be rewritten in terms of all the state variables as

Jt = J(t,W, s, B̃
(2)
2 , B̃

(2)
3 , B̃

(2)
4 )

= max
φ

Et
{
W 1−γ
T−τ

1− γ
exp

{
γ
(A(1)

11T−τ
2

s2
T−τ + B̃

(2)
2T−τsT−τ + g0(B̃

(2)
2T−τ )2 + B̃

(2)
2T−τ B̃

(2)
3T−τ + B̃

(2)
4T−τ

)}}
.

Then, the HJB equation is given by

max
φ

{
∂J

∂t
+

∂J

∂W
W
[
r +

[α(s− st−τ )

τ
− αr +

ασ2

2
+ (1− α)µ

]
φ
]

+
∂2J

∂W 2

σ2W 2φ2

2

+
∂J

∂s

[α(s− st−τ )

τ
+ (1− α)

(
r + µ− σ2

2

)]
+

∂2J

∂W∂s
σ2Wφ+

∂2J

∂s2

σ2

2

+
∂J

∂B̃
(2)
2

[
g1

(
g3 −

α

τ
s
)

+
(
g2 −

α

γτ
s
)
A

(1)
11t+τ

]
f (1) +

∂J

∂B̃
(2)
3

[(
g2 −

α

γτ
s
)
f (1) − σ2(f (1))2B̃

(2)
2

]
+

∂J

∂B̃
(2)
4

[
g4 +

τg1

2α

(
g3 −

α

τ
s
)2
−
(
g2 −

α

γτ
st

)
f (1)B̃

(2)
2 +

σ2

2
A

(1)
11t+τ +

σ2

2
(f (1))2(B̃

(2)
2 )2

]}
= 0,

with the boundary condition JT−τ =
W 1−γ
T−τ

1−γ exp{γ(
A

(1)
11T−τ

2 s2
T−τ + B̃

(2)
2T−τsT−τ + g0(B̃

(2)
2T−τ )2 +

B̃
(2)
2T−τ B̃

(2)
3T−τ + B̃

(2)
4T−τ )}. Its solution is given by

J(t,W, s, B̃
(2)
2 , B̃

(2)
3 , B̃

(2)
4 ) =

W 1−γ
t

1− γ
exp

{
γ
(1

2

3∑
i=1

3∑
j=1

A
(2)
ijt B̃

(2)
it B̃

(2)
jt +

3∑
i=1

A
(2)
it B̃

(2)
it +B̃

(2)
4t +A

(2)
4t

)}
,
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where B̃
(2)
1t ≡ st; the coefficient A(2) is given by

Ȧ
(2)
11t +

2αg1

τ
+

2α

γτ
A

(2)
11t + σ2(A

(2)
11t)

2 − 2α

τ
f

(1)
t

(
g1 +

A
(1)
11t+τ

γ

)
A

(2)
12t −

2α

γτ
f

(1)
t A

(2)
13t = 0,

Ȧ
(2)
22t + σ2(A

(2)
12t)

2 − 2σ2(f
(1)
t )2A

(2)
23t + σ2(f

(1)
t )2 = 0, Ȧ

(2)
33t + σ2(A

(2)
13t)

2 = 0,

Ȧ
(2)
12t +

α

γτ
A

(2)
12t + σ2A

(2)
11tA

(2)
12t − f

(1)
t

α

τ

(
g1 +

A
(1)
11t+τ

γ

)
A

(2)
22t −

α

γτ
f

(1)
t A

(2)
23t − σ

2(f
(1)
t )2A

(2)
13t +

α

γτ
f

(1)
t = 0,

Ȧ
(2)
13t +

α

γτ
A

(2)
13t + σ2A

(2)
11tA

(2)
13t − f

(1)
t

α

τ

(
g1 +

A
(1)
11t+τ

γ

)
A

(2)
23t −

α

γτ
f

(1)
t A

(2)
33t = 0,

Ȧ
(2)
23t + σ2A

(2)
12tA

(2)
13t − σ

2(f
(1)
t )2A

(2)
33t = 0,

Ȧ
(2)
1t −

αg1

τ
st−τ +

(
g2 −

α

γτ
st−τ

)
A

(2)
11t + (g1g3 + g2A

(1)
11t+τ )f

(1)
t A

(2)
12t + g2f

(1)
t A

(2)
13t + σ2A

(2)
11tA

(2)
1t

+
α

γτ
A

(2)
1t −

α

τ

(
g1 +

A
(1)
11t+τ

γ

)
f

(1)
t A

(2)
2t −

α

γτ
f

(1)
t A

(2)
3t = 0,

Ȧ
(2)
2t +

(
g2 −

α

γτ
st−τ

)
A

(2)
12t + (g1g3 + g2A

(1)
11t+τ )f

(1)
t A

(2)
22t + g2f

(1)
t A

(2)
23t − g2f

(1)
t

+ σ2A
(2)
12tA

(2)
1t − σ

2(f
(1)
t )2A

(2)
3t = 0,

Ȧ
(2)
3t +

(
g2 −

α

γτ
st−τ

)
A

(2)
13t + (g1g3 + g2A

(1)
11t+τ )f

(1)
t A

(2)
23t + g2f

(1)
t A

(2)
33t + σ2A

(2)
13tA

(2)
1t = 0,

Ȧ
(2)
4t + 2g4 +

τg1

2α

(
g3 −

α

τ
st−τ

)2
+
σ2

2
A

(2)
11t +

τg1g
2
3

2α
+
σ2

2
A

(1)
11t+τ +

(
g2 −

α

γτ
st−τ

)
A

(2)
1t

+
σ2

2
(A

(2)
1t )2 + (g1g3 + g2A

(1)
11t+τ )f

(1)
t A

(2)
2t + g2f

(1)
t A

(2)
3t = 0,

with the terminal conditions A
(2)
11T−τ = A

(1)
11T−τ , A

(2)
12T−τ = 1, A

(2)
22T−τ = 2g0, A

(2)
23T−τ = 1,

A
(2)
13T−τ = A

(2)
33T−τ = 0, and A

(2)
iT−τ = 0 for i = 1, 2, 3, 4. Therefore, the A

(2)
ijt s are governed by

matrix Riccati differential equations and are independent of the path of s, the A
(2)
it for i = 1, 2, 3

are governed by linear ODEs and depend on price paths, and A
(2)
4t depends quadratically on

st−τ and A
(2)
1t .

The optimal portfolio weight is given by φ∗t = φMt +φsHt +φpHt , where φMt is given by (III.25),

and the hedging demands are given by

φsHt = A
(2)
11tst, and φpHt = A

(2)
12tB̃

(2)
2t +A

(2)
13tB̃

(2)
3t +A

(2)
1t . (III.33)

Based on the results regarding τ < T − t ≤ 2τ , we can solve the optimal control problem for

2τ < T−t ≤ 3τ by following the above procedure, that is, by first developing new state variables,

then writing down the HJB equation with respect to these state variables, and then solving the

HJB up to the solutions to ODEs. Eventually, we can derive the optimal portfolio weights for

any horizon T recursively by using forward induction steps of length τ . To save space, we omit
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the expressions of F(n) and G(n) in Proposition 6.3, which, while more technically involved for

large n (the number of state variables increases geometrically with n), can be derived up to the

ODEs. We refer readers to Li and Liu (2018) for the details regarding these solutions, as they

solve the optimal control problem with a more general model of time delays.

In the last two equations of (6.7), A
(n)
i1 is deterministic and does not depend on price paths,

and B̃
(n)
i for i = 2, · · · , 2n−1 are linear functionals of price paths. Therefore, both φsH and φpH

can be rewritten as a weighted average of the historical returns over the look-back period by

following the procedure from (A.11) to (A.14). In other words, hedging demand is a weighted

average of the historical returns over the look-back period.

III.5. Stationary Condition for the Return Process of the Momentum Asset.

Proposition III.1. The return process of (2.1) and (2.2) is stationary if and only if −1 <

α < 1.

Proof. The discretization of model (2.1) and (2.2) is given by

rt = α
rt−1 + · · ·+ rt−N

N
+ (1− α)(µ+ r)∆t+ σεt, (III.34)

where N = τ/∆t is a positive integer and εt ∼ N (0,∆t). Thus, the return process of the

momentum asset follows a restricted AR(N) process with the same coefficient on its lagged

returns. The stationary condition is determined by the characteristic equation for (III.34),

which is given by

Φ(X) = XN − α

N
(XN−1 +XN−2 + · · ·+ 1) = 0. (III.35)

It is easy to check that the process of momentum mt has the same characteristic equation

(III.35), and hence that it has the same stationary condition as return’s.

The return process (III.34) is stationary if and only if all the roots of (III.35) lie inside the

unit circle, which is, according to Jury’s test, equivalent to

(C1) Φ(1) > 0; (C2) (−1)NΦ(−1) > 0;



56

additionally,

(C3) the (N − 1)× (N − 1) matrices

A±N−1 =



1 0 · · · · · · 0

−α/N 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 0

−α/N . . . −α/N 1


±



0 0 · · · · · · 0 −α/N

0 0 · · · −α/N −α/N
...

...
...

...

0 −α/N · · · · · · −α/N −α/N

−α/N −α/N · · · · · · · · · −α/N


are positive innerwise.

Condition (C1) is equivalent to α < 1. Because

(−1)NΦ(−1) =


1 if N is even;

1 + α
N if N is odd,

condition (C2) is equivalent to α > −N . It can be verified that

A+
M =


(

1 + α
M

)M
2

(1− α) if M is even;(
1 + α

M

)M−1
2

(1− α) if M is odd,

and

A−M =


(

1 + α
M

)M
2

if M is even;(
1 + α

M

)M+1
2

if M is odd.

Condition (C3) implies that A+
M > 0 and A−M > 0 for M = 1, · · · , N − 1, which is equivalent to

−1 < α < 1.

Thus, Conditions (C1)-(C3) are equivalent to −1 < α < 1, which is the necessary and

sufficient condition for both return and momentum being stationary. �

III.6. Horizon Bumps. The following corollary provides insight into horizon bumps.

Corollary III.2. The portfolio weight φ∗0 is a non-diffusion process with respect to the invest-

ment horizon T :

∂φ∗0
∂T

= (1− γ)
α

γσ2

∫ 0

−τ
ϕv

(dSv
Sv
− rdv

)
+ C4,

=
α

γσ2

∫ −τ+T

−τ

∂ω̂(u, T )

∂T
(lnS0 − lnSu)du+

α

γσ2
ω̂(−τ + T, T )(lnS0 − lnS−τ+T ) + C5,
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where

ϕv =


∫ v
−τ

∂ω̂(u,T )
∂T du, v ∈ [−τ,−τ + T ],

ω̂(−τ + T, T ) +
∫ −τ+T
−τ

∂ω̂(u,T )
∂T du, v ∈ [−τ + T, 0],

and C4 and C5 are constants.

To the leading order of 1/γ,

∂φ∗0
∂T

= − α2

γσ2τ2

∫ 0

−τ+T

(dSv
Sv
− rdv

)
− α

γσ2τ

[
(1− α)µ− αr

]
= − α2

γσ2τ2
(lnS0 − lnS−τ+T + C6).

(III.36)

Proof.

∂φ∗0
∂T

= (1− γ)
α

γσ2

∂
[ ∫ 0
−τ ω(v, T )

(
dSv
Sv
− rdv

)]
∂T

+ C4,

where ∫ 0

−τ
ω(v, T )

(dSv
Sv
− rdv

)
=

∫ −τ+T

−τ

[ ∫ 0

u
ω̂(u, T )

(dSv
Sv
− rdv

)]
du,

and C4 = ∂C2(T )
∂T . Thus,

∂
[ ∫ 0
−τ ω(v, T )

(
dSv
Sv
− rdv

)]
∂T

=

∫ 0

−τ
ϕv

(dSv
Sv
− rdv

)
,

where

ϕv =


∫ v
−τ

∂ω̂(u,T )
∂T du, v ∈ [−τ,−τ + T ],

ω̂(−τ + T, T ) +
∫ −τ+T
−τ

∂ω̂(u,T )
∂T du, v ∈ [−τ + T, 0].

In addition, ∂φ∗

∂T can be written in terms of cumulative returns as follows:

∂φ∗0
∂T

=

∫ −τ+T

−τ

α

γσ2

∂ω̂(u, T )

∂T
(lnS0 − lnSu)du+

α

γσ2
ω̂(−τ + T, T )(lnS0 − lnS−τ+T ) + C5,

where C5 = α(τ−T )ω̂(−τ+T,T )
2γ − α

2γ

∫ −τ+T
−τ

∂ω̂(u,T )
∂T udu. To the leading order of 1/γ,

∂φ∗0
∂T is given

by (III.36), where

C6 = −σ2(T − τ)/2 + [(1− α)µ− αr]τ/α. (III.37)

�

In (III.36), the sign of the cumulative return over [−τ + T, 0] changes as T decreases to zero,

leading to bumps in the horizon dependence. (Although dSv
Sv

changes signs an infinite number of

times within any finite interval, ∂φ∗

∂T may change signs less frequently depending on the recent

price trend over [−τ + T, 0].)
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III.7. Optimal Portfolio Weights for Large γ. To provide more insight into optimal port-

folio weights, we study their approximation to the leading order of 1/γ. This exercise leads to

a more explicit expression of ωv.

Corollary III.3. The weight ωv on the historical instantaneous excess return dSv/Sv − rdv in

φH0 is (to the leading order of 1/γ) given by

ωv =


(τ + v)/τ2, v ∈ [−τ,−τ + T ],

T/τ2, v ∈ [−τ + T, 0],

and φH0 is (to the leading order of 1/γ) given by

φH0 = − α2

γσ2

{∫ −τ+T

−τ

v + τ

τ2

(dSv
Sv
− rdv

)
+

∫ 0

−τ+T

T

τ2

(dSv
Sv
− rdv

)
+

1− α
ατ

µT − rT 2

2τ2

}
.

(III.38)

Proof. When γ →∞, to the leading order of 1/γ, we have ω̂ = αγ−1τ−2. The weight ωv on the

historical instantaneous return dSv/Sv becomes

ωv =


α
γτ2 (v + τ), v ∈ [−τ,−τ + T ],

α
γτ2T, v ∈ [−τ + T, 0],

(III.39)

and φH reduces to (III.38). �

Corollary III.3 shows that the weight ωv on the historical excess return dSv/Sv − rdv is

linearly increasing in v for v ∈ [−τ,−τ +T ]. In the general case, Figure 2 shows that the weight

ωv in (3.8) is an approximately linear function of v for v ∈ [−τ,−τ +T ], suggesting that (III.38)

in Corollary III.3 provides a close approximation of φH0 .

The cumulative return of the momentum asset depends more heavily on its recent returns

than its distant ones, as shown in Online Appendix I. Equation (III.38) shows that φH0 depends

even more heavily on recent versus distant returns.

Corollary III.4. The optimal portfolio weight of the momentum asset can be (to the leading

order of 1/γ) rewritten as

φ∗0 =
αmM

0 + (1− α)µ

γσ2
, (III.40)

where

mM
0 =

1

τ

[ ∫ −τ+T

−τ

(
1−α−αv

τ

)(dSv
Sv
−rdv

)
+

∫ 0

−τ+T

(
1−αT

τ

)(dSv
Sv
−rdv

)
−(1−α)µT+

αrT 2

2τ

]
.
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Practitioners often use a mean-variance portfolio. Corollary III.4 shows that the optimal

momentum strategy can also be treated as a mean-variance strategy that uses a horizon- and

path-adjusted momentum variable mM
0 to predict future returns. Different from m0, which is an

equally weighted MA of past returns, mM
0 places less weight on recent returns. In addition, the

weights of past returns depend on the length of horizon T . For short T , mM
0 is approximately

equal to m0. For long T , after adjusting for the horizon and price path, mM
0 can be significantly

different from m0. For example, they may have different signs after a rebound price path than

they do after another type of path.

The difference between mM
0 and m0 reflects the path dependence of the tradeoff between good

and bad states. An investor who is more risk averse than a log-utility investor values the stock

relatively more in states of the world in which expected returns are low because her marginal

utility is higher. Accordingly, such an investor holds an adjusted mean-variance portfolio by

valuing the stock more in “bad” states; these good and bad states are determined by the paths

in (III.40), different from the standard mean-variance portfolio.

III.8. Optimal Portfolio Weight in Terms of Cumulative Returns.

Corollary III.5. The optimal portfolio weight of (3.8) can also be written as

φ∗0 =
α

γσ2

[
lnS0 − lnS−τ

τ
+

∫ −τ+T

−τ
(1− γ)ω̂u(lnS0 − lnSu)du

]
+ C2, (III.41)

where ω̂u > 0 is a deterministic weight given by (A.14) and C2 is a constant given by (III.43).

Thus, the optimal portfolio weight is (to the leading order of 1/γ) given by

φ∗0 =
α

γσ2

[
lnS0 − lnS−τ

τ
−
∫ −τ+T

−τ

α

τ2
(lnS0 − lnSu)du

]
+

(τ − αT )[(1− α)µ− αr]
γσ2τ

+
α

2γ
+
α2T (T − 2τ)

4γτ2
.

(III.42)

Proof. Using (3.8),

φ∗0 = φM0 + (1− γ)
α

γσ2

∫ 0

−τ
ωv
dSv
Sv

+ C1 = φM0 + (1− γ)
α

γσ2

∫ −τ+T

−τ

∫ 0

u

dSv
Sv

ω̂udu+ C1

=
α

γσ2τ
(lnS0 − lnS−τ ) + (1− γ)

α

γσ2

(∫ −τ+T

−τ
ω̂udu lnS0 −

∫ −τ+T

−τ
ω̂u lnSudu

)
+ C2,

where C2 is a constant given by

C2 = C1 − (1− γ)
α

γσ2

∫ −τ+T

−τ

σ2uω̂u
2

du+
(1− α)µ− αr

γσ2
+

α

2γ
. (III.43)

�
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Corollary III.5 states that the optimal portfolio weight is a weighted average of historical

cumulative returns with a start time that varies from −τ to −τ + T and with an end time of

0. In (III.41) and (III.42), the first component in the square bracket corresponds to the mean-

variance portfolio weight, which is dependent upon the cumulative return over the look-back

period. The second component (i.e., hedging) is a weighted average of the historical cumulative

returns over different historical periods. For large γ, (III.42) shows that the second component

depends on an equally weighted average of the historical cumulative returns.

III.9. Price Level Independence.

Corollary III.6. When the historical price path su is changed to su + c for all u ∈ [−τ, 0]

(where c is a constant), φM and φH do not change. Thus, both of the demand components

depend on historical returns.

Proof. Changes in the price level do not affect the price trend s0− s−τ ; thus, according to (I.2),

the mean-variance portfolio weight does not change.

It follows from (3.3), (3.4) and (A.7) that constant change in a path does not affect Et[ξ
(γ−1)/γ
T ].

Moreover, (A.4) implies that this change affects Wt only via W0. Therefore, this change does

not affect the optimal portfolio weight.

Thus, both the mean-variance weight and the optimal portfolio weight are not affected by a

change in the level of historical prices. Because the weight of historical price su in the optimal

portfolio is different for different u, the optimal portfolio is affected by historical returns. �

III.10. Monte Carlo Simulation Method for T − t > τ . Proposition 6.3 shows that the

optimal portfolio weight for longer horizons can be recursively solved up to the solutions to

ODEs. In this section, we also provide a numerical method of solving for the optimal portfolio

weight.

The conditional expectations are calculated using the least squares Monte Carlo approach

(Longstaff and Schwartz, 2001). More specifically, we simulate 10,000 time series of price date

points over [t, T ] for a given historical path during [t − τ, t], which are generated by model

(2.1) and (2.2). The conditional expectation Et
[
ξ

(γ−1)/γ
T

]
in Proposition 3.1 is the average of

ξ
(γ−1)/γ
T . The conditional expectation Et+dt

[
ξ

(γ−1)/γ
T

]
is derived by regressing the realizations of

ξ
(γ−1)/γ
T on a constant and on the corresponding shocks dB̂t at time t+ dt, following Longstaff

and Schwartz (2001). We find that adding more regressors, such as (dB̂t)
2, (dB̂t)

3, or prices

(such as ŝt+dt, ŝ
2
t+dt or ŝ3

t+dt), does not affect the results. Then, ψt in (3.7) can be derived
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by regressing d(πtWt) = W0ξ̄
−1
0 (Et+dt[ξ

(γ−1)/γ
T ] − Et[ξ

(γ−1)/γ
T ]) on dB̂t. The optimal portfolio

weights follow from (3.6).

Appendix IV. Empirical Analysis

To assess the empirical relevance of our theoretical results, we calibrate our model to U.S.

factors and examine the performance of the optimal momentum strategy. We show that the

optimal strategy generates returns with higher means, lower volatility, and hence much higher

Sharpe ratios than those generated by the mean-variance strategy widely used in the literature

that exploits momentum alone and ignores paths. By exploiting the paths of the factors, the

optimal strategy also significantly increases return skewness and decreases return kurtosis. We

find that the outperformance of the optimal strategy tends to be the highest after extreme

periods with large price swings, highlighting the effect of path dependence.

IV.1. Model Estimation. To ensure consistency with the momentum literature, we discretize

the continuous-time model (2.1) at a monthly frequency:

Rt+1 = (1− α)µ+ αmt + σεt+1, εt+1 ∼ N(0, 1), (IV.1)

where Rt+1 is the momentum asset’s return in excess of the short rate.

Ehsani and Linnainmaa (2021) found evidence that factor returns exhibit time series mo-

mentum and that time series factor momentum fully subsumes cross-sectional momentum in

the context of individual stock returns. Following Ehsani and Linnainmaa (2021), we calibrate

model (IV.1) according to common U.S. factors. The five factors of Fama and French (2015),

as well as the short-term reversal and long-term reversal factors, are downloaded from Ken-

neth French’s website at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/,

and the betting-against-beta and quality-minus-junk factors are downloaded from the AQR

data sets at https://www.aqr.com/insights/datasets. For the factors of which the data are

not provided, we compute the factor returns as the average return of the three top deciles minus

that of the three bottom deciles, and the portfolio data for this calculation are from Kenneth

French’s website. The examined anomalies include earnings to price, cash flow to price, divi-

dend yield, accruals, market beta, net share issues, variance, and residual variance. To ensure

consistency with the optimal dynamic strategies that require nonzero investment (wealth), for

each factor, we place investments in both long and short legs in amounts equal to that of the

initial wealth at the beginning of the time period and that of the remaining wealth invested in

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
https://www.aqr.com/insights/datasets
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riskless assets. We view this portfolio as our momentum asset. In addition to considering the

common risk factors, we calibrate our model to U.S. stocks from different industries.

We set the short rate as r = 0.04 annually. We also set τ = 1; i.e., mt is the MA of the

historical excess returns over the previous year. We calibrate model (IV.1) using the maximum

likelihood method. Table IV.1 reports the estimated parameters.

Almost all the estimates of α are significantly positive, showing that the returns of these

factors exhibit time series momentum. This confirms the results of Ehsani and Linnainmaa

(2021), who find that time series momentum (defined as the MA of historical returns) is a

pervasive feature of factor returns.

IV.2. Performance Analysis. In this subsection, we assess the performance of the optimal

momentum strategy based on the given factors using the estimated parameters in Table IV.1.

We set γ = 2 and T = 3. We construct the optimal momentum portfolios for each month and

hold them for 3 years. Rebalancing is assumed to take place monthly.

For all the factors, the optimal strategy invests less aggressively with lower portfolio weight

in the risky asset than the mean-variance strategy does, as shown in Column 3 of Table IV.2.

Column 5 reports the t-statistic of the coefficient from a regression of ∆φ = |φ∗ − φM | on

Xmax. Confirming our predictions, the difference between the optimal portfolio weight and the

mean-variance weight tends to be the largest during the extreme periods with large price swings.

Table IV.2 also reports the portfolio performance. For all the assets, the optimal momentum

strategy generates returns with higher means, lower volatility, and hence much higher Sharpe

ratios than the mean-variance strategy that exploits momentum alone and ignores paths. For

example, when investing in the size factor, the optimal momentum strategy generates annualized

returns with a mean of 5.64% and a standard deviation of 4.31%, producing a Sharpe ratio of

0.38. Comparatively, the mean-variance strategy generates annualized returns with a mean

of 5.60% and a standard deviation of 13.26%, producing a Sharpe ratio of only 0.12. This is

consistent with our theory, which shows that optimal re-balancing rules also implicitly maximize

Sharpe ratios (see (A.6) in Appendix A.2).

Mean-variance momentum strategies occasionally crash; and this is associated with nega-

tively skewed return distributions. For example, Daniel and Moskowitz (2016) document stock

momentum crashes, and Ehsani and Linnainmaa (2021) show that crashes occur when factor

returns abruptly become negatively autocorrelated. By exploiting path dependence, our op-

timal dynamic momentum strategy positively skews all the factors and stocks. In addition,

in most cases, the return skewness of the optimal strategy is much higher than that of both
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the mean-variance strategy and the factor. For example, return skewness of the size factor is

0.40. Applying the optimal strategy and the mean-variance strategy to the size factor produces

return skewness of 1.43 and -0.68, respectively. The optimal strategy also generates much lower

return kurtosis than the mean-variance strategy. The return kurtosis of the size factor, the

optimal strategy, and the mean-variance strategy are 6.13, 4.69, and 21.33, respectively. Thus,

the optimal strategy tends to produce infrequent large profits instead of crashes, suggesting that

the optimal strategy helps avoid momentum crashes. Indeed, an investor with a risk aversion

coefficient greater than one values risky assets relatively more in states of the world where ex-

pected returns are lower because her marginal utility is higher. As a result, optimal strategies

tend to increase return skewness by preventing large losses.

To examine path dependence, we regress portfolio return onto Xmax. Table IV.2 shows

that the return of the optimal strategy is significantly and positively related to Xmax, but the

mean-variance strategy return and the asset return are not related to this variable. Because

portfolio weights depend on past returns, one may expect that the strategy itself could produce

path-dependent performance. To address this concern, we apply the momentum strategy to a

simulated IID return series with a mean and a standard deviation equal to those of the assets.

Table IV.2 shows that the portfolio returns are not significantly related to Xmax. Therefore,

the observed path dependence is due to momentum.

To focus on momentum, we do not account for transaction costs in our optimal strategy.

Optimal portfolio selection with transaction costs has been studied by, e.g., Liu and Loewenstein

(2002), Dai, Zhang and Zhu (2010), and Dai, Yang, Zhang and Zhu (2016). In particular, Dai,

Zhang and Zhu (2010) and Dai et al. (2016) study the optimal trend-following strategy with

transaction costs where market trends are characterized with a Markov regime-switching model

and show that the optimal strategy can be profitable after accounting for reasonable transaction

costs. Instead of theoretically studying the interaction between momentum and transaction

costs, we numerically examine the performance of the optimal momentum strategy assuming a

proportional transaction cost of 0.5%. Table IV.2 shows that the optimal strategy can still be

profitable in this case.
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Table IV.1. Parameter estimations
This table reports the sample periods of 17 U.S. factors as well as those of some U.S. stocks, the

estimated parameters of the momentum model (2.1) and (2.2) in annual terms, and the related

t-statistics (in brackets) based on the factor returns using the maximum likelihood method.

Estimations

Factor Sample period α µ σ

Market 1963:07–2019:12 0.14 0.08 0.64

[1.41] [3.52] [47.10]

Size 1963:07–2019:12 0.34 0.07 0.36

[2.85] [3.53] [36.50]

Value 1963:07–2019:12 0.34 0.08 0.34

[3.34] [3.96] [36.50]

Profitability 1963:07–2019:12 0.34 0.08 0.26

[3.25] [5.12] [36.50]

Investment 1963:07–2019:12 0.39 0.08 0.24

[3.83] [5.12] [36.50]

Short-term reversal 1926:07–2019:12 0.30 0.12 0.41

[3.27] [6.96] [47.10]

Long-term reversal 1931:01–2019:12 0.42 0.07 0.41

[4.91] [3.05] [45.96]

Betting against beta 1930:12–2019:12 0.49 0.12 0.38

[6.65] [5.31] [45.98]

Quality minus junk 1957:07–2019:12 0.37 0.09 0.26

[3.69] [5.84] [38.42]

Earnings to price 1951:07–2019:12 0.29 0.09 0.33

[3.02] [5.33] [40.25]

Cashflow to price 1951:07–2019:12 0.26 0.08 0.33

[2.55] [4.88] [40.25]

Dividend yield 1927:07–2019:12 0.21 0.05 0.44

[2.21] [2.86] [46.86]

Accruals 1963:07–2019:12 0.15 0.07 0.23

[1.24] [6.80] [36.50]

Market beta 1963:07–2019:12 0.09 0.06 0.56

[0.73] [2.30] [36.50]

Net share issues 1963:07–2019:12 0.42 0.07 0.29

[4.15] [3.76] [36.50]

Variance 1963:07–2019:12 0.22 0.06 0.65

[1.87] [1.83] [36.50]

Residual variance 1963:07–2019:12 0.25 0.06 0.60

[2.19] [1.92] [36.50]

Stock Sample period α µ σ

Amazon 1997:06–2019:12 0.46 0.30 1.97

[2.79] [1.26] [22.75]

Apple 1981:01–2019:12 0.09 0.29 1.55

[0.59] [3.56] [30.20]

Coca-Cola 1927:07–2019:12 0.22 0.14 0.72

[2.26] [5.01] [46.86]

General Motors 1927:07–2019:12 0.37 0.08 1.08

[4.34] [1.58] [46.48]
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