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Portfolio Concentration, Portfolio Inertia, and Am-

biguous Correlation

ABSTRACT

When an investor is ambiguous about the asset returns’ correlation and evaluates the portfo-

lio in a multiple-priors framework, we show that the optimal portfolio is either independent

of feasible correlation matrices or contains only a fraction of risky assets. In particular,

the investor evaluates the risk-return tradeo↵ of each risky asset, and just one risky asset

enters the optimal portfolio if the level of correlation ambiguity is high enough. Moreover,

we demonstrate that the optimal portfolio does not change when each asset’s Sharpe ratio

changes in a range. Ambiguity-aversion on correlation uncertainty explains portfolio concen-

tration and portfolio inertia in household portfolios and retirement accounts, and the model

can explain the growth of indexing and ETFs from an optimal portfolio choice perspective.

We further show that these properties are not valid in alternative smooth ambiguity models,

suggesting that the smooth ambiguity model does depart from the standard model enough

to explain portfolio concentration and portfolio inertia.

JEL classification: G11, G12, G13, and D 50

Keywords: Correlation ambiguity, anti-diversification, correlation-invariant, portfolio con-

centration, portfolio inertia, smooth ambiguity
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1 Introduction

Correlation plays a crucial role in portfolio choice since the seminal work in Markowitz

(1952). However, as the number of assets increases, Chan, Karceski, and Lakonishok (1999),

Jagannathan and Ma (2003), and Kan and Zhou (2007) document that the covariance-

variance matrices are often imprecisely estimated and lead to significant estimation errors in

constructing the optimal portfolio. In this paper, we study the e↵ect of correlation uncer-

tainty on portfolio choice for any number of risky assets.

In this study, as in Epstein and Halevy (2019),1 an investor knows perfectly about the

marginal distribution of each risky asset; however, the investor’s ambiguity on the joint dis-

tribution is represented by a set (an ambiguous set) of asset return correlation matrices.

The investor evaluates the portfolio based on each feasible correlation matrix and chooses

the worst-case one in the sense of value function.2 We first consider a situation in which

the investor knows barely about correlation, and we show that the ambiguity-aversion in-

vestor will optimally choose a portfolio with only one risky asset, yielding an anti-diversified

portfolio.3

The intuition of anti-diversification is as follows. Given a known marginal distribution

of each risky asset, the investor knows how to construct an optimal portfolio with this risky

asset only. Since the investor is ambiguous averse to correlation, the investor prefers a

portfolio that is insensitive to correlation. The only portfolios insensitive to all correlation

matrices consist of one asset. Therefore, if the ambiguous set is su�ciently large, the optimal

portfolio for multiple assets is reduced to consider the portfolio construction for each asset

separably. This portfolio construction method without using a correlation matrix is similar

1Epstein and Halevy (2019) identifies investors’ lack of confidence of joint distribution among multiple
random events experimentally. See also Mihm (2016) for ambiguity on the dependent structure.

2It is the classical multiple-priors model in Gilboa and Schmeidler (1989) to study the Knightian un-
certainty or ambiguity. Since Ellsberg (1961), the investor’s uncertainty is consistent with experimental
evidences by Dimmock, Kouwenberg, Mitchell, and Peijnenburg (2016), Bianchiand and Tallon (2019) and
Epstein and Halevy (2019).

3Goldman (1979) coins this term for holding one risky asset in the optimal portfolio. An anti-diversified
portfolio is unique in that it does not depend on any correlation matrix.
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to the separably screening procedure suggested in Carroll (2017) for a principle to screen an

agent along several dimensions of private information and the marginal distribution for each

component of the agent’s type is known. The anti-diversification proposition in the portfolio

choice setting shares a similar economic insight of the optimal screening theorem in Carroll

(2017).

By the same intuition, the ambiguity-aversion investor prefers a portfolio that is indepen-

dent of the feasible correlation matrices in a generally given ambiguous set. If there exists

a portfolio that is correlation-invariant, we show that the investor chooses such a portfolio.

If there exists no correlation-invariant portfolio for a given ambiguous set, we demonstrate

that the optimal portfolio consisting of a few risky assets with significantly di↵erent marginal

distributions, so the optimal portfolio under correlation uncertainty is highly concentrated.

The mechanism to derive these features of an optimal portfolio is as follows. Since the benefit

of diversification is the essential factor in constructing a portfolio, the ambiguity-aversion

investor evaluates the trade-o↵ between diversification benefit and the cost of reducing the

portfolio’s Sharpe ratio due to the ambiguity-aversion on the correlation uncertainty. The

correlation ambiguity a↵ects the Sharpe ratio of the portfolio in general, while each asset

Sharpe ratio is not a↵ected. Therefore, the correlation matrix with a small (or even zero)

e↵ect on the utility appeals to the investor. In the end, the investor chooses a correlation-

invariant portfolio or a concentrated portfolio.

Moreover, we demonstrate a precise risky asset inertia property of the optimal portfolio

under correlation ambiguity. Portfolio inertia is the concept when the Sharpe ratio of risky

assets change, both the list of risky assets and their holdings in the optimal portfolio do

not change accordingly. We show that when investors are ambiguity-averse to correlation

uncertainty, they stop rebalancing the portfolio. For instance, when the level of correlation

ambiguity is high, only the risky asset with the highest Sharpe ratio enters the optimal

portfolio. Therefore, this anti-diversified portfolio does not change regardless of changes of

all other risky assets as long as the other Sharpe ratio is smaller than the highest Sharpe
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ratio. The intuition of portfolio inertia for a general situation is also straightforward from the

diversification perspective. The investor considers the diversification benefits in rebalancing

the portfolio. Even though each risky asset becomes more attractive, if the diversification

benefit is not significant enough to dominate the correlation ambiguity concern, the investor

would prefer to stay with the original portfolio. This inertia property for risky assets is

shown to be robust for any number of risky assets and many ambiguous sets. Both the

portfolio concentration and portfolio inertia are consistent with empirical studies in house-

hold portfolios and retirement accounts (See, for instance, Agnew, Balduzzi, and Sunden

(2003), Bilias, Geogarakos, and Haliassos (2007), Campbell (2006), and Ivković, Sialm, and

Weisbenner (2008).).

For a comparison purpose, we further study a smooth ambiguity model of Klibano↵,

Marinacci, and Mukerji (2005) in which the investor still has perfect knowledge about

each marginal distribution but a second-order distribution on a set of feasible correlation

matrices. In contrast with the multiple-priors model, we show that the optimal portfolio

is not correlation-invariant, i,e., it must depend on the second-order distribution on the

ambiguous set. In particular, it is impossible to treat each asset separately to obtain the

optimal anti-diversified portfolio regardless of the ambiguous set. Moreover, we show that

the investor must rebalance his portfolio when each asset’s investment opportunity changes

slightly. Therefore, there is no risky asset inertia property when the investor has a smooth

preference for the correlation ambiguity on correlation.4 Our results suggest that the smooth

ambiguity model is not significantly di↵erent from the standard model enough to explain

portfolio inertia and under-diversification.

4Maccheroni, Marinacci, and Ru�no (2013) solve an optimal portfolio problem in an analog of the
smooth ambiguity model. In a financial market with a risky asset and an ambiguous asset, Maccheroni,
Marinacci, and Ru�no (2013) show that the portfolio rebalancing in response to the ambiguity aversion
depends on the ambiguous asset’s alpha. These authors do not consider the general property of the optimal
portfolio in this robust mean-variance framework.
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1.1 Related Literature Review

In addition to the papers already mentioned, many economic models of ambiguity are

studied in the literature. These models are di↵erent in identifying attitudes toward risk and

ambiguity. In these previous studies, only a small number of the risky asset is considered.

For instance, Dow and Werlang (1992) show that the holding of a risky position is zero

in a range of asset price by a model of Choquet expected utility. Easley and O’Hara

(2010) introduce Bewley’s incomplete preference to demonstrate a region of a price (for one

risky asset) over there is no trading. Epstein and Schneider (2008) and Illeditsch (2011)

consider an economy with only one risky asset, but the investor has ambiguity aversion to

the information quality of the future cash flow of this risky asset. Illeditsch (2011) shows

the price inertia that the optimal demand on the risky asset does not change in a range of

risky asset prices. Epstein and Schneider (2010) shows the inertia property for risk-free

asset and a certain risky portfolio when an investor is ambiguous about both the expected

return and volatility of one risky asset. Bossaerts (2010) demonstrate the no participation

and portfolio inertia under ↵ �maximin model of Ghirardato, Maccheroni and Marinacci

(2004).5 In general, when the risky asset’s payo↵ is ambiguous, the ambiguity averse investor

holds zero position on this risky asset (Murkerji and Tallon (2003)). Nevertheless, this paper

shows that the trade-o↵ between the benefit of diversification and ambiguity-aversion to the

correlation uncertainty is another channel to lead inertia for any number of risky assets.

Moreover, the portfolio inertia property in this paper is di↵erent from those studies on the

marginal distribution uncertainty in which the correlated structure is known.

Many recent studies document the di↵erent implications among di↵erent approaches to

ambiguity aversion. Gollier (2011) and Caskey (2009) document the second-order e↵ect in

risk aversion and implications to portfolio choice and asset prices. By contrast, the multiple

5 Cao, Han, Hirshleifer, and Zhang (2011) introduce status quo deviation aversion and demonstrate
no-trade under familiarity bias for two risky assets. Other models to explain the inertia or “no-trade”
include information costs (Abel, Eberly, and Panageas (2013), Van Nieuwerburgh and Veldkamp (2010)),
and transaction costs in Liu (2004).

6



priors model of the expected return and volatility (marginal distribution) ambiguity leads to

the first-order e↵ect in risk aversion. See Illeditsch (2011), Condie, Ganhuli, and Illeditsch

(2021) and Epstein and Schneider (2010). In this paper, we also demonstrate di↵erent im-

plications of the multiple priors and smooth ambiguity model. This paper contributes to the

literature by showing that the correlation ambiguity under the multiple priors preferences

leads to the first-order e↵ect, similar to the marginal distribution ambiguity. In contrast, the

smooth ambiguity preference leads to a second-order e↵ect (see also Seo (2009) for a theo-

retical discussion of the smooth ambiguity model). Epstein (2010) argued that the smooth

ambiguity model might not be appropriate to separate the ambiguity and ambiguity aversion.

Our results show that the smooth ambiguity model is not strong enough to distinguish it

from the standard expected utility model. On the other hand, Gajods, Hayanshi, Tallon and

Vergnaud (2008) suggest that the feasible set in the multiple priors model is di↵erent from

the logical possible set, so the worst-case scenario under the multiple priors belief is often

the “corner” solution, whereas the smooth ambiguity model implies an “interior” solution.

These concentration or correlation-invariant features of the optimal portfolio paired with

correlation ambiguity is di↵erent from under-diversification in previous ambiguity aversion

literature on the expected return or volatility.6 Previously, under-diversification refers to

a bias in individual assets or non-participation in risky assets. For example, Cao, Wang,

and Zhang (2005), Easley and O’Hara (2009), and Garlappi, Uppal, and Wang (2007)

demonstrate that some (or all) risky assets do not enter the optimal portfolio if these assets

are not attractive and investor has ambiguous about them. Using the robust control model

of Anderson, Hansen and Sargent (2003) and Strzalecki (2011), Uppal and Wang (2003)

also explains expected return ambiguity can cause under-diversification in the sense that the

optimal positions are biased relative to the standard mean-variance portfolio. In contrast,

we assume that each asset is attractive in our model. Because the investor’s ambiguity-

6Among the ambiguity literature, Boyle, Garlappi, Uppal and Wang (2012), Cao, Wang, and Zhang
(2005), Easley and O’Hara (2009), and Garlappi, Uppal, and Wang (2007) investigate expected return
parameter uncertainty. Easley and O’Hara (2009), and Epstein and Ji (2013) discuss volatility parameter
uncertainty. In these studies, asset returns are independent, so the correlation is not a concern.
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aversion reduces the benefit of diversification (the portfolio’s Sharpe ratio), the portfolio

construction does not take full advantage of asset correlation. Therefore, the optimal port-

folio under correlation uncertainty is under-diversified in the form of portfolio concentration

or correlation-invariant.

There are other explanations for under-diversification in literature from di↵erent mecha-

nisms. For example, Roche, Tompaidis, and Yang (2013) suggest that financial constraints

can lead to under-diversification. Van Nieuwerburgh and Veldkamp (2010) propose an ex-

planation based on information costs. Polkovnichenko (2005) demonstrates household port-

folio under-diversification by using a rank-dependent preference. Mitton and Vorkink (2007)

explain under-diversification because of investors’ heterogeneous beliefs and preferences to

skewness. Ang, Bekaert, and Liu (2005) demonstrate portfolio under-diversification when

investor has disappointment aversion. By extending the Choquet expected utility model for

a large number of assets, Murkerji and Tallon (2001) show that the traditional diversifica-

tion role fails due to the ambiguity-aversion; thus, the e↵ect of ambiguity-aversion on the

financial market is to make the risk-sharing opportunities is less complete than it would be.

Guidolin and Liu (2016) show the under-diversification in a smooth ambiguity model. In

this group of under-diversification literature, correlation attracts little direct attention. Our

study focuses on the e↵ect of ambiguity-aversion on the benefit of diversification.7

In a new approach to multiple sources of information to form predictions, Levy and Razin

(2020) (see also Levy and Razin (2015)) introduce two factors, correlation ignorance and a

bound on pointwise mutual information. Correlation ignorance is a naive interpretation of

forecasts to ignore correlation by simply assuming independent marginal distributions. As

demonstrated in this paper, the ambiguity-aversion investor does not like the correlation-

ignorance portfolio. For the same reason, the optimal portfolio for a naive Bayer investor with

correlation ignorance is neither concentrated nor correlation-invariant. Our characterization

of the optimal portfolio under correlation uncertainty is significantly di↵erent from the one

7We also derive a general portfolio choice rule under joint distribution uncertainty in this paper for this
comparison exercise.
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characterized in Levy and Razin (2020).

Finally, Huang, Zhang, and Zhu (2017) derive the same portfolio choice role for two risky

assets in a mean-variance framework. By deriving essentially the same optimal portfolio for

two risky opportunities, Easley, O’Hara, and Yang (2015) study the asset price implications

for hedge fund regulations. Condie, Ganhuli, and Illeditsch (2021) consider the correlation

uncertainty between one firm’s future cash flow and its signal (which is not tradable) and

obtain short-term momentum due to this ambiguity-aversion. Here, we consider any number

of risky assets and study the features of the optimal portfolios. Moreover, we demonstrate

that these features disappear in smooth ambiguity models.

The paper is organized as follows. In Section 2, we present a portfolio choice problem

with an aversion to correlation ambiguity and solve the problem explicitly. In Section 3, we

demonstrate several unique features of the optimal portfolio under correlation uncertainty.

Section 4 demonstrates the portfolio inertia property of the optimal portfolio for any number

of risky assets. In Section 5, we first explain the empirical evidence and implications to

our results and then compare the e↵ect of the correlation ambiguity with the Sharpe ratio

(marginal distribution) ambiguity. In Section 6, we study alternative smooth ambiguity

model or Bayesian model uncertainty and demonstrate di↵erent features of the optimal

portfolio. Our conclusions are presented in Section 7. Proofs and other general technical

results are given in Appendix.

2 Optimal Mean-Variance Portfolio under Ambiguous

Correlation

This section first explains how a set of feasible correlation matrices captures investor’s corre-

lation ambiguity when the marginal distribution is known and presents an optimal portfolio

choice problem under correlation ambiguity in a mean-variance setting. Then, we explicitly

characterize the optimal strategies for an arbitrary set of feasible correlation matrices and
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any number of risky assets.

In a universe of a riskless asset and N risky assets, rf denotes the rate of return on the

riskless asset and the rate of return of N risky assets are r1, ..., rN , respectively. Let µ =

(µ1, ..., µN)> denote the expected excess return vector of risky assets, where the convention >

denotes the transpose. Let �n denote the standard deviation of excess return n, n = 1, ..., N

and let � be the diagonal matrix with diagonal entries �1, ..., �N in order. Let ⇢ = (⇢ij) be

the correlation matrix of the excess returns, where ⇢ij = 1 if i = j, and ⇢ij is the coe�cient

of correlation between risky asset i and risky asset j for i 6= j. Then the covariance-variance

matrix ⌃ of excess return is �⇢�. Define s = (s1, ..., sN)>, where sn = µn/�n is the Sharpe

ratio of risky asset n. Without loss of generality, we assume that ⌃ is non-singular.

In the standard mean-variance model of portfolio choice, both the expected excess return

vector µ and the covariance-variance matrix ⌃ are known in precise. Let �n, n = 1, ..., N ,

denote the dollar amount that is invested in risky asset n and � = (�1, ...,�N)>. The unique

optimal strategy to the standard mean-variance portfolio choice problem

max
�

µ
>
�� A

2
�
>⌃�, (1)

is given by

�MV (⇢) =
1

A
⌃�1

µ =
1

A
�
�1
⇢
�1
s, (2)

where A is the risk aversion coe�cient. The optimal value is obtained by using the strategy

�MV (⇢) and given by

V =
1

2A
s
>
⇢
�1
s. (3)

Similar to Carroll (2017), the investor in our model has a perfect knowledge about the

marginal distribution of each rn, but does not know the joint distribution of (r1, · · · , rN).
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Since the investor constructs portfolio in a mean-variance setting, it is equivalent to assume

that the investor knows both the expected excess return and standard deviation, but not

know the correlation matrix ⇢.8 We assume that the set of feasible correlation matrices

is denoted by an ambiguous set C. Here, for its general purpose, the ambiguous set C of

correlation matrix is an arbtrary closed convex subset of B, and B is a set of positive definite

symmetric matrices ⇢ = (⇢ij) such that ⇢ii = 1, 8i, ⇢ij 2 [⇢
ij
, ⇢ij], 8i 6= j.

9 The size of

the ambiguous set reflects the investor’s lack of confidence when thinking about returns’

correlation structure.

For a pair (i, j) of asset returns we use confidence interval as ambiguity set of coe�cients

of correlation by a standard method in statistics. Let Rp =
Pn

i=1(Xi�X̄)(Yi�Ȳ )pPn
i=1(Xi�X̄)2(Yi�Ȳ )2

for a paired

sample (X1, Y1), ...., (Xn, Yn), with sample mean (X̄, Ȳ ). The Fisher transformation F (Rp) =

1
2 ln(

1+Rp

1�Rp
) is approximately normally distributed with mean 1

2 ln(
1+p
1�p) and variance 1

n�3 ,

where p is the population correlation. The confidence bounds are based on the asymptotic

normal distribution. If variables have a multivariate normal distribution, these bounds are

accurate for large samples. For this reason, we let [⇢
ij
, ⇢ij] denote the confidence level of the

coe�cient of correlation between asset i and asset j. We assume that asset i and asset j are

not perfectly correlated, that is, �1 < ⇢
ij
< ⇢ij < 1, but we do not impose any restriction

on the value of ⇢ij and ⇢
ij
for generality. Since the covariance-variance is positive definite

and symmetric, the correlation matrix must be an element of B.

Following Gilboa and Schmeidler (1989), the optimal portfolio choice problem for an

ambiguity-averse investor is,

J = max
�

min
⇢2C

µ
>
�� A

2
�
>⌃�, (4)

where the minimization reflects the agent’s aversion to correlation ambiguity. The investor

8A general solution of the optimal portfolio choice problem under joint distribution ambiguity is discussed
in Section 5 and Appendix (Proposition G.1).

9For a matrix B = (bij), ||B|| =
P

N

i=1

P
N

j=1 |bij | yields a norm topology. By a closed set we mean it is
closed under this norm topology. A set of matrix is bounded if there exists a positive number M > 0 such
that ||B||  M for all matrix B in this set.
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chooses the optimal portfolio that maximizes the worst value functions over all feasible

correlation matrices in C. The next result characterizes the unique optimal portfolio under

any ambiguous set of correlation matrices.

PROPOSITION 1. There exists a solution ⇢⇤ of the following optimization problem

min
⇢2C

�
s
>
⇢
�1
s
�
. (5)

Then (�MV (⇢⇤), ⇢⇤) satisfies the saddle-point property

f(�, ⇢⇤)  f(�MV (⇢
⇤), ⇢⇤)  f(�MV (⇢

⇤), ⇢), 8⇢ 2 C,� 2 RN
. (6)

where f(�, ⇢) = µ
>
� � A

2 �
>⌃�. Moreover, the max-min problem (4) has a unique optimal

solution �MV (⇢⇤).

By Proposition 1, we can change the order of maximization and minimization and obtain

J = max
�

min
⇢

µ
>
�� A

2
�
>⌃� = min

⇢
max
�

µ
>
�� A

2
�
>⌃� = min

⇢

1

2A
s
>
⇢
�1
s. (7)

The existence of solution of the inner maximization problem, ⇢⇤ = argmin⇢2C
�
s
>
⇢
�1
s
�
, is

standard due to compactness of C. Proposition 1 states that the optimal portfolio is unique

and explicitly given by �MV (⇢⇤). Then we refer a solution ⇢⇤ as the worst-case correlation

(which might be not unique), and �MV (⇢⇤) as the unique optimal portfolio of the max-min

problem (4).

To describe correlation ambiguity among asset returns, we provide three examples of the

ambiguous set C for multiple risky assets.

Example 2.1. The ambiguous set is C[a, a] = {⇢ = R(a) ⌘ (⇢ij) 2 B : ⇢ij = a 2 [a, a], 8i 6= j, ⇢ii = 1, 8i } .

The class of equicorrelation matrix is studied in Engel and Kelly (2012). The confidence

level of a common pairwise correlation coe�cient in this example is [a, a].
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Example 2.2. Given a positive number ✏ > 0, the ambiguous set is10 C(✏) = {⇢ 2 B : �min(⇢) � ✏} .

Here �min(⇢) denotes the minimal eigenvalue of ⇢.

If the positive number is su�ciently small, the ambiguous set in this example denotes an

investor barely knowing anything about the correlation matrix among asset returns.

Example 2.3. Fix two correlation matrices ⇢1 and ⇢2 of size n⇥ n and k ⇥ k, respectively

The ambiguous set is

C(⇢1, ⇢2) =

8
><

>:

0

B@
⇢1 ⇣

⇣
>

⇢2

1

CA 2 B : ⇣ 2 Mn⇥k(R)

9
>=

>;
.

Given this ambiguous set, the investor has a perfect knowledge about the joint distri-

bution of {r1, · · · , rn} and {rn+1, · · · , rn+k}, but the correlated structure between assets in

the first class {1, · · · , n} with the asset in the second class {n + 1, · · · , n + k} is unknown.

Uppal and Wang (2003) and Garlappi, Uppal, and Wang (2007) consider a similar class of

ambiguous set. A general product structure of the ambiguous set is considered in Section

3.3.

It is helpful to compare the correlation ambiguity with the marginal distribution am-

biguity at this point. Experimentally, Epstein and Halevy (2019) identify investor’s lack

of confidence of joint distribution among multiple random events. For a mean-variance in-

vestor, why do we need to address the correlation ambiguity among asset returns? For an

individual asset, it is well known that estimating the expected excess return is a challenge,

whereas the standard error of variance estimator decreases with the frequency of data ob-

servations (Merton (1980)). Therefore, we need to compare which is simpler to estimate

the covariance-variance matrix or the expected return from an econometrician perspective.

10It is standard (Serre (2002)) to show that the set C(✏) is convex and closed as follows. First, since
all eigenvalues are continuous functions of all entries of a matrix, C(✏) is closed. Second, we make use of
the classical Weyl’s inequality in matrix theory: Given three symmetric matrices A,H, P and A = H + P .
Assume that the eigenvalues of A,H, P are µ1 � · · · � µN , ⌫1 � · · · � ⌫N and ⇢1 � · · · � ⇢N , respectively,
then µi � ⌫i + ⇢N . Then for any H,P 2 C(✏), all eigenvalues of H+P

2 are greater than ✏. Hence, H+P

2 2 C(✏)
and C(✏) is convex. Furthermore, a symmetric matrix is positive definite if and only if all eigenvalues are
positive numbers.
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For this problem, Kan and Zhou (2007) analytically show that the estimation error in the

covariance-variance matrix is more costly than estimation errors in the expected return.

Chan, Karceski, and Lakonishok (1999) also demonstrate the di�culty of forecasting future

covariance-variance matrix in portfolio choice with a large number of risky assets. Moreover,

the joint distribution imposes far more risk management issues than the marginal distribu-

tion (Levy and Razin (2020)). Hence, it is vital to study the portfolio implications of the

correlation ambiguity among many assets. We will present a comparison in detail between

the correlation ambiguity and the marginal distribution ambiguity in Section 5.3.

3 Features of the Optimal Portfolios

This section first demonstrates that when the ambiguous set contains a particular correlation

matrix, the optimal portfolio includes only one risky asset with the highest Sharpe ratio (anti-

diversified). This optimal portfolio rule is robust in the sense that the ambiguity-averse

investor always likes the unambiguous portfolio, which is independent of the correlation

matrix in the ambiguous set (correlation-invariant). Moreover, the optimal portfolio under

correlation ambiguity is likely concentrated, containing only a few risky assets for a general

ambiguous set.

3.1 Anti-diversified portfolio

Since the investor is ambiguity-averse to correlation uncertainty, we first study under

what condition the optimal portfolio does not depend on any knowledge about the correlation

matrix. That is, it includes only one risky asset. The following result provides a su�cient

and necessary condition for such an optimal portfolio.

PROPOSITION 2. Suppose |s1| > max{|s2|, ..., |sN |}. Then the optimal portfolio contains

only the first risky asset if and only if there exists one correlation matrix ⇢ 2 C such that

⇢1i =
si
s1

for all i = 2, · · · , N . Moreover, if the optimal portfolio under correlation ambiguity
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contains only risky asset 1, then s
2
1 > s

2
i , i = 2, · · · , N .

The intuition in Proposition 2 is straightforward. For each risky asset, the investor can

construct an optimal portfolio with a risk-free asset and this risky asset by using its known

marginal distribution. Since the investor is ambiguous about the joint distribution, the in-

vestor intends to choose the portfolio without using any correlation matrix (i.e., portfolio

with only one risky asset). If the investor has very limited knowledge about the joint dis-

tribution, or equivalently a large ambiguous set, it turns out that the optimal portfolio for

multiple assets under correlation ambiguity is one of these portfolios with a single risky asset

constructed by the marginal distribution only.

Proposition 2 is similar to the optimal screening problem studied in Carroll (2017) when

a principle screens an agent along several dimensions of private information. If the principle

knows the marginal distribution of each component of the agent’s type but does not know

the joint distribution, and any mechanism is evaluated by its worst-case expected profit over

all joint distributions consistent with the known marginals, Carroll (2017) shows that the

optimal for the principle is to screen along with each component separately using the known

marginal distribution. Proposition 2 demonstrates a similar insight in the optimal portfolio

choice setting.

In portfolio choice literature, a portfolio is anti-diversification in the sense of Goldman

(1979) if only one risky asset enters the optimal portfolio. Goldman (1979) shows that the

buy-and-hold strategy will result in anti-diversification in an infinite time horizon. In his

paper, only the asset with the highest risk aversion adjusted expected return will be held.

For the mean-variance investor, it is natural to use Sharpe ratio to represent each asset’s

risk-return characteristics, so the anti-diversified portfolio includes only the asset with the

highest Sharpe ratio.

The following examples illustrate anti-diversified portfolio under explicit condition of the

ambiguous set.

Example 3.1. Suppose N = 2, |s1| > |s2|, and the ambiguous set of the correlation coe�cient
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⇢12 is [⇢, ⇢]. Then, the optimal portfolio contains only the first risky asset if and only if

⇢  s2
s1

 ⇢.

Huang, Zhang, and Zhu (2017) solve the same optimal portfolio choice problem with

two risky assets, and derive the same result as in Example 3.1. In a di↵erent context, Easley,

O’Hara, and Yang (2015) also derive the optimal portfolio under correlation ambiguity with

two risky assets. The next two examples illustrate anti-diversified optimal portfolio for many

ambiguous sets with N � 3.

Example 3.2. Suppose N = 3, |s1| > max(|s2|, |s3|), and the ambiguous set of the correlation

matrix is C. Then, the optimal portfolio contains only the first risky asset if and only if

0

BBBB@

1 s2
s1

s3
s1

s2
s1

1 ⇣

s3
s1

⇣ 1

1

CCCCA
2 C

for one ⇣ 2 (�1, 1).

Example 3.3. Assuming |s1| > max{|si|, i = 2, · · · , N}, and ⇢
ij

 sisj
s21

 ⇢ij, 8i 6= j,

then the optimal portfolio for the ambiguous set C(✏) contains only the first risky asset for

su�ciently small positive number ✏.

We should point out that the known marginal distribution assumption is crucial in Propo-

sition 2 and in Carroll (2017). Given N risky assets, X1, · · · , XN , we consider N portfolios,

Y1, · · · , YN such that each asset Xi can be also spanned by these N portfolios. For instance,

Yi =
PN

j=1 ai,jXj, and the matrix (aij) is a non-singular matrix with coe�cients aij 2 R. In-

tuitively, if the investor is su�ciently ambiguous among these assets Xi, the investor should

also be su�ciently ambiguous among the N portfolios Y1, · · · , YN . Hence, the investor would

choose one of the N portfolios {Y1, · · · , YN}, which seems contradicts to the anti-diversified

portfolio in Proposition 2. We can solve this “inconsistency” issue by noticing unknown
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marginal distribution of Yi under correlation ambiguity assumption, and the optimal port-

folio based on assets Yi can be found by a general result in Appendix (Proposition G.1).

Indeed, Proposition 2 cannot be applied for these N portfolios Yi directly. By using Propo-

sition G.1 for {Y1, · · · , YN} in a joint distribution uncertainty setting, the optimal portfolio

under the assumption in Proposition 2 is one of X1, · · · , XN , being one specific portfolio of

these assets Y1, · · · , YN .

Remark 3.1. In practice, it is possible that the investor is o↵ered by some basic portfolios

for which the marginal distributions are statistically known, for instance, ETF portfolios or

emerging market portfolios. But the correlation ambiguity is still a concern for these portfo-

lios. Proposition 2 can be applied is this situation as well. When the set of correlation matrix

between these portfolios is given in Proposition 2 or Example 3.3, the investor holds only the

portfolio with the highest Sharpe ratio even though each basic portfolio is attractive. As an

illustrative example, the ambiguous-averse investor might not enter the emerging market if

the correlated structure between te U.S market and emerging market is too complicated to be

analyzed.

3.2 Correlation-invariant portfolio

In this subsection, we extend Proposition 2 for a general ambiguous set.

Definition 3.1. An investment portfolio � is correlation-invariant with respect to C if f(�, ⇢)

is the same for any ⇢ 2 C.

An anti-diversified portfolio is clearly correlation-invariant with respect to any ambiguous

set C since no correlation matrix is used in constructing the optimal portfolio. Like an

anti-diversified portfolio, since its mean-variance utility f(�, ⇢) of a correlation-invariant

portfolio is independent of the correlation matrix, there is no ambiguity in the correlation-

invariant portfolio when the investor evaluates each possible correlation matrix. Naturally,

the ambiguity-averse investor chooses this portfolio if possible.
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PROPOSITION 3. The optimal portfolio under correlation ambiguity is correlation-variant

if and only if there exists ⇢1 2 C such that the vector �MV (⇢1) is correlation-invariant with

respect to C.

According to Proposition 1, the optimal portfolio under correlation ambiguity is �MV (⇢)

for certain ⇢ 2 C. On one hand, if �MV (⇢) is correlation-invariant for one ⇢ 2 C, then the

ambiguous-averse investor chooses �MV (⇢) optimally. On the other hand, if the portfolio

�MV (⇢) is not correlation-invariant for each feasible correlation matrix ⇢ 2 C, then the opti-

mal portfolio is not correlation-invariant anymore. The existence of a correlation-invariant

optimal portfolio relies on the nature of the ambiguous set, as shown by the following two

examples.

Example 3.4. Let the ambiguous set C = C[a, a], a common pairwise correlation coe�cient

a 2 [a, a]. A portfolio vector � is correlation-invariant with respect to C[a, a] if and only if
P

i 6=j(�i�i)(�j�j) = 0. It can be shown that (see the proof of Example 4.3 in Appendix) if

1�⌦(s)
1+(N�1)⌦(s) 2 [a, a], where

⌦(s) =

vuut 1

N � 1

 
N

PN
n=1 s

2
n

(
PN

n=1 sn)
2
� 1

!
,

then the optimal portfolio under C[a, a] is correlation-invariant. Otherwise, the optimal port-

folio under C[a, a] is either �MV (a) or �MV (a).

There are two remarkable implications in this example. First, even though a correlation-

invariant portfolio is always appealing, an optimal portfolio under ambiguous set could be

not correlation-invariant for a given ambiguous set. For example, if 1�⌦(s)
1+(N�1)⌦(s) < a or

1�⌦(s)
1+(N�1)⌦(s) > a, the worst-case correlation is associated with the smallest or largest possible

pairwise correlation coe�cient number, respectively, leading a “corner solution”. Second,

when an optimal portfolio is indeed correlation-invariant, the optimal portfolio is not nec-

essarily anti-diversified. It is possible that all risky assets enter the correlation-invariant
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optimal portfolio.

In Example 3.4, asset returns have a constant pairwise ambiguous correlation coe�cient.

The next example demonstrates similar features of the correlation-invariant portfolio when

some assets are independent.

Example 3.5. Let

C =

8
>>>><

>>>>:

T (a) ⌘

0

BBBB@

1 0 a

0 1 a

a a 1

1

CCCCA
: a 2 [a, a]

9
>>>>=

>>>>;

,

and a
2
<

1
2 . A portfolio � is correlation-invariant with respect to C if and only if (�1+�2)�3 =

0. If s3
s1+s2

2 [a, a], then �MV (
s3

s1+s2
) is an optimal portfolio that is correlation-invariant.

It is interesting to compare the correlation-invariant portfolio with the prediction in the

presence of ambiguity over correlation structure in recent literature. In the framework of

Levy and Razin (2020), decision makers combine multiple sources of information to form

predictions. Similar to our setting and Carroll (2017), the decision makers understand each

information source in isolation but uncertain about the correlation between the sources; thus,

the decision makers face ambiguity in relation to the set of predictions. Levy and Razin

(2020) characterize the set of rational prediction with a set of joint information structures.

Our characterization of the optimal portfolio under correlation ambiguity is related to

but di↵erent from the approach in Levy and Razin (2020) in several aspects. First, Levy

and Razin (2020) identifies one important factor, a naive interpretation of forecasts to

ignore correlation (Naive-Bayes belief), in forming rational predictions. Moreover, if this

Naive-Bayes belief is relatively precise, the investor behaves as if she completely ignore the

correlation issue. 11 In the portfolio choice setting, it is well known that the (identically)

independent asset return assumption yields a 1
N diversification rule (Samuelson (1967)).

11The correlation ignorance (Levy and Razin (2015)) suggests that naive investors make a decision by
assuming independent marginal distribution. Levy and Razin (2020) demonstrate correlation-ignorance
endogenously. See also Ellis snd Piccione (2017).
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Therefore, correlation-ignorance leads to di↵erent optimal portfolio from the correlation-

invariant approach. Second, when the Naive-Bayes belief is not precise, Levy and Razin

(2020) demonstrates that the correlation ambiguity yields cautious behavior in portfolio

construction, and specifically, the level of correlation bound on pointwise mutual information

(PMI) is help to characterize the rational prediction. In contrast, we construct the optimal

portfolio in which the ambiguous set of correlation matrix in our framework plays a similar

role as the PMI parameter. For instance, in both Example 3.4 - 3.5, a and a provide the

lower and upper bound for the pointwise correlation coe�cient, Example 3.4 - 3.5 explicitly

demonstrate the e↵ect of the PMI parameter to the ambiguity-inverse investor’s optimal

portfolio.

3.3 Concentrated portfolio

If an investor knows very little about the joint distribution, Proposition 2 states that the

investor chooses a highly concentrated, anti-diversified portfolio optimally. In this section,

we further extend Proposition 2 by showing that the investor’s optimal portfolio is often

concentrated, containing only a few assets, although it might not be anti-diversified in a

general situation.

Given an ambiguous set C of correlation matrix of asset {1, · · · , N}, for any subset

{i1, · · · , iM} of these N assets, define

C(i1, · · · , iM) =
�
⇢0 2 SM

++ : ⇢0 is the (i1, · · · , iM) minor of an element ⇢ 2 C
 
.

It is easy to check that C(i1, · · · , iM) is convex and compact. Then we view C(i1, · · · , iM) as

an induced ambiguous set among assets {i1, · · · , iM} by C.

To simplify notations, let µ0 = (µi1 , · · · , µiM ), �0 = diag(�i1 , · · · , �iM ), and

J(i1, · · · , iM ; C) = max
�02RM

min
⇢02C(i1,··· ,iM )

µ0>�� A

2
�
>(�0⇢0�)�. (8)
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J(i1, · · · , iM ; C) is the mean-variance utility of the optimal portfolio with assets i1, · · · , iM

and the corresponding ambiguous set C(i1, · · · , iM) of the correlation matrix. Hence, Propo-

sition 1 can be applied to the max-min problem J(i1, · · · , iM ; C) for any subset of risky

assets.

PROPOSITION 4. The optimal portfolio contains assets in {1, · · · ,M} if and only if

there exists a worts-case correlation matrix ⇢⇤0 for the max-min problem J(1, · · · ,M ; C) and

a matrix ⇣ of size M ⇥ (N �M) such that

(sM+1, · · · , sN) = (s1, · · · , sM)⇢⇤�1
0 ⇣

such that

0

B@
⇢
⇤
0 ⇣

⇣
>

⇢1

1

CA 2 C

for one ⇢1 2 SN�M
++ .

Proposition 2 is a special case of Proposition 4 as follows. Let ⇣ = (s2/s1, · · · , sN/s1).

Then the optimal portfolio only holds asset 1 if and only if there exists one feasible matrix

⇢ 2 C such that ⇣ = (⇢1,2, · · · , ⇢1,N). Proposition 4 characterizes the general situation in

which assetsM+1, · · · , N do not enter the optimal portfolio if their investment opportunities

can be generated by assets 1, · · · ,M .

As a consequence, the next result presents the condition under which one particular asset

is not included in the optimal portfolio.

Corollary 3.1. If there exists a worst-case correlation matrix ⇢0 for the max-min problem

J(1, · · · , N � 1; C}, and one element ⇢ 2 C such that ⇢ij = (⇢0)ij for 1  i, j  N � 1, and

sN = (s1, · · · , sN�1)(⇢0)
�1(⇢1,N , · · · , ⇢N�1N)

>
, (9)
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then the asset N is not included in the optimal portfolio.

Corollary 3.1 can be understood as follows. Assume first the asset N is uncorrelated

with all other assets, then, this asset is not included in the optimal portfolio if and only

if µN = 0.12 In general, let �̃ = (⇢1,N
�1
�N

, ..., ⇢N�1,N
�N�1

�N
)>. �̃ is the population regression

coe�cient of rN on (r1, ..., rN�1). Then the space of all return {r1, r2, · · · , rN} can be written

as X � Y where X consists of r1, · · · , rN�1, and Y is generated by one asset return with

zero expected value if and only if Equation (9) holds. Since the asset in Y is uncorrelated

with assets in X and the expected return is zero by Equation (9), the diversification benefit

is zero by adding asset in Y ; thus, asset N is not included in the optimal portfolio. The

intuition of Proposition 4 is similar from the diversification perspective.

Proposition 4 implies that those risky assets in the optimal portfolio under correlation

ambiguity have either small correlations with each other or very di↵erent risk-return charac-

teristics (Sharpe ratios). If asset N is highly correlated with other assets or the investment

opportunity of asset N is generated by other assets (Equation (9) likely holds), the investor

intends to exclude it because the benefit of diversification by adding this asset is zero. By

using Corollary 3.1 repeatedly, we often come up with an optimal portfolio that is concen-

trated.

Similar to Carroll (2017), Proposition 4 can be also used when investor has some knowl-

edge about asset correlations. Let us divide all risky assets into several smaller class of the

risky asset, N1, · · · ,Nk, and the investor knows the joint distribution of assets in each class

Ni. The investor can construct an optimal portfolio with assets inNi by using the known joint

distribution for this smaller class of risky assets. We also assume that N1 = {1, · · · ,M}, and

J(1, · · · ,M ; C) is larger than the value obtained from other class Nj, j > 1. It means that

the optimal portfolio in the class N1 dominates the optimal portfolios in all other classes Ni

separably. Extending Proposition 2, Proposition 4 characterizes the condition under which

12Similarly, for any increasing and concave function U(·), if asset N is independent of all other assets, then
asset N is not included in the optimal portfolio if and only if its excess expected return is zero (Samuelson
(1967), Theorem III).
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the investor can treat each class separably and choose N1 to construct the optimal portfolio

for all assets.

The next example shows the importance of the independent assumption between some

asset returns, when some Ni contain multiple assets.

Example 3.6. Assume N = 3, and ⇢12 is known, N1 = {1, 2} and N2 = {3}. We assume

that J(3) < J(1, 2). On one hand, if ⇢12 = 0, then the optimal portfolio contains assets in

{1, 2} if and only if there is one correlation matrix ⇢ 2 C such that s3 = s1⇢1,2 + s2⇢2,3. On

the other hand, if ⇢12 6= 0, it is plausible that asset 3 enters the optimal portfolio for any

ambiguous set C.

Consider a situation with three risky assets and order them by the Sharpe ratio in de-

creasing order, i� 1, i, i+1. If asset i� 1 is independent of the asset i+1. Then, the asset i

does not enter the optimal portfolio if there exists one feasible correlation matrix such that

si = si�1⇢i.i�1 + si+1⇢i,i+1, whereas asset i + 1 might enter the optimal portfolio because it

adds the benefit of diversification. It is more interesting though to notice that asset i � 1

might not enter the asset when asset i is independent of asset i + 1, if s2i�1 < s
2
i + s

2
i+1

holds. However, if asset i and asset i+1 are correlated and the investor perfectly knows the

correlation coe�cient ⇢i,i+1, although J(i, i+ 1) > J(i� 1) in certain situations in Example

3.6, asset i� 1 still enters the optimal portfolio for any ambiguous set C. Therefore, the cor-

relation structure in each Ni, and the correlation structure between any two classes matter

in constructing the optimal portfolio.

4 Portfolio Inertia

According to our analysis of Section 3, when the ambiguous set of the correlation matrix

changes, the optimal portfolio is not necessarily changed. For instance, the optimal portfolio

under correlation ambiguity does not smoothly depend on the correlation matrix in the

anti-diversification situation. This property is often called portfolio inertia in literature.
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This section demonstrates a new portfolio inertia property of the optimal portfolio under

correlation ambiguity for multiple assets. Namely, when the ambiguous set is given and

fixed, the optimal portfolio under correlation ambiguity does not change if the Sharpe ratio

vector (the marginal distribution) changes in a non-trivial region. Since the Sharpe ratio

measures the investment opportunity of each asset, this portfolio inertia property states that

the investor chooses the same optimal portfolio even though the investment opportunity of

each asset changes. 13

4.1 General portfolio inertia property

For simplicity, we first fix the volatility vector �, and consider all possible Sharpe ratio

vector s 2 RN
++, the set of vector with all positive components. Later we explain the portfolio

inertia property is robust when the volatility changes.

We use RN
++ to denote the set of all Sharpe ratios because of positive expected excess

returns of risky assets. Given any ambiguous set C of the correlation matrix, Proposition 1

shows a unique optimal portfolio, 1
A�

�1
⇢
⇤�1(s)s, for a worst-case correlation matrix ⇢⇤(s) =

argmin⇢2Cs
>
⇢
�1
s. Therefore, there is a well-defined map

FC : RN
++ ! RN

, FC(s) =
1

A
�
�1
⇢
⇤�1(s)s.

If there is no correlation ambiguity, C = {⇢}, the map FC is clearly injective: s1 6= s2

implies �⇢�1
s1 6= �⇢

�1
s2. By portfolio inertia in out setting we mean that the map FC is

not injective. Since the level set F�1
C (�) consists of all Sharpe ratios with the same optimal

portfolio �, our approach is to investigate the structure of the level set and show that the

level set is fairly large.

13A range of Sharpe ratio can be easily transformed to a range of asset price given a known marginal

distribution of asset’s future cash flow. Specifically, we write the asset excess return as R̃ = d̃

p
� rf for a

future cash flow d̃ and the asset price p. Then the Sharpe ratio s = µd�prf

�d
, where µd is the expected value

of the future cash flow d̃ and �d is the standard deviation of d̃. (µd,�d) is determined by the marginal
distribution of the future cash flow d̃. Therefore, a region of the Sharpe ratio vectors is mapped to a region
of asset prices.
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Definition 4.1. For an ambiguous set C, a vector � 2 RN has a portfolio inertia property

if dimF
�1
C (�) � 1.

In this definition, we use a dimension concept, dim(X), in di↵erential topology to count

the points and distinguish subsets in RN .14 Briefly speaking, a di↵erential manifold with

dimension m is locally likes Rm, and we can do multivariable calculus on it. For a (C1)

smooth map between two di↵erential manifolds, F : X ! Y , we can use the Jacobian matrix

DFp at a point p 2 X to analyze the property of F locally.

PROPOSITION 5. Assume the map FC is smooth and the dimension of the image set of

FC is strictly smaller than N , then almost all portfolio in the image set of FC has a portfolio

inertia property. In general, if X is a submanifold of RN
+ , and dim(FC(X)) < dim(X),

then almost all portfolio � 2 FC(X), the level set F�1
C (�) \ X is a submainfold of X with

dimension dim(X)� dim(FC(X)).

By Sard’s theorem in di↵erential topology, the level set of a smooth map is closely related

to its image set. Technically speaking, the portfolio inertia property on the level set F�1(�)

follows from the characterization of the optimal portfolio in Section 3 and the Sard’s theorem.

Remark 4.1. Since the volatility vector � is given and fixed, the Sharpe ratio changes

equivalents to the expected return changes. To highlight the e↵ect of the volatility vec-

tor, we now use F
�
C to replace FC. Given a submanifold X ✓ RN

++, the image set F
�
C is

�
1
A�

�1
⇢
⇤�1(s)s : s 2 RN

++

 
, where ⇢⇤(s) depends only on s. Notice the map, (x1, · · · , xN) !

(x1
�1
, · · · , xN

�N
), is di↵eomorphism. Then, the dimension of the image set F �

C (X) is independent

of the choice of volatility vector �. If dimF
�0
C (X) < dim(X) for one volatility vector �0, then

for any other volatility vector �, we have dimF
�
C (X) = dimF

�0
C (X) < dim(X); hence, by

Proposition 5, almost all vectors in F
�
C (X) has the portfolio inertia property.

14See Lee (2013) and Milnor (1997) for basic concepts in di↵erential topology. The dimension concept
is di↵eomorphism invariant in a sense that a nonempty C

1 smooth manifold of dimension m cannot be
di↵eomorphic to an n-dimensional manifold unless m = n. See Lee (2013), Theorem 2.17. Since the
maps we use are C

1 smooth, we do not distinguish the terminology between di↵erential and (C1) smooth
manifold, and we sometimes simply refer to manifold. Similarly, a smooth map means a C

1 smooth map.
Notice that only a set with finitely many points has dimension zero. Therefore, a set X with dim(X) � 1
contains at least infinitely many points.

25



Next, we fix the expected return, so a range of Sharpe ratio is equivalent to a region of

the volatility. To investigate the e↵ect of the changing volatility to the optimal portfolio

uncer correlation ambiguity, we fix an expected return vector µ 2 RN
++, and define

GC : (s1, · · · , sN) 2 RN
++ ! 1

A
diag(

s1

µ1
, · · · , sN

µN
)⇢⇤�1(s)s (10)

This map GC is also well-defined by Proposition 1. Similar to Proposition 5, we have the

following portfolio inertia property.15

PROPOSITION 6. Assume GC is smooth and X ✓ RN
++ is a submanifold with dim(GC(X)) <

dim(X), then almost all portfolios in GC(X) have a portfolio inertia property. That is,

dimG
�1
C (�) � 1, and when the Sharpe ratio vector moves in the level set G�1

C (�), the optimal

portfolio is the same portfolio vector �. Moreover, this portfolio inertia is robust with the

changes of the expected return vector µ 2 RN
++.

In Proposition 5 - Proposition 6, the smooth condition of the map FC and GC is technical,

which mean the smoothness e↵ect of the Sharpe ratio to the optimal portfolio. It is intuitive

since the investor has no ambiguity about the marginal distribution. For a given correlation

ambiguous set, this smooth condition can be checked directly. The existence of a submanifold

X such that dim(FC(X)) < dim(X) or dim(GC(X)) < dim(X) follow from the properties of

the optimal portfolio under correlation ambiguity in Section 3.

Similar to the correlation-invariant or concentrated feature of the optimal portfolio, this

portfolio inertia property for an optimal portfolio also follows from the portfolio diversifi-

cation and ambiguity aversion e↵ect. Its mechanism is as follows. The investor considers

each asset based on its marginal distribution or the Sharpe ratio. If there is only one asset,

investors buy it if it becomes more attractive (a higher Sharpe ratio) and sell it short if the

Sharpe ratio decreases (less attractive). For a portfolio with multiple assets, the investor

15We can apply the same approach to the situation in which both the expected return vector and the
volatility vector change, that is, the marginal distribution change in a non-trivial region. See Example 4.4
for an illustration.
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considers the diversification benefits in addition to the attractiveness of each asset (marginal

distribution). Because of ambiguity-aversion to the correlation ambiguity, the investor opti-

mally chooses a correlation-invariant or concentrated portfolio with zero or relatively small

e↵ect of asset return correlation. Since the diversification benefit is small, the investor does

not want to trade away from these optimal portfolios, even though the Sharpe ratio changes

inside a reasonably large region.

4.2 Examples of portfolio inertia

In this section we present several examples to illustrate the portfolio inertia property

under correlation ambiguity.

We start with a situation in which the optimal portfolio is anti-diversified.

Example 4.1. Let X =
�
(s1, · · · , sN)> 2 RN

++, si = s1⇢1i, i = 2, · · · , N, ⇢ 2 C
 
. Then by

Proposition 2, FC(X) =
�
� = (�1, 0, · · · , 0)>,�1 > 0

 
, so the dimension of F�1

C (�)
T

X is

at least dim(X)�1. If the dimension of X is at least two, then each portfolio in FC(X) has a

portfolio inertia property. For instance, for N = 3, and C =
n
⇢ 2 B : ⇢12 2 [⇢

12
, ⇢12], ⇢13 2 [⇢

13
, ⇢13]

o
,

we have dim(X) = 2 and dim(F�1
C (�)

T
X) = 1, 8� = (�1, 0, 0)>,�1 > 0.

The next result follows the characterization of the concentrated portfolio in Proposition

4.

Corollary 4.1. Assuming the investor knows the correlated structure among assets {1, · · · ,M}

perfectly, and fhe correlation matrix is given by ⇢0. Let

X =

8
><

>:
(s1, · · · , sN)> 2 RN

++ : (sM+1, · · · , sN) = (s1, · · · , sM)⇢�1
0 ⇣,

0

B@
⇢0 ⇣

⇣
>

⇢1

1

CA 2 C

9
>=

>;
,

and dim(X) � M + 1. Then for any � = (�1, · · · ,�M , 0, · · · , 0) such that F�1
C (�)

T
X is

non-empty, F�1
C (�)

T
X is a submanifold of dimension dim(X)�M .

The next example illustrates Corollary 4.1.
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Example 4.2. Assume N = 3, and for simplicity, each �i = 1, 1  i  3. The ambiguous

set is

C =

8
>>>><

>>>>:

0

BBBB@

1 0 a

0 1 a

a a 1

1

CCCCA
: a 2 [0.2, 0.7]

9
>>>>=

>>>>;

,

There is portfolio inertia in this situation.

To see it, for any s 2 X, s3 = as1 + as2, a 2 [0.2, 0.7]. Then by Proposition 4 and

Corollary 4.1, asset 3 does not enter in the portfolio in FC(X). Hence, each portfolio in

FC(X) has a portfolio inertia property.

We next show the portfolio inertia property for optimal correlation-invariant portfolio.

Let S =
�
s 2 RN

++ : FC(s) is correlation-invariant with respect to C
 
, and Z = {FC(s) : s 2

S}, the set of optimal portfolio that is correlation-invariant.

The next result follows from Proposition 5 easily.

Corollary 4.2. If both S and Z have smooth manifold structures and dim(Z) < dim(S),

then for almost all � 2 Z16, the dimension of F
�1(�) is at least dim(S) � dim(Z). In

particular, if S is a manifold of dimension N , then for almost all portfolio � in Z, the

dimension of F�1
C (�) is at least N � dim(Z) � 1, and the portfolio inertia occurs for the

ambiguous set C.

We use two examples to demonstrate the portfolio inertia that is generated by the

correlation-invariant portfolio in Corollary 4.2. The first example is the Engle-Kelly’s block

dynamic equicorrelation (DECO) model.

Example 4.3. Let C = {[R(a1)N1⇥N1 ; · · · ;R(ak)Nk⇥Nk
] : ai  ai  ai, i = 1, · · · , k}, a block

DECO model in Engel and Kelly (2012), then almost all portfolio in Z has a portfolio

16By almost all we mean the points in Z which satisfies that the dimension of F�1
C (�) is smaller than

dim(S)� dim(Z) has a measure zero.
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inertia property. Moreover, for almost all portfolio � 2 GC(S), its level set under the smooth

map GC is of dimension greater than one.

As the second example, we consider Example 4.2 again. By Example 3.5, any portfolio in

FC(X) is correlation-invariant. Since X is a smooth manifold and dim(X) = 3, by Corollary

4.2, almost all portfolio in FC(X) have a portfolio inertia property.

Finally, we illustrate that the portfolio inertia property under correlation ambiguity when

both the expected return and volatility changes in a non-trivial region. The following example

is motivated by Illeditsch (2011) and Epstein and Schneider (2010).

Example 4.4. Consider two risky assets and the ambiguous set of the correlation matrix is

C[a, a]. Let (µe
i , �

2
i ) be a benchmark expected return and variance of asset i = 1, 2. The region

of the expected return and variance of asset i is given by µi = µ
e
i + xi, �

2
i = �

2
i +

2xi
A and

0  xi  xi. Here x1 and x2 are two given positive number. There exists portfolio inertia in

this situation.

To see it, we consider the set {(µ1, �1, µ2, �2), 0  x1  x1, 0  x2  x2}. Let Si(xi) =

µe
i+xi

�2
i+

2xi
A

be the Sharpe ratio of asset i for the parameter xi 2 [0, xi], i = 1, 2. Let X =
n
(x1, x2) 2 [0, x1]⇥ [0, x2] : a  min

⇣
S1(x1)
S2(x2)

,
S2(x2)
S1(x1)

⌘
 a

o
. We can show that dim(X) = 2.

By Proposition 2, the ambiguous-averse investor only invests on one risky asset with the

highest Sharpe ratio when (x1, x2) 2 X, that is, the corresponding optimal portfolio is

contained in Y = {(�1, 0), (0,�2),�1,�2 > 0}. Since dim(Y ) = 1, then for each portfolio

✓ 2 Y , there exists a subminifold X0 of X of dimension 1 such that the optimal portfolio is

the portfolio �, as the expected return and volatility (marginal distribution) of each asset i

changes in the region (x1, x2) 2 X0. By the same idea, we can demonstrate similar portfolio

inertia property when both the marginal distributions change in a non-trivial region in other

situations.
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5 Discussions

This section first provides empirical evidence and implications of our results in Section

3 - Section 4. Then we compare the optimal portfolio under correlation ambiguity and the

Sharpe ratio ambiguity.

5.1 Empirical evidence

Our theoretical results are consistent with numbers of empirical studies. First of all,

extant empirical studies document that investors usually hold much less risky assets than

they could. For example, Campbell (2006) finds that the financial portfolios of households

contain only a few risky assets. Goetzmann and Kumar (2008) report that the majority

of individual investors hold a single-digit number of assets in a sample data set from 1991-

1996. Among many empirical findings regarding under-diversification from various data sets,

we refer to Mitton and Vorkink (2007), Calvet, Campbell, and Sodini (2008), and Ivković,

Sialm, and Weisbenner (2008). Proposition 4 (and Proposition G.1) suggest that correlation

ambiguity explains those empirical findings on concentrated optimal portfolios or portfolio

concentration.

Second, many empirical studies have documented risky asset inertia in household portfo-

lios or pension funds. For instance, Agnew, Balduzzi, and Sunden (2003) study nearly 7,000

retirement accounts during the April 1994-August 1998 period, and they find that most asset

allocations are extreme (either 100 percent or zero percent in equities) and there is inertia

in asset allocations. Bilias, Geogarakos, and Haliassos (2007) uses data representative of the

population to document the extent of household portfolio inertia and to link it to house-

hold characteristics and to stock market movements. They document considerable portfolio

inertia, as regards both changing stockholding participation status and trading stocks, and

find that specific household characteristics contribute to the tendency to exhibit such stock

inertia. By using data from the Panel Study of Income Dynamics, Brunnermeier and Nagel
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(2008) find out that households rebalance only very slowly following inflows and outflows

or capital gains and losses. Our ambiguity-aversion model (Section 4) shows that investors’

aversion to the correlation uncertainty could be one reason for the risky assets inertia inside

their portfolios.

5.2 Implications

Our partial equilibrium model shows that the correlation ambiguity-aversion investor

tends to hold a part of stocks and holds these stocks passively. The properties of the optimal

portfolio under correlation ambiguity might explain the increasing trading of the index.

Over 40 years, the amount of capital devoted to index investing has grown by more

than 4 trillion dollars by 2016 (Bogle (2016)). Some researchers contribute to a low fee

of passive investors, and active managers do not outperform the market after fees. There-

fore, by creating some indexes (ETFs), it might be optimal to hold these indexes passively.

Bond and Garcia (2020) develop a rational expectation equilibrium model of the index and

demonstrate the indexing improves price e�ciency. Hirshleifer, Huang, and Tech (2019)

also develop a rational expectation equilibrium of information asymmetry and ambiguity

aversion. With a well-designed risk-adjusted market portfolio (RAMP), Hirshleifer, Huang,

and Tech (2019) show that each investor holds the RAMP in equilibrium while the standard

weighted-weighted market portfolio (VWMP) does not help the ambiguity-averse investor to

participate in the market index.

Our model provides an alternative way to look at the construction of indexes and ETFs.

Specifically, an index is appealing if it maximizes the diversification benefit and reduces ine�-

ciency, such as transaction costs. In this regard, the attractiveness (marginal distribution) of

each risky asset is known. The issue is to select a few risky assets to span su�cient investment

opportunities, and the structure of the portfolio is not significantly sensitive to the market

movement of these assets to reduce the rebalancing cost. Therefore, some well-designed op-

timal portfolios under correlation ambiguity might serve the role of ETFs. For instance, by
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choosing several risky assets in Proposition 4 and Corollary 4.1, we have shown that such a

portfolio is optimal and does not change with some market movement of risky assets. For

the same reason, when a portfolio is invariant to a set of asset correlation structures, it is

also optimal to keep this portfolio even when these assets’ investment opportunities change

in the market (Proposition 3 and Corollary 4.2). Since the ambiguity-aversion e↵ect of the

correlation structure makes the portfolio less sensitive (portfolio inertia) and less diversified

(concentrated or anti-diversified) than it would be otherwise, the optimal portfolio under

correlation uncertainty might be an attractive candidate for passive investment tool in the

market.

We can justify the indexing alternatively. In our discussion of Proposition 2 about the

inconsistency issue, let us start with a set of assets Y1, · · · , YN , and consider N portfolios

X1, · · · , XN of the underlying assets Y1, · · · , YN . If the marginal distribution of these N basic

portfolios X1, · · · , XN are precise, but the induced ambiguous set of these basic portfolios

contains a particular correlation matrix, then Proposition 2 implies that one index from

{X1, · · · , XN} is optimal. Moreover, the investor does not rebalance this index with some

market movements according to Corollary 4.1 (see also Proposition 5 - Proposition 6). Our

results suggest that it is feasible to index the financial market (with any N assets) such

that this index is not necessarily rebalanced continually from an optimal portfolio choice

perspective.

5.3 Comparison with the Sharpe ratio uncertainty

In this subsection, we present a comparison between correlation ambiguity and the ex-

pected return or variance ambiguity.

Before performing this comparison, we extend Proposition 1 to include both the marginal

distribution ambiguity and the correlation ambiguity. Consider a subset U ✓ RN ⇥ SN
++.

Here SN
++ denotes the set of a positive definite and symmetric matrix. We assume that U is

a compact and convex subset of RN ⇥ SN
++, representing an ambiguous set of the expected
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returns vector µ and the covariance-variance matrix ⌃. The optimal portfolio choice problem

under joint distribution ambiguity is the following max-min problem

max
�

min
(µ,⌃)2U

µ
>
�� A

2
�
>⌃�, (11)

Proposition G.1 in Appendix A solves this max-min problem under a general ambiguous

set U as follows. Let (µ⇤
,⌃⇤) = argmin(µ,⌃)2U

�
µ
>⌃�1

µ
�
, and �

⇤ = 1
A⌃

⇤�1
µ
⇤. Then, �⇤

is a unique optimal solution of this general max-min problem.17 Moreover, if there exists

(µ⇤
,⌃⇤) 2 U such that the mean-variance utility µ

>
�
⇤� A

2 �
⇤>⌃�⇤ is independent of (µ,⌃) 2

U , that is, the portfolio �⇤ is unambiguous with respect to the ambiguous set U , then �⇤ is

the unique optimal portfolio.

Assuming the correlation matrix is known and asset returns are independent, then, the

worst-case (µ⇤
, �

⇤) in Proposition G.1 is given by

(µ⇤
, �

⇤) = argmin(µ,�)s
>
s,�

⇤ =
1

A
�
⇤�1

�
⇤�1

µ
⇤
. (12)

Previous results in Cao, Wang, and Zhang (2005), Epstein and Schneider (2010), and Easley

and O’Hara (2009) can be derived easily from Equation (12). For instance, a su�ciently

large of ambiguity on the expected return of each asset implies µi = 0, i = 1, · · · , N for

an element (µ, �) in the ambiguous set, then the investor is away from the risky assets

(no-participation).

Indeed, the expected return uncertainty could also lead to under-diversification or a

concentrated portfolio. For instance, if asset 1, · · · , asset M are not attractive in the sense

that their expected returns could be zero, Equation (12) implies that these assets do not

17Epstein and Schneider (2010) formulate the same problem and demonstrate that it can be also applied
in a continuous-time setting. When the covariance-variance matrix is known, Garlappi, Uppal, and Wang
(2007) solve the primary problem in Proposition G.1 for several examples of ambiguous set of the expected
return vector explicitly by a topology method. Kim and Boyd (2008) solve a relevant max-min problem
in which the objective function is the Sharpe ratio of a portfolio. As shown in Kan and Zhou (2007), the
problem (11) is appealing to finance since the robust Sharpe ratio measure in Kim and Boyd (2008) is
independent of the leverage of the portfolio.
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enter the optimal portfolio.18 However, the reason to choose such a concentrated portfolio

is di↵erent from the correlation ambiguity. Under expected return ambiguity and asset

returns are independent, the ambiguity-aversion investors take zero positions in the un-

attractive assets they are ambiguous about. In contrast, the concentrated portfolio under

correlation ambiguity follows from the consideration of the diversification benefit. As shown

in Proposition 4 and Corollary 3.1, even though each asset is attractive, the investor excludes

asset i when this asset is highly correlated with other assets and its investment opportunity

can be spanned by other assets. Therefore, the correlation ambiguity derives a concentrated

portfolio from a di↵erent channel of the expected return ambiguity.

More importantly, the portfolio inertia property di↵ers significantly between correlation

uncertainty and Sharpe ratio uncertainty in literature. For instance, in the expected return

ambiguity, there is portfolio inertia only when some assets do not enter the optimal portfolio.

That is, there is zero holding when one asset is not attractive regardless of other assets.

As another example, Illeditsch (2011) considers a signal quality ambiguity in which an

ambiguous signal a↵ects both the expected return and the volatility of a risky asset, say,

µ = µ
e + x, �

2 = �
2 + 2x

A , where A is the risk aversion parameter, and 0  x  x for a fixed

positive number x. If x � µ
e � A�

2
> 0, then there is a portfolio inertia for the non-zero

portfolio ✓⇤ = 1.19 In this group of literature about the Sharpe ratio or marginal distribution

uncertainty, the asset return correlation matrix is known, the investor’s ambiguity aversion

leads to the same optimal portfolio when the asset’s marginal distribution changes in a range.

By contrast, we demonstrate the portfolio inertia property when the correlation matrix is

unknown and the investor is ambiguous averse to a given ambiguous set C of correlation

matrix. We demonstrate that the optimal portfolio is still the same, although each asset’s

Sharpe ratio (marginal distribution) changes in a non-trivial region. This general portfolio

18See Easley and O’Hara (2009), and Epstein and Ji (2013). As explained in Epstein and Schneider
(2010), the volatility ambiguity changes the positions on the risky assets but does not a↵ect the participation
feature.

19It is straightforward to derive non-zero portfolio which has the portfolio inertia property for multiple
assets.
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inertia property is consistent with asset allocation inertia in pension portfolios for multiple

assets.

A natural question is which correlation ambiguity and Sharpe ratio ambiguity has a first-

order e↵ect on portfolio diversification. We first consider the expected return ambiguity. For

simplicity, we assume asset returns are independent. For a dependent case, the economic

insight is similar. Assuming µ = (µ1, · · · , µN) is a benchmark expected return and � is the

volatility vector, The expected return changes in the region [µ1 � ✏, µ1 + ✏] ⇥ · · · ⇥ [µN �

✏, µN + ✏N ]. Let �(✏) the corresponding optimal portfolio. Then

@�(✏)i
@✏

=
1

A�
2
i

6= 0.

It means that the expected return uncertainty introduces the first order e↵ect of risk version

in the sense of Segal and Spival (1990). Moreover, @J(✏)
@✏ 6= 0, the first-order e↵ect to the

expected utility, where J(✏) denotes the expected utility under expected return uncertainty.

We now apply the same analysis to the correlation uncertainty. Recall the expected utility

is µ>
�� A

2 �
>
�⇢��. Even though the correlation matrix ⇢ only appears in the second term

�
>
�⇢��, it actually influences the first term µ

>
� through its a↵ect to the optimal portfolio �.

In other words, a first-order e↵ect to the optimal portfolio � also implies the first-order e↵ect

of the expected utility. When the investor is ambiguous averse to the correlation uncertainty

and the investor’s preference is represented in a multiple prior framework, the correlation

uncertainty also implies a first-order e↵ect in risk aversion, in a generic case.

We first illustrate this point by two following examples.

Example 5.1. Assuming ⇢0 = R(a0) is a benchmark correlation matrix, a0 2 (�1, 1), and

the ambiguous set of the correlation matrix is C[a0�✏, a0+✏] for su�ciently small ✏ > 0. Let

�(✏) denotes the optimal portfolio for this ambiguous set. Then, the correlation ambiguity

leads to the first-order e↵ect if and only if a0 6= 1�⌦(s)
1+(N�1)⌦(s) .

Example 5.2. Consider a benchmark correlation matrix ⇢0 = T (a0), and the correlation
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matrix moves in the region of the ambiguous set in Example 3.4 with a0 � ✏  a  a0 + ✏.

Then the correlation ambiguity implies a first-order e↵ect if and only of a0 is not a local

minimal point of the function f(a) = s
>
T (a)�1

s.

The above two examples show that the correlation ambiguity leads to the first-order

e↵ect in risk aversion and expected utility in a generic case. It is also true in general as

follows. Let ⇢0 be a benchmark correlation matrix, and the ambiguous set C = ⇢0 + ✏A for

a suitable set A. The optimal portfolio is written as �(✏) to highlight the role of ✏, and

�(✏) = argmin⇢2⇢0+✏As
>
⇢
�1
s. Notice that for each A 2 U , (⇢0 + ✏A)�1 = ⇢0 � ✏⇢

�1
0 A⇢0 +

1
2✏

2(⇢�1
0 A)2⇢�1

0 + · · · . In a generic case, the worst-case correlation matrix is the “corner

solution” of the multiple prior preference model (as explained with many examples in Epstein

and Schneider (2010)), ✏ has a first-order e↵ect to (⇢0 + ✏A)�1 and the optimal portfolio

�(✏). In the next section, we will show that the smooth ambiguity model leads to an “interior

solution” of the worst-case correlation matrix, implying a second-order e↵ect in risk aversion.

Nevertheless, in a non-generic case that ✏ = 0 is a locally minimal point of the function

s
>(⇢0 + ✏A)�1

s, because of the portfolio inertia feature, the correlation ambiguity has no

e↵ect to the optimal portfolio and the expected utility.

6 Smooth Ambiguity Models

In this section we demonstrate that both correlation-invariant and portfolio inertia do

not satisfy in an alternative ambiguity model.

We consider an investor who has marginal distribution on each return, and his ambiguous

about the joint distribution is denoted by an ambiguous set C of correlation matrix. To

compare with the max-min mean-variance problem (4), we assume that the joint distribution

of asset returns belongs to a class of multivariate normal distribution, and the investor’s

preference is u(w) = �e
�Aw, where A is the constant absolute risk aversion parameter. Note

that, for any portfolio vector �, W is the portfolio wealth following this strategy, E[u(W )]
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is u (f(�, ⇢)) where f(�, ⇢) = µ
>
�� A

2 �
>⌃�. Therefore, the max-min problem

max
�

min
⇢2C

E[u(W )] (13)

is the same as the max-min problem (4).

As a comparison to the optimization problem (13), we study the optimal portfolio in a

smooth ambiguity model of Klibano↵, Marinacci, and Mukerji (2005). Let P be a prior

distribution of the correlation matrix ⇢ 2 C, and the investor’s correlation ambiguity is

expressed by this second-order distribution, and a concave function h(x) measures the in-

vestor’s attitude towards ambiguity aversion to the correlation matrix. Specifically, the

investor prefers one portfolio � to another portfolio �̃ in this smooth ambiguity model if and

only if EP [h (E⇢[u(W )])] � EP

h
h

⇣
E⇢[u(W̃ )]

⌘i
, where E⇢[·] denotes the expectation opera-

tor for which the asset return correlation is ⇢. We do not specify the prior distribution P of

the correlation matrix, and refer to Murihead (1982) for the discussion of the distribution of

correlation matrix for multivariate normal distribution. In its general version, the investor’s

optimal portfolio choice problem is

max
�

EP [h (E⇢[u(W )])] . (14)

Following Caskey (2009), Gollier (2011), Condie, Ganhuli, and Illeditsch (2021), we

choose a power-specification of the function h(x) to exhibit constant relative ambiguity

aversion:

h(x) = � 1

1 + ↵
(�x)1+↵,↵ � 0.

If the constant ↵ = 0, h(x) = x, then EP [h (E⇢[u(W )])] is reduced to an expectation

under a product probability space over the state space and the correlation matrix state

space, which is referred to a Bayesian model uncertainty. Hence, we assume the constant
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↵ � 0 to include both Bayesian model uncertainty and smooth ambiguity model.

We show that the optimal portfolio is not correlation-invariant always, and the portfolio-

inertia property fails to be satisfied under the following Assumption A.

Assumption A. For the Sharpe ratio vector s, and any ⌧ 2 C, the map: ⇢ 2 C !

s
>
⌧
�1
⇢⌧

�1
s is not a constant map.

PROPOSITION 7. For any Sharpe ratio vector s 2 RN
++, there exists a unique optimal

portfolio �⇤ of the optimization problem (14). If Assumption A holds, the optimal portfolio

�
⇤ is not correlation-invariant. Moreover, for any s 2 RN

++, there is an open region Us of s

such that the map s ! �
⇤ is one-to-one over the region Us and the dimension of Us is N .

Proposition 7 demonstrates significant di↵erence between the smooth ambiguity model

and the correlation ambiguity in the multiple-priors framework in several aspects. First, the

optimal portfolio is not correlation-invariant. In other words, the optimal portfolio �⇤ in

the smooth ambiguity model must depend on the correlation matrix in the ambiguity set.

Second, when the investment opportunities change slightly, the optimal portfolio changes

accordingly. Therefore, there is no portfolio inertia property in the smooth ambiguity model

and the situation with Bayesian model uncertainty.

Assumption A is a rather weak condition about the Sharpe ratio s and the ambiguous

set. We can show that for any ambiguous set C with more than one element, Assumption A

holds for almost all s 2 RN
++.

20 The following example shows that it can be verified directly.

Example 6.1. Let C = C[a, a]. Then, Assumption A holds for any s 2 RN
++.

Remark 6.1. The di↵erence between the smooth ambiguity preference and the multiple prior

preference is well studied in the literature. As Epstein and Schneider (2010) documented,

20Given an ambiguous set C with more than one point, then the set of s that Assumption A fails must
be included in the set

S
⇢1

T
⇢

�
s : s>(⇢�1

1 ⇢⇢
�1
1 � ⇢

�1
1 )s = 0

 
. By a standard continuity argument we can

replace this set by a countably union
S

⇢12C(Q)

T
⇢

�
s : s>(⇢�1

1 ⇢⇢
�1
1 � ⇢

�1
1 )s = 0

 
, here ⇢1 2 C(Q) means

that all entries are rational numbers. Therefore, the Lebesgue measure the last set is zero. Hence, almost
all s satisfy Assumption A.
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“the smooth ambiguity model is more similar to standard expected utility model than the mul-

tiple priors model in the sens tea locally risk neutral, portfolio reacts smoothly to changes in

return expectation and diversification is beneficial”. Gollier (2011) also demonstrates the

second-order e↵ect in risk aversion in a portfolio choice setting. Epstein (2010) questioned

whether the smooth ambiguity model separates the ambiguity and the attitude towards am-

biguity appropriately. In a portfolio choice with correlation ambiguity setting, we show that

the smoothness feature of the preference plays an important role in distinguishing the optimal

portfolio property such as correlation-invariant and portfolio inertia.

7 Conclusions

In this paper, we solve an optimal portfolio choice problem under correlation ambiguity

for any number of risky assets and derive new properties of the optimal portfolio. We show

that the optimal portfolio consists of only one risky asset when correlations are su�ciently

ambiguous. In general, only part of risky assets enters the optimal portfolio (concentrated

portfolio), or the optimal portfolio is correlation-invariant for the ambiguous set because

of the ambiguity-aversion e↵ect. Moreover, we demonstrate a general risky asset inertia

property of the optimal portfolio under correlation ambiguity. We demonstrate significantly

di↵erent implications of correlation uncertainty from the expected return or volatility uncer-

tainty.

This paper explains portfolio concentration and portfolio inertia concurrently in one

ambiguity-aversion model. We also use the model to explain the growth of indexing and

ETFs from an optimal portfolio choice perspective. Furthermore, we demonstrate that both

the correlation-invariant feature and the portfolio inertia property are not valid anymore

in an alternative smooth ambiguity model of correlation uncertainty. Overall, our results

suggest that correlation ambiguity in a multiple-priors framework has important implications

for portfolio choice.
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Appendix A: Proofs

Proof of Proposition 1:

We first prove the uniqueness property of the optimal portfolio (if there exists) in the

max-min problem (4). Assuming there are two portfolios �1,�2 2 Rn such that J =

min⇢2C f(�i, ⇢), i = 1, 2. Then the set Xi =
�
(µ>

�i,�
>
i �⇢��i) : ⇢ 2 C

 
lies above the line l

on the plane (x, y) 2 R2:

l : x� A

2
y = J,

and the set Xi does not entirely lie above this line (Xi meets the line on at one point). Let

�3 = �1+�2
2 and assume that �1 6= �2, then (�1 � �2)>�⇢�(�1 � �2) > 0, 8⇢ 2 C, implying

�
>
3 �⇢��3 <

�>1 �⇢��1+�
>
2 �⇢�

>�2
2 . Hence, f(�3, ⇢) = µ

>
�3 � A

2 �
>
3 �⇢��3 > J, 8⇢ 2 C. Since C is

compact, we have min⇢2C f(�3, ⇢) > J , which contradicts to the definition of J .

We next determine the optimal value J . Since f(�, ·) is quasi-concave and f(·, ⇢) is

quasi-convex, the Sion’s minimax theorem implies that

J = max
�

min
⇢

f(�, ⇢) = min
⇢

max
�

f(�, ⇢) =
1

2A
min
⇢2C

s
>
⇢
�1
s.

We now show that the unique optimal portfolio is �MV (⇢⇤) for ⇢⇤ = argmin⇢2Cs
>
⇢
�1
s

and the saddle-point property. For this purpose, we next prove that the set of vectors

{�MV (⇢) : ⇢ 2 C} is bounded. First, there exists a positive number c such that det(⇢) �

c, 8⇢ 2 C. In fact, if B is bounded, then C is bounded. By assumption, C is closed, then

C is a compact convex subset of B. Since det : C ! R is continuous, then the Weierstrass

theorem guarantees a global minimal point of the function det(·) on C. Since each ⇢ 2 C is

positive-definite, there exists c > 0 such that det(⇢) � c, 8⇢ 2 C. Next, the inverse matrix

⇢
�1 is 1

det(⇢) ⇢̂, where the (i, j)-th entry of the matrix ⇢̂ of cofactors is the minor of order N�1

obtained by removing the ith row and the jth column multiplied by (�1)i+j. Clearly, each
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entry of the matrix ⇢̂ is uniformly bounded for all ⇢ 2 C since |⇢ij|  1. Since 1
det(⇢)  1

c ,

then the set {⇢�1 : ⇢ 2 C} is uniformly bounded. Therefore, the set of admissible vectors,

{�MV (⇢) : ⇢ 2 C}, is bounded. We now choose a convex and bounded set X such that

�MV (⇢) 2 X ✓ RN
, 8⇢ 2 C. We apply the minimax result in Corollary 37.6.2 of Rockafellar

(1970) to the max-min problem max�2X min⇢2C f(�, ⇢), then there exists a saddle point

(�⇤
, ⇢

⇤) such that

f(�, ⇢⇤)  f(�⇤
, ⇢

⇤)  f(�⇤
, ⇢), 8⇢ 2 C,� 2 X . (A-1)

Equation (A-1) implies that ⇢⇤ = argmin⇢2Cs
>
⇢
�1
s, �⇤ = �MV (⇢⇤), and J = 1

2A min⇢2C s
>
⇢
�1
s =

min⇢2C f(�⇤
, ⇢) = f(�⇤

, ⇢
⇤). That is, �MV (⇢⇤) is the unique optimal portfolio in problem (4).

Finally, for any � /2 X, we have f(�, ⇢⇤)  f(�MV (⇢⇤), ⇢⇤) = f(�⇤
, ⇢

⇤). Hence (�MV (⇢⇤), ⇢⇤)

satisfies the required saddle-point property. The proof is finished. ⇤

We first prove a general result, Proposition 3, and Proposition 2 follows from Proposition

3 as a special case.

Proof of Proposition 3:

By Proposition 1, the unique optima portfolio is of the form �MV (⇢⇤) and ⇢⇤ solves the

problem (5), the necessary part is proved. For the su�cient part, let �0 = �MV (⇢0), ⇢0 2

C and assume �0 is correlation-invariant. Then f(�0, ⇢) = f(�0, ⇢0), 8⇢ 2 C. Hence,

min⇢ f(�0, ⇢) = f(�0, ⇢0). By Proposition 1, we have

f(�0, ⇢0) = min
⇢

f(�0, ⇢)  J = min
⇢

max
�

f(�, ⇢)  max
�

f(�, ⇢0) = f(�0, ⇢0).

Therefore, J = min⇢ f(�0, ⇢), hence �0 is the unique optimal portfolio. Moreover,

f(�0, ⇢0) = min
⇢

max
�

f(�, ⇢)  max
�

f(�, ⇢), 8⇢ 2 C,

yielding s
>
⇢
�1
0 s  s

>
⇢
�1
s, 8⇢ 2 C. Hence ⇢0 is one solution of the minimization problem (5).
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⇤

Proof of Proposition 2:

If |s1| > max{|s2|, · · · , |s|N}, and there exists one ⇢̂ 2 C such that ⇢̂1i =
si
s1
, i = 2, · · · , N .

Then ⇢̂(s1, · · · , 0)> = (s1, · · · , sN)>. Hence, �MV (⇢̂) =
1
A�

�1
⇢̂
�1
s = ( 1

A
s1
�1
, 0, · · · , 0) is anti-

diversified and thus correlation-invariant. By Proposition 3, the anti-diversified portfolio

�MV (⇢̂) is the unique optimal portfolio with the ambiguous set C. ⇤

Proof of Example 3.5:

By direct calculation, the inverse matrix of T (a) defined in the example (for 2a2 6= 1) is

T (a)�1 =
1

1� 2a2

0

BBBB@

1� a
2

a
2 �a

a
2 1� a

2 �a

�a �a 1

1

CCCCA
.

Let � = 1
A�

�1
T (a)�1

s
�1. Then � is correlation-invariant with respect to C if and only if

(�1 + �2)�3 = 0, and it reduces to either �a(s1 + s2) + s3 = 0 or

(1� a
2)s1 + a

2
s2 � as3

�1
+

a
2
s1 + (1� a

2)s2 � as3

�2
= 0.

If s3
s1+s2

2 [a, a], then the corresponding vector �MV (
s3

s1+s2
) is correlation-invariant. Actually,

if there exists a root x of the quadratic equation (�2��1)(s2� s1)x2� (�1+�2)s3x+�1s2+

�2s1 = 0 over the region [a, a], then �MV (x) is the correlation-invariant portfolio. Otherwise,

there is no optimal portfolio that is correlation-invariant. ⇤

Proof of Proposition 4:

We first prove that

J(i1, · · · , iM ; C)  J, 8(i1, · · · , iM), 8{i1, · · · , iM} ✓ {1, · · · , N}. (A-2)

By using Proposition 1 for the max-min problem (8), there exists an optimal portfolio

� 2 RM for J(1, · · · ,M ; C). We let �̃ 2 RN such that �̃ij = �j, j = 1, · · · ,M and other
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entry of �̃ is zero. It is straightforward to show that

min
⇢02C(i1,··· ,iM )

µ
>
0 �� A

2
�
>
�0⇢0� = min

⇢2C
f(�̃, ⇢). (A-3)

Therefore,

J(i1, · · · , iM ; C) = min
⇢02C(i1,··· ,iM )

µ
>
0 �� A

2
�
>
�0⇢0�  J. (A-4)

By the same proof, we show that

J(i1, · · · , iM ; C)  J(k1, · · · , kK ; C), 8{i1, · · · , iM} ✓ {k1, · · · , kK} ✓ {1, · · · , N}. (A-5)

Therefore, the optimal portfolio holds asset in {1, · · · ,M} if and only if J = J(1, · · · ,M ; C).

To proceed, we make use of the following observation:

Observation: For any a⇢ � 0, b⇢ � 0, min⇢(a⇢ + b⇢) = min⇢ a⇢ if and only if there exists

⇢
⇤ = argmin(a⇢) such that b⇢⇤ = 0.

Proof of Observation: If for any ⇢⇤ = argmin(a⇢), b⇢⇤ > 0, then a⇢⇤ + b⇢⇤ > a⇢⇤ . On the

other hand, for any ⇢ 6= argmin(a⇢), a⇢ + b⇢ � a⇢ > a⇢⇤ . Therefore, min⇢(a⇢ + b⇢) > min⇢ a⇢.

For any ⇢ 2 C, we write ⌃ = ⌃⇢ = �⇢� =

0

B@
⌃1 E

>

E ⌃2

1

CA. Here ⌃1 and ⌃2 is of size M⇥M

and (N �M) ⇥ (N �M), respectively. For any � =

0

B@
�1

�2

1

CA 2 RN
,�1 2 RM

,�2 2 RN�M ,

let

 = U� =

0

B@
IM ⌃�1

1 E
>

0 IN�M

1

CA⇥ � =

0

B@
�1 + ⌃�1

1 E
>
�2

�2

1

CA .

Here 0 represents zero vector with suitable size, Ik is the identity matrix of size k ⇥ k. We

write µ
(1) = (µ1, · · · , µM)>, µ(2) = (µM+1, · · · , µN)> and define s

(1)
, s

(2) similarly. Then, we
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have

max
�

f(�, ⇢) = max
 1

⇢
(µ(1))> 1 �

A

2
�
>
1 ⌃1 1

�
+max

 2

⇢
(µ(2) � µ

(1)⌃�1
1 E

>) 2 �
A

2
 

>
2 (⌃2 � E⌃�1

1 E
>) 2

�
,

where both optimal values in the right side depend on ⇢ 2 C. By Proposition 1,

J = min
⇢2C

⇢
max
 1

(µ(1))> 1 �
A

2
�
>
1 ⌃1 1 +max

 2

(µ(2) � µ
(1)⌃�1

1 E
>) 2 �

A

2
 

>
2 (⌃2 � E⌃�1

1 E
>) 2

�
.

By Equation (A-3), and Proposition 1 for the problem J(1, · · · ,M ; C), we have

J(1, · · · ,M ; C) = min
⇢2C

⇢
max
 1

(µ(1))> 1 �
A

2
�
>
1 ⌃1 1

�
.

Therefore, by the above “observation”, J = J(1, · · · ,M ; C) if and only if there exists a

worst-case correlation matrix ⇢⇤0 for the max-min problem J(1, · · · ,M ; C) such that

max
 2

(µ(2) � µ
(1)⌃�1

1 E
>) 2 �

A

2
 

>
2 (⌃2 � E⌃�1

1 E
>) 2 = 0.

The last equation equivalents to µ
(2) � µ

(1)⌃�1
1 E

> = 0. Here, ⌃1 = �0⇢
⇤
0�0. The proof is

finished. ⇤

Proof of Example 3.6:

For the first part, we first show that s23 < s
2
1 + s

2
2 if and only if there exists x, y 2 (�1, 1)

such that s3 = s1x+ s2y and x
2+ y

2
< 1. Without loss of generality, we assume that s2 6= 0,

then it reduces to the existence of x such that x2+
⇣

s3�s1x
s2

⌘2

< 1. By examing this quadratic

equation, the existence of such a real number x is the same as (s3s1)2 > (s21 + s
2
2)(s

2
3 � s

2
2),

that is, s23 < s
2
1 + s

2
2.

We demonstrate the second part by a numerical example. We choose s1 = 0.3, s2 =

1, ⇢12 = 0.8, s3 =
p
2.2, and A = 1. Then J(3) = 1.1 < J(1, 2) = 1.15. We show that by a
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contradiction argument there exists no x, y 2 R such that s3 = s1x+ s2y and the matrix

0

BBBB@

1 ⇢12 x

⇢12 1 y

x y 1

1

CCCCA

is positive definite. Therefore, by Proposition 4, asset 3 must enter the optimal portfolio for

any ambiguous set C. If not, by plugging y = s3�s1x
s2

and using the positive-definite condition,

there exists x such that

1� ⇢
2
12 � x

2 �
✓
s3 � s1x

s2

◆2

+ 2⇢12x
s3 � s1x

s2
> 0.

Equivalently, there exists one real number x such that

(s21 + s
2
2 + 2⇢12s1s2)x

2 � 2(s1s3 + ⇢12s2s3)x+ s
2
3 � (1� ⇢

2
12)s

2
2 < 0. (A-6)

We can verify that for given parameters, the following inequality holds: (s1s3 + ⇢12s2s3)2 <

(s21 + s
2
2 + 2⇢12s1s2) (s23 � (1� ⇢

2
12)s

2
2) . Hence, there is no such a real number x in (A-6),

yielding a contradiction. ⇤

The following results on di↵erential topology can be found in Milnor (1997, p. 17 and p.

11 separably).

Lemma 7.1. (Sard’s theorem) Let f : U ! Rp be a smooth map, with U open in Rn, and

C be the set of critical points, then f(C) ✓ Rp has measure zero.

Lemma 7.2. Let f : M ! N is a smooth map between manifolds of dimension m � n, and

if y 2 N is a regular value, then the set f�1(y) ✓ M is a smooth manifold of dimension

m� n.

Proof of Proposition 5:

We consider the di↵erential map F : X ! F (X). By Lemma 7.1, the set of regular
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values of F is everywhere dense in F (X). By a regular value we mean an element in the

complementary set F (X )�F (X0) where X0 ✓ X is the set of s 2 X such that the Jacobian

matrix DFs has rank less than dim(F (X)). X0 is called the critical set. Sard’s theorem

shows that the Lebesgue measue of F (X0) is zero. Moreover, by Lemma 7.2, for all regular

set � 2 F(X ), F�1(�) is a manifold of dimension dim(X)� dim(F (X)) � 1.

For all regular value � (which is almost everywhere in F (X), and s 2 F
�1(�), then,

F (s) = �. The optimal strategy is always � when the Sharpe ratios move in the region

F
�1(�). Since all regular values � 2 F (X) are almost everywhere, and dim(F�1(�)) � 1,

the portfolio inertia is generated almost everywhere. ⇤

Proof of Proposition 6:

Its proof is same as Proposition 5 by replacing the smooth map F by the smooth map

G. ⇤

Proof of Corollary 4.1:

The restriction of F on X equals to the map:

F1 : (s1, · · · , sM , sM+1, · · · , sN) ! (�1, · · · ,�M)> = �
�1
0 ⇢

�1
0 (s1, · · · , sM)> 2 RM

.

By calculation, the Jacobian matrx of DF1 is M . Then F1 is a smooth map with constant

rank M . The proposition follows from the constant-rank level set theorem (Lee (2013),

Theorem 5.12). ⇤

Proof of Example 4.3:

We first demonstrate the situation with single block. That is, k = 1. By Sherman-

Morrison formula, we obtain the inverse matrix of R(a) as follows.

R(a)�1 =
1

1� a
IN � 1

1 + (N � 1)a

a

1� a
(1, · · · , 1)>(1, · · · , 1)
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where IN is the identity matrix. Then the value function is

J =
1

2A
min
a2[a,a]

s
>
R(a)�1

s =
1

2AN
min
a2[a,a]

N
PN

n=1 s
2
n � (

PN
n=1 sn)

2

1� a
+

(
P

sn)2

1 + (N � 1)a
.

By direct calculation, the worst-case correlation matrix a
⇤ = argmina2[a,a]

�
s
>
R(a)�1

s
�
is

obtained by

⇢
⇤ =

8
>>>><

>>>>:

R(a), if a >
1�⌦(s)

1+(N�1)⌦(s) ,

R(a), if a <
1�⌦(s)

1+(N�1)⌦(s) ,

R

⇣
1�⌦(s)

1+(N�1)⌦(s)

⌘
, if a  1�⌦(s)

1+(N�1)⌦(s)  a.

(A-7)

Moreover, when ⇢⇤ = R

⇣
1�⌦(s)

1+(N�1)⌦(s)

⌘
, the corresponding optimal strategy �MV (⇢⇤) satisfies

that
P

i 6=j(�i�i)(�j�j) = 0, a correlation-invariant portfolio with respect to C. Moreover,

when ⇢
⇤ = R(a), or ⇢⇤ = R(b), the corresponding optimal strategy is not correlation-

invariant. Therefore, the set S is characterized by:

S =

⇢
s : a  1� ⌦(s)

1 + (N � 1)⌦(s)
 a

�
=

⇢
s :

1� a

1 + (N � 1)a
 ⌦(s)  1� a

1 + (N � 1)a

�
.

We show that S has a smooth manifold structure and dim(S) = N . To the end, for each

real number t, the intersection of S with the hyperplane s1 + · · ·+ sN = t is the same as the

intersection of the following set

(
t
2

N

✓
(N � 1)(

1� a

1 + (N � 1)a
)2 + 1

◆


NX

n=1

s
2
n  t

2

N

✓
(N � 1)(

1� a

1 + (N � 1)a
)2 + 1

◆)

with the hyperplane s1 + · · · + sN = t, being a submanifold of RN of dimension N � 1.

Therefore, S is of dimension N .

In general, for k > 1, ⇢�1 = [R(a1)�1; · · · ;R(ak)�1]. Therefore,

s
>
⇢
�1
s = s

>
1 R(a1)

�1
s1 + · · ·+ s

>
k R(ak)

�1
sk

47



where s1, · · · , sk are the associated sub-vector of the Sharpe ratio vector s. Then, the

optimal correlation coe�cient in the value function s
>
⇢
�1
s is given by [R(a⇤1); · · · ;R(a⇤k)]

where a
⇤
i = argminaiaai(s

>
i R(a)�1

si).

By the proof in the first part s 2 S if and only if each subvector s1, · · · , sk satisfies that

1� ai

1 + (Ni � 1)ai
 ⌦(si) 

1� ai

1 + (Ni � 1)ai
, i = 1, · · · , k.

Therefore, the dimension of S equals to N1 + · · · + Nk = N . The proof for the map GC is

the same and omitted. ⇤

The next result solves a general optimization problem under both expected mean and

covariance-variance uncertainty.

PROPOSITION G.1. Let g(�, µ,⌃) = µ
>
� � A

2 �
>⌃�, 8� 2 RN . There exists a solution

of the minimization problem

min
(µ,⌃)2U

µ
>⌃�1

µ.

Let (µ⇤
,⌃⇤) = argmin(µ,⌃)2U

�
µ
>⌃�1

µ
�
, and �

⇤ = 1
A⌃

⇤�1
µ
⇤, then (�⇤

, µ
⇤
,⌃⇤) satisfies the

saddle-point property

g(�, µ⇤
,⌃⇤)  g(�⇤

, µ
⇤
,⌃⇤)  g(�⇤

, µ,⌃), 8� 2 RN
, (µ,⌃) 2 U .

Moreover, �⇤ is a unique optimal solution of the max-min problem

max
�

min
(µ,⌃)2U

µ
>
�� A

2
�
>⌃�,

Moreover, if there exists (µ0,⌃0) 2 U such that g(�0, µ, �) is independent of any (µ,⌃) 2

]calU , where �0 =
1
A⌃

�1
0 µ0, then �0 is the optimal portfolio with the ambiguous set U .

Proof:
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We notice that
�

1
A⌃

�1
µ : (µ,⌃) 2 U

 
is included in a bounded convex subset X ✓ RN

because of the compactness assumption of U . The proof for the first part is similar to

Proposition G.1 and omitted. For the second part, if g(�0, µ,⌃) is independent of (µ,⌃) 2 U ,

then g(µ0,⌃0) = min(µ,⌃)2U g(�0, µ,⌃). Then, by the saddle-point property in the first part,

we have

g(�0, µ0,⌃0)  max
�

min
(µ,⌃)

g(�, µ,⌃) = min
(µ,⌃)

max
�

g(�, µ,⌃)  max
�

g(�, µ0,⌃0) = g(�0, µ0,⌃0).

This implies J = g(�0, µ0,⌃0) = min(µ,⌃)2U g(�0, µ,⌃). So �0 is the unique optimal portfolio

uncer the ambiguous set U . ⇤

Proof of Example 5.1:

Assume first 1�⌦(s)
1+(N�1)⌦(s) < a0, then for su�ciently small position number epsilon, our ar-

gument in Example 3.4 and Example 4.3 show that the optimal portfolio �(✏) = 1
A�

�1
R(a0�

✏)�1
s. It is straightforward to show that

@�(✏)i
@✏

=
1

A�i(1� a0)2

✓
S(1 + (N � 1)a20)

(1 + (N � 1)a0)2
� si

◆
, (A-8)

where S = s1 + · · ·+ sN . It is impossible that all first-order derivative @�(✏)i
@✏ = 0, 8i. Hence,

there exists at least i such that @�(✏)i
@✏ 6= 0; thus, there is first-order e↵ect in risk aversion.

Moreover, for the expected utility under correlation ambiguity,

J(✏)

@✏
=

1

2A

S
2

(1� a0)2(1 + (N � 1)a0)2

✓
(1 + (N � 1)a20)�

s
2
1 + · · ·+ s

2
N

S2
(1 + (N � 1)a0)

2

◆
6= 0,

yielding the first-order e↵ect to the expected utility.

Second, if 1�⌦(s)
1+(N�1)⌦(s) > a0, then for su�ciently small number ✏, the optimal portfolio is

�(✏) = 1
A�

�1
R(a0 + ✏)�1

s. By the same proof as above, there exists first-order e↵ect in risk

aversion and the expected utility.

Third, if a0 = 1�⌦(s)
1+(N�1)⌦(s) , then for any small positive number ✏, by Example 3.4, the
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optimal portfolio is the same (portfolio inertia). Therefore, @�(✏)@✏ = 0. ⇤

The proof for Example 5.2:

By Proposition 1, the optimal portfolio �(✏) = 1
A�

�1
⇢
⇤�1

s, where ⇢⇤ = argmina2[a0�✏,a0+✏]s
>
T (a)s.

TIf a0 is not the locally minimal point of the function s
>
T (a)s, then for small ✏, the optimal

portfolio is either frac1A��1
⇢(a0 + ✏)�1s or 1

A�
�1
⇢(a0 � ✏)�1s. In either case, we see that

�(✏)
@✏ 6= 0 by the expression of T (a)�1 in Example 3.4. ⇤

Proof of Proposition 7:

The proof is divided into five steps.

Step 1. We demonstrate the existence and uniqueness optimal portfolio and characterize

the optimal portfolio.

The objective function in the optimal portfolio choice problem is denoted by g(�) =

EP [h(E⇢[u(W )])], W is the portfolio wealth by using the portfolio investment vector �.

Then gi(�) ⌘ @g(�)
@�i

= EP [h0 (E⇢[u(W )])E⇢[u0(W )(ri � rf )]], and

gij(�) ⌘ @
2
g(�)

@�i@�j
= EP [h00 (E⇢[u(W )])E⇢[u0(W )(ri � rf )]E⇢[u0(W )(rj � rf )]]

+EP [h0 (E⇢[u(W )])E⇢[u00(W )(ri � rf )(rj � rf )]] .

For any real numbers ⇣1, · · · , ⇣N 2 R, we have

NX

i,j=1

gij⇣i⇣j = EP

2

4h00 (E⇢[u(W )])

 
NX

i=1

⇣iE⇢[u0(W )(ri � rf )]

!2
3

5

+EP

2

4h0 (E⇢[u(W )])E⇢

2

4u00(W )

 
X

i

⇣i(ri � rf )

!2
3

5

3

5 .

Since both u(·) and h(·) are strictly concave, the Hessian matrix of the function g is negative-

definite and the function g(·) is concave. There exists an optimal portfolio in the problem

(14). The result also holds when h(x) is linear and h
0(x) < 0.

For the uniqueness property of the optimal portfolio, we need the strictly concave or
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strictly quasi-concave property of the objective function g(�). Given the specification of the

function h(x), g(�) is EP [k(f(�, ⇢)], where k(x) = h(u(x)) = � 1
1+↵e

�A(1+↵)x. Notice that

k(x) is strictly increasing and strictly concave. Moreover, f(�, ⇢) = µ
>
� � A

2 �
>(�⇢�)� is

strictly concave with respect to �. For simplicity, we write fi(�) =
@f
@�i

, fij(�) =
@2f

@�i@�j
, then

gi(�) = EP [k0(f(�, ⇢))fi(�)]. For any non-zero vector ⇣ 2 RN , we have

NX

i=1,j=1

gij⇣i⇣j = EP

"
k
00(f)(

X

i

⇣ifi)
2

#
+ EP

"
k
0(f)

NX

i=1,j=1

⇣i⇣jfij

#
< 0.

We have thus proved the strictly concave property of the function g(�), yielding the existence

and the uniqueness of the optimal portfolio �
⇤. Moreover, �⇤ is uniquely solved by the

following N equations:

EP

"
k
0(f(�, ⇢))(µi � A

NX

j=1

�i�j⇢ij�j)

#
= 0, i = 1, · · · , N. (A-9)

Step 2. We show that the optimal portfolio is not correlation-invariant by a contradiction

argument.

Assuming not, f(�⇤
, ⇢) is independent of the correlation matrix ⇢, then Equation (A-9)

implies that s = A�EP [⇢]�⇤
,�

⇤ = 1
A�

�1
⇢
�1
0 s. Here, ⇢0 = EP [⇢] = (EP [⇢ij]) is the expected

correlation matrix under the prior distribution. Since E[⇢], as an expectation of the variable

⇢ under measure P , is an element of the closure of the convex hull of the set C, and C is

convex and compact (and thus complete), we obtain ⇢0 2 C.

If the vector 1
A�

�1
⇢
�1
0 s is correlation-invariant, then f( 1

A�
�1
⇢
�1
0 s, ⇢) = f( 1

A�
�1
⇢
�1
0 s, ⇢0), 8⇢ 2

C. Therefore, we have s>(⇢�1
0 ⇢⇢

�1
0 )s = s

>
⇢
�1
0 s, 8⇢ 2 C. However, Assumption A implies that

the map ⇢ 2 C ! s
>(⇢�1

0 ⇢⇢
�1
0 )s is not a constant map. This contradiction shows that the

optimal portfolio �⇤ is not correlation-invariant.

Step 3. We show that the map s ! �
⇤ is a smooth map.

Define Z =
�
� 2 RN : � satisfies Equation (A-9)

 
. We characterize the optimal portfolio
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�
⇤ 2 Z in terms of smooth functions of s. Let

hi(s,�) = µi � A

NX

j=1

�i�i�j⇢ij�j = �i(si � A

NX

j=1

�j⇢ij�j), i = 1, · · · , N (A-10)

and define G : (s,�) ! (G1, · · · , GN) 2 RN , where

Gi(s,�) = EP [k0(f(�, ⇢))hi(s,�)] , i = 1, · · · , N.

We demonstrate the rank of the matrix
⇣
@Gi
@�j

⌘
, i, j = 1, · · · , N is N . By calculation,

aij ⌘ @Gi

@�j

= EP [k00(f(�, ⇢))hjhi] + EP [k0(f(�, ⇢))(�A�i�j⇢ij)]

= �AEP [k0(f(�, ⇢) (hihj(1 + ↵) + �i�j⇢ij)]

here we use the fact that k
00(x) = �A(1 + ↵)k0(x) in the last equation. If the rank of the

matrix (aij) is less than N , then there exists no-zero vector ⇣ = (⇣1, · · · , ⇣N)> such that

⇣
>(aij)⇣ = 0. That is

EP

"
k
0(f(�, ⇢))

 
(1 + ↵)

X

i,j

hihj⇣i⇣j +
NX

i,j=1

�i�j⇢ij⇣i⇣j

!#
= 0. (A-11)

However,
P

i,j gigj⇣i⇣j � 0 implies EP

h
k
0(f(�, ⇢))

P
i,j hihj⇣i⇣j

i
� 0, and

PN
i,j=1 �i�j⇢ij⇣i⇣j >

0, 8⇢ 2 C implies EP

h
k
0(f(�, ⇢))

⇣PN
i,j=1 �i�j⇢ij⇣i⇣j

⌘i
> 0. Therefore, Equation (A-11) is

impossible. Then, the rank of the matrix (aij) is N . By the implicit function theorem (Lee

(2013) Theorem C. 40), there is a well-defined unique map H : s ! H(s) = �
⇤ 2 RN .

Moreover, H(s) is smooth.

Step 4. We show that H is locally one-to-one, thus H�1 is defined locally and smoothly.

For this purpose, we show the full rank of the matrix (@Gi
@sj

) at the point (s,�) satisfying
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the Equation (A-9). Notice that @f
@sj

= �j�j by writing µj = sj�j. Then,

@Gi

@sj
=

8
>><

>>:

EP [k00(f)�j�jhi], j 6= i,

EP [k00(f)�i�ihi] + EP [k0(f)�i], j = i.

Since k
00(x) = �A(1 + ↵)k0(x), we can write the N ⇥N matrix (@Gi

@sj
) as follows.

(
@Gi

@sj
) = diag(EP [k

0(f)]�i)� A(1 + ↵)(EP [k
00(f)�j�jhi]).

Here the first term on the right side is a diagonal matrix with i’th component EP [k0(f)]�i], i =

1, · · · , N , and the second term can be written as UV
>, U = (EP [k0(f)h1], · · · ,EP [k0(f)hN ])>, V =

(�A(1+↵)�1�1, · · · ,�A(1+↵)�N�N)> 2 RN . By using Sherman-Morrison formula, to show

the matrix (@Gi
@sj

) is invertible, it su�ces to show that

1 + V
>
diag(

1

EP [k0(f)]�i]
)U 6= 0.

To the end, we notice that EP [k0(f)hi�i] = EP [k0(f)hi]�i = 0 by the Equation (A-9), then

1 + V
>
diag(

1

EP [k0(f)]�i]
)U = 1� A(1 + ↵)

X

i

EP [k0(f)hi�i]

EP [k0(f)]
= 1 6= 0.

Since the rank of the matrix (@Gi
@sj

) is N , by using the implicit function theorem again (Lee

(2013) Theorem C. 40), we can write s = K(�) for a well defined map K to solves Equation

(A-9) in a small region of �. Therefore, K = H
�1 in a small region of s, by standard Calculus

argument.

Step 5. For any s, we show that the corresponding optimal portfolio �⇤ does not satisfy

the inertia property.

By Step 3 - Step 4, Z is a smooth manifold with dimension N . Therefore, for any s

there exists an open region Us, Us is a smooth manifold of dimension N , and H : s ! �
⇤ is
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a one-to-one smooth map. It means that H(s) changes accordingly if s changes in an open

region Us. Hence, there is no portfolio inertia property. The proof is completed. ⇤

Proof of Example 6.1:

For any s 2 RN such that s
>
R(a)�1

s is a constant c, we show that each si = 0, i =

1, · · · , N . By a calculation in Corollary 5.1, we have

N
P

s
2
n � (

P
n sn)

2

1� a
+

(
P

sn)2

1 + (N � 1)a
= c, 8a  a  a.

Then (N
P

s
2
n � (

P
n sn)

2)(1 + (N � 1)a) +
P

n s
2
n(1 � a) = c(1 � a)(1 + (N � 1)a), 8a 

a  a. By comparing the coe�cients on both side, we derive c = 0,
P

n sn = 0, and

N
P

s
2
n � (

P
n sn)

2 = 0, yielding
P

s
2
n = 0. Therefore, si = 0, 8i = 1, · · · , N . ⇤
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