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Private Information, Diversification, and Risk

Premium

Abstract

We investigate the effects of private information and diversification on risk

premiums in a noisy rational expectations model in which risky asset payoffs

have a factor structure. Information in our model is composed of private

signals that are informative about both systematic factors and idiosyncratic

shocks. Taking the large economy limit, we show that the APT pricing

relation holds with asymmetric information. Private information about sys-

tematic factors affects risk premiums only through its effects on factor risk

premiums; private information only about idiosyncratic shocks has no effects

on risk premiums. Consistent with our intuition, factor risk premiums are

decreasing in the fraction of informed to uninformed investors, sensitivity of

private signals to systematic factors, and precision of private signals. More

subtly, although idiosyncratic risks are not priced, factor risk premiums are

increasing in the volatility of idiosyncratic shocks.



1 Introduction

Two major insights in modern finance are diversification, the vanishing of idio-

syncratic risk premiums in large economies, and price discovery, the revelation of

private information in equilibrium prices. While the implications of diversifica-

tion on risk premiums are well known from arbitrage pricing theory (APT) under

homogeneous beliefs, less is understood about how private signals impact on risk

premiums in large economies. To the best of our knowledge, there is no previous

study that addresses the interaction of diversification and price discovery in the

large economy limit.

In this paper, we consider the effects of private signals on risk premiums in a

noisy rational expectations model in which risky asset payoffs obey a factor struc-

ture. Private signals for each asset include components related to systematic factors

as well as idiosyncratic shocks underlying those payoffs. Informed investors receive

these signals and uninformed investors draw inferences about the information con-

tained in these signals from prices. Although we begin with finite economies, our

principal interest lies in characterizing risk premiums for large economies in which

the number of risky assets and related private signals go to infinity.

We show that for large economies, the APT pricing relation holds under het-

erogeneous beliefs, private information about idiosyncratic shocks only matters

as a source of noise in drawing inferences about systematic factors from private

signals or prices, and private information about systematic factors affects risk pre-

miums only through factor risk premiums. Comparative statics are that factor

risk premiums are increasing in the fraction of informed to uninformed investors,

sensitivity of private signals to systematic factors, and precision of private signals

and decreasing in the volatility of idiosyncratic shocks.
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These results are intuitive. As expected, information about systematic fac-

tors does affect risk premiums by resolving uncertainty about systematic factors

representing risks that are priced in large as well as finite economies. Private in-

formation about idiosyncratic shocks changes expectations of future risky asset

payoffs, but in large economies only affects risk premiums through its impact on

resolving uncertainty about systematic factors. While private information on idio-

syncratic shocks also resolves uncertainty about those shocks, thereby diminishing

idiosyncratic risk, this aspect does not matter if the risk is not priced. Since private

signals are more informative than prices about systematic factors than increasing

the fraction of informed investors results in a greater resolution of uncertainty

about those factors. Greater sensitivity of private signals to systematic factors,

higher precision, and lower volatility of idiosyncratic shocks imply more is learned

about those factors, thereby reducing risk premiums.

The issues addressed in our study are important in light of the recent interest

of empiricists in linking characteristics of a firm’s information environment to its

expected return (e.g., Aboody, Hughes, and Liu, 2004; Bhattacharya and Daouk,

2002; Botosan, 1997; Botosan and Plumlee, 2002; Botosan, Plumlee, and Xie,

2004; Healy, Hutton, and Palepu, 1999; Francis, LaFond, Olsson, and Schipper,

2002; and Easley, Hvidkjaer, and O’Hara, 2002). In particular, the notion that risk

premiums may vary with asymmetries in information pertaining to idiosyncratic

shocks as in Easley and O’Hara (2004) bears scrutiny since they do not consider

the full implications of diversification in large economies.

While our principal results pertain to the case of imperfect private information

about systematic factors, other cases yield intuitively complementary results. At

one extreme, if private signals are simply risky asset payoffs plus noise (e.g., Ad-

mati, 1985), then in the limit as the economy expands factor realizations become
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perfectly revealed to all investors, which implies risk premiums equal to zero. At

the other extreme, if private signals only pertain to idiosyncratic shocks and not as

well to systematic factors (e.g., Easley and O’Hara, 2004), then in large economies

information leads to no resolution of uncertainty about priced risks, which implies

risk premiums are unaffected.

A key element of the information structure that we impose is that private

signals are informative about systematic factors as well as idiosyncratic shocks.

This information structure is consistent with evidence from Seyhun (1992) and

Lakonishok and Lee (2001) that corporate insiders are able to time the market. The

further notion that private signals at the firm (asset) level may contain a systematic

component is the observation that data supplied by financial reports for which some

investors may have advance knowledge typically includes fundamentals such as

revenues, earnings, and cash flows that are plausibly affected by systematic factors

as well as idiosyncratic shocks; evidence dates back to Ball and Brown (1968).

These data also include descriptions of business risk factors and management’s

discussion and analysis of prospective performance. While it is likely that private

signals at the firm-level are far more informative of idiosyncratic shocks, as we will

show, even an infinitesimally small amount of information on systematic factors

extracted from private signals for each firm in large economies, when aggregated,

can have a finite effect on factor risk premiums.

We note that our asymmetric information structure allows us to solve for equi-

librium prices and risk premiums explicitly; which is infeasible under Admati’s

(1982) diverse information structure in a factor model setting. Having an explicit

pricing solution is especially useful because it allows us to examine how changes

in model parameters such as the fraction of informed to uninformed investors af-

fect factor risk premiums. Furthermore, having a closed form solution for finite
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economies enables us to examine the convergence properties of risk premiums as

the number of assets is varied.

Supported by the empirical findings of Chordia, Roll, and Subrahmanyam

(2000) and Huberman and Hulka (2001), we introduce a systematic component

to the random supply of risky asset shares that commonly serves as the source

of noise in rational expectations models. Without this systematic component or

some alternative structure, prices in large economies will eliminate asymmetry in

information by fully revealing private signals. In other words, when the number of

assets and related signals is large, only systematic noise can prevent information,

idiosyncratic or systematic, contained in private signals of informed investors from

being perfectly inferred from prices by uninformed investors.

Like us, Admati (1985) considers the interplay between private information

and equilibrium prices in a noisy rational expectations framework.1 Rather than

a factor structure, Admati’s principal analysis assumes asset payoffs are distrib-

uted normally and satisfy a general variance-covariance matrix. Admati (1982)

recognizes the advantages of a factor structure in characterizing economy-wide

information, but, as previously noted, an explicit solution in the case of diverse

information poses difficulties due to mathematical complexities.

Our study is an extension of Easley and O’Hara (2004). They also examine the

effects of private information on risk premiums in a noisy rational expectations

framework with multiple assets very similar to ours. Their model differs from

ours in two principal respects: they assume risky asset payoffs and related signals

are independent and identically distributed (all risk is idiosyncratic) and they

only consider the case in which the number of assets is finite.2 We offer two

1Brennan and Cao (1997) employ a similar structure.
2Easley and O’Hara (2004) also assume that there are a fixed set of signals, some of which

are public and the rest private. Although it would be simple to incorporate public signals, in our
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perspectives on their characterization of risk premiums. First, our characterization

of risk premiums in the finite case reduces to their characterization when factor

loadings (betas) in our model are set equal to zero. Taking the limit as the number

of assets goes to infinity in this case results in no risk premium. Alternatively,

one might interpret the assets in Easley and O’Hara (2004) as analogous to the

systematic factors in our model. Removing all idiosyncratic risks and assuming

factor independence in our model would then result in equivalent (factor) risk

premiums.

The rest of the paper is organized as follows: Section 2 describes the setup for

our model and studies an economy with a finite number of risky assets; Section 3

studies the limit of a large economy as the number of risky assets goes to infinity;

and Section 4 concludes the paper.

2 Finite Economy

In this section, we consider an economy with a finite number of risky assets. We

present a noisy rational expectation model in which the asset payoffs and the

random supply of the assets have factor structures. We solve the equilibrium in

closed form and consider special cases that serve as a benchmarks when information

is symmetric.

model all signals are private to informed investors. Accordingly, unlike Easley and O’Hara (2004),

our comparative statics do not encompass the case in finite economies where the proportions of

signals that are public or private are allowed to change.
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2.1 The Setup

We assume that payoffs of N risky assets are generated by a factor structure of

the form

ν = ν̄ + βF + Σ1/2ε. (1)

The mean of asset payoffs ν̄ is an N × 1 constant vector, the factor F is a K × 1

vector of mean normal random variables with covariance matrix ΣF , the factor

loading β is an N × K constant matrix, the idiosyncratic risk ε is a vector of

standard normal random variables, and Σ is an N ×N diagonal matrix.

The supply of risky assets, x, is a vector of N × 1 random variables with mean

vector x̄ and covariance matrix Σx and ηx is a standard normal random variable:

x = x̄ + βxFx + Σ1/2
x ηx. (2)

The noisiness of the supply is necessary in our setting to prevent prices from fully

revealing the informed investors’ private signal (defined below) and can be inter-

preted as caused by trading for liquidity reasons. The presence of a systematic

component is based on the reasonable view that liquidity trading is influenced by

market-wide forces that may or may not correspond to factors influencing risky

asset payoffs. If we interpret the random supply as due to a liquidity effect, then

our assumption of systematic components in random supply is supported by em-

pirical studies that find there are systematic components of liquidity; for example,

Chordia, Roll, and Subrahmanyam (2000) and Huberman and Hulka (2001). IPO

waves are also suggestive of systematic components. Without a systematic compo-

nent in the random supply, then in the limiting case, as the number of risky assets

becomes large (implying an infinite number of independent asset specific signals),

prices would still be fully revealing of the informed investors’ private signals. In
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other words, noisy supply is necessary but not sufficient to ensure that asymmet-

ric information is not a moot issue in large economies; there also needs to be a

systematic component. We further assume for simplicity that Fx is independent

of the factors generating asset payoffs.3

We assume that there are two classes of investors, informed and uninformed,

with each class containing an infinite number of identical agents. The informed

investors all receive private signal s on asset payoffs and the uninformed can only

(imperfectly) infer the signal from market prices. This specification is used by

Grossman and Stiglitz (1980) and Easley and O’Hara (2004). In Admati (1985),

there are infinitely many agents each of whom receives independent signals. It can

be argued that our assumption and Admati’s are two special cases of a general

information structure where investors have both diverse and asymmetric informa-

tion: while we emphasize asymmetry, Admati emphasizes diversity. Technically

speaking, the correlation between the private signals across informed investors is

perfect in our model and zero in Admati’s model. While in our analysis price will

be a function of informed investors’ private information, price is a function of the

realized asset payoffs in Admati’s case when the number of assets is infinite due

to the elimination of signal noise through aggregation of signals across assets.

We assume all investors have the following utility

U = −E[exp(−AW1)], (3)

where A is the investor’s absolute risk aversion coefficient and W1 is the investor’s

3Noisy rational expectation equilibrium models with many assets having a factor structure in

asset payoffs, but not in the random supply of risky assets, have been considered in Caballe and

Krishnan (1994); Daniel, Hirshleifer, and Subrahmanyam (2001); Kodres and Pritsker (2002);

and Pasquariello (2004).

7



terminal wealth. The budget constraint is:

W1 = W0Rf + D′(ν −Rfp), (4)

where W0 is the investor’s initial wealth and D is a vector containing the numbers

of shares invested in risky assets.

Under the normality, the utility maximization problem becomes a mean-variance

problem

maxD E[W1|J ]− A

2
var[W1|J ],

s.t. W1 = W0Rf + D′(ν −Rfp),

where J represents the investor’s information set. The first-order condition implies

optimal demand takes the following form:

D∗
J =

1

A
Σ−1

ν|JE[ν −Rfp|J ]. (5)

When asset payoffs do not depend on systematic factors, β = 0, it is easy to show

investors’ demands for securities are increasing in expected asset payoffs and the

precision of information about asset payoffs, and decreasing in risk aversion. In

the more general case where asset payoffs do depend on systematic factors, β 6= 0,

the demand for asset i depends not only on investors’ posterior precision of beliefs

on payoffs for asset i, but also on their posterior beliefs on payoffs for other assets.

The informed and the uninformed have different demands because they condition

on different information sets J .

2.2 Informed Investors

The informed investors receive private signal s which takes the form

s = ν − ν̄ − βF + bF + Σ1/2
s η. (6)
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The N × 1 constant vector b reflects the relative information content of the signal

with respect to the systematic factors and η is an N × 1 standard normal random

variable. To conform with the interpretation of factor models, we will assume that

F , ε, η, and ηx are are jointly normal and independent and the matrices Σs and

Σx are diagonal.

Our specification of asset payoffs is distinct from an alternative specification

where asset payoffs do not follow a factor structure, but satisfy a general variance-

covariance matrix (e.g., Admati, (1985)). Though a factor structure such as (1)

implies a specific variance-covariance matrix, a general variance-covariance ma-

trix does not imply a corresponding factor structure. Admati (1985) entertains

such constructions and concludes that a factor model is the natural context in

which to consider private signals on economy-wide phenomena. Under her infor-

mation structure, investors receive private signals about both systematic factors

and idiosyncratic shocks. However, because of mathematical complexities an ex-

plicit solution was not obtained.

The signal s for each risky asset specified in the above equation is a linear

combination of information about the systematic components of the asset’s pay-

off, information about the idiosyncratic component of that payoff, and noise. The

signal s can also be interpreted as a combination of two signals: a signal about

the idiosyncratic component of asset payoffs, s1 = Σ1/2ε + (bF + Σ
1/2
s η), where

(bF +Σ
1/2
s η) is interpreted as noise; and a signal about the systematic component,

s2 = bF + (Σ1/2ε + Σ
1/2
s η), where (Σ1/2ε + Σ

1/2
s η) is interpreted as noise. The

assumption that informed investors receive private information not only about the

idiosyncratic component, but also about the systematic components of risky asset

payoffs, although uncommon in the theoretical literature, is intuitive. Informed

investors such as corporate insiders are likely to know more than the general pub-
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lic about the firm’s fundamentals such as revenues, earnings, and cash flows. To

the extent that the fundamentals are generated by a factor structure, private in-

formation is likely to contain both components. Consistent with this assumption,

Seyhun (1992) and Lakonishok and Lee (2001) show that aggregated trading by

corporate insiders is predictive of future market returns.

Our specification of signals differs in two respects from that of Admati (1982)

in the context of her factor model: the signals in our model are perfectly correlated

across informed investors while in her model investors receive diverse signals, and

the “two signals” constructively received by informed investors in our model are

correlated with covariance matrix Σs conditional on ν and F , whereas the two

signals for a given investor in Admati (1982) are uncorrelated. Assuming that the

signals about the idiosyncratic component of an asset’s payoff and the systematic

component are uncorrelated as in Admati’s signal specification, changes the ex-

pressions in the limiting case as N goes to infinity, but does not affect either the

structure of the explicit solution or the qualitative results that follow from that

solution.

To calculate the conditional expectations and covariance matrixes, we need to

derive the joint density function of ν and F conditional on information s.

Remark 1 The moments of the joint distribution of ν and F conditional on signal

s are

E[ν|s, F ] = ν + βF + Σν|s,F Σ−1
s (s− bF ),

E[F |s] = ΣF |sb
′(Σ + Σs)

−1s,

Σ−1
ν|s,F = Σ−1 + Σ−1

s

Σ−1
F |s = Σ−1

F + b′(Σ + Σs)
−1b

Σ̂s = Σ + bΣF b′ + Σs.

10



The proof is given in the Appendix. From these moments, it follows that, condi-

tional on signal s, the payoff is of the form

ν = ν + Σν|s,F Σ−1
s s + (β − Σν|s,F Σ−1

s b)F + Σ
1/2
ν|s,F εν|s,F , (7)

where, conditional on s and F , εν|s,F is an standard normal random variable. We

note that from the perspective of an informed investor loadings on the systematic

factors (conditional betas) are βs = β − Σν|s,F Σ−1
s b. The precision matrix of the

factors has increased from Σ−1
F to Σ−1

F |s = Σ−1
F + b′(Σ + Σs)

−1b.

From equation (7), the expectation of ν conditional on s is

E[ν|s] = ν + Σν|s,F Σ−1
s s + (β − Σν|s,F Σ−1

s b)ΣF |sb
′(Σ + Σs)

−1s (8)

and the variance of ν conditional on s is

Σν|s = Σν|s,F + (β − Σν|s,F Σ−1
s b)ΣF |s(β − Σν|s,F Σ−1

s b)′. (9)

Equations (8) and (9) can be substituted into the demand function to calculate

the investors’ demand D∗
J for risky assets:

D∗
s =

1

A
Σ−1

ν|s(ν̄ + Φss−Rfp), (10)

where

Φs = Σν|s,F Σ−1
s + (β − Σν|s,F Σ−1

s b)ΣF |sb
′(Σ + Σs)

−1.

2.3 Uninformed Investors

The uninformed investors do not observe the signal s, but can imperfectly infer s

from the equilibrium price.

We conjecture that the equilibrium prices have the following form:

p = C + B(s− λ(x− x̄)),
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where C is an N × 1 vector and B and λ are N × N matrices. We will assume

that B is invertible. Therefore, observing the price p is equivalent to observing θ

which is defined as

θ = B−1(p− C) = s− λ(x− x̄).

Substituting equations (2) and (6), we can write

θ = ν − ν̄ − βF + bF + Σ1/2
s η + λβxFx + λΣ1/2

x ηx. (11)

Therefore, we can interpret θ as another signal which has sensitivity b to the factor

F and idiosyncratic shocks with covariance matrix Σθ, where

Σθ = Σs + λ(βxΣFxβ
′
x + Σx)λ

′
.

Note that signal θ is less informative than signal s, i.e., its conditional variance-

covariance matrix is larger than that of s, i.e., Σθ = Σs + λΣxλ
′ ≥ Σs. We should

remark that λ is in general non-diagonal; the idiosyncratic shocks Σ
1/2
s η+λΣ

1/2
x ηx,

although independent of F , are not independent of each other.

When systematic factors in the random supply are uncorrelated with systematic

factors in asset payoffs, as we assumed, the signal s is a sufficient statistic for (s, θ).

However, it is plausible that the two systematic factors are correlated. In this case,

the signal s is no longer a sufficient statistic for (s, θ). While the uninformed will

continue to condition on only θ, the informed will now condition on both s and

θ, a departure from the above analysis in which the informed only conditioned

on s. We assume independence for tractability. Nonetheless, we are confident

that our analysis can be extended to accommodate the case of correlated factors

and that our results are robust with respect to the relaxation of the independence

assumption. The crucial aspect for risk premiums to be affected by asymmetric

information is whether the informed investors learn more about systematic factors
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that influence asset payoffs than uninformed investors in equilibrium; this can be

modeled with or without the correlation between the two classes of systematic

factors.

To calculate the conditional expectations and covariance matrixes, we need

to derive the moments of the joint density function of ν and F conditional on

information θ.

Remark 2 The moments of the joint distribution of ν and F conditional on the

signal θ are

E[ν|θ, F ] = ν + βF + Σν|θ,F Σ−1
θ (θ − bF ),

E[F |θ] = ΣF |θb
′(Σ + Σθ)

−1θ,

Σ−1
ν|θ,F = Σ−1 + Σ−1

θ ,

Σ−1
F |θ = Σ−1

F + b′(Σ + Σθ)
−1b,

Σ̂θ = Σ + bΣF b′ + Σθ.

The proof is given in the Appendix. From these moments, it follows that, condi-

tional on signal θ, the payoff is of the form

ν = ν + Σν|θ,F Σ−1
θ θ + (β − Σν|θ,F Σ−1

θ b)F + Σ
1/2
ν|θ,F εν|θ,F , (12)

where εν|θ,F is a standard normal random variable. We note that, from the per-

spective of an uninformed investor, loadings on the systematic factors (conditional

betas) are βθ = β + Σν|θ,F Σ−1
θ b. The precision matrix of the factors has increased

from Σ−1
F to Σ−1

F |θ = Σ−1
F + b′(Σ + Σθ)

−1b.

From equation (12), the expectation of ν conditional on θ is

E[ν|θ] = ν + Σν|θ,F Σ−1
θ θ + (β − Σν|θ,F Σ−1

θ b)ΣF |θb
′(Σ + Σθ)

−1θ (13)
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and the variance of ν conditional on θ is

Σν|θ = Σν|θ,F + (β − Σν|θ,F Σ−1
θ b)ΣF |θ(β − Σν|θ,F Σ−1

θ b)′. (14)

Equations (13) and (14) can be substituted into the demand function to calculate

the uninformed investors’ demand D∗
J for risky assets:

D∗
θ =

1

A
Σ−1

ν|θ(ν̄ + Φθθ −Rfp), (15)

where

Φθ = Σν|θ,F Σ−1
θ + (β − Σν|θ,F Σ−1

θ b)ΣF |θb
′(Σ + Σθ)

−1.

2.4 Equilibrium

Imposing the market clearing condition that the total demand from the informed

and the uninformed investors equals the supply, we obtain the following equation:

x =
µ

A
Σ−1

ν|s(ν̄ + Φss−Rfp) +
1− µ

A
Σ−1

ν|θ(ν̄ + Φθθ −Rfp),

where µ is the proportion of informed investors. Defining Σ̄ν =
(
µΣν|s + (1− µ)Σ−1

ν|θ

)−1

,

we derive the following expression for the prices of risky assets:

p =
1

Rf

(
ν̄ + Σ̄ν

(
µΣ−1

ν|sΦss + (1− µ)Σ−1
ν|θΦθθ − Ax

))

=
1

Rf

(
ν̄ − Σ̄νAx̄

)
+

1

Rf

Σ̄νµΣ−1
ν|sΦs

(
s−

(
µΣ−1

ν|sΦs

)−1

A(x− x̄)

)

+
1

Rf

Σ̄ν(1− µ)Σ−1
ν|θΦθ(s− λ(x− x̄)). (16)

Comparing the above expression to the conjectured form of the price p, it must be

true that

λ = (µΣ−1
ν|sΦs)

−1A. (17)
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Note that λ is solved in terms of the parameters of the model. The matrices Σν|θ,

Φθ, and Σ̄ν are expressed in terms of λ as well as the parameters of the model;

they are solved once λ is solved.

Theorem 1 Given that informed investors receive a private signal, s, that is in-

formative about both idiosyncratic and systematic components of asset payoffs, a

partially revealing noisy rational expectations equilibrium exists, and prices of risky

assets satisfy

p =
1

Rf

ν̄ − 1

Rf

Σ̄νAx̄ +
1

Rf

Σ̄ν

(
µΣ−1

ν|sΦs + (1− µ)Σ−1
ν|θΦθ

)
(s− λ(x− x̄)).(18)

This equation confirms the conjectured form of the price

p = C + B(s− λ(x− x̄)),

where C = 1
Rf

(
ν̄ − Σ̄νAx̄

)
and B = 1

Rf
Σ̄ν

(
µΣ−1

ν|sΦs + (1− µ)Σ−1
ν|θΦθ

)
. The risk

premium of assets satisfies

E[ν −Rfp] = AΣ̄ν x̄ = A
(
µΣ−1

ν|s + (1− µ)Σ−1
ν|θ

)−1

x̄. (19)

Proof: The price p and the expressions for B and C are derived by combining the

equations (16) and (17). The equation for the risk premium follows immediately.

Note that the posterior precisions Σ−1
ν|s and Σ−1

ν|θ do not depend on realizations of

signals s and θ, respectively.

The first term in the price p is the expected payoff without information dis-

counted by the risk-free return. This is the price if investors are risk-neutral

(A = 0) and there are no signals in the economy. The second term is the dis-

count in price associated with risk, thus the risk premium. The third term is the

correction to the expected payoff associated with signals and noisy supply.

The risk premium is determined by the geometric average of the covariance

matrices of asset payoffs conditional on s and θ, Σν|s and Σν|θ. That is, the risk
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premium compensates the average of the risks conditional on s and θ. Two prop-

erties of the risk premium follow. First, from equation (9), Σν|s = Σν|s,F + (β −
Σν|s,F Σ−1

s b)ΣF |s(β − Σν|s,F Σ−1
s b)′ and similarly for Σν|θ, the average risk includes

idiosyncratic risk Σν|s,F and Σν|θ,F . Therefore, idiosyncratic risks are priced. Sec-

ond, the average covariance matrix, Σ̄ν depends on β nonlinearly, thus the risk

premium depends on β nonlinearly.

2.5 Symmetric Information

When all investors are informed, µ = 1, Theorem 1 implies that the risk premium

is

E[ν −Rfp] = Σν|sAx̄ =
(
Σν|s,F + (β − Σν|s,F Σ−1

s b)ΣF |s(β − Σν|s,F Σ−1
s b)′

)
Ax̄.

In such an economy, an econometrician who observes the return but not the signal

will conclude that the risk premium depends on β as well as some firm-specific

characteristics, Σν|s,F Σ−1
s b. Thus, firms with the same β but different Σν|s,F Σ−1

s b

may have different expected returns. This economy seems potentially to provide a

theory for the empirical findings of Daniel and Titman (1998).

At the other extreme, when all investors are uninformed, µ = 0, λ → ∞; i.e.,

the inferred signal θ is infinitely more noisy than s and thus is not informative at

all. It follows immediately that the covariance matrix conditional on θ, Σν|θ, is the

same as Σ and the factor covariance matrix conditional on θ, ΣF |θ, is the same as

ΣF . Furthermore, factor loadings conditional on θ are the same as unconditional

factor loadings, i.e.,βθ = β. From Theorem 1, the risk premium is

E[ν −Rfp] = Σν|θAx̄ =
(
Σ + βΣF β′

)
Ax̄. (20)

The above can also be described as the risk premium in a finite economy with
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homogeneous beliefs. In this case, there is no updating of beliefs, idiosyncratic

risk is priced, and β appears linearly in the risk premium.

We conclude this section by observing that in an economy with a finite number

of assets idiosyncratic as well as systematic risk is priced, information on idiosyn-

cratic shocks reduces idiosyncratic risk and hence the risk premium, information

can increase or decrease factor loadings, the risk premium depends on beta nonlin-

early, and information on the systematic factor reduces systematic risk and hence

the factor risk premium. As we will demonstrate in Section 3, only the last prop-

erty survives in the limit as the number of risky assets goes to infinity.

3 Large Economy Limit

In this section, we study the effects of private signals on risk premiums when the

economy is large in the sense that N → ∞. We begin by revisiting the limiting

procedure employed by Ross (1976) in his derivation of the APT pricing relation

for the case where there are no signals in the economy. We then apply the same

limiting procedure to derive the risk premium under the information structure

assumed in the previous section.

3.1 APT Limiting Procedures

We seek a limiting procedure that produces the APT pricing relation in the stan-

dard case of homogeneous beliefs. In his formal derivation of that relation in an

economy without private signals, Ross (1976) imposes the restriction that relative

risk aversion be uniformly bounded as the number of assets and, hence, wealth
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increases.4 We implement this restriction in our model by assuming that absolute

risk aversion decreases in proportion to the number of assets; i.e.,A = γ
N

, where γ

is a constant. This assumption ensures both that idiosyncratic risks are not priced5

and the factor risk premium does not become infinite and therefore undefined.

To be precise, the risk premium from the previous section when there are no

private signals is

E[ν −Rfp] = A(βΣF β′ + Σ)x̄ = A(βΣF β′x̄ + Σx̄). (21)

The above risk premium for asset i has two components; AβiΣF β′x̄, where AΣF β′x̄,

the risk premium associated with the factor, is independent of the asset and of

order N1 and AΣiix̄i (assuming that Σ is diagonal), where Σii is the idiosyncratic

variance, and is of order N0. There are two problems when taking the limit as

N → ∞ if A is a constant. First, idiosyncratic risk is priced because the second

component is non-zero. Second, the risk premium is undefined because the first

component goes to infinity.

Both problems are resolved by our assumption that A = γ
N

where γ is a con-

stant. The risk premium as N → ∞ in this case is finite and proportional to

beta:

E[ν −Rfp] = β
γΣF β′x̄

N
(22)

4Rather than hold the number of investors constant as the economy expands, we could assume

that the number of investors increases proportionately to with the number of assets(e.g. Ou-Yang

(2004)). Under this assumption, per capita wealth remains constant, thereby satisfying the bound

on relative risk aversion.
5This assumption is stronger than the usual assumption of no asymptotic arbitrage under

which idiosyncratic risks are not priced for an infinite number of assets, but may be priced for a

finite number of assets. In other words, the APT pricing relation need not hold for all assets in

the limit as the number of assets goes to infinity when asymptotic arbitrage is ruled out.
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We now return to the setting with private signals. As we will show, the APT

pricing relation is robust with respect to the effects of those signals (and hence

heterogeneous beliefs) on risk premiums.

3.2 Effects of Private Signals on Risk Premiums

We begin our analysis of the effects of private signals on risk premiums in the

large economy limit with two special cases that have appeared in the literature;

private information only on idiosyncratic shocks and private information on total

asset payoffs. We then consider the case where private information on systematic

factors has finite aggregate precision.

3.2.1 Private Information Only on Idiosyncratic Components of Asset

Payoffs

Suppose informed investors receive private signals on just the idiosyncratic com-

ponents of risky asset payoffs. In this case, b = 0 and the signals can be written

as

s = ν − ν̄ − βF + Σ1/2
s η. (23)

Note that when β 6= 0, the asset payoffs are correlated. In the special case where

all asset payoffs are uncorrelated, i.e., β = 0, this structure reduces to the setting

considered by Easley and O’Hara (2004). It is easy to see that, for finite N ,

information solely about idiosyncratic shocks reduces uncertainty about priced

risks; Σν|J,F . However, as we show below, in the limit as N → ∞, elimination of

idiosyncratic risks through diversification implies that private signals containing

only idiosyncratic components have no effects on risk premiums:
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Proposition 1 Given that informed investors receive private signals only about

the idiosyncratic components of asset payoffs, in the limit as N → ∞, the risk

premium satisfies

E[ν −Rfp] = βγΣF β′x̄/N. (24)

The proof is given in the Appendix. Note that β′x̄ is of order N and hence β′x̄/N

is of order 1 when N →∞. Thus, we have a finite risk premium. Notably, the risk

premium in this case is the same as the risk premium without information, µ = 0,

βγΣF β′x̄/N , implying that this is the risk premium for all µ. In other words,

there is no resolution of uncertainty about systematic factors from private signals

that do not contain a systematic component; investors remain with their prior

(homogeneous) beliefs.6 It is also clear that, in the setting studied by Easley and

O’Hara (2004), where β = 0, the risk premium is reduced to zero, i.e., E[ν−Rfp] =

0.

More generally, we expect that the same results will hold as long as b′(Σ +

Σs)
−1b → 0 and b′(Σ + Σθ)

−1b → 0 when N → ∞. Intuitively, diversification

works at the power of 1/N , implying that if the systematic component of the

signal has a power less than 1/N , then it will be eliminated by diversification.

Note that although private information on idiosyncratic shocks does not affect

risk premiums in this case, it does affect asset prices and portfolio holdings of

informed and uninformed investors and, hence, their expected utilities.

6Note further, that the proposition holds notwithstanding systematic components in the ran-

dom supply, βxσfx 6= 0. This result is quite intuitive: Even if all the agents are informed, µ = 1,

there is no resolution of uncertainty about the factor that affects asset payoffs, implying that the

random supply of assets is irrelevant for asset pricing.
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3.2.2 Private Information on Total Risky Asset Payoffs

Suppose now that informed investors receive private signals about total asset pay-

offs. In this case, b = −β and the signals can be written as

s = ν − ν̄ + Σ1/2
s η. (25)

This is a special case of Admati (1985) where the covariance matrix of the assets has

the form of a factor structure and the signals for different assets are uncorrelated.

In this case, Σ−1
F |s = Σ−1

F + β′(Σ + Σs)
−1β, which goes to infinity as N → ∞.

Therefore, we have

ΣF |s = 0.

Similarly, Σ−1
F |θ = Σ−1

F + (β + βx)
′(Σ + Σθ)(β + βx), which also goes to infinity as

long as β + βx goes to a constant as N →∞; thus we also have

ΣF |θ = 0.

It is easy to show that the above two equations imply that the risk premium is

zero.

The intuition here is also clear. Infinitely many private signals about asset

payoffs implies that informed investors learn the systematic factor perfectly and

set their demands such that prices fully reveal the systematic factor F and, thus,

eliminate the risk associated with that factor.

3.2.3 Private Information with Finite Aggregate Precision

We have considered the cases where (b′(Σ+Σs)
−1b, b′(Σ+Σθ)

−1b) → 0 and (b′(Σ+

Σs)
−1b, b′(Σ + Σθ)

−1b) → ∞. The more interesting case is where the limit of

(b′(Σ + Σs)
−1b, b′(Σ + Σθ)

−1b) is a non-zero finite constant; what we call finite
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aggregate precision. This happens, for instance, if the elements of
√

Nb go to a

non-zero constant when N → ∞. In effect, under this structure, as the economy

expands the informativeness of the private signal for a given asset about the factor

is decreasing. Thus, even though signal noise and idiosyncratic risk are becoming

diversified away as the number of assets increases, informed investors’ aggregate

information about the factor in the limit is imperfect.7

The risk premium in this case is given by the following proposition.

Proposition 2 Given that informed investors receive private signals informative

about both idiosyncratic and systematic components of asset payoffs with finite

aggregate precision, in the limit as N →∞, the risk premium is

E[ν −Rfp] = βγ
(
µΣ−1

F |s + (1− µ)Σ−1
F |θ

)−1 β′x̄
N

and the factor risk premium is

λ = γ
(
µΣ−1

F |s + (1− µ)Σ−1
F |θ

)−1 β′x̄
N

.

The proof is given in the Appendix.

We can arrange the risk premium as follows

β
(
µ + (1− µ)ΣF |sΣ

−1
F |θ

)−1

(IK + ΣF k′(Σ + Σs)
−1k)−1

(
γΣF

β′x̄
N

)
.

The term Σ−1
F γ β′x̄

N
determines the risk premium without private signals; it does not

contain parameters that characterize information structure. The term (IK + ΣF k′(Σ + Σs)
−1k)

−1

7As mentioned earlier, an alternative information structure that would preclude learning the

factor realization perfectly and preserve our qualitative results is to assume informed investors

receive two uncorrelated signals; one about idiosyncratic shocks and the other about the sys-

tematic factor. This is similar to the information structure assumed by Admati (1982) in the

context of her factor model, the difference being that in our model all informed investors receive

the same signals while in Admati they receive diverse signals.
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determines the effects of private signals in reducing the factor risk premium; it does

not contain parameters that characterize the asymmetric structure of the informa-

tion. The term
(
µ + (1− µ)ΣF |sΣ

−1
F |θ

)−1

determines the effects of information

asymmetry on the risk premium. The effect on the equilibrium risk premium at-

tributable to the informed investors is different from the effect attributable to the

uninformed investors, implying that the fraction of the informed investors in the

economy plays an important role in the determination of that risk premium. In

particular, the greater the proportion of uninformed to informed, the larger the risk

premium since with less average information there is less resolution of uncertainty

about systematic factors.

As the above proposition depicts, the risk premium is entirely determined by

beta. In fact, it is proportional to beta; i.e., the APT pricing relation (Ross, 1976)

holds. Information about the systematic factors in asset payoffs and the systematic

component in the random supply affect the covariances of the factors. The risk

premium is proportional to the geometric average of the factor covariance matri-

ces conditional on s and θ, ΣF |s and ΣF |θ. Since ΣF |s < ΣF |θ, the risk premium

decreases with the fraction of the informed; in particular, the risk premium with

private information is always smaller than the risk premium without private in-

formation. As made evident within the proof of Proposition 2 contained in the

Appendix, without a systematic component in the random supply, the conditional

factor covariance matrices would be equal, consistent with our earlier claim that

prices would then fully reveal the informed investors’ private signal. Hence, the

systematic component in the random supply plays a crucial role in our extension of

APT to a case with heterogeneous beliefs. We further observe that factor loadings

are not affected by private signals in the large N limit.

For comparative statics, we can gain a useful expression of the risk premium in
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terms of model primitives by assuming identically distributed risky asset payoffs

and related signals: i.e., the covariance matrices of the payoffs, signals, and the

random supply are all proportional to the identity matrix; the betas of all risky

asset payoffs are equal; and the sensitivities of the signals to (for convenience) a

single factor are equal.

The risk premium for in the large N limit for this case (maintaining the as-

sumption of finite aggregate precision) is8

γσ2
fβ

2x̄


1 +

σ2
fk

2

σ2 + σ2
s


µ +

1− µ

1 + (σ2 + σ2
s)

(
γβσfxβx

µk

)2







−1

1N×1

= γσ2
fβ

2x̄

(
1 +

σ2
fk

2

σ2 + σ2
s

)−1


µ + (1− µ)

1 +
σ2

f k2

(σ2+σ2
s)+(σ2+σ2

s)2
�

γβσfxβx

µk

�2

1 +
σ2

f k2

σ2+σ2
s




−1

1N×1.

The first term in the above expression, γσ2
fβ

2x̄, is the risk premium without infor-

mation. It depends on the risk aversion, the beta, and the factor variance.

The risk premium when all investors are informed is given by γσ2
fβ

2x̄
(
1 +

σ2
f k2

σ2+σ2
s

)−1

;

it decreases with the systematic sensitivity k of the signal to the factor and in-

creases with the variance of the payoff σ2 and variance of the signal σ2
s .

The term k′(Σ + Σs)
−1k is the aggregate information on the factor F . The

term µ + 1−µ

1+(σ2+σ2
s)
�

γβσfxβx

µk

�2 determines the effect of asymmetric information, and

µ and βxσfx only affect this term. Therefore, when either µ or βxσfx changes

while keeping other parameters fixed, only the asymmetries of the information

structure are affected while the risk premiums for the cases where all investors are

uninformed (µ = 0) and all investors are informed (µ = 1) do not change.

When βxσfx = 0, the risk premium reduces to that of the case with µ = 1. This

8Details on the derivation in this special case are available from the authors upon request.
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is due to the fact that the price fully reveals the signal, s, in the large N limit if

there are no systematic components in the random supply. Note also that σx does

not appear in the formula, because the idiosyncratic component of the random

supply is diversified away. When k = 0, the information is only idiosyncratic and

the risk premium reduces to that of the case with no information, γσ2
fβ

2x̄, even if

βxσfx 6= 0.

The risk premium decreases with the fraction of the informed investors, µ, the

precision of the private signals, 1/σ2
s , and the sensitivity of those signals to the

systematic component, k2; it increases with factor loadings, β, the volatility of the

idiosyncratic component of asset payoffs, σ, and risk aversion, γ.

3.2.4 Risk Premiums and the Size of Economy

Still assuming identically distributed risky asset payoffs and related signals, we

now step back to the case with a finite number of risky assets and numerically

examine the behavior of risk premiums as that number changes.

Under a set of plausible parameter values where γ = 3, σ = 30%, β = 1,

σf = 20%, σs = 25%, σfx = 30%, βx = 1, σx = 30%, and k = −1, Figures 1

plots the risk premium against the fraction of the informed investors for various

numbers of risky assets. The risk premium decreases with N as we would expect.

In particular, we observe that there is substantial convergence to the risk premium

in the limiting case as the number of assets reaches the hundreds. This suggests

that the risk premium in the limit as the number of assets goes to infinity may

be a reasonable approximation to the risk premium in a finite economy where the

number of assets measures in the thousands.
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4 Conclusion

In this paper we provide an explicit solution to a noisy rational expectations model

that characterizes the effects of private signals on risk premiums. Risky asset

payoffs in this model obey a factor structure. Private signals are informative of

systematic factors as well as idiosyncratic risks. Our principal result is that, in

large economies where the number of risky assets goes to infinity, the APT (Ross,

1976) pricing relation holds and private signals affect risk premiums only through

factor risk premiums.

On the effects of information asymmetry as such, we show that a higher propor-

tion of informed to uninformed investors leads to a greater resolution of uncertainty

as manifested by a smaller aggregate posterior factor covariance matrix and, hence,

lower factor risk premiums. This result depends on the presence of a systematic

component in the random supply of risky assets. Eliminating the systematic com-

ponent of the random supply would remove the asymmetry of information between

informed and uninformed investors by causing prices to become fully revealing of

private signals, a less interesting case.

It seems reasonable that as long as the precision of aggregate posterior beliefs

about systematic factors is finite, the information supplied by the private signal

for an individual risky asset about systematic factors when there are many assets

must be small. In turn, the effect of such information on beliefs with respect to

any aspect of an individual risky asset’s payoff including systematic components

must be small, approaching the null effect in the limit as the number of assets

goes to infinity. We have confirmed this intuition when distributions are normal,

utility functions are CARA with the absolute risk aversion coefficient decreasing

in the number of assets, and investors can be ordered by statistical sufficiency
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of their information with respect to systematic factors. We conjecture that the

absence of an effect of private signals on betas in large economies would hold up

in more general cases where distributions and utility functions depart from these

assumptions.

Last, we observe that our results in the case of asymmetric information es-

tablishes the validity of APT in a setting with heterogeneous expectations. If, as

conjectured above, the effects of information supplied by private signals in large

economies can be reduced to heterogeneous posterior beliefs on systematic factors,

without affecting loadings on those factors, then we further conjecture as does

Ross (1976) that the APT pricing relation holds in such economies with private

signals, provided that limiting procedures for that relation to hold in the absence

of private signals are met. These conjectures suggest that our results may apply

to a far broader context than the setting for our model.
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Figure 1. The Risk Premium. This graph plots the average risk premium in

the ID case against the fraction of informed investors, for various numbers of risky

assets, N . The parameters are: γ = 3, σ = 30%, β = 1, σf = 20%, σs = 25%,

σfx = 30%, βx = 1, σx = 30%, and k = −1.
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Appendix

In the Appendix, we will use the following identity extensively:

(Σ + βΩβ′)−1 = Σ−1 − Σ−1β(Ω−1 + β′Σ−1β)β′Σ−1.

The Proof of Remark 1.

We solve for the filtering rule, given signal s. Our assumptions have specified the

distribution functions f(ν|F, s), f(ν|F ), and f(F ). Therefore,

f(v, F, s) = f(s|ν, F )f(ν|F )f(F ).

We can rewrite the above as

f(v, F, s) = f(ν|s, F )f(F |s)f(s).

Focusing on the exponential terms of the joint normal distribution densities,

we obtain

− ln f(ν, F, s) = − ln f(s|ν, F )− ln f(ν|F )− ln f(F )

1

2
(s− (ν − ν − βF )− bF )′Σ−1

s (s− (ν − ν − βF )− bF )

+
1

2
(ν − ν − βF )′Σ−1(ν − ν − βF ) +

1

2
F ′Σ−1

F F

=
1

2
(ν − ν − βF )′

(
Σ−1 + Σ−1

s

)
(ν − ν − βF )− (ν − ν − βF )′Σ−1

s (s− bF )

+
1

2
(s− bF )′Σ−1

s (s− bF ) +
1

2
F ′Σ−1

F F

=
1

2
(ν − E[ν|s, F ])Σ−1

ν|s,F (ν − E[ν|s, F ])

+
1

2
(s− bF )′(Σ + Σs)

−1(s− bF ) +
1

2
F ′Σ−1

F F

=
1

2
(ν − E[ν|s, F ])Σ−1

ν|s,F (ν − E[ν|s, F ]) +
1

2
s′(Σ + Σs)

−1s
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+
1

2
(bF )′(Σ + Σs)

−1bF − s′(Σ + Σs)
−1bF +

1

2
F ′Σ−1

F F

=
1

2
(ν − E[ν|s, F ])Σ−1

ν|s,F (ν − E[ν|s, F ])

+
1

2
(F − E[F |s])′Σ−1

F |s(F − E[F |s]) +
1

2
s′Σ̂−1

s s

= − ln f(ν|s, F )− ln f(F |s)− ln f(s),

The distribution functions f(ν|s, F ), f(F |s), and f(s) can then identified from the

above equation, with

E[ν|s, F ] = ν + βF + Σν|s,F Σ−1
s (s− bF ),

E[F |s] = ΣF |sb
′(Σ + Σs)

−1s,

Σ−1
ν|s,F = Σ−1 + Σ−1

s ,

Σ−1
F |s = Σ−1

F + b′(Σ + Σs)
−1b,

Σ̂s = Σ + b′ΣF b + Σs.

The Proof of Remark 2.

The structure of the filtering rule, given signal θ, is the same as that for s. The

proof proceeds in exactly the same fashion.

Proof of Proposition 1.

Because b = 0, we have

ΣF |s = ΣF ;

Σν|s = Σν|s,F + βΣF β′;

ΣF |θ = ΣF ;

Σν|θ = Σν|θ,F + βΣF β′.
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Intuitively, the matrices Σν|s and Σν|θ differ only in the idiosyncratic matrices Σν|s,F

and Σν|θ,F which do not matter for the risk premium and thus should produce the

risk premium γβΣF β′x̄. The formal proof is as follows. From

Σθ = Σs + λ(βxΣFxβ
′
x + Σx)λ

′ ≥ Σs,

we know that

Σ ≥ (Σ−1 + Σ−1
θ )−1 = Σν|θ,F ≥ (Σ−1 + Σ−1

s )−1 = Σν|s,F .

It follows that

Σ + βΣF β′ = (µ(Σ + βΣF β′) + (1− µ)(Σ + βΣF β′))−1

≥ (
µ(Σν|s,F + βΣF β′) + (1− µ)(Σν|θ,F + βΣF β′)

)−1
= Σ̄ν

≥ (
µ(Σν|s,F + βΣF β′) + (1− µ)(Σs|θ,F + βΣF β′)

)−1
= Σν|s,F + βΣF β′.

Hence,

lim
N→∞

1

N
(Σ + βΣF β′) = lim

N→∞
1

N
βΣF β′ ≥ lim

N→∞
1

N
Σ̄ν ≥ lim

N→∞
1

N
Σν|s,F + βΣF β′ = lim

N→∞
1

N
βΣF β.

Therefore, the average risk premium is

E[ν −Rfp] = γ
1

N
Σ̄ν x̄ → γ

1

N

(
Σν|s,F + βΣF β′

)
x̄ → γ

1

N
βΣF β′x̄.

Proof of Proposition 2.

For the case of non-identically distributed risky asset payoffs, the leading order

terms in the large N limit are

Σν|s,F =
(
Σ−1 + Σ−1

s

)−1
,

ΣF |s =

(
Σ−1

F +
1

N
k′(Σ + Σs)

−1k

)−1

.
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The variance of ν conditional on s

Σν|s = Σν|s,F + βΣF |sβ
′ + O(N−1/2),

Φs = Σν|s,F Σ−1
s +

1√
N

βΣF |sk
′(Σ + Σs)

−1 + O(N−1).

Both first terms in the above equations are diagonal matrices. The second terms

are due to factors. We use O(Nα) to denote matrices with all of their elements

generally non-zero and of order Nα. In the case of identical assets, O(Nα) ∝
Nα1N×N . These terms will be negligible, in the large N limit, as far as the risk

premium is concerned. The Φ−1
s matrix is

Φ−1
s = Σs

(
IN +

1√
N

Σ−1
ν|s,F βΣF |sk

′(Σ−1
s Σ + IN)−1

)−1

Σ−1
ν|s,F

= Σs

(
IN − Σ−1

ν|s,F β
(√

NΣ−1
F |s + k′(Σ−1

s Σ + IN)−1Σ−1
ν|s,F β

)−1

k′(Σ−1
s Σ + IN)−1

)
Σ−1

ν|s,F

and

Φ−1
s Σν|s = Σs

(
IN − Σ−1

ν|s,F βΣF |s
(√

NIK + k′(Σ−1
s Σ + IN)−1Σ−1

ν|s,F βΣF |s
)−1

k′(Σ−1
s Σ + IN)−1

)

×
(
IN + Σ−1

ν|s,F βΣF |sβ
′
)

= Σs

(
IN − Σ−1

ν|s,F β
(√

NΣ−1
F |s + k′(Σ−1

s Σ + IN)−1Σ−1
ν|s,F β

)−1

k′(Σ−1
s Σ + IN)−1

− Σ−1
ν|s,F β

(√
NΣ−1

F |s + k′(Σ−1
s Σ + IN)−1Σ−1

ν|s,F β
)−1√

Nβ′
)

→ Σs

(
IN +

1√
N

Σ−1
ν|s,F β

(
1

N
k′Σ−1β

)−1

β′
)

.

Therefore,

λ =
γ

µN
Φ−1

s Σν|s =
1√
N3

γµ−1ΣsΣ
−1
ν|s,F β

(
1

N
k′Σ−1β

)−1

β′.

The signal θ is now

θ = s− 1√
N

γµ−1ΣsΣ
−1
ν|s,F β

(
1

N
k′Σ−1β

)−1
β′βx

N
Fx ≡ s− 1√

N
ΛFx,
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with Λ = γµ−1ΣsΣ
−1
ν|s,F β

(
1
N

k′Σ−1β
)−1 β′βx

N
. The idiosyncratic component of the

random supply disappears; it is diversified away. The covariance matrix of the

payoffs, conditional on θ, is

Σθ = Σs +
1

N
ΛβxΣFxβ

′
xΛ

′
.

Note that Σs is a diagonal matrix while ΛβxΣFxβ
′
xΛ

′
is a matrix with all of its

matrix elements being of order 1. Therefore, when Σθ is multiplied by a vector of

1’s from the right, the second term has the same order of magnitude as the first

term. We can show that

Σν|θ,F = Σν|s,F + O
(
N−1

)
.

As will be shown later, the contribution of such terms to the risk premium goes to

zero in the limit as N →∞. The factor covariance matrix, conditional on θ, is

Σ−1
F |θ = Σ−1

F +
1

N
k′

(
Σ + Σs +

1

N
ΛβxΣFxβ

′
xΛ

′
)−1

k.

Note that, when multiplied by vectors of 1’s from left and from right, the term

1
N

ΛβxΣFxβ
′
xΛ

′
produces a K × K matrix with elements of order N , the same as

matrix Σ + Σs.

The variance of ν, conditional on θ,

Σν|θ = Σν|s,F + βΣF |θβ
′.

The matrix Σν|s,F is diagonal, while all the elements of the matrix βΣF |θβ′ are of

order 1. The terms neglected earlier produce matrices with all elements of order

N−1.

From the identity,

µΣ−1
ν|s + (1− µ)Σ−1

ν|θ

= Σ−1
ν|s,F − Σ−1

ν|s,F β

(
µ

(
Σ−1

F |s + β′Σ−1
ν|s,F β

)−1

+ (1− µ)
(
Σ−1

F |θ + β′Σ−1
ν|θ,F β

)−1
)

β′Σ−1
ν|s,F
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we can write

(
µΣ−1

ν|s + (1− µ)Σν|θ
)−1

= Σν|s,F + βM−1β′,

where

M =

(
µ

(
Σ−1

F |s + β′Σ−1
ν|s,F β

)−1

+ (1− µ)
(
Σ−1

F |θ + β′Σ−1
ν|s,F β

)−1
)−1

− β′Σν|s,F β

=

(
µ

(
Σ−1

F |s + β′Σ−1
ν|s,F β

)−1

+ (1− µ)
(
Σ−1

F |θ + β′Σ−1
ν|s,F β

)−1
)−1

×
(

µ
(
Σ−1

F |s + β′Σ−1
ν|s,F β

)−1

Σ−1
F |s + (1− µ)

(
Σ−1

F |θ + β′Σ−1
ν|s,F β

)−1

Σ−1
F |θ

)
.

In the large N limit, β′Σ−1
ν|s,F β is of order N , therefore, Σ−1

F |s+β′Σ−1
ν|s,F β → β′Σ−1

ν|s,F β.

Similarly, Σ−1
F |θ + β′Σ−1

ν|s,F β → β′Σ−1
ν|s,F β, so

M → β′Σ−1
ν|s,F β

(
µ

(
β′Σ−1

ν|s,F β
)−1

Σ−1
F |s + (1− µ)

(
β′Σ−1

ν|θ,F β
)−1

Σ−1
F |θ

)

= µΣ−1
F |s + (1− µ)Σ−1

F |θ.

The risk premium is given by

γβ
(
µΣ−1

F |s + (1− µ)Σ−1
F |θ

)−1 β′x̄
N

and the factor risk premium is given by

γ
(
µΣ−1

F |s + (1− µ)Σ−1
F |θ

)−1 β′x̄
N

.
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