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Abstract
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1. Introduction

Attempts to forecast stock market returns are plagued by instability in the under-

lying prediction models as documented in a large empirical literature. For example,

Pástor and Stambaugh (2001) identify multiple breaks in a model linking equity risk

premiums to changes in stock market volatility. Similarly, Lettau and Van Nieuwer-

burgh (2008), Pettenuzzo and Timmermann (2011), Dangl and Halling (2012) and

Johannes et al. (2014) find evidence of unstable parameters in the relation between

stock market returns and the lagged dividend-price ratio.1

Instability in return predictability models can be caused by a variety of factors.

The present value model suggests that return predictability may be unstable due to

changes in either the cash flow growth or discount rate processes which, in turn, could

reflect shifts in investors’ risk aversion, assets’ exposures to systematic risk factors, or

the quantity of risk. Large changes in the macroeconomic environment or changes in

institutions, regulations, and public policy can also shift the relation between observ-

able predictor variables and the underlying risk factors and cause model instability.

Alternatively, instability can be related to the learning process of investors as we

would expect predictable patterns in returns to ‘self-destruct’ once investors attempt

to exploit them.2 Given these diverse explanations, it is important to gain a better

understanding of “break risk” as this helps shed light on the mechanism and economic

sources underlying return predictability.

Model instability is economically important because it poses severe challenges to

investors’ attempts at successfully predicting stock market returns. Using a long

historical sample to estimate the parameters of a return forecasting model is not an

1Paye and Timmermann (2006) and Rapach and Wohar (2006) conduct econometric tests for
model instability and find significant evidence of breaks in the relation between aggregate stock
market returns and a variety of predictor variables proposed in the finance literature. Bekaert et al.
(2002) use estimates of common structural breaks to date world equity market integration.

2Schwert (2003), Green et al. (2011), and McLean and Pontiff (2016) test this idea and find
evidence that abnormal returns tend to diminish after they become public knowledge.
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attractive option if the parameters change over time since the resulting estimates may

be severely biased. Conversely, using a shorter window of time (possibly after a break

has occurred) can lead to large estimation error and imprecise forecasts.

An alternative strategy is to specify a model for how the parameters of the re-

turn prediction model change. However, this approach faces two key challenges, as

pointed out by Lettau and Van Nieuwerburgh (2008). First, investors may have dif-

ficulty detecting breaks in real time. Second, and equally importantly, if a break is

detected with little delay, only few observations from the current regime are available

to estimate model parameters, leading to volatile and inaccurate return forecasts.

Overcoming these challenges has proven difficult. Indeed, in their empirical analysis

Lettau and Van Nieuwerburgh (2008) find that regime shifts in the dividend-price

ratio cannot be exploited to improve out-of-sample forecasts of stock returns.

In this paper we develop a new approach that addresses each of these concerns,

in the process uncovering new insights into the sources of model instability and its

economic consequences. We address the first challenge (slow detection of breaks) by

exploiting information in the cross-section of stock returns, effectively enabling breaks

to be detected rapidly in real time.3 We address the second challenge (imprecise

model estimates) by adopting a Bayesian approach that uses economically motivated

priors to shrink the parameters towards sensible values that rule out economically

implausible values. Following Pástor and Stambaugh (1999), we link the prior on the

intercept in the return prediction model to the residual volatility to ensure that little

weight is assigned to implausibly high Sharpe ratios. Moreover, following Wachter and

Warusawitharana (2009), we center the prior on the slope coefficient of the predictor

on zero with a relatively tight variance so as to rule out implausibly large degrees of

return predictability and high volatility in the return forecasts. This combination of

a multivariate (panel) break model and economically motivated (Bayesian) priors is

3Bai et al. (1998), Bai (2010), and Baltagi et al. (2016) show that using multiple series in the
cross-section results in more precise estimates of break dates relative to using a single time series.
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what makes our approach work well empirically.

The key identifying assumption in our analysis which allows us to exploit the

benefits from pooling cross-sectional and time-series information on returns is that the

timing of breaks is relatively homogeneous across stocks. This assumption is justified

when breaks occur in the risk premia of common risk factors or when the quantity

of risk shifts at the same time. For example, if a variable ceases to predict returns

on the aggregate stock market portfolio, we would expect to find a similar effect on

individual stocks or stock portfolios at approximately the same time. Exploring the

simultaneous timing of breaks increases our ability to detect breaks and accurately

determine their timing.

Our empirical analysis focuses on individual stock returns. Using 90 years of

monthly returns data across 14 predictor variables from Goyal and Welch (2008),

we find evidence of eight breaks corresponding to roughly one break on average per

decade. Breaks affect the returns of many different firms, regardless of firm or industry

characteristics, indicating that the breaks we identify are broad-based and systematic

in nature, although break sensitivities can vary widely across stocks.

To narrow down the economic sources of breaks to return predictability, we adopt a

simple present value asset pricing approach. The present value model implies that re-

turn predictability is linked to predictability of dividend growth and/or the dividend-

price ratio through a tight set of cross-equation restrictions. Breaks in the coefficients

of the return prediction model must therefore be matched by breaks to the coefficients

of the dividend growth rate or dividend-price ratio models. To explore if this holds,

we use Bayes factors to test the present value model restrictions. We find strong

evidence that the three variables experience breaks at the same time and that the

restrictions implied by the present value model are supported by the data. More-

over, we provide further evidence on which parts of the return prediction model are

affected by individual historical breaks - factor loadings (betas) or risk premia (or

both) - through a set of specification tests.
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Following earlier studies such as Campbell and Thompson (2008), Rapach et al.

(2010), and Dangl and Halling (2012), we assess the predictive accuracy of our return

forecasts using a variety of statistical and economic performance measures. We find

that out-of-sample return forecasts from the panel break model are significantly more

accurate than those produced by the historical average (Goyal and Welch 2008), a

time-series model with breaks, a time-varying parameter model with slowly moving

parameters, a rolling window approach, and a panel model with no breaks. Specif-

ically, our panel-break approach generates significantly more accurate out-of-sample

forecasts with improvements in the out-of-sample R2 value for the market portfolio

exceeding 0.5% against all of these benchmarks. An asset allocation analysis for a

modestly risk averse mean-variance investor suggests that the return forecasts from

the panel break model generate certainty equivalent returns approximately 2% per

year higher than each of the benchmarks.

The remainder of the paper is set out as follows. Section 2 motivates and in-

troduces our panel break approach. Section 3 reports empirical evidence of breaks.

Section 4 investigates the economic sources of breaks, while Section 5 evaluates the

economic and statistical significance of return predictability for our panel break model

and compares our approach to a set of alternative methods. Section 6 concludes.

2. Methodology

This section provides economic motivation for our panel break approach to capturing

instability in return prediction models, introduces our approach more formally, and

explains how we estimate the model parameters. Technical details are presented in

a set of appendices. Throughout the analysis, we assume that there are i = 1, ..., N

return series and t = 1, ..., T time series observations.4

4For simplicity, our notation ignores that not all asset returns are observed in all time periods
since we are dealing with an unbalanced panel.
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2.1. Economic Sources of Instability in Return Predictability

We begin with some economic motivation for our analysis of instability in return

prediction models. Suppose the return on asset i in period t + 1, rit+1, measured

in excess of a risk free rate, is affected by a set of common risk factors, ft+1, with

factor loadings bit and conditional risk premia, λt. Standard conditional asset pricing

models imply that Et[rit+1] = b′itλt and so we can decompose rit+1 as follows:

rit+1 = b′itλt + εit+1, (1)

where εit+1 = b′it(ft+1 − Et[ft+1]) + uit+1 is an unpredictable return component and

uit+1 is an idiosyncratic (asset-specific) shock with zero mean, so Et[εit+1] = 0. This

simple model suggests that return predictability can arise either from time-variation

in betas or from time-varying risk premia.

Next, suppose that variation in the common risk premia, λt, is driven by a set

of observable state variables, xt, with coefficients θλ, so λt = θ′λxt. State variables,

xt, commonly used by the finance literature to track time variation in risk premia

include the dividend-price ratio, short-term interest rates, and default spreads. The

relation between these variables and risk premia (θλ) is unlikely to remain constant

over time. For example, the relation between short interest rates and risk premia

was presumably very different during the zero-lower bound state than in more normal

times. Similarly, studies such as Rapach et al. (2010), Henkel et al. (2011), and Dangl

and Halling (2012) find that the relation between predictor variables and expected

stock returns is very different in recession and expansion states. Building on these

observations, it is important to allow the mapping from predictors, xt, to risk premia,

λt, to vary over time. We can achieve this by allowing this mapping to change at a
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set of break dates τk for k = 1, ..., K with θλt = θλk for τk−1 < t ≤ τk, so that

λt = θ′λkxt τk−1 < t ≤ τk. (2)

This approach is flexible and allows for repeated states (e.g., recessions and ex-

pansions) or small breaks every period (a time-varying parameter model) as special

cases. The assumption that the timing of breaks, τk, is common across stocks is a

natural one in this context as breaks to the risk premium of the common factors will

affect the vast majority of stocks.

Turning to the factor loadings, a common approach for capturing time-variation is

to let the betas be a (linear) function of a set of observable stock or firm characteristics,

cit, with coefficients θb, so that bit = θ′bcit, see, e.g., Gu et al. (2018). Again we can

capture possible time-variation in the mapping from firm characteristics to factor

loadings through a step function, θbt = θbk for τk−1 < t ≤ τk:

bit = θ′bkcit τk−1 < t ≤ τk. (3)

The specifications in (2) and (3) are quite general and so we next consider some

special cases of particular economic interest. First, suppose that firm characteristics,

cit, can vary widely in the cross-section but only move slowly over time so that

cit ≈ ci.
5 Using equation (1), the case with static betas and time-varying risk premia

leads to the return model

rit+1 = β′ikxt + εit+1 τk−1 < t ≤ τk, (4)

where β′ik = b′iθ
′
λk, so the mapping from observable predictors, xt, to expected returns

can vary across stocks and breakpoints, τk. Breaks in return predictability identi-

5Assuming that we can sort stocks into portfolios, p, with similar characteristics for all stocks,
i ∈ p, we have bit ≈ bp and so can conduct a similar analysis for portfolios of stocks.
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fied by this specification are, thus, driven by changes in the aggregate risk premium

process. This model is economically interesting and a good candidate for identifying

breaks since it seems a priori plausible to expect the aggregate risk premium to be

different in economic states such as the global financial crisis.

Another interesting special case arises when risk premia are constant, λt = λ,

while stock betas are allowed to vary over time according to equation (3) so that

rit+1 = β′ikcit + εit+1, τk−1 < t ≤ τk, (5)

where β′ik = λ′θ′ik. Here, the mapping from firm characteristics, cit, to expected

returns can vary over time in a way that allows us to identify common breaks.

By jointly modeling returns on individual stocks, our panel approach is well-suited

for identifying breaks that simultaneously affect a broad cross-section of stocks. More-

over, recalling the definition of the return shocks, εit+1 = b′it(ft+1 − Et[ft+1]) + uit+1,

breaks to factor loadings (“betas”) will typically produce breaks in both expected

returns and in the variance-covariance of returns. Breaks in omitted risk factors will

have the same effect, whereas breaks to the risk premia of the included risk factors

should only affect expected returns.

2.2. A Panel Break Model for Stock Returns

We next propose a model that builds on the above economic motivation. Identifying

breaks from a single time series tends to be very hard. Conversely, assuming that the

timing of breaks is the same across individual stocks can greatly increase the power

of break tests and, thus, enhance our ability to estimate the location and size of any

breaks. Provided that the individual return series are not too strongly correlated,
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each return series yields valuable additional information that helps us identify breaks.6

Our panel approach therefore estimates breaks by pooling the information from the

cross-section to identify the timing of the common breaks, while still estimating the

parameters for each individual return series:7

rit+1 = µik + βikXt + εit+1, τk−1 < t ≤ τk, k = 1, . . . , K + 1, (6)

where εit+1 is a zero-mean unexpected return component. Allowing for an intercept

in (6) means that our model nests the constant expected return (“no predictability”)

benchmark model of Goyal and Welch (2008) as a special case. Note that our model

is flexible enough to allow for partial breaks such that any subset of the regression

coefficients in (6) may shift following an identified break. For example, the intercept

may be the only parameter to shift following the first break, while all coefficients

could shift following the second break.

Stock returns typically exhibit high levels of cross-sectional covariance due to their

loadings on common risk factors. Indeed, breaks to factor loadings, bit, or breaks in

the coefficients of omitted common factors can lead to simultaneous breaks in the

covariance of the residuals from the panel return prediction model. While these

covariances do not directly affect our forecasts of expected stock returns, ignoring

them can reduce our ability to detect breaks with panel data (Kim 2011; Baltagi

et al. 2016). We therefore allow the covariance structure of return shocks, including

the variance of εit+1, to vary across return series and break locations τ = (τ1, . . . , τK).

In practice, once we allow for breaks to the covariance of returns, estimating

the full covariance matrix of residuals becomes an unattractive strategy - not only

because such estimates are likely to be imprecise, but also because it severely delays

6 Bai et al. (1998) make a similar point in the context of a small-scale vector autoregression. We
show that their result is even stronger for panel data with a large cross-sectional dimension.

7Polk et al. (2006), Hjalmarsson (2010) and Bollerslev et al. (2018) also consider predictability
of stock returns and volatility in a panel setting.
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break point detection.8 Instead, we model correlations across residual returns as

generated by a small set of factors. In our empirical application, we use a single

(market) factor to capture correlation in the residuals of the individual asset return

series. Empirically, this works very well. For example, the absolute value of the

pairwise correlation averaged across the individual stocks in our empirical application

is reduced from 0.82 to 0.16 after allowing for a single factor, while the cross-sectional

dependence test statistic of Pesaran (2004) is reduced from 193.74 to 2.27, which is no

longer significant at the 1% level. For robustness, we also conduct results allowing for

three or five Fama-French factors and obtain similar results throughout the analysis.

Appendix C contains further discussion of this point.

2.3. Prior Distributions

To estimate our model, we adopt a Bayesian methodology which combines informa-

tion in the data transmitted through the likelihood function with prior information.

Essentially, we assume conventional conjugate Normal priors over the regression co-

efficients and inverse gamma priors on the variance parameters within each regime.9

The hyperparameters that determine the frequency of breaks to the coefficients are

set so that a break is expected to occur roughly once per decade, but we also conduct

an analysis with more conservative priors implying breaks that, on average, occur

every 20 years.

Importantly, we let the key prior parameters be economically motivated. Given

empirical evidence of weak return predictability such as Goyal and Welch (2008), we

center our prior for β in (6) at zero. Moreover, inspired by Wachter and Warusaw-

8To see this, note that having only N = 30 return series requires estimating 525 parameters in
each regime, consisting of 3N = 90 regression parameters and Nρ = (N2−N)/2 = 435 correlations.
A regime duration shorter than 525/N ≈ 18 periods would therefore require estimating more pa-
rameters than we have observations within that regime. In our empirical application, every single
break is detected with a considerably shorter delay than this.

9Further details of the shape of the priors are provided in Appendix B.
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itharana (2009), we explore an economically motivated prior distribution that allows

investors to have different views regarding the degree to which excess returns are pre-

dictable. In the absence of breaks, if the slope coefficient β on the predictive variable

is equal to zero, this implies no predictability, and the predictive regression is simply

the ‘no predictability’ benchmark model, i.e., the historical average. Bayesian analy-

sis allows different degrees of predictability, reflecting the scepticism of the investor

as to whether returns are predictable. For instance, if β is normally distributed with

zero mean and variance σ2
β, then setting σ2

β = 0 implies a dogmatic prior belief that

excess returns are not predictable, while σ2
β → ∞ specifies a diffuse prior over the

value of β, implying that all degrees of predictability (and hence values of the R2

from the predictive regression) are equally likely. An intermediate view suggests that

the investor is sceptical about predictability but does not rule it out entirely.

Wachter and Warusawitharana (2009) note that it is undesirable to place a prior

directly on βi since a high variance of the predictor σ2
X might lower the prior on

βi whereas a large residual variance σ2
i might increase it. We therefore scale βi to

account for these two variances, placing instead the prior over this normalised beta

ηi = βi
σX
σi
. (7)

Our prior on ηi is

p(ηi) ∼ N(0, σ2
η), (8)

which by (7) is equivalent to placing the following prior on βi

p(βi) ∼ N

(
0,
σ2
ηi

σ2
X

σ2
i

)
. (9)

We compute σ2
X as the empirical variance of the predictor variable over the sample

available at the time the recursive forecast is made.

Linking the prior distribution of βi to σX and σi is an attractive feature because it

implies that the distribution on the R2 from the predictive regression is well-defined.
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For a single risky asset the proportion of the total variance that originates from

variation in the predictable component of the return is

R2
i =

β2
i σ

2
X

β2
i σ

2
X + σ2

i

=
η2i

η2i + 1
, i = 1, . . . , N (10)

which implies that no risky asset can have an R2
i that is ‘too large’.

The informativeness of the prior is determined by ση which is constant across

all i. We refer to Wachter and Warusawitharana (2009) for a full explanation but

provide the main results here for completeness. When ση = 0, the investor assigns

all probability to an R2
i value of zero for all i. Figure 1 displays how investors assign

more weight to a positive R2
i as ση increases. Specifically, when ση = 0.02, 0.04, and

0.06, investors assign probabilities to R2
i exceeding 0.005 of 0.0003, 0.075, and 0.235,

respectively. Our main empirical analysis considers a moderate degree of predictabil-

ity by setting ση = 0.04 following Wachter and Warusawitharana (2009), but we also

explore the robustness of our results when this parameter is adjusted.

It is also desirable to specify that high Sharpe Ratios are a priori unlikely. A

high absolute value of the intercept term µik combined with a low residual variance

would imply a high Sharpe Ratio. In the spirit of Pástor and Stambaugh (1999), we

multiply the prior standard deviation of the intercept term σµ, by the corresponding

estimated residual standard deviation in the kth regime for the ith stock σik. Because

the intercept term has a prior mean of zero, a low residual variance reduces the overall

variance of the intercept, thereby making a large absolute intercept value and hence

a high Sharpe Ratio improbable. As the residual variance increases, the probability

assigned to large absolute intercept values increases accordingly. Following Pástor

and Stambaugh (1999), we adopt a moderate prior belief in the empirical analysis by

setting the prior intercept standard deviation σµ equal to 5%.10

10See also Avdis and Wachter (2017) who report that maximum likelihood estimation that incor-
porates information about dividends and prices results in an economically meaningful reduction in
the equity premium estimate that is more reliable relative to the commonly used sample mean.
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2.4. Posterior Distribution and Estimation

Combining the priors and likelihood, described in Appendix A, we obtain the posterior

distribution. A methodological contribution of our paper is to show how specifying

a fully conjugate model allows the parameters to be marginalised from the posterior.

This enables the breakpoints to be estimated independently of the parameters, as we

prove formally in Proposition 1 in Appendix B. This result considerably reduces the

computational burden of estimation of our panel break model (Appendix D), which

is important when using panel data involving large values of N and T .

3. Empirical Evidence of Breaks

This section introduces our returns data and predictor variables and presents empir-

ical evidence on the location and number of breaks identified by our approach.

3.1. Data

Our analysis of firm-level returns uses monthly CRSP data on individual US stocks

traded on the NYSE, AMEX or NASDAQ stock exchanges at some point during the

sample period from July 1926 through December 2015. In total, we have data on

24,743 different stocks. Returns are computed in excess of a one-month T-bill rate.

Our predictors mostly come from Amit Goyal’s website and are constructed follow-

ing Goyal and Welch (2008). The aggregate dividend-price ratio (dp) uses 12-month

moving sums of dividends on the S&P 500. The other predictors are the one-month

Treasury-bill rate (tbl), term spread (tms), default spread (dfy), earnings-price ratio

(ep), dividend payout ratio (de), book-to-market ratio (bm), default return spread

(dfr), long term yield (lty), inflation (infl), long term return (ltr), stock variance

(svar), corporate issuing activity (ntis), and cross-sectional premium (csp). Data on
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the cross-sectional premium (csp) run from January 1953 through December 2015

and are constructed following the src factor described in Polk et al. (2006).

3.2. Break numbers and locations

Figure 2 displays our findings for the number of breaks and their location using

either the unrestricted return forecasting model fitted to firm-level data with the

aggregate dividend-price ratio as a predictor and priors implying a break frequency

of 10 years (left panels) or the present value model fitted to the industry portfolio

returns (right panels). The location for most of the breaks is well defined with clear

spikes in the posterior probabilities shown in the middle windows. The present value

model identifies five breaks occurring in 1934, 1939, 1969, 1998, and 2010. The return

prediction model detects eight breaks. Five of these breaks occur at approximately the

same time as for the present value model with the additional three breaks occurring

at 1929, 1948 and 2002. Imposing the cross-equation restrictions in the present value

model tempers the break detection relative to the unconstrained return prediction

model.11

Our plots identify long periods without any evidence of model instability, e.g., the

twenty eight-year period from 1940 to 1968. Such periods are displayed by the hori-

zontal parts of the line in the bottom window of Figure 2 which plots the cumulative

posterior break probability.

For comparison, we also estimate break dates by applying the frequentist panel

break approach of Baltagi et al. (2016) to regressions of firm-level returns on the

dividend-price ratio. This model identifies six breaks - displayed as red triangles in

the middle panels of Figure 2 - at times similar to our Bayesian approach although

it does not detect breaks in 1940 or 1998.

11Using a 20-year prior on the break frequency for the unconstrained baseline return prediction
model leads to five breaks being detected at approximately the same dates as for the present value
model as the threshold for detecting new breaks is raised.
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In turn, the breaks identified by these panel approaches are very different from

those obtained from the breakpoint algorithm of Chib (1998) applied to the univari-

ate time series of firm-level stock returns: the univariate breakpoint model fails to

detect a single break for 82% of the stocks, instead favoring the model with zero

breaks, suggesting that the univariate tests have too weak power to identify breaks

off individual return series.

For comparison, Lettau and Van Nieuwerburgh (2008) find evidence of breaks in

1954 and 1995. The latter is close to our break date. They use annual data from

1927-2004, whereas we use monthly data up to 2016. Viceira (1997) finds evidence

of structural instability in long-horizon return regressions after the second world war.

Paye and Timmermann (2006) report evidence of breaks in 1962 and 1974 in monthly

stock return regressions on the T-bill rate and also detect a break in the relation

between the dividend yield and stock returns in 1994. Rapach and Wohar (2006)

also find evidence of breaks in monthly return equations. Both studies document

that the break dates vary substantially depending on which predictor variables are

used. This is to be expected since the breaks reflect time variation in the covariance

between the predictor and stock returns. Pástor and Stambaugh (2001) identify 16

different stable regimes in the equity premium process corresponding to 15 breaks or

transitions, during a 160 year sample from 1834-1999. Although their sample is quite

different from ours, they identify breaks around some of the dates for which we find

breaks, including the Great Depression (1932), 1940s, and the early seventies and

mid-nineties. The latter is a bit earlier than the break identified by us which can be

explained by the earlier end-date of their sample.

3.3. Real-time Detection of Breaks

A key challenge for return predictability is how quickly the model is able to identify

breaks in real time. Severe delays in break detection can lead to poor forecasting per-
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formance, particularly if the distance between breaks is relatively short, causing some

regimes to be overlooked altogether. Conversely, if shifts to parameter values can be

identified with little delay, this opens the possibility of improved forecasting perfor-

mance. The ability to detect breaks in real time is, therefore, of central importance

to investors seeking to re-allocate their portfolios in a timely manner.

To shed light on this issue, Figure 3a plots the break dates estimated in real time.

The figure uses the lagged dividend-price ratio as the predictor but similar plots

are obtained using other predictor variables. The real-time breakpoint detection

performance works as follows. The initial model is estimated using the first ten years

of data. Next, the estimation window is expanded by one month and the model is

re-estimated until we reach the end of the sample, recording the break dates identified

at each point in time. The vertical line in the figure marks the first period at which

the model is estimated, given the initial training window of ten years (120 monthly

observations) while the 45 degree line marks the points at which a break could first

be detected, corresponding to a delay of zero. Circles on the graph mark the break

dates as estimated in real time with horizontal bands of circles indicating that an

initial break date estimate is confirmed to have occurred as subsequent data arrive.

The figure is dominated by these bands whose initial points start with only a short

delay from the 45 degree line, demonstrating the ability of the procedure to rapidly

detect the onset of a break. Conversely, initial break estimates that are not supported

by subsequent data appear as isolated circles outside the horizontal bands and are

indicative of “false alarms”, of which there are not too many instances.

Figure 3b plots the number of months before a break was first detected in real

time, measured relative to the full-sample (ex-post) estimate of the break date. Across

four common predictor variables, all breaks are detected within three to eight months

of their occurrence.

This ability of our panel break approach to identify breaks with little delay again

stands in marked contrast to the long delays typically associated with break modeling
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for univariate time-series. This is an important point as emphasized by Lettau and

Van Nieuwerburgh (2008) and Viceira (1997) who find that it is difficult to exploit

model instability to generate more accurate out-of-sample return forecasts.

3.4. Variation in slope coefficients and the market risk premium

Having identified both the number and location of breaks in the return prediction

model, we consider the magnitude of the breaks to the slope coefficient of the dividend-

price ratio along with the resulting effect on the expected market risk premium.

Figure 4 illustrates the magnitude of the breaks in the slope coefficient of the

dividend-price ratio. The top-left window plots the recursively estimated value-

weighted posterior mean of the slope coefficient from panel break regressions of firm-

level returns on the aggregate dividend-price ratio. These estimates could have been

used by investors in real time to generate return forecasts. With estimates ranging

between zero and 1.5 and centered close to one, the values of the slope coefficients

are economically sensible. We observe a notable downward trend in the slope coeffi-

cient during the 1990s followed by a marked increase during the last few years of the

sample.12

A common approach to handle parameter instability is to use a rolling estimation

window and so it is useful to compare our panel break estimates to results from this

approach. To this end, the bottom left window of Figure 4 plots the value-weighted

average of the slope coefficients from rolling 10-year time series OLS regressions of

firm-level stock returns on the lagged aggregate dividend-price ratio. The posterior

mode of the break dates estimated from our baseline Bayesian panel break model are

marked by the vertical lines in the figure. Interestingly, many of the large, discrete

shifts in the rolling-window estimates are closely lined up with our break estimates.

12Note that the parameter estimates undergo some periods in which they are slow-moving while
also experiencing rapid spikes that resemble breaks. Reassuringly, these spikes correspond closely
to the breaks identified by our baseline model.
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However, variation in the rolling-window estimates is nearly an order of magnitude

larger than for our panel break estimates and the rolling window estimates turn

negative both in the late 1990s and during the Global Financial Crisis.

The out-of-sample estimates of expected returns from the panel break model (top

right panel) vary in a range between -0.7% and 3.9% per month. The most notable

feature is the high volatility prior to WW2 and the systematic drop in expected

returns during the 1950s, after which expected returns are quite stable around 0.5%

per month except for a brief spike during the late 1970s. In contrast, the expected

returns implied by the rolling window estimates (bottom right panel) are twice as

volatile (the forecasts have a standard deviation of 0.012 compared with 0.006), cover

a much wider range between plus and minus 7%, and are very spiky.

4. Economic Sources of Breaks

This section attempts to identify the economic sources of the breaks. First, we use

a simple reduced-form present value model that links breaks in the return prediction

model to breaks in the cash flow and discount rate processes. Next, we investigate

whether breaks in the return prediction model can be attributed to breaks in factor

loadings, breaks in risk premia, or both. Finally, we summarize some of the possible

economic sources of breaks.

4.1. A present value model analysis

To understand the economic sources of breaks in an asset pricing (return predictabil-

ity) context, it is worth recalling that the conventional linear, constant-coefficient

prediction model relating asset returns to a set of state (predictor) variables can

be derived under a set of basic assumptions: (i) asset prices are determined by a

standard no-arbitrage Euler equation; (ii) the aggregate state of the economy can
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be represented by a stationary (constant coefficient) vector autoregressive process;

either (iiia) risk prices are constant and risk quantities can be time-varying but the

conditional moment generating function of the state variables determining their dy-

namics has an affine structure; or (iiib) risk prices are time-varying with multivariate

normally distributed and homoskedastic innovations. These assumptions hold for a

broad class of asset pricing models, including models in which agents have Epstein-

Zin recursive preferences and aggregate consumption growth is an affine function of

the vector of state variables, as well as models with time-varying risk-aversion.13

Breaks to the regression coefficients of return prediction models can, therefore,

arise as a result of breaks in the processes determining either (i) risk prices; (ii) risk

quantities; or (iii) the dynamics (e.g., persistence) of the underlying state variables.

Breaks to risk premia fall in the first category, while breaks in betas or in volatility

parameters fall in the second category, reflecting a shift in the amount of systematic

risk in the economy. Breaks to the mean, persistence, or volatility of the dividend

growth process fall in the third category although they can also affect risk prices and

quantities.

To make the implications of these broad points more concrete in a format that

lends itself to empirical testing, we next conduct an analysis of breaks in the context

of a simple reduced-form present value model which is widely used throughout the

asset pricing literature. Specifically we use the asset pricing restrictions implied by

this model to trace back breaks in the return prediction model to breaks in the

underlying dividend growth and dividend-price equations.

Before proceeding further, it is worth pointing out some limitations to our anal-

ysis. Most importantly, in line with the vast majority of empirical studies on return

predictability, we take a partial equilibrium perspective and do not account for the

general equilibrium implications that breaks to return predictability could have. In

particular, we do not model how agents account for how such breaks can affect their

13For further discussion and derivations, see, e.g., Lustig et al. (2013) and Farmer et al. (2019).
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own future posterior beliefs and so ignore the effect of breaks on agents’ future learn-

ing. Asset pricing models that account for such effects can be solved only for a narrow

class of models, see, e.g., Collin-Dufresne et al. (2016), and addressing this point -

while clearly very interesting - falls beyond the scope of our analysis.

We first introduce some notations. Let pt+1 denote the logarithm of the stock

price at the end of month t + 1, while dt+1 is the logarithm of the dividends during

month t+1. Further, let ∆dt+1 = dt+1−dt denote the growth rate in dividends, while

dt− pt is the log dividend-price ratio, and rt+1 denotes the log-return in period t+ 1.

The approximate log-linearized present value model proposed by Campbell and

Shiller (1988) relates stock returns to the dividend-price ratio and dividend growth:

rt+1 ≈ κ− ρ(dt+1 − pt+1) + ∆dt+1 + (dt − pt), (11)

where ρ and κ are log-linearization constants.

State variables that can forecast ∆dt+1 and dt+1 − pt+1 should, according to (11)

also help forecast returns. To analyze if this holds, we generalize the analysis in

Cochrane (2008) to allow for return predictability not only from dt−pt, but also from

the lagged growth rate of dividends, ∆dt, through the simple predictive equations

dt+1 − pt+1 = a0 + a1(dt − pt) + a2∆dt + εdp,t+1

∆dt+1 = b0 + b1(dt − pt) + b2∆dt + εd,t+1. (12)

From the present value identity (11) and equation (12), we have

rt+1 = c0 + c1(dt − pt) + c2∆dt + εr,t+1, (13)
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where the coefficients in (13) are subject to the cross-equation restrictions

c0 = κ− ρa0 + b0,

c1 = 1 + b1 − ρa1,

c2 = b2 − ρa2. (14)

The present value model in (13) implies that variables that can predict dividend

growth or the log dividend-price ratio should also, in general, be expected to forecast

returns with coefficients that are subject to the restrictions in (14).

Because the cross-equation restrictions in (14) must hold at each point in time,

breaks in the c coefficients in the return prediction model should be aligned with

breaks to the corresponding a or b coefficients in the dividend-price ratio and dividend

growth models. This suggests modifying (12) to allow for breaks:

dt+1 − pt+1 = a0k + a1k(dt − pt) + a2k∆dt + εdp,t+1, τk−1 < t ≤ τk,

∆dt+1 = b0k + b1k(dt − pt) + b2k∆dt + εd,t+1, τk−1 < t ≤ τk, (15)

where

rt+1 = c0k + c1k(dt − pt) + c2k∆dt + εr,t+1, τk−1 < t ≤ τk (16)

subject to a set of cross-equation restrictions that account for breaks:

c0k = κ− ρa0k + b0k,

c1k = 1 + b1k − ρa1k,

c2k = b2k − ρa2k. (17)

Using these restrictions, we can proceed to relate breaks in dividend growth and/or

the dividend-price ratio processes to breaks in the return prediction model. Before
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doing so, note that dividend growth data tends to be very lumpy and irregular at the

firm level, see, e.g., Pettenuzzo et al. (2019). We therefore aggregate dividend data to

form 30 industry portfolios and estimate the prediction models for the dividend-price

ratio and dividend growth variables in (15) and the return series in (16) subject to

the cross-equation restrictions in (17). The resulting panel involves 90 time series.

To explore whether breaks to the dividend growth prediction equation in (15) are

a source of breaks in the return equation, first consider the results from estimating

this model without imposing the cross-equation restrictions in (17), using the lagged

dividend growth rate and the lagged dividend-price ratio as predictors. The top

panel in Table 1 displays the posterior mean and standard deviation of the estimated

intercept, slopes on the dividend-price ratio and lagged dividend growth, and the

volatility parameter obtained from our panel break model fitted to the 30 industry

portfolios. We find evidence of nine breaks during the sample. The predicted dividend

growth rate varies in a wide range that spans high-growth states with a large positive

intercept and persistence coefficient (regime eight) and states with negative expected

dividend growth (regimes one and three). The coefficient on lagged dividend growth

is highly significant and positive in nine out of ten regimes. Similarly, the estimated

slope of the dividend-price ratio is negative in nine of ten regimes as we would expect

if forecasts of higher future dividend growth lead to higher current prices and thus a

smaller dividend-price ratio.14

These results are interesting in their own right as predictability of dividend growth

is still being contested. For example, Cochrane (2008) argues that there is little evi-

dence that dividend growth can be predicted. Conversely, Chen (2009), van Binsber-

gen et al. (2010), and Kelly and Pruitt (2013) present evidence of dividend growth

predictability. Our results suggest that disagreement regarding dividend growth pre-

dictability might be linked to time variation in predictability, i.e., dividend growth is

14The only case where the lagged dividend growth and dividend-price ratio coefficients have un-
expected signs is in regime 2. This reversal of signs can sometimes happen in short-lived regimes
due to collinearity between the regressors.
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predictable in certain regimes while largely unpredictable in other ones.

The bottom panel in Table 1 displays results from the prediction model fitted to

the dividend-price ratio. For this variable, we find evidence of six breaks with dates

that closely mirror those separately detected from the return and dividend growth

predictive regressions. The slope on the lagged dividend-price ratio remains relatively

high across breaks, with values ranging between 0.70 and 0.90, while the slope on the

lagged dividend growth term is negative and significant, except for in the short-lived

period ending in June 1929.

To get an initial sense of whether breaks to predictability of dividend growth or the

dividend-price ratio can help explain breaks to the return prediction equation, Figure

5 displays posterior mode break dates estimated separately for the return (black

triangles), dividend growth (blue triangles) and dividend-price ratio (green triangles)

prediction models. The three sets of break dates are clearly related although some

break dates show up for the return model but not for the dividend growth model,

and vice versa.

To see the effect of imposing the economic cross-equation restrictions (17) implied

by the present value model, the bottom row in Figure 5 shows (red triangles) the break

dates identified from the model that jointly estimates the present value prediction

equations subject to the cross-equation restrictions. We now detect five breaks in the

sample which occur in 1934, 1939, 1969, 1998, and 2010. These dates are similar to

the breaks identified by the return prediction model except there is no break identified

in 1929, 1948 or 2002.

This plot shows that imposing the economic constraints implied by the present

value model has the effect of reducing the number of breaks. By jointly estimating our

panel break model for the dividend growth, dividend-price ratio, and return series,

breaks that are not supported by the data in the sense that they are not affecting

all three series at the same time are less likely to be selected by our procedure, and

so the asset pricing restrictions implied by the present value model serve the role of

22



reducing the number of breaks from eight to five.

To more formally test the present value model in the presence of breaks, we

next use Bayes Factors to determine whether (i) the three present value prediction

equations experience common breaks and (ii) the regression coefficients satisfy the

present-value model restrictions in (17). For the former, we estimate the present

value model with common breaks and compare this to the same model that allows

breaks across the three equations to be non-common (but with the restriction that if

one equation is hit then all 30 industries are hit at the same date) using the method of

Smith (2018). Next, we compute marginal likelihood values for both models using the

procedure of Chib (1995). Finally, we construct Bayes Factors (BFs) for the common

break model relative to the non-common model. Bayes Factors are the preferred

Bayesian model comparison method. Values between 1 and 3 are inconclusive, values

between 3 and 20 indicate positive evidence in favour of the restricted model, while

values between 20 and 150 indicate strong evidence in support of the restricted model

(Kass and Raftery 1995).

Empirically, we find a Bayes Factor of 69.44. This represents strong evidence in

favour of the breaks to the prediction equations (15) - (16) being common against the

(less restrictive) alternative of non-common breaks. This suggests that the timing of

breaks affecting the dividend growth, dividend-price ratio and return processes is the

same.

Next, we construct a Bayes Factor to determine whether the coefficients of the

three prediction equations satisfy the present-value model cross-equation restrictions.

To achieve this, we estimate two models with common breaks: the first imposes the

present value restrictions in (17), while the second does not. Again, we construct a

Bayes Factor for the model with the coefficient restrictions imposed relative to the

model without these restrictions. We obtain a Bayes Factor of 73.89 which indicates

strong evidence in support of the validity of the coefficient restrictions in (17).15

15We also perform the same test of the present value model, but without allowing for breaks. This
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Having verified that the cross-equation restrictions implied by the present value

model are supported by the data, we display the posterior mean and standard de-

viations of the resulting parameter estimates in Table 2. The table shows that a1

is significant in regimes 3, 4 and 6, while b1 and c1 are significant in regimes 3, 4,

5, and 6. Volatility peaks during the Great Depression and Global Financial Crisis.

Both the dividend-price ratio and the dividend growth processes are quite persistent

with coefficients that fall in the 0.70-0.90 range. The coefficient on the dividend-price

ratio in the dividend growth equation is always negative - consistent with a higher

dividend price ratio being driven by lower stock prices reflecting worsening dividend

growth prospects.

4.1.1. Breaks in risk aversion

While we can construct good proxies for cash flows (dividends), we do not directly

observe discount rates. However, the present value model implies that breaks in the

dividend-price ratio can be traced back to breaks in either the dividend growth or

the discount rate processes (Lettau and Van Nieuwerburgh 2008).

To explore if breaks to discount rates play a role in explaining breaks in return

predictability, we consider a simple approach. Investors’ coefficient of risk aversion

is of course unobserved, but following Merton (1980) we can obtain an estimate of it

by regressing stock returns on a proxy for the realized stock market variance which

is one of the predictor variables used by Goyal and Welch (2008). Figure 6 graphs

the implied risk aversion coefficient (solid black line) obtained as the posterior mean

of the pooled slope coefficient estimated from a panel regression of stock returns on

the lagged variance which imposes the five break dates estimated from the present

value model. The red dashed line graphs the t-statistic of the slope coefficient. The

coefficient of risk aversion takes on economically plausible values, falling in a range

generates a Bayes Factor of 80.19 indicating strong evidence in favour of the coefficient restrictions.
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between one and two, with t-statistics that are highly statistically significant in all

regimes other than between 1934 and 1939. The implied risk aversion coefficient is

quite high (exceeding two) between 1927 and 1934, before dropping to a level below

1.5 between the breaks in 1939 and 1969. Risk aversion reaches a low point near unity

between 1970 and 1998, before rising to levels near 1.5 and 2 following the breaks in

1998 and 2010.16

4.2. Breaks in factor loadings versus risk premia

Whether breaks to return prediction models simultaneously affect both the price and

quantity of risk rather than only one of these determinants of expected returns is not

clear from asset pricing theory. To formally evaluate whether each of the five breaks

identified by the present value model is associated with a break in (i) beta loadings,

(ii) risk premia, or (iii) both, we estimate three models that allow for breaks in (i)

betas only, (ii) risk premia only and (iii) both. Each of these three models is estimated

K times, each time imposing one of the known break dates from the baseline model.

The models do not allow for any further breaks to be detected. Next, we construct

two Bayes Factors (BFs) that quantify the strength of evidence in favour of a break

in only betas or in risk premia. This is repeated for the K breaks, thus giving us a

set of 2 × K Bayes Factors.

For each break, if there is a break in betas only, the corresponding BF will be

large and the other small. The same is true for a break only to the risk premia. If

both BFs are small, both betas and risk premia have experienced a break.

We estimate three separate regressions using our panel break model. First, we

regress firm- or portfolio-level stock returns on their corresponding book-to-market

16In line with previous studies (Rapach et al. 2010; Henkel et al. 2011; Dangl and Halling 2012),
we find evidence of stronger return predictability in recessions than in expansions. This supports
the assertion of Campbell and Cochrane (1999) and others that time-variation in risk aversion is an
important determinant of risk premia and a source of return predictability.
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ratios to analyze breaks in beta loadings:

rit = µik + βikBMit−1 + εit, t = τk−1 + 1, . . . , τk. (18)

Second, we regress firm- or portfolio-level returns on the aggregate dividend-price

ratio to test for breaks in risk premia (λ):

rit = µik + λikdpt−1 + εit, t = τk−1 + 1, . . . , τk. (19)

Third, we regress firm- or portfolio-level returns on both the book-to-market ratio

and the aggregate dividend-price ratio, allowing for breaks in both the betas and risk

premia:

rit = µik + βikBMit−1 + λikdpt−1 + εit, t = τk−1 + 1, . . . , τk. (20)

We then compute Bayes Factors of the marginal likelihoods from equations (18)

and (19) relative to that from (20). We perform this separately for each of the K

breaks identified by the present value model that we impose on a model that regresses

industry portfolio returns on the lagged aggregate dividend-price ratio and industry-

level book-to-market ratios. The first and second rows in each panel of Table 3

displays the Bayes factors followed by the regime-specific β and λ coefficients with

t-statistics (in brackets below). The two breaks associated with the Great Depression

(1934) and Global Financial Crisis (2010), as well as the break in 1969, affect both the

factor loadings and the risk premia of the model, while the breaks in 1939 and 1998

affect only the betas. Moreover, risk premia are notably higher coming out of the

Great Depression (1934) and after the Global Financial crisis (2010-2015). The lower

panel of Table 3 shows that we arrive at similar conclusions when we use firm-level

stock returns.17

17An analysis of the time variation in rolling window coefficient estimates of returns on individual
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4.3. Sources of breaks: Summary and Discussion

All five break dates identified by our present value model (1934, 1939, 1969, 1998,

and 2010) are closely aligned with major economic crises/recessions or periods of

major military conflicts: The break in 1934 corresponds to the end of the Great

Depression, 1939 to the breakout of the Second World War, 1969 marks the end

of Lyndon Johnson’s escalation of the Vietnam War and the beginning of so-called

‘Vietnamization’ and the withdrawal of US troops along with the beginning of a period

with elevated inflation, 1998 marks the collapse of LTCM and the Asian Financial

Crisis, while 2010 marks the end of the Global Financial Crisis.

It is intuitively plausible to associate large macroeconomic or regulatory/political

shocks with breaks in the return prediction model and Branch and Evans (2010)

rigorously establish this link in the context of an equilibrium asset pricing model

with incomplete learning. Investors in their model learn about the underlying state

variables in the economy using underparameterized forecasting models to predict

cash flows which, in turn, gives rise to multiple equilibria (“regimes”). Changes

between equilibria may be triggered by large exogenous shocks which get transmitted

to stock returns through investors’ prediction models and can affect both the price

and quantity of risk. Whether a particular exogenous shock triggers a regime shift

depends on a set of gain parameters which measure the rate at which investors update

their beliefs and thus determine how fast their learning process adapts to the shocks.18

The five breaks are also linked to major regulatory changes. For instance, the

break in 1934 is closely aligned with the Glass-Steagall Act of 1933 which created

the Federal Deposit Insurance Corporation which regulated interest rates on deposits

and partitioned commercial and investment banking. The 1939 break is close to

size- and book-to-market-sorted portfolios and the market portfolio lines up with the break dates
in the risk premium and beta parameters that we uncover here. We are grateful to a referee for
suggesting this robustness check.

18Similar effects arise in the model proposed by Hong et al. (2007) due to discrete paradigm shifts
in investors’ beliefs.
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the Investment Company Act and Investment Advisers Act of 1940 which required

institutions whose business primarily involved trading stocks to provide full disclosure

regarding their investment objectives as well as minimizing conflicts of interest. It

also restricted the size of mutual funds, thus affecting flows into the stock market.

The break in 1969 is aligned with the Securities Investor Protection Act of 1970 that

used broker-dealer fees to create a fund to protect consumers of failed brokerage firms.

The 1998 break is aligned with the Gramm-Leach-Bliley Act of 1999 that repealed

major parts of the Glass-Steagall Act and the Bank Holding Act of 1956. The 2010

break coincides with the Dodd-Frank Act that tightened financial regulation following

the Global Financial Crisis.19 Some of these regulatory shifts - particularly the major

ones such as the Glass-Steagall Act and the Dodd-Frank Act - affected investors’

ability and willingness to hold stocks and so are likely to have affected both the price

and the quantity of risk.

Turning to the three sources of risk, i.e., the quantity and price of risk as well

as the dynamics of the cash flow growth process, Table 3 shows evidence of large

shifts in the beta parameters capturing movements in the quantity of risk in the

economy along with the parameters of the risk premium process. Further, the largest

economic crises, notably the Great Depression and Global Financial Crisis, cause

breaks in betas and risk premia whereas military conflicts such as the breakout of

the Second World War and smaller economic shocks such as the collapse of LTCM

and the Asian Financial crisis may lead to a break in betas only and so have a more

limited effect on asset prices. Likewise, the most significant regulatory changes such

as the Glass-Steagall Act and Dodd-Frank Act cause a break in both the price and

quantity of risk whereas smaller changes (and also deregulatory changes such as the

Gramm-Leach-Bliley Act) may affect only betas.

Similarly, the break point estimates in Table 1 show that each of the breaks in the

19Note that breaks in stock returns often occur prior to the final approval of regulatory changes
which typically are preceded by a lengthy consultation process during which financial markets become
aware of any future policy changes.
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present value model is closely aligned with a break in the dividend growth process. For

example, the break in 1968 identified in the dividend growth equation is associated

with a large increase in the predictive power of the dividend-price ratio over dividend

growth as well as a decrease in the persistence of the dividend growth process (from

0.51 to 0.21). Predictability of future dividend growth from past dividend growth

picks up notably after 2009, as the coefficient on lagged dividend growth increases

from 0.307 to 0.834.

Taken together, these results suggest that all three sources of breaks played a role

during our sample although the extent to which each component was affected varied

across historical break events.

As a final exercise to help us better understand the economic sources of breaks

to return predictability, Table 4 shows how the values of a broad range of state

variables change across the six regimes identified for the present value model. We

track the variation in the mean and volatility of value-weighted stock returns (top

two rows) and the dividend growth rate (rows 3 and 4) followed by the coefficient of

risk aversion (estimated as explained in Section 4.1.1) (row 5) and five measures of

economic, financial and political uncertainty (rows 6-10). We observe marked shifts

in the mean and volatility of stock market returns, corroborating the finding from our

return predictability analysis that the distribution of stock returns is fundamentally

different across the six regimes identified by the present value model.

The table reveals similarly large changes across regimes in the mean and volatility

of dividend growth. This is, again, consistent with the finding from Table 1 that each

of the breaks in the present value model are associated with a break in the dividend

growth equation occurring either in the same or in a neighboring year. For example,

at almost 7% per annum, the dividend growth rate from 1939-1969 was more than

twice as high as the growth rate from 1926-1934 (3% per annum). Table 4 also reveals

that the estimated coefficient of risk aversion was almost twice as high between 1926

and 1934 and, again, after 2010 compared to its value between 1939 and 1969. Finally,
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the table shows that levels of macroeconomic and financial market uncertainty were

generally quite modest from 1939-1998 but increased significantly between 1998 and

2010 before declining again up to the end of the sample.

Ultimately, a more elaborate asset pricing analysis is required to pin down the

economic sources of breaks. However, our analysis points in some promising direc-

tions. Our empirical results suggest that major regulatory changes and economic

crises such as the Great Depression (1934) and Global Financial Crisis (2010) can

have a more universal impact and affect both the price and quantity of risk. Large

regulatory shifts can change the risk-bearing capacity of the financial markets and so

will plausibly affect the equilibrium price of risk. Similarly, large exogenous macro

shocks can affect the uncertainty surrounding the underlying cash flow process and,

thus, risk quantities in the economy as well as investors’ willingness to carry risk.

5. Evaluation of Return Forecasts

We next evaluate the statistical and economic significance of our out-of-sample re-

turn forecasts.20 Our panel break approach differs from conventional return prediction

models in two main regards. First, it pools cross-sectional and time-series data, as op-

posed to the more conventional single-equation time-series approach used throughout

most of the literature. Second, it allows for breaks. To quantify the importance of each

of these differences, we compare the predictive accuracy of our model to four alterna-

tives that differ along one or more dimensions: (i) a pure time-series approach that

allows for breaks, thus highlighting the importance of using cross-sectional (panel)

information; (ii) a constant-parameter panel model that uses the same cross-sectional

information as our approach, allowing us to gauge the importance of breaks; (iii) a

time-varying parameter model that allows for small changes to the parameters every

20To avoid spurious inference, we perform our forecasting analysis using only stocks with at least
60 out-of-sample observations of which there are 11,210.
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period, thus letting us evaluate whether parameter instability is best modeled as a

sequence of slow changes or as the outcome of few, but potentially larger, discrete

breaks; and (iv) the simple historical average which serves as a ‘no predictability’

benchmark. We report both statistical and economic measures of forecasting perfor-

mance, the latter based on how a risk averse mean-variance investor would utilize the

forecasts from the different return prediction models.

5.1. Out-of-sample Return Forecasts

Before inspecting the empirical results, we first explain how our return forecasts

are computed. At each point in time, t, we generate out-of-sample forecasts for the

i = 1, . . . , N stock return series by loading the slope estimate on the predictor variable

from the final regime at that time (Kt + 1) and adding the intercept estimate:

r̂i,t+1 | Kt = µ̂iKt+1 + β̂iKt+1Xt. (21)

This step incorporates uncertainty surrounding the break locations but conditions on

the number of breaks Kt. To handle uncertainty about the number of breaks, let

Kt,min and Kt,max, denote the lowest and highest number of breaks that are assigned

a nonzero posterior probability by our estimation procedure at time t. We then apply

Bayesian Model Averaging to integrate out uncertainty about Kt:

r̂i,t+1 =

Kt,max∑
Kt=Kt,min

p(Kt | r, X)r̂i,t+1 | Kt, (22)

where r denotes the returns on the N stocks across the t time periods and X denotes

the t observations on the predictor.21

In turn, using a bottom-up approach, we forecast the aggregate market return as

21Avramov (2002) reports that Bayesian Model Averaging improves forecasting performance for
stock returns in the presence of model uncertainty.
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the value-weighted average of the underlying N forecasts from equation (22)

r̂Mkt,t+1 =
N∑
i=1

witr̂it+1, (23)

where wt = (w1t, . . . , wNt) denotes the vector of value weights on the N assets.

To implement these methods, our out-of-sample return forecasts are generated

recursively with an initial “warm-up” sample of ten years. Hence, the initial parame-

ters of each model are estimated using data from July 1926 through June 1936 and a

forecast is made at June 1936 for July 1936. We then expand the estimation period

by one month and estimate the parameters of each model using data from July 1926

through July 1936 and produce a return forecast for August 1936. This process is

repeated until the end of the sample (December 2015.)

5.2. Statistical Measures of Forecasting Performance

To visually assess the accuracy of the out-of-sample return forecasts, we inspect plots

of the cumulative sum of squared error differences (CSSED) obtained by subtracting

the sum of squared errors produced by our panel break forecasts from the sum of

squared errors generated by each of the benchmark models:

CSSEDt =
t∑

τ=1

(e2Bmk,τ − e2Pbrk,τ ), (24)

in which eBmk,τ and ePbrk,τ denote the respective forecast errors from the benchmark

and our panel break model at time τ . Positive and rising values of the CSSED measure

represent periods where the panel break model outperforms the benchmark, while

negative and declining values suggest that the panel break model is underperforming.

If the performance of the panel break model measured against the benchmark is

dominated by a few observations, this will show up in the form of sudden spikes

in these graphs. In contrast, a smooth, upwardsloping graph indicates more stable
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outperformance of the panel break model measured against the benchmark.

Figure 7 plots the CSSED values for the market portfolio over the full out-of-

sample period (1936-2015, top panel) as well as over the subsample 1990-2000 (lower

panel).22 To keep the plots relatively easy to interpret, we only show the performance

of our panel break forecasts against forecasts from the prevailing mean model, but

similar results are obtained against the other benchmarks. The top window shows

that our panel break model outperforms the prevailing mean over the 80-year evalu-

ation sample. This strong performance against the historical average - which holds

regardless of whether our model is trained on the full sample or only on post-WWII

data - is particularly impressive given that this benchmark has been found by Goyal

and Welch (2008) to be very difficult to beat out-of-sample.

The CSSED curve for the panel model with breaks measured relative to the pre-

vailing mean rises through much of the out-of-sample period, although with a period

of sustained underperformance from December 1990 until April 2000. The reason

for our model’s poor performance during this period is that it predicts relatively low

returns compared with actual (realized) returns.23 The low average forecasts from

our panel break model during this period are primarily driven by the dividend-price

ratio being approximately half (0.02) of its full sample average (0.04). In fact, our

panel break model partially accommodates the marked shift in the relation between

the dividend-price ratio and stock returns during the nineties by reducing the slope

coefficient on this predictor relative to the constant-coefficient model. This means

that our panel break model produces return forecasts that, during the nineties, are

less accurate than those from the prevailing mean model but more accurate than those

from a constant-coefficient model that uses the dividend-price ratio as a predictor.24

22 The plots are based on the panel break model with a 10-year prior on the break frequency,
but very similar results are obtained with a 20-year prior for this model or using the timing of the
breaks recursively identified by the present value model.

23For this period, the mean forecast from our model is 0.002 compared with 0.007 for the prevailing
mean and a mean realized excess return of 0.006.

24During the nineties, the average value of the recursively estimated slope coefficient from our
panel break model (0.47) is below the estimate obtained from a constant-coefficient model (0.57).
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From March 2000 until October 2002, the CSSED value rises from 0.007 to 0.011.

This is driven by our forecasts being on average lower (0.001) than those from the

prevailing mean (0.007) while realized excess returns were low (-0.014). Our low

returns are driven by both the dividend-price ratio (0.01) and our recursive slope

estimate (0.20) being on average low. From October 2007 through March 2009, the

CSSED value rises from 0.009 to 0.012. Outperformance results from our average

forecast being low (0.002) due to a low dividend-price ratio (0.02) and slope estimate

(0.19).

We observe a particularly strong rise in the CSSED curve during the final 15 years

(bottom panel). This strong performance occurs, first, because our average forecast

for this period is 0.0035, close to the average realized excess return of 0.0032, while the

average forecast from the prevailing mean is almost twice as large (0.0066). Second,

our forecasts have a positive correlation of 0.098 with the realized excess returns while

the prevailing mean forecasts have a negative correlation of -0.177 during this period.

The Great Depression experienced high volatility in both dividend growth and

stock returns and so may have a disproportionate influence on our empirical results.

To explore whether the forecasting performance of our method is equally strong during

the post-WWII sample. We start our sample in January 1946 and once again use a

ten-year warm-up sample such that the first forecast is generated for January 1956

from a model that is estimated using data from January 1946 through December 1955.

The results are equally strong for this period with our model generating significantly

more accurate forecasts for the majority of stocks and for the market portfolio relative

to the four benchmarks.

These plots visualize the evolution in the predictive accuracy of the return fore-

casts from our model relative to a set of common alternatives. We next summarize the

average forecasting performance of the panel break model relative to the benchmarks
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using the out-of-sample R2 measure of Campbell and Thompson (2008):

R2
i,OoS = 1−MSPEi,P brk/MSPEi,Bmk. (25)

Here MSPEi,P brk and MSPEi,Bmk denote the mean squared prediction error (MSPE)

for the ith stock from the panel break and benchmark models, respectively. A positive

R2
i,OoS value indicates that the panel break model outperforms the benchmark, while

a negative value indicates that it underperforms.

Figure 8 plots histograms of the R2
OoS values for individual stocks and the market

portfolio (thick vertical black line) based on comparisons of the forecasting perfor-

mance of our proposed panel break model relative to the four benchmarks.25 For the

vast majority of stocks, our method outperforms all four benchmarks and many of

the R2
OoS values are economically large.26

To more formally evaluate the statistical significance of the relative performance

of the panel break model against the four benchmarks, Table 5 uses the test statistic

of Clark and West (2007) that accounts for nested models. First consider the results

based on the lagged dividend-price ratio prediction (top row). The table shows that

the panel break model performs significantly better than all four benchmarks at the

10% critical level for between 7,908 and 9,332 of the 11,211 stocks (right column)

including the market portfolio, denoted by the † symbol. Conversely, the return

forecasts from our panel break model only significantly underperform the benchmarks

for 2-5% of the stocks.

Turning to the other predictor variables, the results in Table 5 show that our panel

break approach continues to significantly outperform the four benchmark models for

the majority of stocks for thirteen of the fourteen predictor variables. Our model

25Here and for most of the ensuing return predictability results, we use the panel break model
with a 10-year prior on the break frequency. However, very similar results are used for this model
with a 20-year prior or if we use the timing of the breaks identified by the present value model.

26 Campbell and Thompson (2008) estimate that an R2
OoS value of one-half of one percent on

monthly data is economically large for a mean-variance investor with moderate risk aversion.
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only experiences relatively poor performance for the corporate equity issuance (ntis)

predictor (bottom row). Moreover, the results are robust to using a different (post-

war) sample period that excludes the Great Depression and starts in 1946.

These findings underline that the improvements in predictive accuracy observed

for the panel break model are not simply a result of expanding the information set

from a univariate time series to a panel setup that incorporates cross-sectional infor-

mation. Allowing for breaks in a univariate setting also does not produce nearly the

same gains in predictive accuracy as the panel break model. Rather, it is the joint

effect of using cross-sectional information in a panel setting and allowing the return

forecasts to account for breaks that generates improvements in predictive accuracy.27

The results also demonstrate that our panel break model has the ability to adapt

to breaks while simultaneously reducing the effect of estimation error which has so

far plagued real-time (out-of-sample) return forecasts (Lettau and Van Nieuwerburgh

2008). Key to the improved forecasting performance is our ability to detect breaks

in return predictability with little delay, combined with our use of economically-

motivated priors. This reduces the effect of estimation error which adversely affects

the accuracy of return forecasts inside new regimes.

To the extent that pooling cross-sectional information helps the panel break model

speed up learning, we would expect forecasting performance to be particularly good

in the immediate aftermath of a break, particularly if the break is large in magni-

tude. Our panel-break method outperforms the four competing benchmarks by the

largest margin in the three-year period after a break is detected before flattening out,

demonstrating the value from using our panel procedure to detect the onset of a break

more quickly in real time.

27Reassuringly, the proportion of stocks for which our panel break model generates significantly
more accurate return forecasts remains high if we use a more conservative hyper parameter which
implies that breaks are expected to occur every 20 years instead of every 10 years. For this prior,
using the dividend-price ratio as a predictor, we find significant improvements relative to the no
break panel for 80.14% of stocks, 76.50% for the prevailing mean model, 85.02% for the time-series
break model, and 73.39% for the TVP model.
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5.3. Relation to Present Value Model

The analysis in Section 4.1 uses industry portfolios to impose restrictions implied by

the present value model whereas the out-of-sample forecasting results use individual

stock returns.28 Hence, it is important to link these two analyses as we next do.

First, we note that our empirical findings show that (a) the five breaks identified by

the present value model which imposes a set of asset pricing constraints are closely in

tune with breaks identified by our panel break model applied to the return prediction

equation familiar from the literature on return predictability provided that we apply

a conservative prior on the break frequency (20 years) as opposed to an expected

break frequency of 10 years; (b) our choice of return data (industry portfolios versus

individual stocks) makes little difference to the empirical break point findings.

To explain the mechanics of how imposing the present value model restrictions

leads to a reduction in the number of breaks identified by our approach, note that

the period 1998 - 2010 is deemed to be a single regime by the present value model.

Conversely, the dividend growth model splits this period into two shorter regimes,

namely 1998-2007 and a very short regime, 2007-2009 (see Table 1). Similarly, the

model for the dividend-price ratio splits this period into one regime between 1997-2002

and another between 2002-2008. Because the middle break locations in the dividend

growth and dividend-price ratio models (2007 and 2002, respectively) are not aligned

in time, they get dropped by the present value model which requires that the breaks

should affect the return, dividend growth and dividend-price ratio processes at the

same time. Imposing this constraint, thus, leads to a model with a single long regime

1998-2010 as opposed to two or three shorter ones for this period.

Applying a more conservative prior on the expected break frequency is equivalent

to being more skeptical about breaks occurring. This implies setting the hurdle

28Note that it is not an option for us to apply the present value approach to individual stocks
given the lumpy and irregular nature of the dividend process at the individual stock level; see, e.g.,
Pettenuzzo et al. (2019).
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higher for accepting new breaks and so has a similar effect of detecting only the

largest (common) breaks.

Second, to establish the link even more directly, we use the posterior break prob-

abilities from the present value model in the forecasting exercise for the individual

stocks. In particular, we evaluate the out-of-sample forecasting results for the in-

dividual stock return data when imposing on our baseline return prediction model

the break dates that are estimated recursively from the present value model using

only the information available at the time the forecast is made. Note that the model

parameters continue to be fitted to the individual stock return series - it is only the

posterior break probabilities that we utilize from the present value model fitted to the

30 industry portfolios. This exercise, thus, directly bridges the present value analy-

sis from Section 4.1 conducted on the 30 industry portfolios with the out-of-sample

return forecasts conducted for the individual stocks. We continue to obtain strong

out-of-sample return prediction results when applying this approach (see Tables 6

and 8).

Our first point helps to explain this finding since it demonstrates the similarity

between the break dates identified using the present value model fitted to the 30

industry portfolios and the break dates identified by a model fitted to individual

stocks but using a relatively conservative prior on the break frequency.29

The effect of using the break locations identified by the present value model is

particularly strong for the return prediction model based on the ntis variable. The

baseline return prediction model that uses the ntis variable produces inaccurate fore-

casts relative to all the benchmarks, in large part because it identifies 12 breaks, many

of which are close together, leading to large estimation error. In turn, this causes the

slope coefficient to frequently switch sign and undergo sharp reversals. Modifying the

model to instead use the five breaks identified by the present value model, we find a

29To verify this point we repeated the out-of-sample analysis using the more conservative prior on
break frequencies without imposing the present value model break dates on the benchmark model.
Reassuringly, we find very similar evidence of out-of-sample return predictability.
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notable improvement in forecast accuracy as can be seen in Tables 6 and 8.

5.4. Comparison with alternative approaches

To place our results in context, we next compare our findings to those obtained using

some of the leading forecasting approaches in the return predictability literature. Ex-

isting studies differ in terms of sample periods, forecasting approaches and predictor

variables. To facilitate a direct comparison based on the same data, we compare our

results to those obtained from four approaches, namely (i) imposing economic con-

straints on the return prediction model (Campbell and Thompson 2008; Pettenuzzo

et al. 2014); (ii) a rolling-window estimator; an (iii) the equal-weighted average fore-

cast combination approach (Rapach et al. 2010), and (iv) a regime switching model

similar to that used by Henkel et al. (2011).

Using forecasts of returns on the market portfolio constructed from firm-level

return forecasts that include the aggregate dividend-price ratio as a predictor, our

panel break model generates out-of-sample R2 values that are 0.34%, 0.30%, 0.16%,

and 0.52% higher than the values obtained under the sign-constrained approach of

Campbell and Thompson (2008), a five-year rolling window model estimated by OLS,

the forecast combination approach of Rapach et al. (2010) that uses the dividend-price

ratio, T-bill rate, default and term premia, and a regime switching model similar to

that of Henkel et al. (2011). These improvements in forecast accuracy are significant

at the 1%, 5%, 10%, and 1% levels, respectively.

5.5. Economic Utility from Return Forecasts

In addition to comparing the statistical performance of forecasts from our panel break

model to a set of benchmarks, it is important to evaluate their economic performance.

We construct decile portfolios of the individual stocks using the mean squared differ-
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ence between the forecasts from the models with and without breaks as our sensitivity

measure. Portfolios are rebalanced each period using this measure.30 For each of the

portfolios we next compute the utility gain to a mean-variance investor who each

period allocates his portfolio between a single risky asset and risk-free T-bills.31 At

time t the investor allocates a portion of his portfolio to equities in period t + 1,

wt = (1/A)× r̂t+1/σ̂
2
t+1, based on forecasts of the mean and variance of excess returns

denoted r̂t+1 and σ̂2
t+1, both computed using only information available at time t.32

If breaks in the model parameters do not strongly affect a particular stock, it is

unlikely that a model that accounts for such breaks can significantly outperform a

model that ignores breaks for this stock or portfolio. To see if this holds, Table 7

explores the relation between the magnitude of the break, as measured by the mean

squared difference between the forecasts from the panel models with and without

breaks (third column), and the utility gains for that portfolio, assuming a mean-

variance investor with a coefficient of risk aversion of three (fifth column).

We find that those portfolios for which breaks have the biggest effect on the

forecasts generally lead to higher utility gains both in absolute and relative terms,

while portfolios whose return forecasts are least affected by breaks are associated with

the smallest utility gains.

We next explore the utility gain of a mean-variance investor who each period

allocates his wealth between the risk-free rate and a risky portfolio constructed from

individual stocks. Using our panel break model, at each time t we determine the

weight vector ωt to allocate among stocks in the next period, i.e., we solve for the ωt

that maximizes the expected utility for the return on the risky portfolio at time t+1,

30Our results are robust to using other sensitivity measures such as the standard deviation of the
estimated intercept, slope coefficient or residual variance across regimes.

31A small set of studies that explore the utility gain to a mean-variance investor include Campbell
and Thompson (2008), Goyal and Welch (2008) and Rapach et al. (2010).

32Following Campbell and Thompson (2008), we use a five year rolling window of monthly returns
to estimate the variance of stock returns, assume a risk aversion coefficient of A = 3 and restrict the
portfolio weights to fall between 0% and 150% to rule out short-selling and high leverage.
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rp,t+1,

E[U(rp,t+1 | A)] = rf,t + ω′tr̂t+1 −
A

2
ω′tŜtωt, (26)

subject to the summability constraint
N∑
i=1

ωit = 1, and ωit ∈ [0, 1] for i = 1, . . . , N to

preclude any leverage or short selling of individual stocks.33 The covariance matrix,

Ŝt, is estimated using the residuals from the return prediction model up to time t.

This process is repeated for each time period out-of-sample.34

The top panel of Table 8 reports out-of-sample utility gains from these optimized

allocations across stocks. Specifically, the table shows the annualized CER values for

the panel break model measured relative to the four benchmarks, with different rows

tracking the results for the individual predictor variables. For example, for the lagged

dividend-price ratio (top row), the CER value of the panel break model is 2.79% per

annum relative to the historical average forecasts. Average gains in the CER value

of the panel break model remain large (2-3% per annum) when measured against the

univariate time-series break, time-varying parameter and no-break panel models.35

Overall, for 13 of the 14 predictor variables, we obtain very similar estimates

of CER gains around 2% per annum for our panel break return forecasts measured

relative to the four benchmarks. Only for the corporate equity issuance (ntis) variable

do we find negative estimates.

The improved predictive performance in the immediate aftermath of a break being

detected translates into even larger utility gains during these periods. Computing

utility gains using only those time periods that occur within two years of a break

first being detected (‘After breaks’), for the lagged dividend-price ratio predictor, the

annualized CER values are now even larger (2.35-3.45%). This reflects the gains in

33Imposing constraints on the portfolio weights is akin to applying shrinkage on the variance-
covariance estimates which can lead to performance improvements in mean-variance analysis. See
Jagannathan and Ma (2003) and DeMiguel et al. (2007).

34Detailed results for portfolio allocations are available on request.
35Using the more conservative priors that imply a break every 20 years, the annualized CER

values for the panel model that uses the dividend-price ratio as a predictor are 2.87% (relative to
the no-break panel), 2.58% (prevailing mean), 2.39% (time series break), and 1.97% (TVP model).
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predictive accuracy resulting from our approach being able to detect breaks quickly

in real time.

These results suggest that the panel-break forecasts of returns on individual stocks

could have been used out-of-sample to generate economically meaningful improve-

ments over forecasts from the different benchmarks.

Our findings are competitive with or improve on many popular approaches. Camp-

bell and Thompson (2008, Table 4) report average utility values ranging from 0.4% to

1.4% per annum as a result of imposing a positive intercept and a bounded slope in

regressions of stock returns on various valuation ratio predictors. Dangl and Halling

(2012) report certainty equivalent values ranging from -1.74% to 0.88% per annum

(for post-1947 data), although forecast combination in the form of Bayesian Model

Averaging (BMA) raises this to 2.57% per annum. Rapach et al. (2010) report CER

values around 2% from simple forecast combinations.

5.6. Multivariate prediction models

So far our analysis has focused on breaks to return prediction models with a single

predictor variable. This focus is in line with the return predictability literature, see,

e.g., Goyal and Welch (2008), Lettau and Van Nieuwerburgh (2008), and Pettenuzzo

et al. (2014). However, it is also of interest to explore evidence from multivariate

regressions that include more than one predictor. To this end, we study a bivariate

model that includes the dividend-price ratio and the default spread as predictors

along with a four-variable model that includes the most commonly used and popular

return predictors (dividend-price ratio, short T-bill rate, default and term premia).

The results (reported in Table 9) show that the bivariate panel break model contin-

ues to perform better than the no-break panel and time-series break and time-varying

parameter models, all extended to include two predictors. However, the performance

of the bivariate models deteriorates notably relative to the more parsimonious pre-
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vailing mean model. We find similar results for the four-variable panel break model,

although the effects are more pronounced for this larger model.

To help explain these findings, the top row in Figure 9 displays the break dates

(posterior modes) for the four-variable forecasting model. Using a 10-year prior on

the break frequency, this multivariate model detects 12 breaks. Each of the univariate

break models (shown in rows 2-5) uncover seven or eight breaks. However, because

the break dates for the univariate return prediction models are not perfectly aligned

in time, the multivariate model detects more breaks than the individual univariate

models. This increase in the number of breaks detected by the multivariate model

results in larger estimation errors in the slope coefficients on the predictors. For ex-

ample, the figure shows that the dividend-price ratio in the univariate model is stable

from 1970 through 1997. However, because the other predictors experience breaks

during this period, the multivariate model detects breaks at 1973, 1979 and 1992.

In the multivariate model, the slope on the dividend-price ratio is thus estimated

separately from 1970-73, 1974-79, 1980-92, and 1993-97 instead of estimating it from

1970-97. As a result, the predictive information in the dividend-price ratio is reduced

in what is already a low signal-to-noise environment.

One approach to overcome this issue is to first estimate univariate panel-break

models separately for each of the predictor variables, i.e., models that include one

predictor variable at a time. This step effectively uses all data to estimate the slope

coefficients for the individual predictors during the time spans where these relations

are deemed to be stable. In a second step, we form a simple equal-weighted combi-

nation of the forecasts from the 14 univariate panel break return prediction models.

Table 9 shows that this procedure works very well. For example, relative to the pre-

vailing mean this approach generates significantly more accurate forecasts for 81% of

stocks, including the market portfolio for which we obtain an out-of-sample R2 value

of 0.82%. Using the resulting return forecasts in an asset allocation exercise similar

to that described above, we obtain an annualized utility gain of 3.47%.
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To disentangle the effect of including information on multiple variables versus

accounting for breaks, note that our univariate panel break model based on the

dividend-price ratio predictor generates an out-of-sample R2 value of 0.16% relative

to the forecast combination approach of Rapach et al. (2010) which uses the most

common four predictors. However, relative to an approach that uses all 14 predictors,

our univariate panel break approach underperforms with an out-of-sample R2 value

of −0.20%. Comparing the performance of an equal-weighted forecast combination

across our 14 univariate panel break prediction models relative to the equal-weighted

combination that uses all 14 predictors, we generate a positive, but more modest out-

of-sample R2 value of 0.08%. Note that the underlying forecasting models used in this

comparison are very different: Our approach fits 14 univariate Bayesian panel break

models to the individual stock returns while the approach of Rapach et al. (2010) uses

14 univariate models fitted to aggregate stock returns. A more direct comparison that

uses similar models is provided by examining the equal-weighted combination of the

14 univariate forecasts generated by our panel break model versus univariate forecasts

from a no-break panel model fitted to individual stock returns. This comparison is

provided in the second row of the bottom panel of Table 9. We find that the equal-

weighted combination of 14 univariate return forecasts from our panel-break model

is significantly more accurate than the equal-weighted combination of 14 univariate

return forecasts from the no-break model for 95% of the individual stocks. Taken

together, our results suggest that while accounting for breaks in a panel context can

lead to improved forecast accuracy, incorporating multivariate information can also

lead to important gains in forecasting performance.

Finally, it is worth highlighting that the asset pricing restrictions from the present

value model help reduce the increased parameter estimation error resulting from

adding more predictor variables. To see this, recall from Table 1 that the bivariate

models fitted to the dividend growth rate and dividend-price ratio data identify nine

and six breaks, respectively. However, once we impose the cross-equation restrictions
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from the present value model, the number of breaks identified by the bivariate model

gets reduced to five. Hence, imposing the present value restrictions effectively help

us deal with the potential for break proliferation due to the inclusion of additional

predictor variables.

To further explore this point, we estimate the present value model using univariate

models that include only one predictor variable at a time, namely either the dividend

growth rate or the dividend-price ratio. In both cases, we find that the break dates are

closely aligned with those of the bivariate present value model. Hence, the bivariate

model does not detect additional breaks relative to the univariate models and so

estimation error does not negatively impact the bivariate model in the same way

we experience in the unconstrained multivariate return prediction models. The key

difference is that we impose cross-equation restrictions in the present value model

while we do not do this in the return prediction models. The asset pricing restrictions

help us better identify the break dates and thus avoid large estimation error.

6. Conclusion

A large literature on predictability of stock returns has found evidence of model

instability, suggesting that the parameters of commonly-used return prediction models

change markedly over time. Such model instability helps explain why out-of-sample

return forecasts often are found to perform poorly compared to a simple constant-

expected return benchmark (Goyal and Welch 2008). While model instability is, thus,

known to affect return forecasts, exploiting it has so far largely proved elusive due

to the noisy nature of returns and the low power of return prediction models which

makes detecting and quantifying the effects of changing parameter values exceedingly

difficult using data on individual return series; see Lettau and Van Nieuwerburgh

(2008).

In this paper, we develop an approach that exploits cross-sectional information to
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detect breaks from the joint dynamics of multiple return series. While our approach

assumes the timing of the breaks to be common across stocks, the effects of breaks are

allowed to differ across individual stocks. The break dates identified by our approach,

such as the Great Depression, World War II, the oil price shocks of the seventies and,

most recently, the Global Financial Crisis, suggest that return predictability can

undergo large changes in the presence of such major events.

Empirically, we find that pooling cross-sectional and time-series information sub-

stantially increases our ability to detect breaks in return prediction models with very

little delay. Combined with economically-motivated priors, this means that out-of-

sample return forecasts from our panel break model are consistently more accurate

than forecasts from a variety of alternative approaches, with gains in predictive ac-

curacy being particularly large shortly after a break has occurred.

We explore the economic sources of breaks using several approaches. First, we

use the asset pricing restrictions implied by a simple reduced-form present value

model to trace back breaks in return predictability to breaks in the dividend growth

and/or discount rate processes. We develop an approach for rigorously testing if

the timing and magnitude of breaks in the return prediction model can be linked

to concurrent breaks in dividend growth and dividend-price ratio equations and find

that this – along with the asset pricing restrictions implied by the present value model

– is supported empirically. We also develop ways for determining whether breaks in

return predictability can be attributed to breaks in factor loadings (betas), breaks

in risk premia, or breaks in both. Our empirical results suggest that although some

breaks reflect shifts in either betas only or both betas and risk premia, both sources

of breaks played a role in our sample.
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Appendix A. Likelihood function

This appendix specifies the likelihood function of our return prediction model in (6)

whose intercept µi, slope coefficient βi, and error-term variance σ2
i are subject to

breaks.

First, we introduce some notations. Let lk = τk − τk−1 denote the duration of the

kth regime which contains the observations τk−1 +1, . . . , τk, and let l = (l1, . . . , lK+1).

Next, let µi = (µi1, . . . , µiK+1), βi = (βi1, . . . , βiK+1), σ
2
i = (σ2

i1, . . . , σ
2
iK+1), θi =

(µi, βi), and Θi = (µi, βi, σ
2
i ). Further, let ri denote the (T × 1) vector of excess

returns on the ith asset, while X denotes the (κ × T ) matrix which combines a unit

vector with the observations on the predictor.36

Assuming that the errors follow a Gaussian distribution with zero mean and

regime-specific variance σ2
ik, the likelihood function for the model with pooled breaks

and unit-specific parameters is

p(r |X,Θi, τ) =
N∏
i=1

K+1∏
k=1

τk∏
t=τk−1+1

p(rit | Xt−1,Θit),

=

(
N∏
i=1

K+1∏
k=1

(2πσ2
ik)
−lk/2

)
exp

−1

2

N∑
i=1

K+1∑
k=1

τk∑
t=τk−1+1

(rit −X ′t−1θik)2

σ2
ik


(A.1)

in which r = (r1, . . . , rN). For future use, define µ = (µ1, . . . , µN), β = (β1, . . . , βN),

σ2 = (σ2
1, . . . , σ

2
N), θ = (θ1, . . . , θN), and Θ = (Θ1, . . . ,ΘN).

36Making the first of the κ = 2 covariates a unit vector results in the first element of θi = (µi, βi)
being an estimate of the intercept µi for the ith return.
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Appendix B. Priors and posteriors

This appendix provides details of the prior and posterior distributions used by our

return prediction models. Following Koop and Potter (2007), we assume that regime

durations have a Poisson prior distribution

p(lk | λk) =
λlkk e

−λk

lk!
, k = 1, . . . , K + 1, (B.1)

where the Poisson intensity parameter λk has a conjugate Gamma prior distribution

p(λk) =
dc

Γ(c)
λc−1k e−dλk , k = 1, . . . , K + 1, (B.2)

and c and d are the hyperparameters of λ = (λ1, . . . , λK+1).

Appendix B.1. Priors on parameters β and σ

Estimation of the panel break model is simplified by specifying conjugate priors on

the error-term variances σ2 and on the regression coefficients θ conditional on the

error-term variances σ2.

We specify an inverse gamma prior over the regime-specific variances

p(σ2
ik) =

ba

Γ(a)
σ2−(a+1)

ik exp

(
− b

σ2
ik

)
, k = 1, . . . , K + 1. (B.3)

A Gaussian prior with zero mean is placed over the regression coefficients conditional
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on the variances37

p(θik | σ2
ik) = 2π−κ/2(σ2

ik)
−κ/2 | Vθ |−1/2 exp

(
− 1

2σ2
ik

θ′ikV
−1
θ θik

)
, k = 1, . . . , K + 1,

Vθ =

σ2
µ 0

0 σ2
η/σ

2
X

 .

(B.4)

Appendix B.2. Prior Elicitation

The prior used in our empirical application assumes that a break occurs approximately

every decade. This is in line with findings in earlier studies such as Pástor and

Stambaugh (2001). Specifically, we set our hyperparameter values as d = h = 2 and

c = g = 240 to give a prior expected regime duration of 120 periods. We further set

a = 2 and b = 0.0049 to give a prior expected error-term variance equal to 0.0049.

The choice of hyperparameter values for σµ and ση, and the scaling of ση with the

empirical variance of the predictive variable, σX , have been explained in Section 2.3.

Appendix B.3. Derivation of Posterior Distribution

We next show how we can simplify the posterior distribution by marginalizing the

parameters. This significantly reduces the computational burden of estimating our

panel break model. First, multiply the likelihood function by the prior distributions

37For consistency, we use the equivalent prior specification for the time series break model.
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to obtain the posterior

p(Θ | r,X, τ) =

(
N∏
i=1

K+1∏
k=1

(2πσ2
ik)
−lk/2

)
exp

−1

2

 N∑
i=1

K+1∑
k=1

τk∑
t=τk−1+1

(rit −X ′tθik)2

σ2
ik


×

(
N∏
i=1

K+1∏
k=1

ba

Γ(a)
(σ2

ik)
−(a+1)

)
exp

(
N∑
i=1

K+1∑
k=1

−b
σ2
ik

)

×

(
N∏
i=1

K+1∏
k=1

(2πσ2
ik)
−κ/2 | Vθ |−1/2

)
exp

[
−1

2

(
N∑
i=1

K+1∑
k=1

θ′ikV
−1
θ θik
σ2
ik

)]

=

(
N∏
i=1

K+1∏
k=1

(σ2
ik)
−((lk+κ)/2+a+1)(2π)−(κ+lk)/2 | Vθ |−1/2

ba

Γ(a)

)

× exp

[
−

N∑
i=1

K+1∑
k=1

2b+ r′ikrik
2σ2

ik

]
× exp

[
−1

2

N∑
i=1

K+1∑
k=1

(
ρ′ikΣ

−1
k ρik
σ2
ik

)]

× exp

[
−1

2

N∑
i=1

K+1∑
k=1

(
(θik − ρik)′Σ−1k (θik − ρik)

σ2
ik

)]
(B.5)

where rik = (riτk−1+1, . . . , riτk). Multiplying and dividing by 2πκ/2|Σk|1/2(σ2
ik)

κ/2 and

integrating out θ, we obtain

p(σ2 | r,X, τ) =

∫
p(Θ | r,X, τ)dθ

=

(
N∏
i=1

K+1∏
k=1

(σ2
ik)
−((lk+�κ)/2+a+1)(2π)−(�κ+lk)/2 | Vθ |−1/2

ba

Γ(a)
���

�
(2π)κ/2|Σk|1/2���

�
(σ2

ik)
κ/2

)

× exp

[
−

N∑
i=1

K+1∑
k=1

2b+ r′ikrik
2σ2

ik

]
× exp

[
−1

2

N∑
i=1

K+1∑
k=1

(ρ′ikΣ
−1
k ρik)

σ2
ik

]

×

(((
((((

(((
((((

(((
((((

(((
((((

(((
((((

(((
((∫ K+1∏

k=1

N∏
i=1

(2πσ2
ik)
−κ/2|Σk|−1/2exp

[
K+1∑
k=1

N∑
i=1

−
(
(θik − ρik)′Σ−1k (θik − ρik)

)
2σ2

ik

]
dθik.

(B.6)

The integral of the final term is equal to 1 since θik has a multivariate normal (full con-

ditional) distribution with mean ρik and covariance matrix Σkσ
2
ik for k = 1, . . . , K+1

and i = 1, . . . , N .

Finally, multiplying and dividing by Γ(ãk)/b̃
ãk
ik enables us to marginalise σ2 from
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the posterior:

p(r |X, τ) =

∫
p(σ2 | r,X, τ)dσ2

=
N∏
i=1

K+1∏
k=1

(2π)−lk/2 | Vθ |−1/2
ba

Γ(a)

Γ(ãk)

b̃ãkik
|Σk|1/2

×
((((

(((
((((

(((
((((

(((
((((

((
N∏
i=1

K+1∏
k=1

∫
b̃ãkik

Γ(ãk)
(σ2

ik)
−(ãk+1)exp

[
−

N∑
i=1

K+1∑
k=1

b̃ik
σ2
ik

]
dσ2

ik,

(B.7)

where the integral of the final term is equal to 1 since σ2
ik has an inverse gamma

distribution with hyperparameters ãk and b̃ik for k = 1, . . . , K + 1 and i = 1, . . . , N .

Marginalising θ and σ2 from the posterior therefore leaves us with the following result:

Proposition 1. Assuming inverse gamma priors on the error-term variances, σ2,

and Gaussian priors on the regression coefficients, µ and β, conditional on σ2, the

posterior distribution of the heterogeneous panel model with breaks takes the form

p(r |X, τ) =
N∏
i=1

K+1∏
k=1

(2π)−lk/2
ba

Γ(a)

Γ(ãk)

b̃ãkik

|Σk|1/2

| Vθ |1/2
. (B.8)

in which38

Σ−1k = V −1θ +XkX
′
k,

ρik = ΣkXkrik, i = 1, . . . , N

ãk = a+ (lk)/2,

b̃ik =
1

2

(
2b+ r′ikrik − ρ′ikΣ−1k ρik

)
, i = 1, . . . , N (B.9)

and Xk = (Xτk−1+1, . . . , Xτk).

38The bold face used to denote matrices is omitted for Σk throughout for expositional ease. Here
Vθ denotes the prior covariance matrix, which is constant across regimes, of the intercept µ and the
slope coefficient β.
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Appendix C. Accounting for Cross-sectional Dependencies

The most direct way of accounting for cross-sectional dependencies is to estimate the

variance-covariance matrix in each regime. Since we allow for regimes as short as one

period, such an approach may require estimating more parameters than observations

available in a regime. This will occur if the length of the kth regime lk < (3N+(N2−

N)/2)/N . For the industry portfolio application, N = 30 and so this would arise if

any regime duration is shorter than 18 months.39 Restricting the minimum regime

duration is not appealing since one of the key benefits of our approach is the ability

to detect breaks quickly in real time: we always detect breaks with delays shorter

than 18 months.

An alternative method for allowing for cross-sectional dependencies is to introduce

a common factor that absorbs the correlations (Bai and Ng 2002; Pesaran 2006). We

therefore introduce the excess return on the U.S. aggregate market portfolio as an

observed common factor on the right-hand-side of our panel regression models with

portfolio-specific factor loadings40

rit = µik + β′ikXt−1 + εit, t = τk−1 + 1, . . . , τk, k = 1, . . . K + 1,

εit = γikft + νit, (C.1)

where ft denotes the market factor in our baseline results and the three- or five-

factors of Fama-French in the robustness checks. The factor loadings for the ith asset

in regime k are denoted γik and νit denotes the idiosyncratic residuals.

39This problem is exacerbated for individual stocks where the cross-section may run into the
thousands and the panel may be unbalanced.

40The baseline results are robust to extending the setup to include the three or five factors of
Fama and French (2015) as observed common factors.
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Appendix D. Estimation of the Model

This appendix provides details of the procedures used to estimate the different mod-

els considered in the paper. The model with unit-specific breaks and parameters is

repeatedly estimated for each time-series in the cross-section using the multiple break-

point model of Chib (1998). This procedure estimates a series of models each with

a different number of breaks and subsequently uses the marginal likelihood approach

of Chib (1995) to derive the posterior model probabilities and determine the optimal

number of breaks. Given the popularity of Chib (1998)’s algorithm along with the

desire to save space, we do not present details of this algorithm here.

In contrast, our panel break model analyses the entire cross-section at once using

an alternative estimation procedure that introduces the number of breaks as a pa-

rameter in the model and performs inference over this parameter by jumping between

different numbers of breaks. The proportion of the Markov chain Monte Carlo run

that is spent at each number of breaks approximates the posterior model probabilities

(Green 1995).

We next formally explain estimation of the breakpoints and the parameters under

this new approach. Before explaining how the breakpoints are determined, we first

characterize the full conditional distributions from which the parameters of each of

the models we consider are sampled.

Appendix D.1. Estimation of Parameters

Using the earlier notations, for a given collection of breakpoints, the full conditional

distributions of the parameters take the form (for k = 1, . . . , K + 1, i = 1, . . . , N)

σ2
ik | · ∼ IG(ãk, b̃ik), (D.1)

θik | · ∼MVN(ρik,Σkσ
2
ik), (D.2)
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where the corresponding values of ρ,Σ, ã, and b̃ are computed from (B.9). Given the

estimated number of breakpoints and their locations, it is straightforward to estimate

the parameters from their full conditional distributions using the Gibbs sampler.

Appendix D.2. Estimation of Breakpoint Locations

For each of the k = 1, . . . , K breakpoints, we perturb τk by an integer u sampled

uniformly from the interval [−s, s] such that τk∗ = τk + u. If u = 0 the proposal is

rejected.41 Let the proposed breakpoint vector be denoted τ ∗, which is simply τ with

τk∗ substituted for τk.

Next, we compute the updated regime durations lk∗ = τk∗−τk−1, lk∗+1 = τk+1−τk∗ ,

and using (B.9) we compute ãk∗ , ãk∗+1, Σ−1k∗ , Σ−1k∗+1, and, for i = 1, . . . , N , ρik∗ , ρik∗+1,

b̃ik∗ , and b̃ik∗+1. The proposal is accepted with probability min(1, α) where α is

α =
lk!

lk∗ !

lk+1!

lk∗+1!

Γ(lk∗ + c)

Γ(lk + c)

Γ(lk∗+1 + c)

Γ(lk+1 + c)

N∏
i=1

|Σk∗|1/2

|Σk|1/2
|Σk∗+1|1/2

|Σk+1|1/2
Γ(ãk∗)

Γ(ãk)

Γ(ãk∗+1)

Γ(ãk+1)

b̃ãkik
b̃ãk∗ik∗

b̃
ãk+1

ik+1

b̃
ãk∗+1

ik∗+1

.

(D.3)

All but the two regimes separated by the breakpoint that is being perturbed remain

unchanged and thus do not enter the acceptance calculation.

If τk∗ is rejected, we simply discard it and then attempt to perturb the next

breakpoint. If accepted, we replace τk with τk∗ and replace the existing values of l,

ã, b̃, ρ, and Σ−1 for the current regimes k and k+ 1 with the corresponding accepted

proposed values in regimes k∗ and k∗ + 1.

41The value of s is tuned to achieve the desired acceptance ratio of 0.25.
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Appendix D.3. Estimating the Number of breakpoints

In many economic applications the number of breaks is not known in advance and

so must be determined according to some objective function. For example, one can

compare a model with K = 2 breaks to a model with a single break (K = 1) through

the ratio

BF21 =
P (K = 2 | r)/P (K = 1 | r)

P (K = 2)/P (K = 1)
=
p(r | K = 2)

p(r | K = 1)
, (D.4)

which captures the change in the odds in favour of model 2 relative to model 1 as we

move from the prior to the posterior. In the absence of an informative prior model

probability, the marginal likelihoods are proportional to the posterior model proba-

bilities which are the key quantities of interest. There are a number of approaches for

estimating the posterior model probabilities and associated Bayes factors for compet-

ing models, each corresponding to a different number of breaks.

Chib (1998)’s algorithm fixes the number of breaks in advance, which leads to a

nonuniform prior distribution on the breakpoint locations (Koop and Potter 2009)

while also restricting the model to a monotonically decreasing geometric prior on the

regime durations. Koop and Potter (2007) develop a procedure that overcomes these

problems. Their hierarchical hidden Markov (HHM) model approach can, however,

be undesirable since it may be sensitive to how the chain is initialised.42

To overcome these problems, we adopt the reversible jump Markov chain Monte

Carlo approach that includes the number of breaks K as a parameter in the model and

explores both the model and parameter space jointly by ‘jumping’ between different

numbers of breaks. The proportion of time spent at each number of breaks is equal to

the posterior model probabilities. Using conjugate priors on the regression parameters

µ, β and σ allows us to marginalise them from the posterior (Proposition 1) and

42If the chain is incorrectly initialised, the HHM approach may not be able to escape certain
parts of the parameter space and may lead to poor mixing and ultimately spurious inference as
demonstrated by Fearnhead (2006).
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explore the model space alone, greatly reducing the complexity of the algorithm.

To estimate the number of breakpoints, we begin the sampler at a given number

of breakpoints. With equal probability we enter a birth or death move which, re-

spectively, attempt to introduce a new, or remove an existing, breakpoint. We then

compute the acceptance probability which ensures that detailed balance is maintained

across the entire parameter space. If the move is accepted, the breakpoint vector is

updated. Otherwise the proposal is discarded.

Birth Move: With probability bK = 0.5 a birth move is entered.43 This move

attempts to increase K to K + 1 and hence introduces a new breakpoint, τk∗ , that is

sampled uniformly from the discrete time series sample τk∗ ∼ U [1, T ]. If an existing

breakpoint is proposed (τk∗ ∈ τ) the move is immediately rejected.

Otherwise, let τ ∗ denote the proposed breakpoint vector which consists of τ and

τk∗ . Let kc denote the existing regime we are attempting to split, i.e., τkc−1 < τk∗ <

τkc , and let k∗ and k∗ + 1 denote the two new proposed regimes. Regime k∗ contains

observations τkc−1 + 1, . . . , τk∗ , so that lk∗ = τk∗ − τkc−1. Regime k∗ + 1 contains

observations τk∗ + 1, . . . , τkc and hence lk∗+1 = τkc − τk∗ . We now compute ãk∗ , ãk∗+1,

Σ−1k∗ , Σ−1k∗+1, and, for i = 1, . . . , N , ρik∗ , ρik∗+1, b̃ik∗ , and b̃ik∗+1 using (B.9).

The birth move is accepted with probability min(1, α), where α equals

α =
p(r |X, τ ∗)

p(r |X, τ)
× p(τ ∗)

p(τ)
× T

K + 1
× 2

2
, (D.5)

where the final term 2/2 cancels because bk = 0.5, T corresponds to the sampling of

τk∗ , and (K + 1)−1 corresponds to the uniform sampling of an existing breakpoint to

43If the sampler is at K = T−1, corresponding to a break occurring every period, we set bT−1 = 0.
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return to K breakpoints if we had K + 1 breakpoints.44 We find that α simplifies to

α =
dc

Γ(c)

lkc !

lk∗ ! lk∗+1!

Γ(lk∗+1 + c)

Γ(lkc + c)

Γ(lk∗ + c)

(d+ 1)c
T

K + 1

baN

Γ(a)N

×
N∏
i=1

Γ(ãk∗)

b̃ãk∗ik∗

Γ(ãk∗+1)

b̃
ãk∗+1

ik∗+1

b̃ãkcikc

Γ(ãkc)

|Σk∗|1/2|Σk∗+1|1/2

| Vθ |1/2 |Σkc|1/2
. (D.6)

All but the existing regime we are proposing to split remain unchanged and thus do

not enter into the acceptance probability.

If the move is rejected, we drop the proposal altogether. Otherwise we substitute

τ ∗ for τ , while the corresponding values of l, Σ−1, ρ, ã, and b̃ are updated by removing

their values for regime kc and adding their values for regimes k∗ and k∗ + 1.

Death Move: With probability dk = 1− bk = 0.5 a death move is entered.45 This

move proposes to eliminate a breakpoint and move from K to K−1. The breakpoint

τkc we propose to eliminate is sampled uniformly from the set of existing breakpoints,

that is, τkc ∼ U [τ1, τK ]. Let τ ∗ denote the proposed breakpoint vector which is equal

to τ with τkc removed. Let kc and kc + 1 denote the two existing regimes (divided

by the breakpoint τkc). We propose to replace regimes (kc and kc + 1) with one

longer regime (k∗). The length of the proposed regime is therefore the sum of the two

existing regimes lk∗ = lkc + lkc+1. In similar fashion to the birth move, we compute

ãk∗ and Σ−1k∗ , and, for i = 1, . . . , N , we compute ρik∗ and b̃ik∗ using (B.9).

We accept the death move with a probability min(1, α), where α equals

α =
p(r |X, τ ∗)

p(r |X, τ)
× p(τ ∗)

p(τ)
× K

T
× 2

2
, (D.7)

where the final term cancels because bk = dk, K corresponds to the uniform sam-

44The acceptance probability consists of proposal densities (i) from our current position (K) to
the proposed position (K+1) and (ii) from our proposed position (K+1) back to our current position
(K). This is required to ensure every move is ‘reversible’ and thus our algorithm does not move to a
part of the parameter space it cannot return from which would cause the algorithm to stop mixing.

45If the sampler is at K = 0, d0 = 0 since there is no existing breakpoint to remove.
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pling of the breakpoint we are attempting to eliminate from the set of existing K

breakpoints, and T−1 corresponds to the uniform sampling of a new breakpoint from

the interval U [1, T ] if we were at K − 1 breakpoints and attempting a birth move to

return to our current position of K breakpoints. We simplify α to

α =
lkc ! lkc+1!

lk∗ ! dc
Γ(lk∗ + c)

Γ(lkc + c)

(d+ 1)cΓ(c)

Γ(lkc+1 + c)

K

T

Γ(a)N

baN

×
N∏
i=1

b̃ãkcikc

b̃ãk∗ik∗

Γ(ãk∗)

Γ(ãkc)

|Σk∗|1/2| Vθ |1/2

|Σkc |1/2|Σkc+1|1/2
b̃
ãkc+1

ikc+1

Γ(ãkc+1)
. (D.8)

If the move is accepted, we substitute τ ∗ for τ , and we update l, Σ−1, ρ, ã, and b̃ by

removing their values for the existing regimes kc and kc + 1 and adding their values

for the new regime k∗.
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Table 1: Parameter estimates for the dividend growth and dividend-price ratio models

Regime Break dates b0: Intercept b1: Slope on dt − pt b2: Slope on ∆dt Volatility

Mean s.d. Mean s.d. Mean s.d. Mean s.d.

Dividend growth

1 Feb 1931 -0.038 (0.005) -0.082 (0.023) 0.135 (0.039) 0.201 (0.003)
2 May 1933 0.030 (0.004) 0.057 (0.024) -0.193 (0.031) 0.156 (0.003)
3 Aug 1939 -0.127 (0.016) -0.034 (0.066) 0.188 (0.043) 0.216 (0.010)
4 Mar 1945 0.021 (0.002) -0.029 (0.018) 0.308 (0.022) 0.113 (0.001)
5 Oct 1968 0.019 (0.004) -0.156 (0.022) 0.515 (0.032) 0.163 (0.003)
6 Jan 1987 0.027 (0.002) -0.267 (0.014) 0.215 (0.029) 0.147 (0.002)
7 Dec 1998 0.002 (0.005) -0.305 (0.021) 0.126 (0.045) 0.228 (0.004)
8 Sep 2007 0.072 (0.004) -0.169 (0.019) 0.430 (0.041) 0.204 (0.003)
9 May 2009 0.019 (0.009) -0.205 (0.022) 0.307 (0.069) 0.327 (0.006)
10 Dec 2015∗ 0.043 (0.010) -0.187 (0.019) 0.834 (0.112) 0.545 (0.007)

Regime Break dates a0: Intercept a1: Slope on dt − pt a2: Slope on ∆dt Volatility

Mean s.d. Mean s.d. Mean s.d. Mean s.d.

Dividend-price ratio

1 Jun 1929 -0.020 (0.021) 0.745 (0.545) 0.185 (0.129) 0.412 (0.025)
2 Dec 1940 0.029 (0.009) 0.695 (0.417) -0.224 (0.095) 0.323 (0.020)
3 May 1948 0.077 (0.018) 0.807 (0.239) -0.150 (0.057) 0.285 (0.019)
4 Oct 1997 0.015 (0.005) 0.736 (0.242) -0.065 (0.028) 0.145 (0.012)
5 May 2002 0.038 (0.015) 0.640 (0.230) -0.173 (0.075) 0.120 (0.009)
6 Nov 2008 0.029 (0.007) 0.892 (0.441) -0.261 (0.078) 0.227 (0.016)
7 Dec 2015∗ 0.023 (0.008) 0.700 (0.327) -0.144 (0.060) 0.221 (0.014)

Table 1: Dividend growth and dividend-price ratio parameter estimates. This table
displays the posterior mean and standard deviation (s.d.) of the intercept, volatility and the
slopes on the lagged dividend-price ratio and lagged dividend growth rate when the growth rate
(top panel) or the dividend-price ratio (bottom panel) is the dependent variable. Regime-specific
estimates are from the heterogeneous panel break model, value-weighted averages across the 30
industry portfolios. The posterior modes of the identified break dates, the final time periods in
the corresponding regimes, are also reported.∗ denotes that Dec 2015 is not a break date but
the end of the sample.

64



Table 2: Parameter estimates for the Present Value model

Regime Break dates a1 b1 c1 a2 b2 c2 Volatility

1 Mar 1934 0.803 -0.011 0.255 -0.012 0.843 0.853 0.247
(0.770) (0.068) (0.187) (0.009) (0.762) (0.640) (0.061)

2 Nov 1939 0.733 -0.055 0.223 -0.042 0.792 0.829 0.240
(0.671) (0.059) (0.156) (0.038) (0.548) (0.659) (0.029)

3 Nov 1969 0.801 -0.101 0.203 -0.083 0.744 0.818 0.127
(0.287) (0.038) (0.061) (0.032) (0.315) (0.209) (0.018)

4 Jul 1998 0.750 -0.167 0.139 -0.052 0.779 0.825 0.105
(0.286) (0.058) (0.040) (0.022) (0.300) (0.276) (0.017)

5 Jun 2010 0.810 -0.120 0.158 -0.080 0.830 0.902 0.266
(0.529) (0.031) (0.064) (0.064) (0.402) (0.786) (0.029)

6 Dec 2015∗ 0.778 -0.082 0.227 -0.016 0.861 0.875 0.184
(0.109) (0.030) (0.071) (0.007) (0.342) (0.196) (0.021)

Table 2: Parameter estimates for the Present Value model. This table displays the
regime-specific posterior mean (and standard deviation in brackets below) of various parameters
for the cross-equation restricted present value model using our panel break modeling approach.
The reported values are value-weighted averages across the parameter estimates on the 30 in-
dustry portfolios. The posterior modes of the identified break dates, the final time periods in
the corresponding regimes, are also reported. ∗ denotes that Dec 2015 is not a break date but
the end of the sample.
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Table 3: Bayes Factors for Break Type

Industry Portfolios
Break Date

1934:03 1939:11 1969:11 1998:07 2010:06

BFbeta 1.35 172.40 1.65 104.12 1.87
BFrp 2.32 2.08 1.45 2.39 1.19

Regime span
1926:07-1934:03 1934:04-1939:11 1939:12-1969:11 1969:12-1998:07 1998:08-2010:06 2010:07-2015:12

β 0.10 0.16 0.27 0.02 0.12 0.19
(2.17) (0.99) (2.47) (2.53) (0.48) (1.14)

λ 0.05 1.01 0.21 2.22 0.41 2.73
(0.64) (0.37) (2.21) (2.46) (0.21) (3.86)

Individual Stocks
Break Date

BFbeta 2.27 118.44 1.48 72.17 2.08
BFrp 1.65 1.42 2.17 2.70 1.25

Regime span
1926:07-1934:03 1934:04-1939:11 1939:12-1969:11 1969:12-1998:07 1998:08-2010:06 2010:07-2015:12

β 0.07 0.19 0.42 0.12 0.24 0.17
(2.32) (0.90) (2.76) (2.23) (0.68) (1.12)

λ 0.23 1.34 0.55 2.48 0.72 2.69
(1.25) (0.22) (2.30) (2.85) (0.26) (3.35)

Table 3: Bayes Factors for Break Type. The top two rows in each panel of this table
display Bayes Factors that provide the strength of evidence in favour of each break affecting
only betas (BFbeta) or risk premia (BFrp). Both Bayes Factors being small implies that the
break affects both betas and risk premia. Bayes Factors that present strong evidence in favour
of breaks only in betas (risk premia) display BFbeta (BFrp) in bold font. Bayes Factors are
constructed from the marginal likelihood of each model which is computed using the procedure
of Chib (1995). Marginal likelihoods are computed for three models: one that allows for breaks
only in (i) risk premia (BFrp), (ii) beta loadings (BFbeta) or (iii) both. We also display the
posterior mean estimate, with t-statistics in brackets below, for the β and λ estimates in each
regime. The upper (lower) panel shows results when using 30 industry portfolio (individual
stock) return series and imposing the five breaks identified by the present value model.

Table 4: Average values of state variables across breaks

Variable Regime
1926:07-1934:03 1934:04-1939:11 1939:12-1969:11 1969:12-1998:07 1998:08-2010:06 2010:07-2015:12

Mean excess return 8.39 11.08 10.03 6.74 -0.35 15.24
St.dev. of excess return 0.11 0.08 0.04 0.04 0.05 0.04
Mean div. growth rate 3.00 4.08 6.84 5.40 4.44 4.08

St.dev. of div. growth rate 0.53 0.80 1.31 1.12 0.89 0.82
Risk aversion 2.08 1.82 1.40 1.09 1.51 1.90

Economic Policy Uncertainty 106.39 90.17 106.39
Monetary policy 102.70 96.20 74.99

Three component uncertainty 102.76 100.82 103.67
Macro uncertainty 0.59 0.67 0.70 0.62

Financial uncertainty 0.85 0.91 0.98 0.85

Table 4: Average values of state variables across breaks. This table displays in each of
the six regimes identified by the present value breakpoint model the mean and volatility of (i)
excess returns and (ii) the dividend growth rate. We also report the risk aversion estimate in each
regime. The mean excess return and mean dividend growth rates are expressed as annualized
percentages. Finally, we show the mean of various economic uncertainty data that are sourced
from Sydney Ludvigson’s website.
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Table 5: Statistical significance of gains in predictive accuracy

Predictor t <-1.64 -1.64< t <0 0< t <1.64 t >1.64

No break panel

dp 321 (2.86%) 726 (6.48%) 1,021 (9.11%) 9, 143† (81.55%)
tbl 186 (1.66%) 1,346 (12.01%) 789 (7.04%) 8, 890† (79.29%)
tms 451 (4.02%) 1,755 (15.65%) 952 (8.49%) 8, 053† (71.83%)
dfs 89 (0.79%) 2,089 (18.63%) 921 (8.22%) 8, 112† (72.36%)
ep 275 (2.45%) 881 (7.86%) 563† (5.02%) 9,492 (84.67%)
de 579 (5.16%) 450 (4.01%) 809 (7.22%) 9, 373† (83.61%)
bm 300 (2.68%) 1,103 (9.84%) 780 (6.96%) 9, 028† (80.53%)
dfr 269 (2.39%) 1,207 (10.77%) 421 (3.76%) 9, 314† (83.08%)
lty 177 (1.58%) 1,506 (13.43%) 608† (5.42%) 8,920 (79.56%)
infl 404 (3.60%) 407 (3.63%) 347 (3.09%) 10, 053† (89.67%)
ltr 289 (2.58%) 880 (7.85%) 459 (4.09%) 9, 583† (85.48%)

svar 333 (2.97%) 1,542 (13.75%) 2,019 (18.91%) 7, 317† (65.27%)
csp 282 (2.52%) 911 (8.13%) 859 (7.66%) 9, 159† (81.69%)
ntis 1, 090† (9.72%) 4,562 (40.69%) 2,414 (21.53%) 3,145 (28.05%)

Prevailing mean

dp 237 (2.11%) 1,331 (11.87%) 718 (6.40%) 8, 925† (79.61%)
tbl 442 (3.94%) 976 (8.71%) 781† (6.97%) 9,012 (80.39%)
tms 89 (0.79%) 1,489 (13.28%) 178† (1.59%) 9,455 (84.34%)
dfs 125 (1.11%) 2,201 (19.63%) 437 (3.89%) 8, 448† (75.35%)
ep 368 (3.28%) 1,209 (10.78%) 2,743 (24.467%) 6, 891† (61.47%)
de 890 (7.94%) 566 (5.05%) 2,256 (20.12%) 7, 499† (66.89%)
bm 290 (2.59%) 896 (7.99%) 2,128 (18.98%) 7, 897† (70.44%)
dfr 387 (3.45%) 2, 010† (17.93%) 247 (2.20%) 8,567 (76.42%)
lty 333 (2.97%) 1,355 (12.09%) 147 (1.31%) 9, 376† (83.63%)
infl 622 (5.55%) 1,109 (9.89%) 1,155 (10.30%) 8, 325† (74.26%)
ltr 245 (2.19%) 1,678 (14.97%) 498 (4.44%) 8, 790† (78.41%)

svar 410 (3.66%) 1,245 (11.11%) 1,762 (15.72%) 7, 794† (69.52%)
csp 373 (3.33%) 1,204 (10.74%) 1,385 (12.35%) 8, 249† (73.58%)
ntis 3, 121† (27.84%) 5,576 (49.74%) 2,097 (18.70%) 417 (3.72%)

Time series break

dp 522 (4.67%) 1,233 (10.99%) 124 (1.11%) 9, 332† (83.24%)
tbl 235 (2.09%) 1,457 (12.99%) 1,144 (10.20%) 8, 375† (74.70%)
tms 321 (2.86%) 2,090 (18.64%) 322 (2.87%) 8, 478† (75.62%)
dfs 346 (3.09%) 1,671 (14.91%) 193 (1.72%) 9, 001† (80.29%)
ep 420 (3.75%) 890 (7.94%) 2,136 (19.05%) 7, 765† (69.26%)
de 76 (0.68%) 1,467 (13.09%) 2,778 (24.78%) 6, 890† (61.45%)
bm 98 (0.87%) 2,293 (20.45%) 1,500 (13.38%) 7, 320† (65.29%)
dfr 156 (1.39%) 765 (6.82%) 1,981 (17.67%) 8, 309† (74.11%)
lty 444 (3.96%) 1,290 (11.51%) 1,585 (14.14%) 7, 892† (70.39%)
infl 300 (2.68%) 1,578 (14.08%) 477† (4.25%) 8,856 (78.99%)
ltr 202 (1.80%) 1,220 (10.88%) 757† (6.75%) 9,032 (80.56%)

svar 187 (1.67%) 567 (5.06%) 3,566 (31.81%) 6, 891† (61.47%)
csp 612 (5.46%) 1,194 (10.65%) 1,217 (10.86%) 8, 188† (73.04%)
ntis 1,548 (13.81%) 2, 187† (19.51%) 3,209 (28.62%) 4,267 (38.06%)

Time-varying parameter

dp 230 (2.05%) 465 (4.15%) 2,608 (23.26%) 7, 908† (70.54%)
tbl 121 (1.08%) 1,090 (9.72%) 1,578 (14.08%) 8, 422† (75.12%)
tms 357 (3.18%) 899 (8.02%) 2,599 (23.18%) 7, 356† (65.61%)
dfs 400 (3.57%) 1,351 (12.05%) 1,369 (12.21%) 8, 091† (72.17%)
ep 509 (4.54%) 905 (8.07%) 295 (2.63%) 9, 502† (84.76%)
de 397 (3.49%) 498 (4.44%) 1,073 (9.57%) 9, 243† (82.45%)
bm 128 (1.14%) 2,010 (17.93%) 2,293 (20.45%) 6, 780† (60.48%)
dfr 98 (0.87%) 1,109 (9.89%) 2,148 (19.16%) 7, 856† (70.07%)
lty 75 (0.67%) 855 (7.63%) 2, 046† (18.25%) 8,235 (73.45%)
infl 256 (2.28%) 469 (4.18%) 3,162 (28.20%) 7, 324† (65.33%)
ltr 420 (3.75%) 778 (6.94%) 823† (7.34%) 9,190 (81.97%)

svar 330 (2.94%) 1,091 (9.73%) 1,357 (12.10%) 8, 433† (75.22%)
csp 240 (2.14%) 764 (6.81%) 2,255 (20.11%) 7, 952† (70.93%)
ntis 3, 890† (34.69%) 6,244 (55.69%) 121 (1.08%) 956 (8.53%)

Table 5: Statistical significance of forecast improvements. This table reports the statistical significance of the gains in
predictive accuracy for our panel break model relative to the heterogeneous panel model with no breaks (No break panel), the
prevailing mean, the time series model with breaks applied to each stock in turn (Time series break), and the time-varying
parameter model when forecasting firm-level stock returns with either the dividend-price ratio (dp), treasury-bill rate (tbl), term
spread (tms), default spread (dfs), earnings-price ratio (dp), dividend payout ratio (de), book-to-market ratio (bm), default return
spread (dfr), long term yield (lty), inflation (infl), long term return (ltr), stock variance (svar), corporate equity issuance (ntis),
or cross-sectional premium (csp). Significance is evaluated using the procedure of Clark and West (2007). For each procedure
the table displays the number of stocks (with the percentage in brackets on the right-hand side) for which our method produces
significantly worse, insignificantly worse, insignificantly better, and significantly better forecasts at the 10% level. The market
portfolio is constructed as the value-weighted average of the individual return forecasts. † indicates the particular bin in which
the market portfolio lies. We only include stocks that have at least 60 out-of-sample observations to robustify our results. This
leaves 11,210 stocks.
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Table 6: Statistical significance of gains in predictive accuracy: PV breaks

Predictor t <-1.64 -1.64< t <0 0< t <1.64 t >1.64

No break panel

dp 622 (5.55%) 1,354 (12.08%) 1,589 (14.17%) 7, 646† (68.20%)
tbl 289 (2.58%) 1,370 (12.22%) 583 (5.20%) 8, 969† (80.00%)
tms 1,050 (9.37%) 1,663 (14.83%) 744 (6.64%) 7, 754† (69.16%)
dfs 176 (1.57%) 659 (5.88%) 1,854 (16.54%) 8, 522† (76.01%)
ep 851 (7.59%) 2,043 (18.22%) 378 (3.37%) 7, 939† (70.81%)
de 480 (4.28%) 1,562 (13.93%) 1, 332† (11.88%) 7,837 (69.90%)
bm 376 (3.35%) 1,244 (11.09%) 1, 271† (11.34%) 8,320 (74.21%)
dfr 1,085 (9.68%) 987 (8.80%) 662 (5.90%) 8, 477† (75.61%)
lty 460 (4.10%) 1,879 (16.76%) 1,258 (11.22%) 7, 614† (67.92%)
infl 65 (0.58%) 1,201 (10.71%) 482 (4.29%) 9, 463† (84.41%)
ltr 335 (2.99%) 894 (7.97%) 642 (5.73%) 9, 340† (83.31%)

svar 421 (3.76%) 1,286 (11.47%) 1,105 (9.86%) 8, 399† (74.92%)
csp 1,285 (11.46%) 1,053 (9.39%) 650 (5.79%) 8, 223† (73.35%)
ntis 720 (6.42%) 2,118 (18.89%) 1,582 (14.11%) 6, 791† (60.57%)

Prevailing mean

dp 289 (2.58%) 875 (7.80%) 2,205 (19.67%) 7, 842† (69.95%)
tbl 175 (1.56%) 1,001 (8.93%) 1, 652† (14.74%) 8,383 (74.77%)
tms 560 (4.99%) 1,124 (10.02%) 752† (6.71%) 8,775 (78.27%)
dfs 388 (3.46%) 2,573 (22.95%) 652 (5.82%) 7, 598† (67.77%)
ep 957 (8.54%) 1,684 (15.02%) 1,785 (15.92%) 6, 785† (60.52%)
de 851 (7.59%) 393 (3.51%) 947 (8.45%) 9, 020† (80.46%)
bm 294 (2.62%) 1,490 (13.29%) 2,008 (17.91%) 7, 419† (66.18%)
dfr 121 (1.08%) 1, 357† (12.10%) 897 (8.00%) 8,836 (78.82%)
lty 385 (3.43%) 999 (8.91%) 628 (5.60%) 9, 199† (82.05%)
infl 768 (6.85%) 985 (8.79%) 1,739 (16.26%) 7, 508† (66.97%)
ltr 1,120 (9.99%) 1,833 (16.35%) 520 (4.64%) 7, 738† (69.02%)

svar 243 (2.17%) 1,542 (13.75%) 1,186 (9.03%) 8, 096† (72.21%)
csp 481 (4.29%) 2,003 (17.87%) 756 (6.74%) 7, 971† (71.01%)
ntis 1,285 (11.46%) 1,959 (17.47%) 1, 598† (14.25%) 6,369 (56.81%)

Time series break

dp 559 (4.99%) 1,362 (12.15%) 997 (8.89%) 8, 293† (73.97%)
tbl 1,088 (9.70%) 2,120 (18.91%) 246 (2.19%) 7, 757† (69.91%)
tms 89 (0.79%) 2,308 (20.59%) 456 (4.07%) 8, 358† (74.55%)
dfs 374 (3.34%) 1,451 (12.94%) 822 (7.33%) 8, 564† (76.39%)
ep 289 (2.58%) 642 (5.73%) 1,645 (14.67%) 8, 635† (77.02%)
de 419 (3.74%) 1,325 (11.82%) 1,280 (11.42%) 8, 187† (73.03%)
bm 307 (2.74%) 2,451 (21.86%) 825 (7.36%) 7, 628† (68.04%)
dfr 62 (0.55%) 1, 830† (16.32%) 1,457 (12.99%) 7,862 (70.13%)
lty 261 (2.33%) 1,952 (17.41%) 1,354 (12.08%) 7, 644† (68.18%)
infl 1,217 (10.86%) 487 (4.34%) 355† (3.17%) 9,152 (81.63%)
ltr 863 (7.69%) 1,354 (12.08%) 64 (0.57%) 8, 930† (79.65%)

svar 208 (1.86%) 1,409 (12.57%) 1,757 (15.67%) 7, 837† (69.90%)
csp 1,205 (10.75%) 1,036 (9.24%) 647 (5.77%) 8, 323† (74.24%)
ntis 1,873 (16.71%) 1,255 (11.19%) 2,904 (25.90%) 5, 179† (46.19%)

Time-varying parameter

dp 559 (4.99%) 1,021 (9.11%) 1,483 (13.23%) 8, 148† (72.68%)
tbl 266 (2.37%) 954 (8.51%) 1,638 (14.61%) 8, 353† (74.51%)
tms 672 (5.99%) 800 (7.14%) 1,914 (17.07%) 7, 825† (69.79%)
dfs 145 (1.29%) 1,682 (15.00%) 1,365 (12.18%) 8, 019† (71.53%)
ep 775 (6.91%) 1,690 (15.07%) 881 (7.86%) 7, 865† (70.15%)
de 324 (2.89%) 1,006 (8.97%) 1,485 (13.25%) 8, 396† (74.89%)
bm 286 (2.55%) 2,206 (19.68%) 1,375 (12.26%) 7, 344† (65.51%)
dfr 56 (0.49%) 1,858 (16.57%) 461 (4.11%) 8, 836† (78.82%)
lty 792 (7.06%) 1,325 (11.82%) 1,650 (14.72%) 7, 444† (66.39%)
infl 373 (3.33%) 800† (7.14%) 1,499 (13.37%) 8,539 (76.17%)
ltr 500 (4.46%) 469 (4.18%) 804† (7.17%) 9,438 (84.19%)

svar 321 (2.86%) 1,309 (11.68%) 558 (4.98%) 9, 023† (80.48%)
csp 773 (6.89%) 860 (7.67%) 1, 352† (12.06%) 8,226 (73.37%)
ntis 1,845 (16.46%) 1,240 (11.06%) 1,341 (11.96%) 6, 785† (60.52%)

Table 6: Statistical significance of forecast improvements imposing the break dates from the Present Value model.
This table reports the statistical significance of the gains in predictive accuracy for our panel break return prediction model that
imposes the break dates estimated from the present value model using only the data available at the time the forecast is made.
Forecasts perform Bayesian Model Averaging across any uncertainty surrounding the number and timing of breaks. Performance
is reported relative to the heterogeneous panel model with no breaks (No break panel), the prevailing mean, the time series
model with breaks applied to each stock in turn (Time series break), and the time-varying parameter model when forecasting
firm-level stock returns with either the dividend-price ratio (dp), treasury-bill rate (tbl), term spread (tms), default spread (dfs),
earnings-price ratio (dp), dividend payout ratio (de), book-to-market ratio (bm), default return spread (dfr), long term yield (lty),
inflation (infl), long term return (ltr), stock variance (svar), corporate equity issuance (ntis), or cross-sectional premium (csp).
Significance is evaluated using the procedure of Clark and West (2007). For each procedure the table displays the number of stocks
(with the percentage in brackets on the right-hand side) for which our method produces significantly worse, insignificantly worse,
insignificantly better, and significantly better forecasts at the 10% level. The market portfolio is constructed as the value-weighted
average of the individual return forecasts. † indicates the particular bin in which the market portfolio lies. We only include stocks
that have at least 60 out-of-sample observations to robustify our results. This leaves 11,210 stocks.68



Table 7: Magnitude of break by decile portfolio

Portfolio Size of break rank MSFD Utility Gain rank Utility gain

High 1 0.0331 1 2.77
9 2 0.0241 2 2.54
8 3 0.0197 5 2.20
7 4 0.0166 3 2.39
6 5 0.0158 4 2.37
5 6 0.0150 7 2.00
4 7 0.0112 6 2.11
3 8 0.0098 8 1.94
2 9 0.0072 9 1.85

Low 10 0.0070 10 1.81

Table 7: Magnitude of break by decile portfolios. This table lists in descending order
the decile portfolios constructed according to our break risk measure: the mean of the squared
differences (MSFD) between the forecasts generated for the entire sample by the baseline panel
models with and without breaks. Portfolios are rebalanced each month using stocks with non-
missing observations in that month based on our break risk measure. The table also reports the
ranking of the utility gain (certainty equivalent return), expressed as an annualised percentage,
for a mean-variance investor with a risk aversion coefficient of three when forecasting with the
panel break model relative to the panel model without breaks using the aggregate dividend-price
ratio as the predictive variable. The mean-variance investor at each period allocates his wealth
between the risk-free rate (T-bills) and the risky (decile) portfolio.
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Table 8: Utility gains from portfolio investment strategies

Predictor hist avg no brk ts tvp

Baseline Model
dp 2.79 3.02 2.37 1.84
tbl 3.12 2.43 2.31 1.91
tms 1.78 3.30 2.44 1.89
dfs 1.77 2.00 2.45 1.90
ep 1.96 3.09 2.55 1.78
de 3.03 2.33 2.08 2.85
bm 3.00 1.94 2.56 2.32
dfr 1.99 2.65 1.82 1.74
lty 3.21 1.86 2.09 1.97
infl 2.22 2.97 2.04 3.05
ltr 1.78 2.35 3.01 2.22

svar 2.05 2.34 1.88 1.79
csp 2.63 1.89 3.22 2.47
ntis -0.75 -0.43 -0.25 -1.03

20-year regime duration prior
dp 2.15 2.59 2.34 1.95
tbl 2.64 2.77 2.00 2.15
tms 1.65 2.19 2.57 1.90
dfs 1.97 1.82 2.96 1.89
ep 2.14 2.03 3.05 2.32
de 3.11 2.64 1.88 2.50
bm 3.00 2.16 2.44 2.28
dfr 1.74 2.20 1.80 1.68
lty 3.42 1.90 1.65 2.43
infl 2.38 2.89 2.02 2.52
ltr 1.82 2.33 2.49 2.47

svar 2.74 2.10 1.63 1.42
csp 3.04 2.87 2.53 2.13
ntis -0.11 -0.33 0.02 -0.27

Imposing Breaks from PV Model
dp 2.25 2.64 1.95 2.18
tbl 3.31 2.43 1.92 2.27
tms 1.96 2.32 2.55 1.94
dfs 1.75 2.04 3.11 1.90
ep 2.32 3.19 2.42 1.75
de 2.86 2.32 2.03 1.99
bm 3.24 1.96 2.28 3.14
dfr 2.01 1.85 1.84 1.37
lty 2.27 1.95 1.32 2.49
infl 2.41 2.90 1.85 2.75
ltr 1.89 2.55 1.88 2.29

svar 2.42 1.86 1.52 1.44
csp 3.00 2.85 2.20 2.34
ntis 1.12 0.85 1.43 0.99

Table 8: Utility gains. The top panel of this table reports the out-of-sample utility gain (certainty equivalent return) across
the entire out-of-sample period for a mean-variance investor with a risk aversion of three who at each period allocates wealth
between a risk-free asset (T-bills) and an optimal risky portfolio that is constructed from individual stocks when forecasting with
the baseline model. We report the utility gain measured relative to each of the four benchmark models, namely, the prevailing
mean (hist avg), the panel model with no breaks (no brk), the time series break model (ts), and the time-varying parameter model
(tvp). The middle panel reports the same results when using a 20-year prior expected regime duration and the lower panel for
when the recursively estimated break dates from the present value model are imposed on the baseline return prediction model.
Results are presented for the 14 predictors we consider: the dividend-price ratio (dp), T-bill rate (tbl), term spread (tms), default
yield spread (dfs), earnings-price ratio (ep), dividend payout ratio (de), book-to-market (bm), default return spread (dfr), long
term yield (lty), inflation (infl), long term return (ltr), stock variance (svar), corporate equity issuance (ntis), and cross-sectional
premium (csp). The reported certainty equivalent returns are expressed as annualised percentages.
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Table 9: Statistical significance of gains in predictive accuracy from multivariate models

Predictor t <-1.64 -1.64< t <0 0< t <1.64 t >1.64

Multivariate models

Dividend-price ratio and default spread

hist avg 3,769 (33.62%) 2,044 (18.23%) 2,771 (24.72%) 2, 627† (23.43%)
no brk 1,897 (16.92%) 1,435 (12.80%) 4, 807† (42.88%) 3,072 (27.40%)
ts brk 980 (8.74%) 2,851 (25.43%) 3,173 (28.31%) 4, 207† (37.53%)

tvp 2,605 (23.24%) 3,001 (26.77%) 2, 892† (25.79%) 2,713 (24.20%)

Dividend-price ratio, default spread, term spread, and T-bill rate

hist avg 6, 455† (57.58%) 2,474 (22.07%) 1,505 (13.43%) 777 (6.93%)
no brk 1, 627† (14.51%) 2,830 (25.25%) 4,101 (36.58%) 2,653 (23.67%)
ts brk 592 (5.28%) 3, 454† (30.81%) 3,309 (29.52%) 3,856 (34.39%)

tvp 1,922 (17.15%) 3,371 (30.07%) 3, 221† (28.73%) 2,697 (24.06%)

Equal-weighted forecast combinations from univariate models

Dividend-price ratio and default spread

hist avg 1,548 (13.81%) 1,246 (11.12%) 1,492 (13.31%) 6, 925† (61.78%)
no brk 290 (2.59%) 642 (5.73%) 895 (7.98%) 9, 384† (83.71%)
ts brk 388 (3.46%) 1,085 (9.68%) 189 (1.69%) 9, 549† (85.18%)

tvp 521 (4.65%) 1,100 (9.81%) 892 (7.96%) 8, 698† (77.58%)

Dividend-price ratio, default spread, term spread, and T-bill rate

hist avg 963 (8.59%) 1,392 (12.42%) 2,461 (21.95%) 6, 395† (57.04%)
no brk 248 (2.21%) 547 (4.88%) 842 (7.51%) 9, 574† (85.39%)
ts brk 159 (1.42%) 962 (8.58%) 245 (2.19%) 9, 845† (87.82%)

tvp 389 (3.47%) 909 (8.11%) 1,087 (9.69%) 8, 826† (78.73%)

All 14 predictors

hist avg 352 (3.14%) 771 (6.88%) 1,001 (8.93%) 9, 087† (81.05%)
no brk 122 (1.09%) 471 (4.20%) 443 (3.95%) 10, 175† (95.58%)
ts brk 202 (1.80%) 310 (2.77%) 356 (3.18%) 10, 343† (92.26%)

tvp 267 (2.38%) 631 (5.63%) 853 (7.61%) 9, 460† (84.38%)

Table 9: Statistical significance of forecast improvements from multivariate models.
The top panel of this table reports the statistical significance of any gains in predictive accuracy
for our multivariate panel break model that uses both the dividend-price ratio and default spread
(top half of top panel) or the dividend-price ratio, default spread, term spread, and T-bill rate
(lower half of top panel) relative to either the prevailing mean model (hist avg), our panel model
without breaks (no brk), the univariate time series breakpoint model (ts brk) or the time-varying
parameter model (tvp). Significance is evaluated using the procedure of Clark and West (2007).
The table displays the number of cases (stocks) for which our method produces significantly
worse, insignificantly worse, insignificantly better, and significantly better forecasts at the 10%
level, with the percentage of total stocks reported in brackets on the right-hand-side. The market
portfolio is constructed as the value-weighted average of the individual forecasts. † indicates the
particular bin in which the t-statistic for the market portfolio lies. The lower panel reports
results when equally-weighting the forecasts from our univariate panel breakpoint models that
use either the dividend-price ratio and default spread (top third) or the dividend-price ratio,
default spread, term spread, and T-bill rate (middle third) or all 14 predictors (lower third).
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Figure 1: This figure displays the prior probability that the R-squared of a predictive regression
lies below a certain value j, ranging from 0 to 0.01, for different degrees of scepticism regarding
predictability. The investor’s degree of scepticism is captured by the prior standard deviation of the
normalised slope coefficient ση. A value of 0 denotes a dogmatic prior, a value of infinity denotes a
diffuse prior, and intermediate values denote scepticism about the existence of return predictability.

72



0
10

20
30

40
50

60

Number of Breaks

P
os

te
rio

r 
P

ro
ba

bi
lit

y(
%

)

7 8 9 10

(a) Posterior Model Probabilities

0
10

20
30

40

Number of Breaks

P
os

te
rio

r 
P

ro
ba

bi
lit

y(
%

)

3 4 5 6 7

(b) Posterior Model Probabilities

0
20

40
60

80
10

0

Month

P
os

te
rio

r 
P

ro
ba

bi
lit

y 
(%

)

1930 1950 1970 1990 2010

(c) Posterior Break Locations

0
20

40
60

80
10

0

Month

P
os

te
rio

r 
P

ro
ba

bi
lit

y 
(%

)

1930 1950 1970 1990 2010

(d) Posterior Break Locations

0
20

0
40

0
60

0
80

0

Month

C
um

ul
at

iv
e 

P
os

te
rio

r 
B

re
ak

 P
ro

ba
bi

lit
y(

%
)

194701 196701 198701 200701

real time
full sample

(e) Cumulative Break Probability
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(f) Cumulative Break Probability

Figure 2: This figure displays the posterior probabilities for the number of breaks (top panel),
the posterior break dates (middle) and the cumulative posterior break probability (bottom) when
the prior expected regime duration is ten years estimated from our Bayesian panel break model
that regresses firm-level returns on the lagged aggregate dividend-price ratio (left panel) or from
the Present Value model that uses 30 industry portfolios and imposes the cross-equation restrictions
(right panel). The red triangles in the middle panel mark the break dates estimated by the frequentist
panel breakpoint approach of Baltagi et al. (2016). The red line in the bottom panel denotes the
real time estimates.
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Figure 3: The top panel of this figure displays the real-time break detection obtained from our panel
break model fitted to individual stock returns. The vertical red line denotes the initial estimation
period and the 45 degree line (to the right of the vertical line) denotes the date at which a break could
first be identified. Black circles mark the estimated break dates. The bottom window displays the
number of months it took to first detect each of the breaks that occurred after the initial estimation
period when predicting with four predictors: the dividend-price ratio (dp), T-bill rate (tbl), term
spread (tms), and default yield spread (dfs).
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Figure 4: The top left window of this figure graphs the value-weighted posterior mean slope coefficient
real time estimate from our Bayesian breakpoint model that regresses firm-level returns on the lagged
aggregate dividend-price ratio. The top right window graphs the corresponding expected return real
time estimate, computed as the posterior mean of the intercept plus the posterior mean of the
slope multiplied by the value of the predictor in that month. The bottom windows display the
value-weighted slope coefficient and expected return estimates from a 10-year rolling window OLS
regression. The vertical lines in the bottom left window mark the posterior mode break dates
estimated from our breakpoint model that occur after the first month in which the 10-year rolling
window model is estimated: June 1936.
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Figure 5: This figure displays the posterior mode break dates estimated by our panel breakpoint
model for a series of models. First, the baseline return prediction model that uses the aggregate
dividend-price ratio as the predictor (black triangles). Second, the dividend growth model that
regresses industry-level dividend growth rates on lagged industry-level dividend growth rates and
lagged industry-level dividend-price ratios (blue triangles). Third, the dividend-price ratio model
that regresses industry-level dividend-price ratios on lagged industry-level dividend growth rates
and lagged industry-level dividend-price ratios (green triangles). Fourth, the present value model
(red triangles) that imposes the cross-equation restrictions in (17). Each model uses 30 industry
portfolios.
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Figure 6: This figure graphs the monthly risk aversion coefficient (solid black line) which is the
posterior mean of the pooled slope coefficient estimated using our Bayesian panel breakpoint model
when firm-level stock returns are the independent variable and the predictive variable is stock vari-
ance (svar) when imposing the five break dates estimated from the PV model. The red dashed line
graphs the t-statistic of the slope coefficient.
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Figure 7: The top panel of this figure graphs the cumulative sum of squared forecast error differences
from July 1936 through December 2015 between those generated by the prevailing mean model and
our panel breakpoint model for the market portfolio. The breakpoint model forecasts are a value-
weighted average of individual stocks using the dividend-price ratio as the predictive variable. The
vertical lines mark the main period of underperformance: December 1990 - April 2000. The lower
panel zooms in on the period from 1990 through 2000.
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(c) Time series Breakpoint
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(d) TVP

Figure 8: This figure displays the out-of-sample R2 values (expressed as percentages) obtained when
comparing the forecasting performance of our heterogeneous panel break model with the prevailing
mean model (top left window), no break panel (top right), time series breakpoint model (bottom
left), and the time-varying parameter model (bottom right) for the firm-level stock returns. The thick
vertical black line denotes the market portfolio that is constructed as the value-weighted average of
the firm-level forecasts. The aggregate dividend-price ratio is the predictive variable.
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Figure 9: This figure displays the posterior mode break dates estimated from our Bayesian breakpoint
model for four univariate return prediction models that use either the dividend-price ratio (black
triangles), T-bill rate (blue), default spread (green), or term spread (red) as the predictive variable.
We also plot the break modes from the multivariate breakpoint return prediction model that uses
all four of these variables (orange).
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