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1 Introduction

The outbreak of the Covid-19 pandemic, resulting lockdowns and stay-at-home orders

had a sharp and unprecedented effect on economic activity and caused turmoil in global

financial markets. Uncertainties about the future trajectory of the virus, policy responses

of governments and central bankers, and shifts in household and firm behavior

massively increased firms’ cash flow risks.1 Faced with extreme levels of uncertainty

and sharp reductions in cash flows, many firms suspended dividend payments.

Dividend policies reflect firms’ expectations of future earnings, so their decision to

entirely suspend dividends was a harbinger of the extreme slowdown in many sectors’

economic activity that was to come.

Periods with extreme financial stress such as the Covid pandemic offer unique insights

into what drives asset prices. Since the seminal work of Clark (1973), researchers have

modeled the dynamics in return volatility under the assumption that the news clock can

run at different speed . However, little is known about whether the extremely high levels

of volatility in stock returns observed during periods of financial distress is driven by a

similar volatility clustering in news about the underlying fundamentals.

A key challenge lies in measuring and quantifying the fundamentals news process at

a relatively high frequency such as daily. One approach is to use textual analysis to count

news stories. This approach, while promising, has the limitation that individual news

stories are not equally important for economic fundamentals and so it is unclear how to

map news counts to revisions in investors’ views on fundamentals. Another approach,

which we promote in this paper, is to collect high-frequency data on fundamentals such as

dividends or earnings and model the dynamics in the resulting data. The chief challenge

posed for this approach is the irregular arrivals process for news on (daily) firm-level

dividends and the extreme heterogeneity in disaggregate dividend growth which tends

to be dominated by large outliers.

We argue that such challenges require modeling three components in daily dividend

growth data, namely a persistent mean process, a jump component that accounts for

1Studies on the effect of the pandemic on growth prospects and economic uncertainty include
Gourinchas (2020), Eichenbaum et al. (2020), Atkeson (2020), and Ludvigson et al. (2020).
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composition shifts and idiosyncratic firm news, and a stochastic volatility process.

Generalizing the approach in Pettenuzzo et al. (2020), in this paper we develop a flexible

multivariate econometric model that captures the highly irregular dynamics in daily

dividends during the Covid pandemic and quantifies the effect of dividend suspensions

on the distribution of dividend growth across five industries. We demonstrate that the

signal value in dividend suspensions is very important and show that the proportion of

dividend suspenders has a significant effect on the expected growth in dividends, its

conditional volatility, and on the probability of jumps (outliers) in daily dividend

growth. We also show that these effects display considerable heterogeneity across

industries. Effects tend to be strongest for consumer goods and manufacturing stocks

and weaker for stocks in the high tech and healthcare businesses.

Our paper is organized as follows. Section 2 introduces the data, including evidence

on dividend suspensions during the pandemic. Section 3 explains our multivariate

dynamic econometric modeling approach and describes our MCMC sampler. Section 4

reports empirical results, including parameter estimates for the multivariate model fitted

to dividend growth dynamics across five industries. Section 5 concludes.

2 Data

This section introduces our data sources and provides evidence on how firms changed

their dividend payment policies in response to the outbreak of the Covid-19 pandemic.

2.1 Dividend Suspensions

We begin our analysis by outlining how we collect data on daily dividend

announcements, including those made by firms that suspended dividends, merging data

from several sources.2 To conduct comparisons with events during the Global Financial

crisis (GFC), we use data going back to January 2005, starting a little less than three years

prior to the GFC to enable us to assess this episode in a historical perspective.

2The stock market reacts to information in dividend announcements rather than to dividend payments
which generally lag announcements by several weeks.
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For the pre-Covid period from January 2005 through December 2019, we use data from

the Center for Research in Security Prices (CRSP) to extract daily stock prices, shares

outstanding, and dividend announcements for individual firms. Our data includes all

ordinary cash dividends declared by US firms with common stocks (share codes 10 and

11) listed on the NYSE, NASDAQ, or AMEX exchanges.3 To be included, we require firms

to have valid stock prices and shares outstanding when dividends are announced. For the

more recent period spanning January 1st through September 30th, 2020 we supplement the

CRSP data with stock prices and dividend announcements collected from Bloomberg.

We obtain information on dividend suspensions from three other data sources. First,

we use Capital IQ to extract dividend suspensions and cancellations of U.S. firms.

However, this list is incomplete and often misreports the actual announcement date of

the suspension. For each of the public companies included in our data set from CRSP, we

therefore use the EDGAR database to download all 8-K forms that companies filed to the

SEC between January 2005 and September 2020. 8-K filings are triggered by the arrival

of information deemed to be “materially important” to firms’ financial situation. We

complement the information extracted from EDGAR by using the NASDAQ news

platform to download recent press releases on companies in our sample.

Combining the textual data from EDGAR and the NASDAQ news platform, we

identify the 8-K filings and press releases that mention dividend suspensions in either

the text or in the title and extract the date of the suspension and the associated ticker

using an automated text scraper. After manually reviewing each case to remove false

positives, and cross-checking with Google and Bloomberg, we identify a total of 198

dividend suspenders in 2020 and 472 since 2005. Finally, we merge these suspensions

with price and accounting data from CRSP/COMPUSTAT and Bloomberg.

For each day during the period January-September 2020, Figure 1 shows both the

absolute number of firms suspending dividends (top panel) and the proportion of firms

suspending dividends relative to all firms announcing dividend news (bottom panel).

Dividend suspensions were rare in January and February, averaging less than one per

week. The outbreak of the pandemic triggered a virtual avalanche of suspensions with

3Ordinary cash dividends have CRSP distribution codes below 2000.
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some days seeing 100% of announcing firms suspending dividends and the suspension

rate regularly exceeding 20% on a daily basis between mid-March and early April.

Figure 1 shows that large numbers of individual firms suspended their dividend

payments literally within days of the pandemic outbreak and demonstrate how unusual

such suspensions were prior to the March 11, 2020 WHO declaration of a global

pandemic. The speed with which firms suspended dividends after the outbreak of the

Covid-19 pandemic was historically unprecedented even compared against the GFC.

2.2 Daily Dividend Growth

We next describe how we construct a daily dividend growth measure that allows us to

quantify the effect of dividend suspensions on the predictive distribution of future

dividend growth. Our analysis closely follows Pettenuzzo et al. (2020) and computes

dividend growth by comparing same-firm, same- (fiscal) quarter, year-over-year changes

in cash flows, accounting for both firm-level heterogeneity and seasonal (quarterly)

variation in dividend payments.

Let Dj
t denote the total dividends declared by firm j on day t, calculated as the dollar

value of the dividend per share times the number of shares outstanding for firm j on day

t. Next, let I j
t be an indicator variable that equals one if company j announces quarterly

dividends on day t–including an announcement of a dividend suspension–and otherwise

is zero. Also, let t̃−j (t) be the same-quarter, prior-year dividend announcement date for

firm j. Aggregating across firms, the total dollar value of dividends declared on day t is

∑Nt
j=1 I j

t Dj
t, where Nt is the number of publicly traded firms in existence on day t. Similarly,

the total dollar value of dividends declared by the same set of firms for the same fiscal

quarter during the prior year is given by ∑Nt
j=1 I j

t̃ Dj
t̃−j (t)

.

From the ratio of these two numbers we can compute a daily measure of the aggregate,

year-over-year (gross) growth in dividends, Gt:

Gt =
∑Nt

j=1 I j
t Dj

t

∑Nt
j=1 I j

t̃j
Dj

t̃−j (t)

. (1)
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Only firms for which I j
t = I j

t̃−j
= 1 are included in this calculation, thus ensuring that the

same firms are used in both the numerator and denominator of the ratio.4

Our dividend growth measure in (1) includes information on dividend suspenders in

the following way: when a firm announces that it will not distribute a dividend in a

given quarter, the numerator on that day for the firm in (1) will be zero, while the

denominator will be the dividend announced for the corresponding quarter of the

previous year, regardless of whether the firm paid dividends during that quarter.5

The two panels in Figure 2 show the distribution of dividend announcements and the

resulting nominal amount of dividends announced by those firms between January 1st

and September 30th of 2020. The quarterly seasonality pattern in the number of daily

announcements (top panel) is very clear. Weeks with a substantial number of dividend

announcers are also associated with larger total dollar dividend payments (bottom panel).

Firms announce the suspension of dividend payments only once. This implies that

a firm’s dividend payments remain at zero in the following quarters (Q2 and Q3 2020)

unless dividends are explicitly restarted. This information is missing from the CRSP data:

when a firm does not announce a dividend, it is not reported as “zero” and will simply

be missing. For the dividend suspenders, we therefore manually input in the remaining

quarters of 2020 a dividend payment set equal to zero around the same date when these

firms distributed a positive dividend in 2019, unless the firms restarted their dividend

payments. This step is required to properly account for the continuation effect of dividend

suspensions that last longer than a single quarter.

Our empirical analysis uses dividend growth from five industries, constructed using

the methodology and industry definitions from Ken French’s website: Industry 1

(Consumer goods): Consumer durables, nondurables, wholesale, retail, and some

services (laundries, repair shops); Industry 2 (Manufacturing): Manufacturing, energy,

4Equation (1) uses the dollar amount of dividends paid by individual firms, implicitly applying value
weights since large firms tend to have larger dividend payouts. As shown in Pettenuzzo et al. (2020), it
makes little difference whether we use this measure or instead weight individual firms’ dividend growth
rates by their market capitalization.

5On two days in 2020 (March 30 and April 3 2020), the daily dividend announcements came exclusively
from (three) dividend suspenders. For these cases we include the announcement on the previous day to
avoid losing the information.
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and utilities; Industry 3 (High Tech): Business equipment, telephone and television

transmission; Industry 4 (Health): Healthcare, medical equipment, and drugs; and

Industry 5 (Other): Mines, construction, building materials, transportation, hotels,

business services, entertainment, and finance.

For each of these five industries, Figure 3 plots the growth rates ∆dt+1 = ln(Gt+1)

over the 2005-2020 sample (left column) and for the shorter 2020 sample (right column).

The five series are dominated by large outliers, many of which can be attributed to shifts

in the composition of firms announcing dividends on any given day, particularly on

days with small numbers of announcing firms and a large proportion of dividend

suspenders. During 2020, large, negative values of ∆dt occur more frequently after the

pandemic lockdown in mid-March than prior to it and also tend to be more common

across industries.

3 A Multivariate Dividend Growth Model

We next propose a multivariate econometric model that captures the salient features of

the dynamics in the daily dividend growth data displayed in Figure 3 and the effect of

dividend suspensions on the conditional (predictive) distribution of dividend growth.

Our approach builds on the model developed in Pettenuzzo et al. (2020) but generalizes

this model in three important ways. First, we develop a multivariate setting in which

key components of the model (notably the persistent mean dynamics) can be correlated

across variables. Second, we incorporate the effect of dividend suspensions on expected

dividend growth, the conditional volatility of the dividend growth process, and the

probability of observing jumps in dividends. Third, we introduce jumps in the dividend

volatility process and allow these to be correlated with the jumps in the mean of the

dividend growth process. These extensions, as we show, require material changes in the

sampler used to estimate the model parameters and have an important impact on

estimates of the dynamics in daily dividend growth.
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3.1 Dividend Growth Dynamics

As shown in Figure 1 and Figure 2, daily values of announced dividend payments and

dividend suspensions display substantial heterogeneity, reflecting variation in the

number, size, and types of firms announcing dividend news on a given day. This makes

it difficult to draw reliable conclusions from raw dividend data and requires us to adopt

a sophisticated econometric modeling approach that is capable of extracting components

from the dividend growth process that display very different dynamics and

distributional features.

The econometric approach in Pettenuzzo et al. (2020) decomposes the aggregate daily

dividend growth process, ∆dt+1 = ln(Gt+1), into three parts, namely (i) a persistent

component, µdt+1, used to capture a smoothly evolving mean component; (ii) a jump

component, ξdt+1 Jdt+1, for which Jdt+1 ∈ {0, 1} is a jump indicator that equals one when

dividend growth experiences a jump on day t + 1 and otherwise equals zero, and

ξdt+1 ∼ N
(

0, σ2
ξ

)
measures the magnitude of the jump; and (iii) a transitory shock,

εdt+1, whose volatility can vary over time.

Here we are interested in extending the method to a multivariate setting which

allows us to model jointly the dividend growth process across multiple industries and

study possible cross-dependencies. With this in mind, let ∆di
t+1 denote the year-on-year

dividend growth in industry i, with i = 1, ..., K, and stack the industry growth rates in

the vector ∆dt+1 =
(
∆d1

t+1, ..., ∆dK
t+1
)′. Moreover, consistent with the previous

discussion, specify the following model for this process:6

∆dt+1 = µdt+1 + ξdt+1 � Jdt+1 + Σ1/2
dt+1εdt+1, (2)

where µdt+1 =
(
µ1

dt+1, ..., µK
dt+1

)′, ξdt+1 =
(
ξ1

dt+1, ..., ξK
dt+1

)′, Jdt+1 =
(

J1
dt+1, ..., JK

dt+1

)′,
εdt+1 =

(
ε1

dt+1, ..., εK
dt+1

)′ ∼ N (0, IK) and Σdt+1 is a K× K diagonal matrix.

We next discuss the motivation for these three components along with our

assumptions about their behavior.

Starting with the vector of persistent mean components µdt+1, we allow for dynamics

6Here � denotes the Hadamard product.
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across variables by adopting a vector autoregressive setting that can capture lead-lag

effects among the various industries. In addition, we include exogenous covariates that

contain forward-looking information such as dividend suspensions.

Suspending dividends is not a decision that firms take lightly and we would not

expect firms to stop making dividend payments if their cash flows are affected by a

negative shock perceived to be short-lived. Hence, we would expect that there is

additional signal value about the severity and longevity of a negative cash flow shock

from firms’ decision to suspend dividends. To account for these effects, we introduce the

following VAR-X(1) process for the dynamics of µdt+1

µdt+1 = µµ + Φµ

(
µdt − µµ

)
+ Xµ

t+1Bµ + Σ1/2
µ εµt+1, εµt+1 ∼ N (0, IK) (3)

where

Xµ
t+1 =



(
xµ

1,t+1

)′
0′ 0′ . . . 0′

0′
(

xµ
2,t+1

)′
0′ . . . 0′

...
...

... . . . ...

0′ 0′ 0′ . . .
(

xµ
K,t+1

)′

 (4)

can accommodate industry-specific as well as common exogenous regressors and

Bµ =
(

β′1µ, ..., β′Kµ

)′
collects the associated coefficients. In our empirical application, we

include as an extra covariate the market-wide proportion of firms suspending dividends,

defined as Rst+1 = Nst+1/ (Nst+1 + Ndt+1), i.e. the ratio of the number of dividend

suspenders, Nst+1, to the total number of dividend announcers (including suspenders),

(Nst+1 + Ndt+1). Hence, Xµ
t+1 = IK ⊗ Rst+1 and Bµ =

(
β1µ, ..., βKµ

)′. Negative values for

βiµ would indicate that a greater fraction of dividend suspenders is associated with a

reduction in future dividend growth in industry i.7

Next, we focus on the processes controlling the jump intensities and timing. Because

of large differences in both the dollar value of dividends paid by individual firms as well

7We elect to use the economy-wide suspension rate because this series is less noisy than the industry-
level suspension rates which helps us obtain more accurate estimates. Moreover, cross-industry spillovers
in µdt+1 are captured through the off-diagonal coefficients of Φµ (lagged effects) and Σµ (contemporaneous
effects). Finally, we would expect aggregate suspensions to identify an economy-wide effect better than
industry-level suspension rates.
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as in the number of firms announcing dividends on a given day, there is a higher

probability of observing large outliers in the daily dividend growth rate on days with

few announcers. Building on Pettenuzzo et al. (2020), we allow each industry’s jump

probability in (2) to depend on the number of total dividend announcers, Ndt+1.

Moreover, we allow the proportion of total dividend suspenders, Rst+1, to affect each

industry’s jump intensity because days with a high proportion of dividend suspensions

are more likely to be affected by firm-specific (idiosyncratic) dividend decisions. Finally,

as in Johannes et al. (1999) we allow for state-dependency in the probability of jumps

through lagged jumps, Ji
dt, and absolute values of total lagged dividend growth ∆dt.8

Combining these effects, we obtain the following jump probability specification:

Pr
(

Ji
dt+1 = 1

∣∣∣ xJ
i,t+1

)
= Φ

(
λi1 + λi2Ndt+1 + λi3Rst+1 + λi4 Ji

dt + λi5 |∆dt|
)

. (5)

where xJ
i,t+1 =

(
Ndt+1, Rst+1, Ji

dt, |∆dt|
)
. We write the variance-covariance of the model

Σdt+1 = diag
(

eh1
dt+1 , ..., ehK

dt+1

)
, with

hi
dt+1 = µih + φih

(
hi

dt − µih

)
+ ξ i

ht+1 Ji
dt+1 + βih1Rst+1 + βih2 |∆dt|+ σihεi

ht+1, (6)

where εi
ht+1 ∼ N (0, 1).9 As in (3), we include Rst+1 as an extra covariate. In addition, we

allow the magnitude of the previous day’s dividend growth rate, |∆dt|, to impact the log-

volatility. Finally, as in Eraker et al. (2003), we allow the jumps in the mean and volatility

of the dividend growth process to be correlated, with

ξ i
dt+1

∣∣∣ ξ i
ht+1 ∼ N (ρi Jξ

i
ht+1, σ2

ξ i
d
) (7)

and

ξ i
ht+1 ∼ N (0, σ2

ξ i
h
). (8)

8While we assume that the observable covariates are common to all series, extending the model to allow
for variable-specific covariates is trivial.

9We also require that εi
ht+1 ⊥ ε

j
ht+1 for i 6= j, and that εi

ht+1 is uncorrelated with both εdt+1 and εµt+1, for
i = 1, ..., K, Finally, we assume that |φih| < 1, i = 1, ..., K.
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Consistent with our earlier stationarity assumptions, we specify the initial conditions

for µdt and h1
dt, ..., hK

dt as10

µd1 ∼ N
(

µµ +
(

IK −Φµ

)−1 Xµ
1 Bµ, Σ†

µ

)
, (9)

with Σ†
µ obtained by properly reshaping

(
IK2 −Φµ ⊗Φµ

)−1 × vec
(
Σµ

)
, and

hi
d1 ∼ N

(
µih +

β′ih1
1− φih

Rs1,
σ2

ih
1− φ2

ih

)
. (10)

3.2 Priors

Starting with the parameters in (3), define φµ = vec
(

Φ′µ

)
and write11

µµ ∼ N (µ
µ0

, V µµ
), φµ ∼ N (φ

µ0
, V φµ

)I(φµ ∈ A), Σµ ∼ IW(Sµ, Vµ). (11)

Next, for i = 1, ..., K, we specify:

µih ∼ N (µ
h0

, Vµh
), φih ∼ N (φ

h0
, Vφh

)I(|φih| < 1), σ2
ih ∼ IG(Vh, Sh), (12)

σ2
ξd

i
∼ IG(Vξd , Sξd), σ2

ξh
i
∼ IG(Vξh , Sξh). (13)

Finally, we define βih = (βih1, βih2)
′ and λi = (λi1, ..., λi5)

′ and write

βiµ ∼ N (β
µ0

, V βµ
), βih ∼ N (β

h0
, V βh

). (14)

λi ∼ N (µ
λ

, V λ), (15)

10We assume throughout that Ji
d0 = Ji

d1 = 0 and ∆di
0 = 0, i = 1, ..., K.

11We use A to identify the set of restrictions on φµ that guarantees covariance stationarity of µdt+1, i.e.
A ∈ RK×K : max

{
eig(Φµ)

}
< 1, where Φµ denotes the K × K matrix obtained by reshaping the K2 × 1

vector φµ appropriately.
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and

ρi J ∼ N
(

0, Vρ

)
× I

(∣∣ρi J
∣∣ < 1

)
. (16)

In common with Pettenuzzo et al. (2020) our priors are loose and mildly uninformative

with exception of φi
h (i = 1, ..., K) and the diagonal elements of Φµ, whose priors we

center on 0.98, and the jump intensity variance σ2
ξ i

d
, whose prior is centered on 32. We

center the priors of φi
h (i = 1, ..., K) and the diagonal elements of Φµ on a value just below

unity in order to capture a small but highly persistent component in the mean of the

dividend growth rate process.12 Similarly, we choose a relatively high value for the prior

of the jump intensity variance parameter σ2
ξ i

d
to better allow our model to distinguish

between infrequent, large jumps and persistent stochastic volatility dynamics. For lower

values of this prior, the component model tends to assign a large fraction of movements

in dividend growth to small and medium-sized jumps and finds it difficult to separate

between jumps and time-varying volatility. To capture the effect of dividend suspenders

on estimates of aggregate dividend growth, we estimate the model both with and without

dividend suspenders included.13

3.3 Estimation Methodology

We estimate our model using Bayesian Gibbs sampling and, to overcome the high

computational costs introduced by both the daily data frequency and the multivariate

nature of the model, we rely on a precision-based sampling approach.14 We briefly

describe how we obtain posterior estimates for the model parameters and latent state

vectors. Throughout, we use compact notations hd, ξd, ξh, and Jd to denote the collection

of (T× 1) vectors of log variances, jump intensities and locations across the K industries,
12This is consistent with a number of papers that estimate the parameters of stationary AR(1) processes

such as those we employ to pin down time variation in our persistent mean component as well as in the
stochastic volatility process, see, e.g., Clark and Ravazzolo (2015) and Chib et al. (2006).

13We exclude dividend suspenders by setting Ii
t = 0 for cases where firms announce that they have

suspended dividends on day t.
14Precision-based sampling approaches for state-space models were first considered in Chan and

Jeliazkov (2009) and McCausland et al. (2011). Their ease of implementation and computational efficiency
makes these samplers very competitive. See Chan et al. (2021) for a recent summary of their applications in
econometrics, ranging from dynamic factors models to macroeconomic forecasting.
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i.e., hd =
{

hi
d

}K

i=1
, ξd =

{
ξi

d

}K

i=1
, ξh =

{
ξi

h

}K

i=1
, and Jd =

{
Ji

d

}K

i=1
. We also collect all the

remaining parameters into the vector Θ,

Θ =
{

µµ, Φµ, Σµ, µ1h, ..., µKh, φ1h, ..., φKh, σ2
1h, ..., σ2

Kh, λ1, ...., λK, σ2
ξ1

d
, ..., σ2

ξK
d

,

σ2
ξ1

h
, ..., σ2

ξK
h
, β1µ, ..., βKµ, β1h, ..., βKh, ρ1J , ..., ρKJ

}
.

(17)

While the joint posterior distribution of all model parameters and latent state variables

is highly non-linear, we can employ a Gibbs sampler algorithm augmented with a number

of Metropolis-Hastings steps to draw recursively from the conditional posteriors of the

model parameter and state variables. In particular, we break the evaluation of the joint

posterior distribution into six blocks:

1. µd| hd, ξd, Jd, Θ,DT;

2. hi
d

∣∣∣ µi
d, ξi

d, ξi
h, Ji

d, Θ,DT (i = 1, ..., K);

3. Ji
d

∣∣∣ µi
d, ξi

d, ξi
h, hi

d, Θ,DT (i = 1, ..., K);

4. ξi
d

∣∣∣ µi
d, Ji

d, ξi
h, hi

d, Θ,DT (i = 1, ..., K);

5. ξi
h

∣∣∣ Ji
d, hi

d, Θ,DT (i = 1, ..., K);

6. Θ| µd, hd, ξd, ξh, Jd,DT.

Here DT denotes the information set up to time T. The last block is further broken

into twelve separate sub-blocks, one for each element of the parameter vector in (17).

The sampler presented above draws on the approach introduced in Pettenuzzo et al.

(2020) but requires a number of important changes to allow for (i) joint modeling of the

vector of industries’ persistent mean components while allowing for contemporaneous

correlation and lead-lag effects; (ii) state-dependency in the jump probability; (iii)

exogenous regressors in the state equations of the persistent mean, log-variance, and

jump probability components; (iv) jumps in the volatility process; (v) correlated jumps in
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the mean and volatility processes; (vi) missing values in the industry dividend growth

rates.15 We refer the reader to Appendix A for further details.

At a high level, in addition to extending the original sampler to a multivariate setting,

the posteriors of the jump probabilities of industry i, Ji
d, which can simultaneously affect

both the dividend growth and volatility, combine information from both processes. As a

result, the posterior of Ji
dt now depends on both ∆dt and hi

dt. In addition, the posteriors

of the log-variances hi
d, which we compute using the data-augmentation approach of

Kim et al. (1998), now depend on both the jump probabilities and intensities Ji
d and ξi

h as

well as on the exogenous regressors in (6). This generalization requires a number of

modifications to the mixture of normal approximation and data augmentation steps.

Finally, the posterior of the correlation parameter ρi J , which is restricted to lie between -1

and 1 through its prior, requires the introduction of an accept-reject step to avoid draws

that violate this condition. These changes, in turn, trigger a large number of other

modifications that affect the remaining blocks and steps in the sampler.

Here we focus on the first block, µd| hd, ξd, Jd, Θ,DT, which is novel, as well as the first

three steps of the last block, Θ| µd, hd, ξd, ξh, Jd,DT, which are related:

• µµ

∣∣∣ µd, Θ−µµ
,DT;

• Φµ

∣∣ µd, Θ−Φµ ,DT;

• Σµ

∣∣ µd, Θ−Σµ ,DT

Step 1: Start by rewriting the observation equation in (2) as follows:

∆d? = Zµµd + Σ1/2
d εd εd ∼ N (0, ITK), (18)

15To handle missing values, we follow a standard approach (see for example Durbin and Koopman
(2012)) and work with a slightly modified state space representation which removes rows (and, when
needed, columns too) that correspond to missing observations in our data.
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where

∆d? = vec



(∆d1 − ξd1 � Jd1)

′

...
(∆dT − ξdT � JdT)

′


′ , (19)

Zµ =


1

. . .

1

 µd = vec




µ′d1
...

µ′dT


′ εd = vec




ε′d1
...

ε′dT


′ , (20)

and

Σd =


Σd1

. . .

ΣdT

 . (21)

Next, combine the state equation for µdt+1 in (3) with the initial condition in (9) into:

Hµµd = δ̃µ + Ω1/2
µ εµ εµ ∼ N (0, ITK), (22)

where

Hµ =


Ik 0 . . . . . . 0
−Φµ Ik 0 · · · 0

...
...

... . . . ...
0 . . . 0 −Φµ Ik

 δ̃µ =


µµ +

(
IK −Φµ

)−1 Xµ
1 Bµ(

IK −Φµ

)
µµ + Xµ

2 Bµ

...(
IK −Φµ

)
µµ + Xµ

TBµ

 , (23)

and

Ωµ =


Σ†

µ

Σµ

. . .

Σµ

 (24)
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Rearranging (22), we get

µd = δµ + H−1
µ εµ (25)

where δµ = H−1
µ δ̃µ. It follows that

µd ∼ N
(

δµ,
(

H ′µΩ−1
µ Hµ

)−1
)

. (26)

Finally, combining (18) and (26) leads to the following conditional posterior for µd:

µd| hd, ξd, Jd, µµ, Θ,DT ∼ N (µd, V µ) (27)

where

V µ =
[

H ′µΩ−1
µ Hµ + Z′µΣ−1

d Zµ

]−1

µd = V µ

[
(H ′µΩ−1

µ Hµ)δµ + Z′µΣ−1
d ∆d?

]
.

(28)

Step 6, part 1: µµ

∣∣∣ µd, Θ−µµ
,DT

Start by combining (3) and (9) and rewriting them as

Zµµ
= Wµµ

µd + Ω1/2
µ εµ εµ ∼ N (0, ITK), (29)

where

Zµµ
=


µd1 − (IK −Φµ)−1Xµ

1 Bµ

µd2 −Φµµd1 − Xµ
2 Bµ

...
µdT −ΦµµdT−1 − Xµ

TBµ

 , Wµµ
=


IK

(IK −Φµ)
...

(IK −Φµ)

 . (30)

Combining (29) with the prior for µµ in (11) leads to

µµ

∣∣∣ µd, Θ−µµ
,DT ∼ N (µµ, V µµ), (31)
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where

V µµ =
[
V−1

µµ
+ W ′

µµ
Ω−1

µ Wµµ

]−1
, (32)

and

µµ = V µµ

[
V µµ

µ
µ0

+ W ′
µµ

Ω−1
µ Zµµ

]
. (33)

Step 6, part 2: Φµ

∣∣ µd, Θ−Φµ ,DT

Start by rewriting (3) as

Z
Φµ

t+1 = W
Φµ

t φµ + Σ1/2
µ εµt+1, (34)

where φµ = vec
(

Φ′µ

)
,

Z
Φµ

t+1 = µdt+1 − µµ − Xµ
t+1Bµ, (35)

and

W
Φµ

t = IK ⊗
(

µdt − µµ

)′
. (36)

Following Kim et al. (1998), we start by obtaining a candidate draw for φµ from the

following distribution:

φ?
µ ∼ N

(
φµ, V φµ

)
, (37)

where

V φµ =

[
V−1

φµ
+

T−1

∑
t=1

(
W

Φµ

t

)′
Σ−1

µ

(
W

Φµ

t

)]−1

, (38)

and

φµ = V φµ

[
V−1

φµ
φ

µ0
+

T−1

∑
t=1

(
W

Φµ

t

)′
Σ−1

µ Z
Φµ

t+1

]
. (39)
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Next, if the draw is retained, i.e. satisfies the stationarity restriction I
(

φ∗µ ∈ A
)

, we

accept φ∗µ with probability e
(

g
(

φ∗µ

)
−g
(

φold
µ

))
where φold

µ is the retained draw from the

previous iteration of the Gibbs sampler, and

g
(

φµ

)
= ln p

(
φµ

)
+

1
2

ln
∣∣∣Σ†

µ

∣∣∣− 1
2

{(
µd1 − µµ −

(
IK −Φµ

)−1 Xµ
1 Bµ

)′ (
Σ†

µ

)−1

(
µd1 − µµ −

(
IK −Φµ

)−1 Xµ
1 Bµ

)}
,

(40)

with p
(

φµ

)
denoting the prior of φµ from (11) and as above Φµ denotes the K×K matrix

obtained by reshaping φµ to conform with (3).

Step 6, part 3: Σµ

∣∣ µd, Θ−Σµ ,DT

Start by obtaining a candidate draw for Σµ from the following distribution:

Σ∗µ ∼ IW
(

Vµ + T − 1, Sµ

)
, (41)

where

Sµ = Sµ +
T−1

∑
t=1

(
Z

Φµ

t+1 −W
Φµ

t φµ

) (
Z

Φµ

t+1 −W
Φµ

t φµ

)′
. (42)

We accept Σ∗µ with probability e(g(Σ∗µ)−g(Σold
µ )) where Σold

µ is the retained draw from the

previous iteration of the Gibbs sampler, and

g
(
Σµ

)
= ln p

(
Σµ

)
+

1
2

ln
∣∣∣Σ†

µ

∣∣∣− 1
2

{(
µd1 − µµ −

(
IK −Φµ

)−1 Xµ
1 Bµ

)′ (
Σ†

µ

)−1

(
µd1 − µµ −

(
IK −Φµ

)−1 Xµ
1 Bµ

)}
,

(43)

with p
(
Σµ

)
denoting the prior of Σµ from (11).

4 Empirical Results

Having introduced our econometric approach, we next turn to our empirical results.
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4.1 Parameter Estimates

Table 1 reports full-sample (January 2005–April 2020) estimates of the posterior mean,

standard deviation and 90% credible sets for the parameters of the model (2)-(8). In line

with historical data, our estimates of the implied unconditional mean (µiµ) suggest an

annualized average dividend growth rate between 5.7% (Industry 3, high tech) and 8.7%

(Industry 5, other). Estimates of the diagonal elements of Φµ are close to 0.98, implying

that our approach extracts a highly persistent mean component from the daily dividend

growth series. This component is very smooth at the daily frequency (Σ1/2
µ,ii ranges from

0.005 to 0.007) compared to the far more volatile, temporary shocks to the dividend

process (σih ranges from 0.28 to 0.74).

Estimates of the off-diagonal terms of Φµ are small but quite precisely estimated. In

particular, lagged values of µdt from Industry 5 (Others, including mines, finance and

hotels) have a significantly positive effect on the µdt values of industries 1, 2, and 3. When

added to the already highly persistent autoregressive (diagonal) terms, these spillover

effects considerably increase the overall persistence of the µdt processes.

The stochastic volatility processes for daily dividend growth are far less persistent

than the mean processes with φih parameters ranging from 0.895 to 0.944. These values

are also notably smaller than estimates commonly obtained for the volatility of daily

stock returns. Dividend news can therefore not be the only source of volatility clustering

in daily stock returns, suggesting either the presence of additional news sources or a

complicated propagation mechanism related to the trading process itself.

Stochastic volatility in dividend growth is also strongly affected by jumps and the

estimated variance parameters σξ i
h

are similar in magnitude to those of σih. These jumps

have an important effect on volatility dynamics during the pandemic.

Our estimates of the Probit specification for the jump process suggest that the jump

component in the daily dividend growth series is highly volatile (σξ i
d

= 2.9). For

industries 1, 2, and 5, the negative and significant estimates of λi2 show that jumps are

significantly more likely to occur on days with a smaller number of dividend

announcements. For industries 3 and 4 (high tech and health), these coefficient estimates
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are not significant, however. The coefficients on the proportion of dividend suspenders,

Rst+1 are highly significant for four of five industries, the one exception being Industry 4

(health). Conversely, lagged jumps or lagged values of |∆dt| have no significant

association with the subsequent jump probability for any of the industries. While jumps

can simultaneously affect the mean and volatility of the daily dividend growth process,

we find that the magnitudes of such movements are uncorrelated.

4.2 Suspensions and Dividend Growth Dynamics

Figure 4 plots the persistent dividend growth component µdt+1 for the five industries

computed with and without dividend suspensions in the model. We focus on 2020

because the two series are almost indistinguishable for the vast majority of the post-2005

sample, the only exception being a brief period during the GFC.

In the first two months of 2020, the two series are very similar as dividend

suspensions are infrequent. However, from mid-March 2020 onward, we see a sharp

divergence in the µdt estimates extracted from the two models: while the µdt estimates

implied by the model that ignores dividend suspenders remain quite high or only

decline very gradually during 2020, the µdt estimates from the generalized model that

includes suspenders decline sharply for Industry 1 and 2 with the sharpest decline

occurring from mid-March through April, 2020. By the end of April, µdt has fallen

around 4% before it stabilizes or begins to slowly increase.

To further illustrate the impact of changes in the proportion of dividend suspenders

on the dynamics of daily dividend growth, we proceed to compute long-run responses

of dividend growth, volatilities, and jump probabilities with respect to changes in Rst+1.

Estimating these long run effects in a highly non-linear model such as ours is far from

simple. As discussed in Gallant et al. (1993) and Koop et al. (1996), these responses are

both history- and shock-dependent and so their computation requires special care. To

deal with this, we follow the approach in Gallant et al. (1993), and compute

“representative”, or average, response sequences using Monte Carlo integration. In

particular, we begin by initializing all the conditioning variables at their sample means

and proceed by permanently altering the fraction of dividend suspenders. Next, for each
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component of the dividend process, we simulate S realizations of the persistent

component, volatility, jump probability, and jump intensities, denoted by
{

µs
dT+H

}S
s=1,{

exp
(
hs

dT+H/2
)}S

s=1,
{

Js
dT+H

}S
s=1,

{
ξs

dT+H
}S

s=1,
{

ξs
hT+H

}S
s=1, where s = 1, ..., S indexes

the simulation and H is the horizon.

Our approach accounts for parameter uncertainty since all parameters and latent

states in the model (including the mean, volatility, and jump components) are treated as

random variables. In particular, instead of iterating forward on the various processes by

setting the parameter estimates of the dividend growth model at their respective

posterior means, we follow Koop (1996) and draw from the entire (posterior)

distribution of these parameters.

Results from this exercise are reported in the left column in Figure 5 which sets H =

252 days and changes Rst+1 from 0 to 50%. For stocks in Industry 1, µdt drops from

around 0.08 to -0.05 as we increase Rst+1 from zero to 50%. Conversely, in Industry 5 µdt

only declines from 0.08 to 0.06 as Rst+1 is reduced from zero to 50%.

The proportion of dividend suspensions also has a large effect on the jump probability.

The right column in Figure 5 plots industry-level jump probabilities as a function of Rst+1,

again fixing the other terms in (5) at their historical averages. Reflecting the heterogeneity

in the estimates of λi3, results vary widely across industries. For example, as we vary the

proportion of suspenders from zero to 50%, the jump probability increases from 5% to

nearly 40% for consumer goods stocks (Industry 1), but only from 5% to less than 10% for

industry 4 (health care).

The empirical analysis conducted here is made possible by our bottom-up approach

which allows us to compute the direct effect of dividend suspenders on dividend growth

expectations. Aggregate top-down approaches do not distinguish between smaller

dividends arising from dividend reductions versus dividend suspensions. To see this,

consider a case with two equally-sized companies (A and B), both paying $10 million in

dividends the previous year. In one scenario, company A doubles its dividends to $20m,

while company B suspends dividends. In another scenario, the two companies both

maintain dividends at $10m. From a top-down perspective, the two scenarios are

identical because aggregate dividends are the same ($20m). However, this clearly
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ignores the signal value from company B suspending its dividends. Our empirical

analysis demonstrates that this distinction can be very important for some industries

such as consumer goods and manufacturing, though it matters less for industries such as

high tech and health stocks.

4.3 Specification Analysis

To better understand the need for all three components in our dynamic econometric

specification, we next examine the behavior of these components as we alter the model

specification.

To understand the need for the jump and SV components, Figure 6 presents QQ plots

for our model along with those generated using a model without these two components

and, for reference, a 45 degree line representing a perfect fit. The figure clearly

demonstrates how important the jump and SV components are: the model without these

components completely misses the large outliers in the left and right tails across all

industries.

Because all three latent components of our model are intricately linked, removing

any one of them will affect the other components which will attempt to make up for the

absence of a component. This will affect the extent to which the individual components

can be interpreted economically and their ability to capture specific features of the

dividend growth process. We next illustrate this point through a set of plots.

Figure 7 plots the extracted mean component µdt from our full model (benchmark)

versus that from a model with (i) no jumps (top row); (ii) no SV (middle row); or (iii) no

jumps and no SV (bottom row). The left column shows results for Industry 1 (consumer

goods) while the right column shows results for Industry 5 (Other). Omitting jumps (top

row) makes the µdt process much noisier, introducing many small, jittery movements

that quickly reverse themselves and reduce the persistence in the process, particularly

for consumer goods stocks. Still, the mean process extracted from the model without

jumps clearly trails the baseline model. Keeping jumps, but removing the SV component

(middle row) leads to similar differences relative to the benchmark model, although at

times the two series differ by more than what we see in the top panels. Removing both
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jumps and SV dynamics (bottom panel) generates a µdt process that is much more volatile

and fluctuates over a wider range of values than the baseline model with notable swings

in 2008/09, 2012, and 2013.

These plots show that removing any one of the jump or SV components (but not both)

leads to noisier estimates of the persistent dividend growth component. Removing both

components has a much greater impact, leading to notably bigger swings in the persistent

dividend growth component extracted from the data.

Next, consider how removing the jump component affects the stochastic volatility

component extracted from the data. The top row in Figure 8 plots the log volatility

component for the baseline model and compares it to a model with no jumps. Leaving

out jumps results in a volatility process that is dominated by multiple large spikes that

immediately reverse themselves. This makes the extracted volatility process less smooth

and more difficult to interpret and use for prediction purposes.

Removing the SV component in turn also affects the extracted jump component. To see

this, the bottom row of Figure 8 shows the time series of the extracted jump components

from the baseline model versus that of a model which excludes the SV component. While

the processes are reasonably similar, we also notice the much higher incidence of jumps

for Industry 5 (which includes financial firms) during the GFC and the Eurozone crisis

(2011).

4.4 Dividend Growth Volatility and Uncertainty Measures

For each of the five industries, the left panels in Figure 9 plot the daily dividend growth

volatility along with the aggregate stock market volatility (as measured by the VIX) and

a proxy for economic policy uncertainty (Baker et al. (2016)). For industries 1, 2, and 5,

dividend growth volatility spikes sharply in mid-March. Such spikes do not occur for

industries 3 and 4 (high tech and health care) whose firms were less affected by the

Covid pandemic. We also see local, industry-specific rises in volatility in May and

August/September, though again this varies considerably across industries.

These patterns in dividend growth volatility can be compared to the evolution in the

VIX. In normal markets, we would expect firms to deliberate on dividend suspension
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decisions over an extended period of time, suggesting that stock market volatility

should lead dividend volatility by a lengthy margin. In fact, the mid-March spikes in

volatility of daily dividend growth for industries 1, 2 and 5 only trails the VIX by a few

days, indicating the speed with which firms changed their dividend policies during the

pandemic.

In the earliest phase of the pandemic that lasted up to late March, the Economic Policy

Uncertainty index of Baker et al. (2016) closely follows our dividend volatility estimate

that accounts for suspensions. However, while dividend volatility drops sharply in early

April, economic policy uncertainty remains elevated until late May and stays well above

its pre-pandemic level throughout the summer and early fall of 2020.

We conclude that the VIX, Economic Policy Uncertainty index, and dividend growth

volatility measures for 3 of the 5 industries all reached highly abnormal levels in the days

after the pandemic lockdown. While the spike in the VIX preceded that of the dividend

growth volatility measure, it only did so by a few days, indicating the speed with which

companies adjusted their dividend policies. Our results also demonstrate considerable

heterogeneity in dividend growth volatility across the five industries, reflecting the very

different impact the pandemic lockdown had on cash flows in different industries.

4.5 Dividend Growth Estimates and Market Volatility

To formally analyze the lead-lag relation between the VIX and the stochastic volatility

component extracted from our daily dividend growth measure with (SVsus
t ) and without

(SVno−sus
t ) suspenders, we next estimate a set of simple linear models that include a few

lags of these variables:

VIXt = αVIX +
3

∑
j=1

βVIX
j VIXt−j +

3

∑
j=1

γVIX
j SVt−j + εVIX

t , (44)

SVt = αSV +
3

∑
j=1

βSV
j VIXt−j +

3

∑
j=1

γSV
j SVt−j + εSV

t , (45)

where SVt refers to either SVsus
t or SVno−sus

t . Our regressions include three daily lags

but our empirical results are not sensitive to this choice. Because the VIX measures the
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volatility for the overall stock market, these predictive regressions use real-time volatility

estimates from a univariate model estimated on aggregate dividends.16

Table 2 reports results from various versions of these regressions. First consider the

regression in (44) that uses the VIX as the dependent variable and only includes its own

lags. As shown in column (1), the first three lags of the VIX account for 92.5% of the

variation in next day’s VIX. Omitting lags of the VIX, lagged daily values of the

dividend volatility estimates that account for suspensions are highly statistically

significant, although they only explain a little under 17% of the variation in the VIX.

Interestingly, the three lags of SVsus maintain their joint statistical significance even after

including the lagged values of the VIX (column 4). This is a strong result given the

finding in Paye (2012) that few variables are capable of predicting movements in the VIX

after accounting for lagged values of the VIX. The marginal increase in the adjusted R2

of the VIX regression due to the inclusion of lags of SVsus is quite small, however,

provided that lags of the VIX are also conditioned on.

In sharp contrast, the dividend volatility estimate that ignores suspenders (SVno−sus
t )

has no predictive power over the VIX neither when appearing on its own (column 3) or in

combination with lags of the VIX (column 5). In fact, SVno−sus generates a negative value

of the adjusted R2 value (−1.52%) in the first of these regressions.

Turning to the reverse regressions that use dividend volatility as the dependent

variable (45), lagged values of the VIX explain around 30% of the daily variation in SVsus

during our sample (column 6), which is substantially lower than the 49% explained by

lagged values of SVsus (column 7). Adding lags of the VIX to lags of SVsus marginally

increases the adjusted R2 from 49% to 52% (column 8).

Real-time estimates of dividend growth volatility based on the model that ignores

dividend suspensions are far less persistent and bear little relation to the VIX. In fact,

lagged values of the VIX fail to be (jointly) significant in regressions that use SVno−sus as

the dependent variable. Even lagged values of SVno−sus have no predictive power over

future values, suggesting that estimation error in the real-time estimates of this variable

16Parameter estimates for this aggregate model with and without dividend suspenders are reported in
Table B.1, while real-time estimates of µdt and exp(hdt/2) are displayed in Figure B.1. Conversely, the
industry-level volatility values are based on full-sample estimates.
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dampens any underlying persistence.

4.6 Variation in Dividend Futures Prices

Stock prices reflect investors’ views on the discounted present value of all future

dividend payments, including payments that occur in the distant future. However, there

is also a market for dividend futures whose prices incorporate investor expectations

about dividend payments in the near-future, e.g., the calendar year 2020 or 2021.

Examining this market during the early stage of the Covid-19 pandemic, Gormsen and

Koijen (2020) find that investors sharply reduced their expectations of near-term

dividend payments.

To explore the link between our dividend growth estimates and prices in this market,

we obtain daily data on dividend futures from the Chicago Mercantile Exchange (CME)

which tracks the annual dividends paid by companies in the S&P 500 at different

maturities. We focus on the two most liquid and directly impacted dividend futures

with maturity dates of December 2020 and December 2021.

The right column in Figure 9 plots volatility estimates from GARCH(1,1) models fitted

to the daily returns of these dividend futures contracts along with our five industry-level

dividend growth volatility estimates. We see clear similarities between the sharp mid-

March peak in our dividend volatility estimates for Industries 1, 2 and 5 particularly

versus the December 2021 contract. In contrast with our SV estimates, however, dividend

futures volatility declines largely monotonically for the remainder of our sample.

To further examine links between news in the dividend futures market and estimates

of the dividend growth components from our econometric model, Table 3 presents

regressions of daily returns on the two dividend futures contracts on concurrent

(same-day) estimates of the mean, variance and jump components extracted from our

model. The first row presents results from a model that uses real-time estimates obtained

from the earlier univariate model fitted to the aggregate dividend data while rows 2-6

report results for the five individual industries. In each case, we report slope coefficients,

t-statistics, and R2 values from univariate regressions that use daily returns on the

futures contracts as the dependent variable and an intercept and one of the components
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from our dividend growth model as regressor.

Upward revisions in the persistent dividend growth component ∆µdt for industries 1

and 2 are significantly positively correlated with returns on both dividend futures

contracts. This is consistent with dividend futures reacting positively to the same growth

news that our µdt component tracks. Conversely, the aggregate volatility component

extracted from our model, exp(hdt), is significantly negatively correlated with returns on

both dividend futures contracts. This is consistent with the common finding that returns

and volatility move in opposite directions since higher uncertainty raises risk premia.

Finally, the jump component for Industry 5 (Other, including financial firms) is

significantly positively correlated with dividend futures contracts, with very high R2

values. This reflects the large negative jumps to dividend growth during the early stage

of the pandemic (Figure 3) which occurred on the same days that returns on dividend

futures were sharply negative.17

5 Conclusion

We develop a multivariate dynamic econometric model and an associated MCMC

sampling approach that helps us extract estimates of persistent mean, stochastic

volatility and jump components which are salient features of the daily dividend growth

process and played an important role during the Covid-19 pandemic. Our empirical

estimates suggest that dividend suspensions had a sizeable impact on the distribution of

dividend growth in industries such as consumer goods and manufacturing while they

had less of an impact on the high tech and healthcare industries during the pandemic.

Our econometric approach is likely to prove valuable for handling other data sets

with features similar to those observed for daily dividend growth. In particular, outliers

(jumps), correlated dynamics, and time-varying volatility are features of time series with

considerable cross-sectional heterogeneity such as house prices or inflation rates for

different categories of goods and services. For such variables, the underlying persistent

17Figure B.2 shows daily returns on the dividend futures contracts expiring on December 2020 and
December 2021. Returns were sharply negative on most days in the second half of March.
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(predictive) component is often quite small and extracting an accurate estimate of it

requires handling outliers and time-varying volatility.
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Parameter estimates

Ind 1 Ind 2 Ind 3 Ind 4 Ind 5

Mean Std 90% C.S. Mean Std 90% C.S. Mean Std 90% C.S. Mean Std 90% C.S. Mean Std 90% C.S.
µiµ 0.074 0.008 0.061 0.086 0.068 0.006 0.058 0.078 0.057 0.006 0.047 0.067 0.061 0.005 0.053 0.069 0.087 0.012 0.067 0.106

Σ1/2
µ,ii 0.005 0.000 0.004 0.006 0.005 0.000 0.004 0.005 0.005 0.001 0.004 0.006 0.005 0.001 0.004 0.006 0.007 0.001 0.006 0.008

µih -4.946 0.133 -5.165 -4.732 -5.193 0.137 -5.431 -4.966 -4.790 0.145 -5.027 -4.555 -5.237 0.140 -5.457 -5.014 -4.356 0.170 -4.635 -4.072
φih 0.922 0.009 0.907 0.937 0.895 0.008 0.881 0.909 0.911 0.009 0.897 0.925 0.944 0.008 0.930 0.957 0.903 0.009 0.888 0.918
σih 0.457 0.054 0.368 0.547 0.682 0.053 0.595 0.774 0.564 0.062 0.456 0.670 0.281 0.046 0.210 0.357 0.738 0.065 0.633 0.839
σ

ξi
d

2.853 0.044 2.782 2.927 2.892 0.045 2.818 2.968 2.897 0.044 2.827 2.970 2.945 0.045 2.873 3.023 2.869 0.043 2.799 2.942

σ
ξi

h
0.634 0.068 0.525 0.751 0.670 0.085 0.541 0.814 0.669 0.088 0.539 0.822 0.899 0.142 0.677 1.155 0.635 0.079 0.519 0.770

λi1 -1.275 0.063 -1.377 -1.170 -1.542 0.068 -1.659 -1.431 -1.463 0.075 -1.589 -1.342 -1.709 0.108 -1.892 -1.536 -1.268 0.062 -1.372 -1.168
λi2 -0.048 0.014 -0.072 -0.026 -0.025 0.011 -0.043 -0.007 -0.010 0.020 -0.044 0.024 0.092 0.054 0.005 0.179 -0.017 0.005 -0.026 -0.009
λi3 2.974 0.634 2.006 4.055 1.834 0.721 0.625 3.061 1.843 0.720 0.667 3.043 0.814 1.224 -1.322 2.679 1.995 0.554 1.103 2.921
λi4 0.087 0.126 -0.124 0.287 -0.106 0.172 -0.398 0.165 -0.303 0.186 -0.622 -0.001 -0.131 0.343 -0.743 0.390 -0.109 0.130 -0.323 0.097
λi5 -0.056 0.084 -0.203 0.064 0.074 0.059 -0.027 0.168 0.014 0.097 -0.152 0.159 -0.335 0.269 -0.819 0.031 -0.030 0.101 -0.220 0.113
βiµ -0.005 0.002 -0.009 -0.002 -0.001 0.002 -0.004 0.002 -0.001 0.002 -0.005 0.003 -0.002 0.002 -0.006 0.002 -0.001 0.003 -0.006 0.004
βih1 0.054 0.218 -0.308 0.402 0.357 0.309 -0.199 0.823 -0.443 0.297 -1.002 -0.016 -0.084 0.145 -0.327 0.147 0.205 0.243 -0.193 0.611
βih2 0.042 0.035 -0.016 0.100 -0.043 0.047 -0.123 0.035 0.043 0.047 -0.032 0.119 0.008 0.031 -0.042 0.058 0.012 0.058 -0.085 0.105
ρi J -0.003 0.097 -0.164 0.152 -0.001 0.095 -0.159 0.158 -0.001 0.096 -0.163 0.159 0.001 0.075 -0.126 0.120 -0.016 0.100 -0.180 0.154

Mean 5pct 95pct
Φµ(., 1) Φµ(., 2) Φµ(., 3) Φµ(., 4) Φµ(., 5) Φµ(., 1) Φµ(., 2) Φµ(., 3) Φµ(., 4) Φµ(., 5) Φµ(., 1) Φµ(., 2) Φµ(., 3) Φµ(., 4) Φµ(., 5)

Φµ(., 1) 0.980 0.004 0.001 0.000 0.010 0.979 0.001 -0.003 -0.004 0.005 0.980 0.008 0.005 0.004 0.016
Φµ(., 2) 0.007 0.979 0.002 0.001 0.009 0.002 0.979 -0.004 -0.005 0.002 0.013 0.980 0.008 0.007 0.016
Φµ(., 3) 0.002 0.002 0.979 0.002 0.009 -0.004 -0.003 0.979 -0.004 0.002 0.008 0.006 0.979 0.008 0.016
Φµ(., 4) 0.000 0.002 0.000 0.979 0.003 -0.006 -0.003 -0.005 0.979 -0.004 0.005 0.006 0.006 0.980 0.011
Φµ(., 5) 0.003 0.004 0.003 0.002 0.980 0.000 0.001 0.000 -0.002 0.979 0.006 0.006 0.006 0.005 0.980

Table 1: Parameter estimates for the dividend growth rate model. This table shows parameter estimates for the
model that accounts for dividend suspenders fitted to the daily dividend growth as described in Section 3.
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Volatility Predictive Regressions

VIXt+1 SVOLsus,t+1 SVOLno−sus,t+1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

VIXt .654*** .621*** .652*** -.009 .004 -.001 -.000
[6.30] [4.76] [6.36] [-0.98] [0.41] [-0.53] [-0.20]

VIXt−1 .408*** .433*** .411*** .002 -.002 -.001 -.001
[3.00] [3.24] [2.98] [0.39] [-0.25] [-0.91] [-0.96]

VIXt−2 -.097 -.059 -.096 .022*** .005 .003 .002
[1.43] [-0.65] [-1.38] [3.49] [1.22] [1.38] [0.99]

SVOLsus,t 8.200** -2.162** .417*** .351***
[2.23] [-2.31] [4.48] [4.30]

SVOLsus,t−1 5.960*** 1.310*** .209*** .164**
[3.59] [2.74] [3.09] [3.22]

SVOLsus,t−2 2.505 -1.436*** .175* .148**
[1.15] [-2.82] [1.81] [1.81]

SVOLno−sus,t 2.131 -1.946 .152 .148
[0.26] [-1.33] [1.61] [1.63]

SVOLno−sus,t−1 2.918 1.584 .058 .053
[0.35] [0.60] [1.58] [1.48]

SVOLno−sus,t−2 .438 -1.293 -.025 -.024
[0.06] [-0.82] [-0.76] [-0.74]

adj. R2 92.55% 16.93% -1.52% 92.83% 92.38% 30.55% 49.01% 52.09% -0.40% 1.27% 0.12%
F− test VIX block (p-value) 0.00 - - 0.00 0.00 0.00 - 0.01 0.53 - 0.69
F− test SVOL block (p-value) - 0.00 0.06 0.00 0.55 - 0.00 0.00 - 0.05 0.05
Observations 186 186 183 186 183 186 186 186 185 182 182

Table 2: Volatility predictive regressions. This table shows estimates of daily predictive regressions for the
VIX (columns 1-5), a stochastic volatility measure taking into account dividend suspenders (columns 6-8), and
a stochastic volatility measure that does not take into accounts the dividend suspenders (columns 9-11) using
three lags of the variables. The F-test reports the p-value of the joint null hypothesis that the “block” (e.g., three)
coefficients on lagged VIX or stochastic volatility are zero. Newey-West s.e. (5 lags). The sample period is from
January 2020 to September 2020.



ret2020
t ret2021

t

(1) (2) (3) (4) (5) (6)
∆µdt exp(hdt) Jdt ∆µdt exp(hdt) Jdt

Aggregate .303 -.004*** .001 .443 -.001** .001
[1.09] [-6.47] [0.35] [1.52] [-2.32] [0.15]
2.86% 15.26% 0.13% 2.92% 0.59% 0.04%

Industry 1 2.961* -0.048 -.001** 4.443** -.029 .000
[1.74] [-0.84] [-2.21] [2.11] [-0.36] [0.15]
4.43% 0.70% 0.35% 4.75% 0.12% 0.01%

Industry 2 4.144** .111 .001 9.122*** .190 .000
[2.56] [0.84] [1.27] [2.72] [1.26] [0.57]
3.04% 2.44% 0.29% 7.01% 3.44% 0.02%

Industry 3 2.468* 0.084 .000 3.627 .072 .001*
[1.96] [0.83] [0.07] [1.63] [0.52] [1.92]
1.58% 0.21% 0.00% 1.62% 0.07% 0.05%

Industry 4 2.101 .213 .000 2.911 .421 -.002
[0.99] [1.07] [0.50] [1.18] [1.18] [-0.82]
1.11% 0.31% 0.01% 1.02% 0.58% 0.02%

Industry 5 .369 -.115* .011** -1.300 -.026 .022**
[0.69] [-1.90] [2.34] [-1.54] [-0.55] [2.03]
0.06% 6.88% 8.70% 0.33% 0.17% 18.73%

Table 3: Regressions of dividend futures returns on the estimated dividend growth components ∆µdt,
exp(hdt) and Jdt. This table presents estimates of the regression of dividend futures returns on ∆µdt, exp(hdt)
and Jdt at the aggregate and industry levels. Columns (1)-(3) report results for the dividend futures expiring on
December 2020, while columns (4)-(6) for the one expiring on December 2021.
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Figure 1. Distribution of dividend suspenders during the period from January 1st to September 30st 2020.
This figure plots time series of daily dividend suspensions since the start of 2020. For each day, the top panel
shows the number of firms which announce a dividend suspension, while the bottom panel shows the total
market capitalization of the dividend suspenders on those same days.

Figure 2. Distribution of dividend announcements during the period from January 1st to September 30st

2020. This figure plots time series of dividend announcements since the start of 2020. For each day , the top
panel shows the number of firms announcing dividends (both positive and suspenders). The bottom panel
shows the overall nominal amount of dividends announced by those firms (in billion dollars).
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Figure 3: Daily dividend growth during the full sample and the 2020 sub-sample. The left panels of this
figure show the daily dividend growth series ∆di

t for the five different industries over the full sample, January
2005–September 2020, while the right panels zoom into the 2020 subsample. Each row shows the dividend
growth series for a different industry.
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Figure 5: µi
dt and jump probability as a function of the fraction of dividend suspenders. This figure plots µi

dt
(left panels) and the jump probability (right panels) as a function of the proportion of dividend suspensions,
Nst+1/ (Ndt+1 + Nst+1), fixing the number of announcers Nst+1 at its historical average. Each row shows a
different industry.
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Figure 7: Model specification analysis - µi
dt. The top two panels show the times series of the latent µi

dt
component estimated either using the baseline model (in black) or a model without jumps, for industries one
(left panel) and five (right panel). The middle and bottom panels repeat the same experiment, where in the
middle panels we are plotting the µi

dt component for the baseline model (in black) against a model without SV,
while in the bottom panels we are plotting the µi

dt component for the baseline model (in black) against a model
with neither jumps or SV.

Figure 8: Model specification analysis - exp(hi
dt/2) and Ji

dtξ
i
dt. The top panel shows the time series of the latent

volatility exp(hi
dt/2) component estimated either using the baseline model (in black) or a model without jumps,

for industries one (left panel) and five (right panel). The bottom panel repeats the same analysis by plotting
the time series of estimated jumps in the dividend growth series, Ji

dtξ
i
dt, for the baseline model (in black) and a

model without SV.
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Figure 9: Stochastic volatility of the daily dividend growth series against VIX and futures returns volatility.
This figure plots the stochastic volatility of the daily dividend growth series - with dividend suspenders -
against the daily VIX, the Economic Policy Uncertainty index (left) and the time-varying volatility of two
different dividend futures returns, extracted using a GARCH(1,1) model (right). Each row shows results for
a different industry. The sample period is January 1, 2020 through September 30, 2020.



Appendix A MCMC Sampler

In this section we describe all steps in the MCMC sampler. We begin by rewriting the

model in its most general form. We next turn to the posterior derivations for all latent

states and model parameters.

A.1 Model

Let ∆di
t+1 denote the year on year dividend growth in industry i, with i = 1, ..., K. We

combine all the industry growth rates into the vector ∆dt+1 =
(
∆d1

t+1, ..., ∆dK
t+1
)′ and

specify the following model:18

∆dt+1 = µdt+1 + ξdt+1 � Jdt+1 + Σ1/2
dt+1εdt+1, (A.1)

where µdt+1 =
(
µ1

dt+1, ..., µK
dt+1

)′, ξdt+1 =
(
ξ1

dt+1, ..., ξK
dt+1

)′, Jdt+1 =
(

J1
dt+1, ..., JK

dt+1

)′ and

εdt+1 =
(
ε1

dt+1, ..., εK
dt+1

)′ ∼ N (0, IK) with Σdt+1 a K× K diagonal matrix.

The vector of time-varying means µdt+1 follows a VAR-X(1),

µdt+1 = µµ + Φµ

(
µdt − µµ

)
+ Xµ

t+1Bµ + Σ1/2
µ εµt+1, εµt+1 ∼ N (0, IK) (A.2)

where

Xµ
t+1 =



(
xµ

1,t+1

)′
0′ 0′ . . . 0′

0′
(

xµ
2,t+1

)′
0′ . . . 0′

...
...

... . . . ...

0′ 0′ 0′ . . .
(

xµ
K,t+1

)′

 (A.3)

includes all industry-specific exogenous regressors and Bµ =
(

β′1µ, ..., β′Kµ

)′
collects the

associated coefficients.

As for the time-varying variance-covariance of the model, we write

18� denotes the Hadamard product.
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Σdt+1 = diag
(

eh1
dt+1 , ..., ehK

dt+1

)
, with

hi
dt+1 = µih + φih

(
hi

dt − µih

)
+ ξ i

ht+1 Ji
dt+1 + β′ihxh

i,t+1 + σihεi
ht+1, i = 1, ..., K (A.4)

and where εi
ht+1 ∼ N (0, 1) independent among each other and across time.

Moving on to the industry-specific jump components of the model, starting with the

jump timings we specify (i = 1, ..., K)

Pr( Ji
dt+1 = 1

∣∣∣ xJ
i,t+1) = Φ(λ′ix

J
i,t+1) (A.5)

while for the jump intensities we write (i = 1, ..., K)

ξ i
dt+1

∣∣∣ xii
ht+1 ∼ N (ρi Jξ

i
ht+1, σ2

ξ i
d
) (A.6)

and

ξ i
ht+1 ∼ N (0, σ2

ξ i
h
). (A.7)

with ξ i
dt+1 and ξ i

ht+1 independent of εdt+1, εµt+1 and εi
ht+1 at all times. Finally, we assume

throughout that Ji
d0 = Ji

d1 = 0 for all i and ∆d0 = 0.

A.2 Posterior simulator

As we discussed in the main body of the paper, we can simulate from the joint posterior

distribution using the following sampler that sequentially draws from:

1. µd| hd, ξd, Jd, Θ,DT;

2. hi
d

∣∣∣ µi
d, ξi

d, ξi
h, Ji

d, Θ,DT (i = 1, ..., K);

3. Ji
d

∣∣∣ µi
d, ξi

d, ξi
h, hi

d, Θ,DT (i = 1, ..., K);

4. ξi
d

∣∣∣ µi
d, Ji

d, ξi
h, hi

d, Θ,DT (i = 1, ..., K);

5. ξi
h

∣∣∣ Ji
d, hi

d, Θ,DT (i = 1, ..., K);
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6. Θ| µd, hd, ξd, ξh, Jd,DT.

We have already reviewed the first block as well the first three parts of the last block,

so here we focus on blocks 2 to 5 as well the remaining steps of block 6.

A.2.1 hi
d

∣∣∣ µi
d, ξi

d, ξi
h, Ji

d, ΘDT (i = 1, ..., K)

Start by combining the state equation for hi
dt+1 in (A.4) and the initial condition for hi

d1 in

(10) to get

H ihhi
d = δ̃ih + Σ1/2

ih εih, εih ∼ N (0, ITK), (A.8)

where

H ih =


1 0 . . . . . . . . . 0
−φih 1 0 . . . . . . 0

...
...

... . . . ...
...

0 . . . . . . 0 −φih 1

 , δ̃ih =


µih + (1− φih)

−1β′ihxh
i1

(1− φih)µih + β′ihxh
i2 + ξ i

h2 Ji
d2

. . .
(1− φih)µih + β′ihxh

iT + ξ i
hT Ji

dT

 , (A.9)

εih =


εi

h1

εi
h2

. . .
εi

hT

 , and Σih =


σ2

ih
(1−φ2

ih)

σ2
ih

. . .

σ2
ih

 . (A.10)

This leads to

hi
d ∼ N

(
δih,

(
H ′ihΣ−1

ih H ih

)−1
)

, (A.11)

where δih = H−1
ih δ̃ih. Next, note that the observation equation is a nonlinear function of

hi
d, so we first rewrite it as

log
(

∆di,??
t

)2
= hi

dt + log
(

εi
dt

)2
, t = 1, ..., T, (A.12)
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where ∆di,??
t = ∆di

t − µi
dt − ξ i

dt Ji
dt. We follow Kim, Shephard, and Chib (1998) and

approximate log
(
εi

dt
)2 with a mixture of normal distributions,

log
(

εi
dt

)2
≈

7

∑
j=1

qj ×N
(

mj − 1.2704, v2
j

)
, (A.13)

where mj, v2
j , and qj are constants specified in Kim et al. (1998). Along with (A.13), we

also introduce a vector of state variables si
d =

{
si

dt
}T

t=1 such that Pr
(
si

dt = j
)
= qj, for

j = 1, .., 7 and t = 1, ..., T. Conditional on a particular realization of this vector of state

variables, we can rewrite the observation equation in (A.12) in compact form as

log
(

∆di,??
)2
∣∣∣∣ µi

d, hi
d, Ji

d, ξi
d, si

d ∼ N (mi + hi
d, V i), (A.14)

where

mi =


msi

d1
− 1.2704

msi
d2
− 1.2704

...
msi

dT
− 1.2704

 , V i =


v2

si
d1

v2
si

d2
. . .

v2
si

dT

 . (A.15)

Combining (A.14) and (A.11) leads to the following posterior for hi
d

hi
d

∣∣∣ µi
d, ξi

d, ξi
h, Ji

d, Θ,DT ∼ N
(

K−1
ih kih, K−1

ih

)
, (A.16)

where

Kih = H ′ihΣ−1
ih H ih + V i (A.17)

kih = H ′ihΣ−1
ih H ihδih + V−1

i

(
log
(

∆di,??
)2
−mi

)
. (A.18)
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As for drawing the vector of state variables si
d, note that

Pr
(

si
dt = j

∣∣∣ µi
dt, ξ i

dt, Ji
dt, hi

dt, Θ,DT
)
=

qj × fN

(
log
(

∆di,∗∗
t

)2
∣∣∣∣ hi

dt + mj − 1.2704, v2
j

)
∑7

l=1 ql × fN

(
log
(

∆di,∗∗
t

)2
∣∣∣∣ hi

dt + ml − 1.2704, v2
l

) ,

where j = 1, ..., 7, t = 1, ..., T, and fN (y| a, b) denotes the kernel of a normal distribution

with mean a and variance b evaluated at y.

A.2.2 Ji
d

∣∣∣ µi
d, ξi

d, ξi
h, hi

d, Θ,DT (i = 1, ..., K)

Note that for any given t ∈ [2, T]

Pr
(

Ji
dt = 1

∣∣∣ µi
dt, ξ i

dt, ξ i
ht, hi

dt, Θ,DT
)

∝p(∆di
t, hi

dt

∣∣∣ µi
dt, ξ i

dt, ξ i
ht, Ji

dt = 1, xh
it, Θ)

× Pr(Ji
dt = 1|xJ

it, Θ)
(A.19)

where

p(∆di
t, hi

dt

∣∣∣ µi
dt, ξ i

dt, ξ i
ht, Ji

dt = 1, xh
it, Θ) ∼MVN

([
∆di

t

hi
dt

]∣∣∣∣∣
[

µi
dt + ξ i

dt
µih + φih(hi

dt−1 − µih) + ξ i
ht + β′ihxh

it

]
,[

ehi
dt 0

0 σ2
ih

])

and Pr
(

Ji
dt = 1|xJ

it, Θ
)
= Φ

(
λ′ix

J
it

)
while

p(∆di
t, hi

dt

∣∣∣ µi
dt, ξ i

dt, ξ i
ht, Ji

dt = 0, xh
it, Θ) ∼MVN

([
∆di

t

hi
dt

]∣∣∣∣∣
[

µi
dt

µih + φih(hi
dt−1 − µih) + β′ihxh

it

]
,[

ehi
dt 0

0 σ2
ih

])

and Pr
(

Ji
dt = 0

∣∣ xJ
it, Θ

)
= 1−Φ

(
λ′ix

J
it

)
.
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A.3 ξi
d

∣∣∣ µi
d, Ji

d, ξi
h, hi

d, Θ,DT (i = 1, ..., K)

Start by noting that for any given t ∈ [2, T], when Ji
dt = 0,

ξ i
dt

∣∣∣ µi
d, Ji

d, ξi
h, hi

d, Θ,DT ∼ N (ρi Jξ
i
ht, σ2

ξ i
d
) (A.20)

In other words, when Ji
dt = 0 we rely on ξ i

dt prior distribution in (A.6). In contrast, when

Ji
dt = 1, it is possible to rewrite the i-th row of the model in (A.1) as

∆di
t − µi

dt = ξ i
dt + ehi

dt/2εi
dt, εi

dt ∼ N (0, 1). (A.21)

Combining (A.21) with (A.6) leads to:

ξ i
dt

∣∣∣ µi
d, Ji

d, ξi
h, hi

d, Θ,DT ∼ N (µξ i
dt

, σ2
ξ i

dt
) (A.22)

where

σ2
ξ i

dt
=

(
σ−2

ξ i
d
+ e−hi

dt

)−1

µξ i
dt
= σ2

ξ i
dt

(
ρi Jξ

i
ht/σ2

ξ i
d
+ e−hi

dt

(
∆di

t − µi
dt

))
.

(A.23)

A.4 ξi
h

∣∣∣ Ji
d, hi

d, Θ,DT (i = 1, ..., K)

Again, start by noting that when Ji
dt = 0, ξ i

ht

∣∣DT ∼ N (0, σ2
ξ i

h
). That is, when Ji

dt = 0 we

rely on ξ i
ht’s prior distribution in (A.7). In contrast, when Ji

dt = 1, it is possible to rewrite

the state equation for hi
dt in (A.4) (for t ∈ [2, T]) as

hi
dt − µih − φih

(
hi

dt−1 − µih

)
− β′ihxh

it = ξ i
ht + σihεi

ht, εi
ht ∼ N (0, 1). (A.24)

Combining (A.24) with (A.7) leads to:

ξ i
ht

∣∣∣ Ji
dt = 1, hi

dt, Θ,DT ∼ N (µξ i
ht

, σ2
ξ i

ht
) (A.25)
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where

σ2
ξ i

ht
=

(
σ−2

ξ i
h
+ σ−2

ih

)−1

µξ i
ht
= σ2

ξ i
ht

(
σ−2

ih

(
hi

dt − µih − φih

(
hi

dt−1 − µih

)
− β′ihxh

it

))
.

(A.26)

A.5 Θ| µd, hd, ξd, ξh, Jd,DT

We break the posterior into 12 separate parts and focus on blocks 4 to 12:19

• Bµ|µd, Θ−Bµ ,DT:

Start by rewriting (A.2) as follows

ZBµ = W Bµ Bµ + Ω1/2
µ εµ εµ ∼ N (0, ITK) (A.27)

where

ZBµ =


µd1 − µd

µd2 − µd −Φµ(µd1 − µd)
...

µdT − µd −Φµ(µdT−1 − µd)

 , W Bµ =


(IK −Φµ)−1Xµ

1

Xµ
2

...
Xµ

T

 . (A.28)

Combing (A.27) with the prior for βµ in (14) after first defining

Bµ0 =
(

β′
µ0

, ..., β′
µ0

)′
and V Bµ

= diag
(

diag
(

V βµ

)′
, ..., diag

(
V βµ

)′)′
leads to the

following posterior distribution:

Bµ|µd, Θ−Bµ ,DT ∼ N (Bµ, V Bµ) (A.29)

where

V Bµ =
(

V−1
Bµ

+ W ′
Bµ

Ω−1
µ W Bµ

)−1
(A.30)

19We use standard set notation to define A−b = {x ∈ A : x 6= b}.
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and

Bµ = V Bµ

(
V−1

Bµ
Bµ0

+ W ′
Bµ

Ω−1
µ ZBµ

)
. (A.31)

• µih|hi
d, Ji

d, ξi
h, Θ−µih ,DT (i = 1, ..., K):

Start by combining (A.4) and (10) into:

Zµih = Wµih µih + Σ1/2
ih εih εih ∼ N (0, IT) (A.32)

where

Wµih =


1

1− φih
...

1− φih

 , Zµih =


hi

d1 −
β′ihxh

i1
1−φih

hi
d2 − φihhi

d1 − β′ihxh
i2 − Ji

d2ξ i
h2

...
hi

dT − φihhi
dT−1 − β′ihxh

iT − Ji
dTξ i

hT

 . (A.33)

Next, combine (A.32) with the prior for µih in (12) to get

µih|hi
d, Ji

d, ξi
h, Θ−µih ,DT ∼ N

(
µih, Vµih

)
(A.34)

where

Vµih =
[
V−1

µh
+ W ′

µih
Σ−1

ih Wµih

]−1
(A.35)

and

µih = Vµih

[
V−1

µh
µ

h0
+ W ′

µih
Σ−1

ih Zµih

]
(A.36)

• φih|hi
d, Ji

d, ξi
h, Θ−φih ,DT (i = 1, ..., K):

As with Φµ, we follow Kim et al. (1998) and first obtain a candidate draw from the
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following distribution:

φ?
ih ∼ N

(
φih, Vφih

)
× I (|φih| < 1) (A.37)

where

Vφih =

(
V−1

φh
+

W ′
φih

Wφih

σ2
ih

)−1

, (A.38)

φih = Vφih

(
V−1

φh
φ

h0
+

W ′
φih

Zφih

σ2
ih

)
(A.39)

and where

Zφih =


hi

d2 − µih − β
′
ihxih

2 − Ji
d2ξ i

h2
...

hi
dT − µih − β

′
ihxih

T − Ji
dTξ i

hT

 , Wφih =


hi

d1 − µih
...

hi
dT−1 − µih

 (A.40)

Next, if the draw is retained (i.e., satisfy the stationarity restriction), we accept φ∗ih

with probability e(g(φ∗ih)−g(φold
ih )) where φold

ih is the retained draw from the previous

iteration of the Gibbs sampler, and

g (φih) = ln p (φih)−
1
2

ln

(
σ2

ih
1− φ2

ih

)
−
(
1− φ2

ih
)

2σ2
ih

(
hi

d1 − µih −
β
′
ihxih

1
1− φih

)2

(A.41)

with p (φih) denoting the prior of φih.

• σ2
ih|h

i
d, Ji

d, ξi
h, Θ−σ2

ih
,DT (i = 1, ..., K):

The posterior for σ2
ih is readily available, and is given by:

σ2
ih|h

i
d, Ji

d, ξi
h, Θ−σih ,DT ∼ IG

(
Vih +

T
2

, Sih

)
(A.42)
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where

Sih = Sh +
1
2

(1− φ2
ih

)(
hi

d1 − µih −
β′ihxh

i1
1− φh

)2

+
T−1

∑
t=1

(
hi

dt+1 − µih − φih

(
hi

dt − µih

)
− β′ihxh

it+1 − Ji
dt+1ξ i

ht+1

)2
] (A.43)

• βih|h
i
d, Ji

d, ξi
h, Θ−βih

,DT (i = 1, ..., K):

Start by rewriting (A.4) as follows

Zβih = W βih βih + Σ1/2
ih εih εih ∼ N (0, IT) (A.44)

where

Zβih =


hi

d1 − µih

hi
d − µih − φih(hi

d1 − µih)− Ji
d2ξ i

h2
...

hi
dT − µih − φih(hi

dT−1 − µih)− Ji
dTξ i

hT

 , W βih =


(1− φih)

−1 (xh
i1
)′(

xh
i2
)′

...(
xh

iT
)′

 .

(A.45)

Combing (A.44) with the prior for βih in (14) leads to the following posterior

distribution:

βih|h
i
d, Ji

d, ξi
h, Θ−βih

,DT ∼ N (βih, V βih) (A.46)

where

V βih =
(

V−1
βh

+ W ′
βih

Σ−1
ih W βih

)−1
(A.47)

and

βih = V βih

(
V−1

βh
β

h0
+ W ′

βih
Σ−1

ih Zβih

)
. (A.48)
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• λi|W i,DT and W i
∣∣∣ λi, Ji

d,DT (i = 1, ..., K):

We follow Albert and Chib (1993) and to simplify the computations introduce the

auxiliary latent state variable W i
t , t = 1, ..., T . We proceed by first rewriting the

stochastic process of the jump intensity in (A.5) as

Ji
dt+1 =

1 if W i
t+1 > 0

0 if W i
t+1 ≤ 0

(A.49)

where

W i
t+1 = λ′ix

J
it+1 + εi

Wt+1, εi
Wt+1 ∼ N (0, 1) (A.50)

or, more compactly,

W i = X J
i λi + εi

W , εi
W ∼ N (0, IT) (A.51)

where

X J
i =


(

xJ
i1

)′
...(

xJ
iT

)′
 , W i =


W i

1
...

W i
T

 . (A.52)

The posterior of λi is readily available, and given by

λi|W i,DT ∼ N
(

µλi
, V λi

)
(A.53)

where

V λi =
[
V−1

λ + X J′
i X J

i

]−1
(A.54)

and

µλi
= V λi

[
V−1

λ µ
λ
+ X J′

i W i
]

. (A.55)
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As for the sequence of latent variables
{

W i
t
}T

t=1, we have that

W i
t

∣∣∣ λi, Ji
dt,D

T ∼

TN(λ′ix
J
it+1, 1, 0, ∞) if Ji

dt = 1

TN(λ′ix
J
it+1, 1,−∞, 0) if Ji

dt = 0
(A.56)

where TN(µ, σ2, lb, ub) denotes a truncated normal distribution with mean µ,

variance σ2, and lower and upper bound lb, ub.

• σ2
ξ i

d
|ξi

d, ξi
h, Θ−σ2

ξi
d

,DT (i = 1, ..., K):

The posterior distribution for σ2
ξ i

d
is readily available, and given by

σ2
ξ i

d

∣∣∣ ξi
d, ξi

h, Θ−σ2
ξi

d

,DT ∼ IG
(

Vξd +
T
2

, Sξ i
d

)
(A.57)

where

Sξ i
d
= Sξd +

1
2

T

∑
t=1

(
ξ i

dt − ρi Jξ
i
ht

)2
. (A.58)

• σ2
ξ i

h
|ξi

h,DT:

The posterior distribution for σ2
ξ i

h
is readily available, and given by

σ2
ξ i

h

∣∣∣ ξi
h,DT ∼ IG

(
Vξh +

T
2

, Sξ i
h

)
(A.59)

where

Sξ i
h
= Sξh +

1
2

T

∑
t=1

(
ξ i

ht

)2
. (A.60)

• ρi J |ξi
d, ξi

h, Θ−ρi J ,DT (i = 1, ..., K):
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Start by rewriting (A.6) as

ξ i
dt = ξ i

htρi J + σξ i
d
εi

ρt εi
ρt ∼ N (0, 1) (A.61)

It follows that

ρi J |ξi
d, ξi

h, Θ−ρi J ,D
T ∼ N

(
ρi, Vρi

)
× I

(∣∣ρi J < 1
∣∣) (A.62)

where

Vρi =

Vρ +
1

σ2
ξ i

d

(
ξi

h

)′
ξi

h

−1

(A.63)

and

ρi = Vρi

 1
σ2

ξ i
d

(
ξi

h

)′
ξi

d

 . (A.64)
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Appendix B Tables and Figures

Parameter estimates

Without suspenders With suspenders

Mean Std 90% Credible Set Mean Std 90% Credible Set
µd 0.078 0.020 0.053 0.104 0.084 0.014 0.067 0.103
φµ 0.997 0.002 0.994 0.999 0.996 0.002 0.993 0.998
βµ -0.005 0.001 -0.008 -0.003
σµ 0.003 0.000 0.002 0.003 0.003 0.000 0.002 0.003
µh -5.024 0.118 -5.216 -4.833 -4.566 0.219 -4.912 -4.190
φh 0.899 0.008 0.886 0.913 0.895 0.008 0.881 0.908
βh1 1.003 0.310 0.497 1.512
βh2 -0.266 0.104 -0.444 -0.096
σh 0.719 0.047 0.643 0.794 0.823 0.080 0.711 0.976
σξ 2.871 0.044 2.798 2.943 2.920 0.044 2.848 2.993
σξh 0.690 0.088 0.555 0.850 0.756 0.122 0.583 0.970
λ1 -1.323 0.064 -1.429 -1.219 -1.360 0.079 -1.487 -1.227
λ2 -0.018 0.003 -0.023 -0.013 -0.016 0.003 -0.021 -0.010
λ3 1.893 0.635 0.865 2.945
λ4 0.117 0.158 -0.150 0.378 0.005 0.221 -0.357 0.363
λ5 -0.098 0.158 -0.360 0.153 -0.276 0.404 -1.072 0.103
ρJ -0.002 0.092 -0.159 0.147 -0.012 0.085 -0.154 0.124

Table B.1: Parameter estimates for the dividend growth rate model. This table shows parameter estimates for
a range of models fitted to the daily dividend growth series. The equations for the most general version of the
components model, estimated on the market dividend growth series. Within each panel, the columns report
the posterior mean, standard deviation and 90% credible sets for all parameter estimates.
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Figure B.1: Comparison between our daily µdt and exp(hdt/2), with and without dividend suspenders, in
real-time. The top panel plots the real-time versions of our daily µdt with and without dividend suspenders.
The solid blue line shows the persistent component in dividend growth without taking into account dividend
suspenders, while the red, dotted line incorporates the information coming from the announcement of dividend
suspenders, both in the construction of ∆dt and in accounting for the suspenders’ dynamics in the econometric
model. The bottom figure plots the real-time versions of our daily exp(hdt/2) with and without dividend
suspenders. The solid blue line shows the stochastic volatility component without taking into account dividend
suspenders, while the red, dotted line incorporates the information coming from the announcement of dividend
suspenders, both in the construction of ∆dt and in accounting for the suspenders’ dynamics in the econometric
model.
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Figure B.2: Returns of dividend futures. This figure plots the returns of the dividend futures expiring in
December 2020 and 2021 against the the total number of dividend suspenders over the period January-June
2020.
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