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Abstract

We propose a new approach to imposing economic constraints on time-series forecasts
of the equity premium. Economic constraints are used to modify the posterior distribu-
tion of the parameters of the predictive return regression in a way that better allows the
model to learn from the data. We consider two types of constraints: Non-negative equity
premia and bounds on the conditional Sharpe ratio, the latter of which incorporates time-
varying volatility in the predictive regression framework. Empirically, we find that economic
constraints systematically reduce uncertainty about model parameters, reduce the risk of
selecting a poor forecasting model, and improve both statistical and economic measures of
out-of-sample forecast performance.
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1. Introduction

Equity premium forecasts play a central role in areas as diverse as asset pricing, portfolio
allocation, and performance evaluation of investment managersEl Yet, despite more than twenty
five years of research, it is commonly found that models that allow for time-varying return

predictability produce worse out-of-sample forecasts than a simple benchmark that assumes a

constant risk premium. This finding has led authors such as Bossaerts and Hillion! (1999) and

‘Welch and Goyal| (2008) to question the economic value of ex-ante return forecasts that allow

for time-varying expected returns.
Economically motivated constraints offer the potential to sharpen forecasts, particularly
when the data are noisy and parameter uncertainty is a concern as in return prediction models.

While economic constraints have previously been found to improve forecasts of asset returns,

there is no broad consensus on how to impose such constraints. For example, |Ang and Piazzesi

(2003) impose no-arbitrage restrictions to identify the parameters in a term structure model,

\Campbell and Thompson| (2008) truncate their equity premium forecasts at zero and also con-

strain the sign of the slope coefficients in return prediction models, while [Pastor and Stambaughl

(2009)) and Pastor and Stambaugh! (2012) use informative priors to ensure that the sign of the

correlation between shocks to unexpected and expected returns is negative.
This paper proposes a new approach for incorporating economic information via inequality
constraints on moments of the predictive distribution of the equity premium. We focus on two

types of economic constraints. The first, which we label the equity premium constraint, follows

the idea of Campbell and Thompson| (2008) and constrains the conditional mean of the equity

premium to be non—negativeEl It is difficult to imagine an equilibrium setting in which risk-
averse investors would hold stocks if their expected compensations were negative, and so this
seems like a mild restriction. The second constraint imposes that the conditional Sharpe ratio

has to lie between zero and a predetermined upper bound. The zero lower bound is identical

!Papers on time-series predictability of stock returns include |Campbell| 1987)), |Campbell and Shillerl (1988),
[Fama and French| (1988)), [Fama and French (1989)), [Ferson and Harvey| (1991)), [Keim and Stambaugh| (1986])
and [Pesaran and Timmermann| (1995). Examples of asset allocation studies under return predictability include
At-Sahalia and Brandt| (2001)), Barberis| (2000), [Brennan et al.| (1997),|Campbell and Viceira) (1999)), [Kandel and|
Stambaugh| (1996) and (2001)). |Avramov and Wermers| (2006) and [Ferson and Schadt| (1996 consider mutual
fund performance under time-varying investment opportunities.

2’1B0ucloukh et al.l (]1993[) develop tests for the restriction that the conditional equity risk premium is nonnega-
tive. They find that this restriction is violated empirically for the U.S. stock market.




to the equity premium (EP) constraint, whereas the upper bound rules out that the price of
risk becomes too high. The Sharpe ratio of the market portfolio is extensively used in finance
and, much like the equity premium, academics and investors can be expected to have strong
priors about its magnitudeﬂ Yet, Sharpe ratio (SR) constraints cast as inequality constraints on
the predictive moments of the return distribution have not, to our knowledge, previously been
explicitly explored in the return predictability literatureﬁ

Other studies have considered bounds on the maximum Sharpe ratio in the context of cross-
sectional pricing models, which is quite different from our focus here. MacKinlay| (1995) in-
troduces a bound on the maximum squared Sharpe ratio as a way to distinguish between risk-
and non-risk explanations of deviations from the CAPM. [MacKinlay and Pastor| (2000) provide
estimates of factor pricing models that condition on a given value of the Sharpe ratio. In a
Bayesian setting this corresponds to investors having different degrees of confidence in the asset
pricing model, with a very large Sharpe ratio corresponding to completely skeptical beliefs about
the model.

To incorporate economic information, we develop a Bayesian approach that lets us compute
the predictive density of the equity premium subject to economic constraints. Importantly, the
approach makes efficient use of the entire sequence of observations in computing the predictive
density and also accounts for parameter uncertainty. Our approach builds on the conventional
linear prediction model and simplifies to this model if the economic constraints are not binding
in a particular sample.

The predictive moments of the return distribution get updated as new data arrive and so
the inequality constraints give rise to dynamic learning effects. To see how this works, suppose
that a new observation arrives that, under the previous parameter estimates, imply a negative
conditional equity premium. Since this is ruled out, the economic constraints can force the

posterior distribution of the parameter estimates to shift significantly — even in situations in

3See[Lettau and Wachter| (2007) and [Lettau and Wachter| (2011) for recent examples of theoretical asset pricing
models that rely on calibrations using the Sharpe ratio. For good treatments of the Sharpe ratio and its theoretical
and empirical links to asset pricing models, see |Cochrane| (2001) and [Lettau and Ludvigson| (2010).

4Ross| (2005) and [Zhou| (2010 consider constraints on the R of the predictive return distribution. In practice,
there will be a close relationship between constraints on the Sharpe ratio and constraints on the RZ, see, e.g.,
Campbell and Thompson| (2008) for investors with mean variance utility. |[Wachter and Warusawitharanal (2009)
also consider priors on the slope coefficient in the return equation which translate into priors about the predictive
R? of the return equation. [Shanken and Tamayo| (2012) study return predictability by allowing for time-varying
risk and specify a prior on the Sharpe ratio.



which the estimates of the standard linear model do not change at all. This effect turns out
to be empirically important, particularly for “large” values of the predictor variables. Our
empirical analysis finds that the posterior variance of the equity premium distribution—one
measure of parameter estimation uncertainty—can be several times bigger for the unconstrained
model compared with the constrained models, when evaluated at large values of the predictor
variables.

Our approach towards incorporating economic constraints works very differently from that
taken by previous studies such as/Campbell and Thompson (2008]). To highlight these differences,
consider the constraint that the equity premium is non-negative. [Campbell and Thompson
(2008) impose this restriction by truncating the predicted equity premium at zero if the predicted
value is negative. While this truncation approach can be viewed as a first approximation towards
imposing moment or parameter constraints, it does not make efficient use of the information in
the theoretical constraints. In particular, this approach never learns from the information that
comes from observing that the estimated model implies negative forecasts of the equity premium
and so the underlying model continues to repeat the same mistakes when faced with new data
similar to previously observed data. In contrast, our approach constrains the equity premium
forecast to be non-negative at each point in time. This implies that we have T constraints
in a sample of T observations, rather than just a single constraint. Every time a new pair
of observations on the predictor variable and returns becomes available, the non-negativity
constraint on the conditional equity premium is used to rule out values of the parameters that
are infeasible given the constraint and hence to inform the parameter estimates.

In addition to the conditional EP constraint, we also explore whether imposing a lower and
an upper bound on the Sharpe ratio of the market portfolio provide further improvements. An
upper bound on the Sharpe ratio is equivalent to a time-varying upper bound on the equity
premium that is proportional to the market volatility. The implementation of such a constraint
is non-trivial as it involves modeling the conditional volatility of the market portfolio in a
predictive regression framework. We use a parsimonious parameterization that allows us to
explore time-variation in the conditional first and second moments of returns. We find that the
SR constraint increases the statistical and economic gains not only relative to the unconstrained

case, but also relative to the EP constraint.



Attempts at producing improved forecasts of stock returns have spawned a huge literature
that originated from studies by Campbell (1987), Campbell and Shiller| (1988), Fama and French
(1988), Fama and French| (1989)), Ferson and Harvey| (1991)), and Keim and Stambaugh (1986)
who provided convincing economic arguments and in-sample empirical results that some of the
fluctuations in returns are predictable because of persistent time variation in expected returns.
In-sample evidence for predictability is accumulating as various new variables have been sug-
gested as predictors of excess returns (Pontiff and Schall (1998), |[Lamont| (1998), Lettau and
Ludvigson| (2001), Polk et al. (2006]), among others). Out-of-sample predictability evidence,
however, has been much less conclusive. Recent studies by Paye and Timmermann| (2006) and
Lettau and Van Nieuwerburgh| (2008) argue that predictability weakened or disappeared during
the 1990s. Bossaerts and Hillion (1999)), Goyal and Welch! (2003)), and [Welch and Goyal| (2008)
provide an even sharper critique by arguing that predictability was largely an in-sample or ezx-
post phenomenon that disappears once the forecasting models are used to guide forecasts on new,
out-of-sample, data. Rapach and Zhou (2012)) provide an extensive review of this literature.

To evaluate our approach empirically, we consider the large set of predictor variables used by
Welch and Goyal| (2008). When implemented along the lines proposed in our paper, we find that
for nearly all of the predictors and at both the monthly, quarterly and annual frequencies, both
the equity premium (EP) and Sharpe ratio (SR) constraints lead to substantial improvements
in the predictive accuracy of the equity premium forecasts. Across all variables, we find that
when comparing the unconstrained to the EP constrained forecasts, the average out-of-sample
R? improves from -0.53% to 0.19% at the monthly frequency, from -2.33% to 0.47% at the
quarterly frequency and from -5.27% to 3.10% at the annual frequency. Similarly, comparing
the unconstrained to the SR constrained forecasts, the out-of-sample R? improves from -0.53%
to 0.18% at the monthly frequency, from -2.33% to 1.02% at the quarterly frequency and from -
5.27% to 4.11% at the annual frequency. Hence, the improvement in predictive accuracy tends to
get larger as the forecast horizon is extended and the effect of estimation error in a conventional
unconstrained model gets stronger.

Our empirical results corroborate that the Campbell-Thompson (2008) truncation approach
improves on the unconstrained forecasts for a clear majority of the predictors. However, we

also find that imposing the EP constraint leads to an even larger gain in predictive accuracy,



relative to the truncation approach, than the truncation approach produces relative to the
unconstrained case. Specifically, at the monthly horizon, the predictive accuracy improves for
14 out of 16 predictors and increases the average out-of-sample R%-value by 0.4%. Similar results
are found at the quarterly and annual horizons, for which the EP constraint improves the average
out-of-sample R2-value by 1.5% and 5.2%, respectively, over the truncated models.

We also consider the economic value of using constrained forecasts in the portfolio allocation
of a representative investor endowed with power utility. In the benchmark case with a coefficient
of relative risk aversion of five, we compare the certainty equivalent return (CER) obtained from
using a given predictor relative to the prevailing mean model. The comparison is conducted
for the unconstrained as well as the EP-constrained and the SR-constrained cases at monthly,
quarterly, and annual horizons, for the entire sample and a few subsamples. Here again, we find
that the economic constraints lead to higher CER-values at all horizons and across practically
all predictors (the one exception being the stock variance). Specifically, the EP constraint
results in a higher CER (relative to the unconstrained case) of 40-50 basis points per year,
whereas for the SR-constrained models, the increase is about twice as high. Consistent with
the predictive accuracy results, we generally find that the SR constraint produces higher CER
improvements than the EP constraint, which suggests that there are economically important
interactions between the estimated mean and volatility. Robustness checks reveal that a higher
(lower) risk aversion coefficient of 10 (2) reduces (increases) the spread in performance across
models, as the investor’s willingness to exploit any predictability is inversely proportional to the
risk aversion.

The previous results refer to univariate regression models with a single predictor variable.
We also consider two ways to incorporate multivariate information. First, we consider equal-
weighted forecast combinations. Consistent with Rapach et al. (2010), we find that simple
forecast combinations improve on the average forecast performance, particularly for the uncon-
strained forecasts that are most adversely affected by parameter estimation error. Second, we
consider a diffusion index approach that extracts common components from the cross-section of
predictor variables followed by unconstrained or constrained equity premium predictions using
these components. Empirically, the diffusion index approach produces better statistical and

economic performance than the equal-weighted combination approach both across subsamples



and in the full sample. Moreover, this approach works best for the economically constrained
models. For example, at the quarterly horizon, the out-of-sample R? of the diffusion index is
0.42%, 3.02%, and 2.95% for the unconstrained, EP constrained, and SR constrained models,
respectively, with associated CER-values of -0.04%, 0.53%, and 0.95% per annum.

The plan of the paper is as follows. Section 2 introduces our new methodology for efficiently
incorporating theoretical constraints on the predictive moments of the equity premium distri-
bution. Section 3 introduces the data and presents empirical results for both unconstrained and
constrained prediction models using a range of predictor variables. Section 4 evaluates the eco-
nomic value of imposing economic constraints on the forecasts. Section 5 presents an extension
to incorporate multivariate information and conducts a range of robustness tests, and Section 6

concludes.

2. Methodology

This section describes how we estimate and forecast the equity premium subject to con-
straints motivated by economic theory. These constraints take the form of inequalities on the

conditional equity premium or bounds on the conditional Sharpe ratio.

2.1. FEconomic Constraints on the Return Prediction Model

It is common practice in the literature on return predictability to assume that stock returns,

measured in excess of a risk-free rate, r,41, is a linear function of lagged predictor variables, z,:

rro1 = p+pBrrt+erp, T7=1,.,t—1, (1)

Er41 N(0,0’?)

The linear model is simple to interpret and only requires estimating two mean parameters, u
and [, which can readily be accomplished by OLS.

Economic theory generally does not restrict the functional form of the mapping linking
predictor variables, z;, to the conditional mean of excess returns, 7,1, so the use of the linear
specification in should be viewed as an approximation. However, we argue that economically

motivated constraints can be used to improve on this model.



2.1.1.  Equity Premium Constraint

Under broad conditions the conditional equity risk premium can be expected to be positiveﬂ
This reasoning implies a constraint on the predictive moments of the distribution of excess
returns. In turn, this has implications for the estimated parameters of the return prediction
model . Specifically, to efficiently exploit the information embedded in the constraint that
the conditional equity premium is non-negative, the parameters y and S should be estimated

subject to the constraint p 4+ Sz, > 0 at all points in timeﬁ
w+ Bxr >0 forT=1,..,t. (2)

Although this constraint on the predictive moments of the equity premium is not directly a
constraint on the model parameters, § = (u, 3,02), it clearly affects these parameters since they
have to be consistent with . Moreover, because the conditional EP constraint has to hold at
each point in time, the number of constraints grows in proportion with the length of the sample
size. The seemingly simple EP constraint in therefore potentially yields a very powerful way
to pin down the parameters of the return forecasting model and obtain more precise estimates.

To see how the constraint in works to restrict the y — 8 parameter space, consider Figure
Panel (a) shows how different values of  constrain the admissible set of p and /5 values when
x is always negative (e.g., log dividend yield case). Panel (b) repeats this exercise when z only
takes on positive values (T-bill case), whereas panel (c) illustrates the case with a predictor that
can take on both negative and positive values (log dividend payout ratio case). These graphs
illustrate that whenever a new observation of = arrives, both small and large values of this
predictor can lead to new constraints on the set of feasible parameter values. Moreover, there
will be T' constraints on the parameters in a sample with T" observations.

Campbell and Thompson| (2008)) (CT, henceforth) were the first to argue in favor of imposing

a non-negative EP constraintm They implement this idea by using a truncated forecast, 74,

5For example, this rules out that stocks hedge against other risk factors affecting the performance of a market
portfolio that comprises a broader set of asset classes.

SHere t refers to the present time, 7 = 1,...,£ — 1 indexes all historical (“in-sample”) observations up to the
present point, while the out-of-sample forecast is obtained for 7 = t.

"Prior to this, some papers tested non-negativity of the equity premium. For example, (Ostdiek| (1998) studies
sign restrictions on the ex-ante equity premium and develops tests for whether this premium is non-negative using
a conditional multiple inequality approach.



that is simply the largest of the unconstrained OLS forecast and zero:

Fep1pe = max(0, fig + Bray), (3)

where [i; and f; are the OLS estimates from , ie.,

R t—1 -1
(/lt Bt), = (Z ZTZ;—) <z ZTTT+1> ) (4)
T=1

=1
and z; = (1 z;)’. This truncation prevents the predicted equity premium from becoming
negative, but the theoretical constraint is not used by CT to obtain improved estimates of
and [ in the manner reflected in Figure [I} Specifically, CT simply overrule the forecast if it is
negative and do not impose on their parameters that 7., = fiz + By > 0 for 7 = 1,...,1t
While an improvement over the simple unconstrained model, this approach therefore does not
make efficient use of the theoretical constraints in ([2)).

Figure [2 illustrates how imposing the equity premium constraint to hold at all points in
time—Dboth in-sample and out-of-sample—in accordance with can produce very different fore-
casts than the CT truncation approach even in periods in which the unconstrained out-of-
sample forecast is non-negative. The figure uses monthly excess returns and the log dividend
price ratio as a predictor variable; the data are described in detail in the next section. The figure
illustrates how an out-of-sample forecast of excess returns for 1947:01 is generated, using data
from 1927:01-1946:12. Since the truncation constraint in is not binding for the out-of-sample
forecast of excess returns in 1947:01, the unconstrained ordinary least squares forecast and the
truncated forecast use identical parameter values. Applying these same parameter values to
the in-sample period (1927:01-1946:12) produces negative fitted mean excess returns in 1928-29,
1936, and 1946. We view this as an undesirable property of the truncation approach: if the
equilibrium equity premium is non-negative, this should be imposed not only on the out-of-
sample forecast, but also on the model used to fit historical excess returns, i.e., for all periods
T=1,..,t.

Hence, an important difference between our EP approach in and the truncation approach
is that the former restricts the parameter estimates of the prediction model whereas the trunca-
tion approach in never modifies the coefficient estimates, and only operates on the forecast.

To further highlight the importance of this distinction, Figure [3| plots the posterior mean of



the coefficient estimates at each point in time from 1947-2010 for a return model that includes
the default yield spread as a predictor. The figure shows that the EP constraint leads to quite
different intercept and slope coefficient estimates than the recursive OLS estimates underlying
the truncation approach of CT. Specifically, the EP constrained estimates tend to be smoother
— though not generally closer to zero - than their OLS counterparts. This reflects the “memory”
of the learning process whereby the effect of binding constraints from the past carries over to
future periods.

The linear-normal prediction model implies that the xz-variables have unbounded support.
We do not take this implication literally, and instead view this model as an approximation. We
assume that investors only impose the EP and SR constraint conditional on the data they have
seen up to a given point in time, 7 = 1,...,t. This makes the length of the initial data sample
important. Our implementation assumes a long (20-year) warm-up sample that ensures that
investors will have seen a wide range of values for x; before making their first prediction. It
also ensures that new observations on the predictors within the historically observed range do
not tighten the constraints. Conversely, observations on the predictors outside the historical
range will trigger new learning dynamics, which we think is an attractive feature of our setup.
Moreover, we also condition on the predictor variables, treating them as exogenous rather than

as part of the data being modeled.

2.1.2. Sharpe Ratio Constraint

In this section, we explore a novel way of sharpening the forecasts of excess market returns,
namely, by placing constraints on the conditional Sharpe ratio of the market portfolio. Such
constraints might be motivated from an asset pricing perspective, as the Sharpe ratio is fre-
quently used in the calibration and evaluation of structural asset pricing modelsﬁ In US data,
it is well-known that the Sharpe ratio is time-varying and countercyclical (Brandt| (2010)), |Let-
tau and Ludvigson (2010)). More importantly, the empirical Sharpe ratio is quite a bit more

volatile than what the leading asset pricing models would suggest. This empirical fact has been

8See [Cochrane| (2001) for a textbook treatment of the Sharpe ratio’s use in evaluating asset pricing models.
Lettau and Ludvigson| (2010]) review whether some leading asset pricing models can replicate the stylized facts
regarding the Sharpe ratio in the US. |Lettau and Wachter| (2007)) and [Lettau and Wachter| (2011) use the Sharpe
ratio in the calibration of their asset pricing model.

10



labeled the “Sharpe ratio variability puzzle” by [Lettau and Ludvigson (2010). Naturally, the
Sharpe ratio is most often used for portfolio performance evaluation (see Brandt| (2010]) for a
review article). Given all the theoretical and empirical work on this subject, most academics
and practitioners are likely to have some priors about what constitutes a “reasonable” Sharpe
ratio.

The conditional Sharpe ratio depends on both the conditional mean and volatility of the
return distribution. Since time-variation in volatility is a well documented fact in empirical

finance (see, e.g., Andersen et al.| (2006))), we modify as follows:

Tr41 = p+ B + exp (hri1) tri1, (5)

where h-y; denotes the (log of) return volatility at time 7 + 1 and u,41 ~ N (0,1). Following
common stochastic volatility models, log-volatility is assumed to evolve as a driftless random

walk,

h7'+1 - hT + §T+17 (6)

where £;41 ~ N (O, 0?) and u, and & are mutually independent for all 7 and s.

Next, define the (approximate) annualized conditional Sharpe ratio at time 7 as

SRT+1|T = \/ﬁ(,u + ) (7)

exp (hT + 0.502) ’

where H denotes the number of observations per year (i.e., H = 12, 4, and 1 with monthly,
quarterly, and annual data, respectively). We assume that the conditional Sharpe ratio is

bounded both from below and above at all points in time:
SR' < SR, .4, < SR* for7=1,...,t. (8)

While does not directly impose restrictions on the model parameters, = (u, 3, ag) and the
sequence of log return volatilities h' = {hy, ha, ..., hi }, it does so indirectly since not all parameter
values are consistent with the SR constraint (8)). Also, from and (), it is immediately clear
that the SR constraint in effect imposes a time-varying upper bound on the equity premium
that is proportional to the conditional volatility.

In the empirical implementation below, we set the lower bound at SR' = 0, which is consis-

tent with the EP constraint augmented to account for time-varying volatility. Annualized

11



values of SRy q); around 0.5 are seen as “normal” in the context of the market portfolio, given
estimates of its mean and volatility (e.g., |Cochrane| (2001) and [Brandt| (2010)). Sharpe ratios
higher than one are highly improbable for a non-leveraged market portfolio, so we accordingly
set SR = 1E| By letting the constraint [0, 1] be relatively wide, we accommodate the fact that
Sharpe ratios are imprecisely estimated (Jobson and Korkie (1981))) and implicitly allow a large
set of asset pricing models—consumption and non-consumption-based—to be consistent with itE
Section 5 conducts a sensitivity analysis with respect to different values of SR". We next explain

how we estimate the econometric models and impose the constraints.

2.2.  Priors

Theoretical constraints such as and are naturally interpreted as reflecting the fore-
caster’s prior beliefs on return predictability. Viewed in this way, they can best be imposed
using Bayesian techniques and this is the approach followed here. Moreover, a major advantage
of our Bayesian approach is that we obtain the full predictive densities of returns in a way that
accounts for parameter estimation error. Such densities are vastly more informative than point
forecasts of excess returns based on conventional plug-in least squares estimates.

We begin by describing the choices of priors, starting from the case in which no constraints
are imposed. Next, we show how to incorporate constraints on the predictive moments of the
return distribution.

Following standard practicdﬂ7 the priors for the parameters y and 5 in are assumed to

be normal and independent of o2,

v, )
where
. ?t . wQS% 0
b—|:0:|7v_|:0t ysz,t/sit ) (10)

9Setting the upper bound much higher than one, e.g., at 1.5, means that this bound does not bind very often
and so the SR constraint becomes very similar to the EP constraint.

Yettau and Ludvigson| (2010) show that many of the leading consumption-based asset pricing models cannot
generate the volatility that is observed in emprically estimated Sharpe ratios. [Lettau and Wachter| (2007)) and
Lettau and Wachter| (2011) depart from the consumption-based asset pricing models to accommodate pricing
kernels with higher conditional volatility which better fit the dynamic behavior of the Sharpe ratio.

HSee for example [Koop| (2003)), section 4.2.

12



with data based moments

1 1 _
T = —1 Tr4+1, Srt F—9 § (TT+1 - Tt) )
T=1 T=1
1 t—1 1 t—1
_ 2 —\2
o= TE_l Try Sa1 = 75 ;_1 (zr — )"

Here v is a constant that controls the tightness of the prior, with 1) — oo corresponding to a
diffuse prior on p and 3. Our benchmark analysis sets ¢ = 2.5, but we also consider alternative
specifications with both lower and higher values of 4. The terms s%t and s%t / sit in the diagonal
of the prior variance, V, are scaling factors introduced to guarantee comparability of the priors
across different predictors and across different data frequencies@ Our choice of the prior mean
vector b reflects the “no predictability” view that the best predictor of stock returns is the average
of past returns. We therefore center the prior intercept on the prevailing mean of historical excess
returns, while the prior slope coefficient is centered on zero. In basing the priors of some of the
hyperparameters on sample estimates—a common approach in empirical analysis, see [Stock and
Watson| (2006) and Efron| (2010) —our analysis can be viewed as an empirical Bayes approach
rather than a more traditional Bayesian approach in which the prior distribution is fixed before
any data are observed. We show in Section 5 that the values of the hyperparameters have very
little effect on our results, thus mitigating any concerns about use of full-sample information in
setting these parameters.

Next, we specify a gamma prior for the error precision of the return innovation, o= 2:

0% ~G(s;fv(t—1)), (11)

where v, is a prior hyperparameter that controls the degree of informativeness of this prior, with

vy — 0 corresponding to a diffuse prior on o QB Our benchmark sets vy = 0.1, which, loosely

speaking, means that the prior weight is approximately 10% of the weight put on the data.
The SR constraint requires specifying a joint prior for the sequence of log return volatili-

ties, ht, and the error precision, 052. Writing p (ht, ag2> =p (ht‘ 052> P ((75_2), it follows from

12This aproach is used routinely in macroeconomic Bayesian VAR models. See for example [Kadiyala and
Karlsson| (1997)) and |Banbura et al.[ (2010)).

SFollowing [Koop| (2003), we adopt the Gamma distribution parametrization of [Poirier| (1995). Nameley, if the
continuous random variable Y has a Gamma distribution with mean g > 0 and degrees of freedom v > 0, we
write Y ~ G (i, v) . Then, in this case, E (Y) = p and Var (Y) = 2u?/v.

13



(6) that

p (1] og?) ::sz)(h7+nfhwag2)p<hl>, (12)
=1

with hri1] hT,0g2 ~ N <h7,02> . Thus, to complete the prior elicitation for p <ht,ag2> , we
only need to specify priors for hy, the initial log volatility, and o 2. We choose these from the

normal-gamma family as follows:
hi ~ N (In(spt) , k) (13)

o~ G (1/ke, 1) (14)

We set ke = 0.01 and choose the remaining hyperparameters in and to imply uninfor-
mative priors, allowing the data to determine the degree of time variation in the return volatility.
Accordingly, we specify k;, = 10, and set the degrees of freedom for o¢ 2 to 1. Section 5 discusses

robustness of our results with respect to changes in the priors.
2.3.  Imposing Economic Constraints

We next describe how we impose the economic constraints on the model parameters. Starting

with the EP constraint, we modify the priors on x and 8 in @ to

[g}NN&V%mﬁe% (15)

where A; is a set such that
Ay ={p+px; >0, 7=1,...,t}. (16)

Similarly, for the SR constraint, we restrict the priors on {u, 53, 052, hi,ho,....h} € At, where
Ay is a set satisfying

A, = {SRl <SR, <SR" 7 =1, t} : (17)

and SR, |, is given in (7).

The Appendix provides details of how we estimate the parameters and compute forecasts for
the unconstrained and constrained models.

As a final point about the above analysis, we note that the boundaries of the constraints

and are constants (0, SR!, and SR"), motivated by economic considerations. However,

14



one might view the boundaries themselves as being parameters with associated priors. In that
case, our specification corresponds to having dogmatic priors on these specific parameters. This
generalization might be less meaningful for constraints that are readily imposed by economic
theory (such as the zero lower bound on the equity premium and Sharpe ratio) than for others
(such as the upper bound on the Sharpe ratio). From an econometric perspective, updating priors
about the boundary parameters is non-trivial. Given that the benefits of such a generalization
are not clear, while the tractability and computational costs of imposing it are substantial, we

conduct our empirical analysis by imposing constraints and as discussed above.

3. Empirical Results

This section presents data and empirical results using the methods for incorporating economic

constraints described in Section 2 to predict the equity premium.
3.1. Data

Our empirical analysis uses data on stock returns along with a set of seventeen predictor
variables originally analyzed in Welch and Goyal (2008]) and subsequently extended up to 2010
by the same authors. Stock returns are computed from the S&P500 index and include dividends.
A short T-bill rate is subtracted from stock returns in order to capture excess returns. Data
samples vary considerably across the individual predictor variables. To be able to compare results
across the individual predictor variables, we use the longest common sample that is 1927-2010.
In addition, we use the first 20 years of data as a training sample. For example, for the monthly
data we initially estimate our regression models over the period January 1927-December 1946,
and use the estimated coefficients to forecast excess returns for January 1947. We next include
January 1947 in the estimation sample, which thus becomes January 1927-January 1947, and
use the corresponding estimates to predict excess returns for February 1947. We proceed in
this recursive fashion until the last observation in the sample, thus producing a time series of
one-step-ahead forecasts spanning the time period from January 1947 to December 2010.

The identity of the predictor variables, along with summary statistics, is provided in Table
Most variables fall into three broad categories, namely (i) valuation ratios capturing some

measure of ‘fundamentals’ to market value such as the dividend price ratio, the dividend yield,
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the earnings-price ratio, the 10-year earnings-price ratio or the book-to-market ratio; (ii) mea-
sures of bond yields capturing level effects (the three-month T-bill rate and the yield on long
term government bonds), slope effects (the term spread), and default risk effects (the default
yield spread defined as the yield spread between BAA and AAA rated corporate bonds, and
the default return spread defined as the difference between the yield on long-term corporate
and government bonds); (iii) estimates of equity risk such as the long term return and stock
variance (a volatility estimate based on daily squared returns). Finally, three corporate finance
variables, namely the dividend payout ratio (the log of the dividend-earnings ratio), net equity
expansion (the ratio of 12-month net issues by NYSE-listed stocks over the year-end market
capitalization), percent equity issuing (the ratio of equity issuing activity as a fraction of total
issuing activity) and a macroeconomic variable, inflation (the rate of change in the consumer
price index), are consideredE

To make our results comparable to studies from the literature on return predictability such as
Campbell and Thompson| (2008]) and Welch and Goyal (2008]), we focus on univariate regressions
with a single predictor variable. However, we also discuss in Section 5 how our approach can be
extended to incorporate multivariate information. Finally, since there are too many variables to
cover in detail, we focus our analysis on three predictors, namely the log dividend-price ratio, the
T-bill rate, and the default yield spread, all of which have featured prominently in the literature

on return predictability.
3.2.  Coefficient Estimates and Predictive Densities

As shown in Figures 1-3, the economic constraints on the predictive moments of the return
distribution affect the parameter estimates in a way that reflects the entire sequence of data
points. This gives rise to parameter estimates that are very different from the standard, uncon-
strained ones typically applied in the literature on return predictability. To better understand
the effect of the constraints, we begin by studying the posterior distribution of the parameter
estimates.

Figure [4] plots the posterior density for the slope coeflicient, 3, in the equity premium equa-

tion using either the log dividend-price ratio (top panel), the T-bill rate (middle), or the

14We follow [Welch and Goyall (2008) and, for monthly and quarterly data, lag inflation an extra period to
account for the delay in CPI releases.
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default yield spread (bottom) as predictors. Posterior densities are displayed for the uncon-
strained case (solid line), the EP constraint (dark dash-dotted line), and the SR constraint
(light dark-dotted line). In each case, the unconstrained posterior density for /3 is considerably
wider than those of the constrained densities, suggesting that the economic constraints reduce
parameter uncertainty. Moreover, whereas the unconstrained posterior densities are symmetric,
the constrained ones are asymmetric in a direction that mostly reflects that the equity premium
has to be non-negative. For example, for the log dividend price ratio, which is always negative,
the EP constraint rules out large positive values of 3, which could otherwise induce a negative
equity premium. Conversely, the constrained posterior distributions rule out large negative val-
ues of B for variables that take on positive values such as the T-bill rate and the default yield
spread. The upper bound on the Sharpe ratio also matters for the posterior distribution of g,
however, which helps explain why for positive predictors such as the T-bill rate the posterior
distribution of § under the SR constraint is shifted to the left compared with its distribution
under the EP constraint [7]

To evaluate the economic significance of the changes in the parameter estimates caused by
the constraints, we next compare the ex-ante equity premium under the unconstrained and con-
strained models. To this end, Figures show the predictive densities for the equity premium,
computed as of the end of the sample (December 2010). To illustrate how expected returns
depend on the value taken by the predictor, we show the predictive densities conditional on
xp = T as well as xp = T £ 2 x SE (x), where Z and SE (z) are the full-sample average and
standard deviation of x, respectively.

First consider the results based on the log dividend-price ratio, log(D/P) (Figure [5). This
predictor is always negative and the associated posterior estimates of 3 are centered on a positive
value. Comparing the plots for the three values of z illustrates how the constraints work. When
log(D/P) is set at its sample mean (top panel), the three posterior densities have comparable
spreads, although the unconstrained model has a lower mean than the EP constrained and SR
constrained models. Reducing the log dividend-price ratio to two standard errors below its

mean (middle panel) results in a very different picture. The unconstrained posterior density

15Differences between the restricted densities do not always occur in the tail that one would expect. This
happens because the upper constraint can be satisfied by simultaneously reducing large negative slope coefficients
(as in the T-bill rate model) and shifting the density for the intercept, u, to the right.
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for the equity premium is now much more dispersed and shifted far further to the left, whereas
the two constrained forecasts have more probability mass to the right of zero with a tighter
support. When log(D/P) is very low (middle panel), the lower bounds imposed by the EP
and SR constraints bind, thus preventing the probability mass from shifting to the left which
otherwise happens mechanically in a linear model (as can be seen for the unconstrained forecast).
This case is empirically relevant for the period 1990-2005 with abnormally low log dividend price
ratios. Conversely, when log(D/P) is very high (bottom panel), the constraints are less likely
to bind, and so the three densities are more similar in shape, although once again the centers of
the distributions clearly differ.

For the T-bill rate (Figure @, we see similar mechanisms at work, although now with the
opposite sign since the T-bill rate is always positive and the posterior estimates of 8 are centered
on a negative value. This means that the lower constraints now bind when the T-bill rate is set
at T + 2 x SE (z) (bottom panel), once again leading to much tighter distributions under the
EP and SR constraints than for the unconstrained case. Empirically, this occurred in the early
1980s, when the T-bill rate was particularly high. Finally, the model based on the default yield
spread (Figure , shows less of an asymmetry across the three conditioning scenarios regarding
the shape and spread of the conditional posterior density estimates of the equity premium.

These figures imply that the economic constraints tighten the predictive density for the
equity premium in a manner that depends asymmetrically on whether the predictor variables
take on large negative or positive values. Hence, how “informative” the bounds are, i.e., by how
much they shift and tighten the posterior density, depends on the value taken by the predictor
variable, x. We illustrate this effect in Figure |8 for the plots based on the T-bill rateﬁ The top
panel plots the posterior mean of the equity premium distribution as a function of the T-bill
rate. The posterior mean declines linearly for the unconstrained model from a level near 1%
per month for the lowest values of the T-bill range to a level near zero for the highest Valuesﬂ
Under the SR and EP constrained models, the posterior mean is also reduced as the T-bill rate
increases, but by far less than under the unconstrained model.

Turning to the uncertainty surrounding the predicted equity premium, the posterior vari-

16The plots for the log dividend-price ratio and default yield spread are very similar and so are omitted.
7 Consistent with Figure @ the T-bill rate varies between Z —2 x SE (z) and Z+2 x SE (z), with Z and SE (x)
denoting the full-sample average and standard deviation of the T-bill rate, respectively.
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ance of the equity premium distribution (bottom panel) is large and rises sharply under the
unconstrained model as the T-bill rate moves far away from its sample average. In contrast,
while the posterior variance of the constrained equity premium distributions does rise when the
T-bill rate takes on very small or very large values, it does so at a far slower rate. For example,
for very high values of the T-bill rate, the posterior variance of the equity premium under the

unconstrained model is close to four times higher than under the constrained models.

3.3.  Forecasts of Equity Premia

Using these insights into how economic constraints affect forecasts of equity premia, we next
study the sequence of recursively generated out-of-sample equity premium forecasts. To this
end, Figure [9] presents monthly values of the mean of the predictive distribution of the equity
premium over the period 1947-2010. Economic constraints clearly make a substantial difference
during most periods. For example, the unconstrained model forecasts based on the log-dividend
price ratio (top panel) are lower and far more volatile than their constrained counterparts and
turn negative for most of the period between 1990 and 2005. Even though none of the recursive
forecasts from the unconstrained model turn negative prior to 1960, the constrained forecasts
are quite different prior to this period. As explained in Figures 2 and 3, this happens due to our
requirement that the entire sequence of model-implied fitted equity premia be non-negative. The
economic constraints lead to predicted equity premia whose differences from the unconstrained
counterparts can last very long, e.g., from 1955 through to 1975 and again from around 1985 to
the end of the sample.

Large and persistent differences in predicted mean returns are also found for the return model
based on the T-bill rate (middle panel). For this model, negative values of the unconstrained
forecasts occur most of the time between 1970 and 1985, whereas the constrained forecasts
hover around small, but positive values throughout the sample. The SR constrained forecasts
are smaller than the EP constrained forecasts for long periods of time, and both series are
notably more stable than the unconstrained equity premium forecasts.

The unconstrained equity premium forecasts based on the model that uses the default yield
spread as a predictor (bottom panel) only turn negative during the first few months of the

sample and are otherwise quite similar to the mean forecasts from the EP constrained model
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that in turn are smaller than the SR constrained forecasts. These results are consistent with our
earlier findings that the constraints tend to bind on fewer occasions for this predictor variable.

Figure [10| plots monthly volatility forecasts based on the stochastic volatility model @ We
only present results for a single predictor (the log dividend-price ratio) since results are very
similar across different predictors. Volatility hovers around 5% per month, but spikes notably
in 1975, after October 1987, and during the global financial crisis at the end of the sample.

Conditional Sharpe ratios are plotted in Figure[II] For the unconstrained model that assumes
constant volatility, these plots essentially mirror the movements in expected returns in Figure
[0 To compare the models and isolate the effect of constant vis-a-vis time-varying volatility,
we have added a line for a Sharpe ratio constrained model with constant volatility. This is
directly comparable to the unconstrained and equity-premium constrained lines that also assume
constant volatility. The figure shows that the Sharpe ratio associated with the constant-volatility
SR-constrained model are marginally smoother than those of the EP-constrained model—a result
one would expect from adding an additional (upper) constraint. Conversely, the SR-constrained
forecasts that allow for stochastic volatility fluctuate considerably more because of the joint
variations in expected returns and conditional volatility.

Figure [§] showed that the posterior volatility of the equity premium forecasts tends to be
smaller under the two constrained models than under the unconstrained model. This has im-
portant consequences for the time-series of forecasts. To illustrate this, Figure shows 95%
posterior probability intervals for ¢ and S for the unconstrained and EP constrained models that
use the T-bill rate as a predictorE We focus on the period between 1965 and 1985 to better
see the effect of specific events on parameter estimation uncertainty. It is quite clear from these
plots that the EP constraint reduces the uncertainty about 5 more than it does for p. Moreover,
the high T-bill rates during the Fed’s “Monetarist Experiment” from 1979-82 clearly reduce the

width of the confidence interval for the constrained model, but not for the unconstrained model.

18These posterior probability intervals (sometimes referred to as credible intervals) represent the probability
that a parameter falls within a given region of the parameter space, given the observed data. So, for example, the
(2.5, 97.5)% posterior probability interval represents the compact region of the parameter space for which there
is a 2.5% probability that the parameter is higher than the region’s upper bound, and a 2.5% probability that it
is lower than the region’s lower bound.
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3.4.  QOut-of-Sample Predictive Performance

We next evaluate the predictive accuracy of the equity premium forecasts. As in [Welch and
Goyal (2008) and (Campbell and Thompson| (2008), the predictive performance of each model is
measured relative to the prevailing mean model. The inputs to the analysis are the time series
of predictive densities of excess returns obtained as described in Section 2. To simplify the
exposition, let {ri +1} , j =1,...,J, denote draws from the predictive density of excess returns
for the prevailing mean model, conditional on data known at time t¢. Further, let {ri +1’Z},
j=1,...,J, be draws from the predictive density of excess returns for the model based on the
ith predictor, again conditional on data known at time ¢. As explained in the Appendix, for
the unconstrained and EP constrained models, these draws are obtained by applying a Gibbs
sampler to

p(rt+1|Dt) :/ﬁ _2p(rt+1|u7ﬂ’0'6_2"Dt)p(M’B70'6_2"Dt) dﬂdﬂdUQQa (18)
Hs0,0¢e
where D! = {141, mT}tT;ll U x; is the information set at time ¢. Likewise, for the SR constrained

model, return draws are based on the predictive density

p(rea] D) = / p(mllhm,u,ﬁ,ht,ag?ﬂt)
p,Bht o2

Xp (ht+1|ﬂaﬁvht)0-52,pt) (19)

Xp ( 1, B, Bt 05_2’ Dt> dpdBdh'do?,

where h't! denotes the sequence of conditional variance states up to time ¢ 4 1.

To compare our results with conventional performance measures used in the literature (see,
e.g., Welch and Goyal| (2008]), Campbell and Thompson| (2008), and Rapach and Zhou (2012)),
we compute the posterior mean from the densities in or to obtain point forecasts.
Specifically, define time t forecast errors for the prevailing mean model and the model based on

predictor ¢ as

1 _
€t = Tt*jzrgv t:L 7t7 (20)
7j=1
1 J
€tqg — Tt — j Zrip t= L 7t7 (21)
7=1



where ¢ and ¢ denote the beginning and the end of the forecast evaluation period, respectively.
The period-t difference in the cumulative sum of squared errors (SSE) between the prevailing

mean and the ith predictor model is then equal to
t t

ACumSSE; = Z e — Z eii, (22)
T=t T=t

while the out-of-sample R? is

t 2
Z'rzt eT,z’
—
ZT:E 672'

Importantly, in these calculations, we only make use of historically available information

Rdps;=1- (23)

to estimate our models and generate forecasts of excess returns. For example, in , only
information up to period 7 — 1 is used to forecast excess returns for period 7. Thus, for the first
forecast (t) we only use information up to period £ — 1 to generate the forecast; for the second
forecast (t 4 1), we only use information up to period ¢, and so forth.

Table [2] presents the out-of-sample R? for the unconstrained, truncated, EP and SR con-
strained forecasts estimated on monthly data. Out of the 16 unconstrained forecast models,
12 produce negative R?)os- In contrast, the EP constrained monthly forecasts only generate
a negative RQOOS for three of the 16 variables whereas the SR constrained models generate a
negative RQODS for six variables.

Compared with the unconstrained forecasts, the truncated approach increases the R?)os for
12 of 16 variables, whereas the EP and SR constrained forecasts lead to a higher R?)os for 14
out of 16 variables. This better performance is also reflected in the average Rzoos computed
across the univariate prediction models that is -0.53% for the unconstrained models, -0.22% for
the truncated forecasts, 0.19% for the EP constrained model, and 0.18% for the SR constrained
models. Notable improvements are seen for the models based on valuation ratios such as the
dividend yield or earnings-price ratio.

The results also show that the equity premium approach generally performs much better
than the truncation approach. Specifically, compared with the truncation approach, the equity
premium constraint improves the predictive accuracy for 14 out of 16 predictors and increases
the average R%, ¢ by 0.41% (from -0.22% to 0.19%).

Panels B and C in Table[2]show that the improvement in forecast performance resulting from

imposing the economic constraints carries over to the two subsamples 1947-1978 and 1979-2010,
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obtained by splitting the forecast evaluation period in two halves. In the first subsample, the
average improvement in the R% o —values is between 0.60% and 0.70% (from -0.17% for the
unconstrained to 0.44% and 0.55% for the EP and SR constrained models, respectively). It is a
slightly better 0.70%-0.80% in the second subsample (from -0.80% for the average unconstrained
model to 0.01% and -0.10% for the EP and SR constrained models).

For the quarterly models (Table , the benefits from imposing economic constraints on
the equity premium forecasts get even bigger. At this frequency, we find that the EP and SR
constrained forecasts generate a higher R2O s for 14 out of 15 predictors. Moreover, whereas the
average R?)os is -2.33% for the unconstrained model, it is 0.47% and 1.02% for the EP and SR
constrained models, respectively. Again, notable improvements are seen for the models based on
valuation ratios such as the dividend yield or earnings-price ratio. Improvements in the average
R% s due to imposing economic constraints again carry over to the two subsamples and exceed
2.2% in the first subsample (1947-1978) and 3.2% in the second subsample, although the latter
reflects a clear deterioration in the performance of the unconstrained model during the period
1979-2010.

Again, it is interesting to compare the performance of the truncation approach to that of
our EP-constrained model. At the quarterly horizon we find that the EP approach delivers a
higher RQOOS—Value for all but two predictors and improves the average R%OS—Value by 1.5%
(from -1.03% to 0.47%).

Turning to the annual results, Table[4 shows that 14 of the 16 unconstrained models generate
a negative RQOOS, the average R2OOS being -5.27%. In contrast, all of the constrained forecasts
generate a positive R20057 in each case higher than that of the corresponding unconstrained
modelm Moreover, the average R%OS computed across the 16 prediction models tends to be
quite high: 3.10% for the EP constrained models and 3.86% for the SR constrained models.
Once again, imposing the constraints lowers the probability of very poor forecast performance.
For example, the lowest RQOOS—VaIue of any unconstrained model is -16.2% in the annual data,

versus 0.07% for the EP constrained model and 3.15% for the SR constrained models. At the

19The stochastic volatility model @ is used to capture time-varying volatility at the monthly and quarterly
horizons. At the annual horizon we found that there were too few observations to reliably identify the parameters
of this model and ensure convergence of the parameter estimates. Instead we use a simple AR(1) specification for
the realized variance to model the variance at the annual horizon.
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annual horizon, the EP constrained models improve the average R20 os—Vvalue of the truncated
forecasts by 5.19% (from -2.09% to 3.10%).

Following Rapach et al. (2010), we use stars in tables to indicate the statistical signifi-
cance of pair-wise differences in the predictive accuracy between a given forecasting model and
the benchmark model based on the |Clark and West| (2007)) p—valuesm Economically constrained
models appear to produce significantly better return forecasts than the unconstrained forecasts
for most of the valuation ratios and many of the interest rate variables. Moreover, the results
tend to get stronger at the quarterly and annual forecast horizons.

The results in tables indicate that the superior performance of the constrained forecasts
relative to the prevailing mean tends to strengthen as the forecast horizon grows from monthly
via quarterly to annual, whereas the opposite happens for the unconstrained forecasts. Two
effects are at play here. On the one hand, the power of the predictive signal tends to increase, the
longer the forecast horizon. On the other hand, forecasts become more uncertain at the longer
horizons as a result of the fewer data points available for estimation. For the unconstrained
models, the second effect clearly dominates and so forecast performance tends to deteriorate as
the horizon is extended. Conversely, the economic constraints provide an effective way to deal
with parameter estimation error and so the performance of the constrained models improves as
we move from the monthly to the annual horizon.

To help identify how the prediction models performed in specific periods, Figure [13| presents
the time-series of ACumSSE for three of our models. For the model based on log(D/P) (top
panel), the forecast performance of the unconstrained model deteriorates notably between 1995
and 2000 — a period during which this model generated large negative equity premium forecasts
although average stock returns were positive. For the model based on the T-bill rate (middle
panel), the unconstrained forecasts again tend to be less precise than their constrained coun-
terparts, the main exception being an episode around 1974-75 during which the unconstrained
model correctly predicted negative excess returns. Note also the consistently better forecast
performance of the SR constrained forecasts compared with the EP constrained forecasts based

on the T-bill rate. Finally, for the default yield premium model (bottom panel), the cumula-

20Quch p-values should be interpreted with caution. In the spirit of [Diebold| (2012)) they can be interpreted as
a measure of the relative accuracy of the sequence of forecasts.
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tive squared errors of the unconstrained forecasts are almost uniformly worse than those of the
constrained forecasts.

In summary, economically motivated constraints on the equity premium predictions lead
to substantially better forecast performance at the monthly, quarterly, and annual horizons.
They also reduce the risk of selecting a bad forecast model which is important in situations,
such as here, characterized by considerable model uncertainty. Much of the benefit of our
approach is obtained under the (simpler) EP constraint—although the SR constraint clearly
leads to systematic improvements in forecast precision at the longer (quarterly and annual)
horizons. Both the SR and EP methods utilize the power of imposing the constraints on the
coefficient estimates learned from the data ¢t = 1, ..., ¢, and so take advantage of the more efficient
learning mechanism compared with the truncation approach that does not modify the parameter

estimates in light of violations of the bounds.

4. FEconomic Performance and Portfolio Choice

So far we have compared the statistical performance of return forecasts generated by eco-
nomically constrained prediction models to the performance of unconstrained models. We next
evaluate the economic significance of these return forecasts by considering the optimal portfolio
choice of an investor who uses the return forecasts. An advantage of our approach is that it
accounts for parameter estimation error—a point whose importance has been emphasized by
Barberis (2000)). Moreover, our approach provides the full predictive density which means that
we are not reduced to considering only mean-variance utility but can use utility functions such

as power utility with better properties.
4.1.  Framework

Consider the optimal asset allocations of a representative investor with utility function U.

At time ¢, the investor solves the optimal asset allocation problem

wi = argmax E [U (Wi, Te41)] Dt] , (24)

wt
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with D! denoting all information available up to time ¢, and t =t — 1, ..., — 1. The investor is

assumed to have power utility

1-A
[(1 — W) €Xp (r{) + wp exp (r{ + rt+1>}
1—A '

U (Wta 7"t+1) = (25)

Here 7{ is the continuously compounded T-bill rate at time ¢, while A is the investor’s coefficient

of relative risk aversion. The t subscript on the portfolio weight reflects that the investor solves
the portfolio optimization problem using only information available at time ¢.

Taking expectations in with respect to the predictive density of 7, we can rewrite
as

wy = aTgH}U%X/U(WtaTtH)P (Tt+1|Dt) driyy. (26)

The integral in can thus be approximated using the draws from the predictive densities
as described in Section 2 and in the Appendix. Specifically, under the prevailing mean model,
for suitably large values of J the solution to can be approximated by

7 N f fog YA
(1 —w)exp (77 ) +wrexp (] +1l

1
W = arg max ; T4 . (27)

Similarly, the solution to the models with time-varying expected returns, , can be approxi-
mated by
f fod A
J [(1 — wy) exp (""t ) + wy exp (rt + 7"§+1,i>]

~ 1
Gy = argmax — ; - : (28)

where ¢ indexes the predictor variable.

The sequence of portfolio weights {@t}f;él_l and {"A"t,i}t;l—l are used to compute the investor’s
realized utilities under the prevailing mean model and the model based on predictor 7. Let Wt+1
and Wt.{.lyi be the corresponding realized wealth at time ¢ 4 1. /V[7t+1 and Wt-ﬁ-l,z’ are functions

of time t 4 1 realized excess return, 7441, as well as the optimal allocations to stocks computed

in and :

Witi = (1 —@)exp (r{) + W exp (r{ + rt+1> ,

Wt+1,i = (1 — Qt,i) exp (7{) + @m‘ exp (th + 7"t+1> . (29)

26



The certainty equivalent return for the model based on predictor ¢, CER;, is defined as the value
that equates the average realized utility of the prevailing mean model to the average realized

utility of the model based on the i—th predictor, over the forecast evaluation sample:

1
I—A

{ A~
— UT )
CER; = Zi*iﬂ —1, (30)
LU
T=t - T

where [77 and ﬁm denote time 7 realized utilities, (77 = I//I\/Tl*A/(l —A), ﬁm’ = /V[Z};A (1-A).

In addition to evaluating the economic values of the various models over the full forecast
evaluation sample, we also study how the different models perform in real time. Specifically, we
first calculate the single-period CER;; as

1
I—-A

Uri 1. (31)

—~

CER,; =
t

To parallel the cumulative SSE measures in , we also inspect the economic performance of
the individual models by plotting the cumulative sum of CERs over timeﬂ

t
CumCER;; =Y log(1+ CERy;). (32)

T=t
4.2.  Empirical Results

Turning to the empirical asset allocation results, Table [5| reports annualized CER values for
the monthly return regressions computed for an investor with power utility and a coefficient
of relative risk aversion, A = 5. At the monthly horizon (Panel A), the average CER value,
measured relative to the prevailing mean model, is -.12% for the unconstrained models, 0.28%
for the EP-constrained models and 0.81% for the SR-constrained models. All but one of the
EP-constrained models deliver higher CER values than their unconstrained counterparts, the
exception being the stock variance. For the SR-constrained models, the CER values are higher
than the corresponding benchmarks across all predictors.

At the quarterly horizon (Panel B), the constrained models retain their higher CER values
relative to the unconstrained counterparts for all but one case. The average CER values, com-

puted across all variables, is -0.14% for the unconstrained models, 0.29% for the EP constrained

21Gince the CER is already defined relative to the prevailing mean model, we do not need to compute differential
values here.
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models and 0.32% for the SR constrained models. Finally, at the annual horizon (Panel C),
the average CER value is -0.24% for the unconstrained models, 0.33% for the EP constrained
models and 0.67% for the SR constrained models and the constrained models produce higher
CER values than the unconstrained counterparts for every single predictor.

Comparing the results under the truncation approach of Campbell and Thompson (2008) to
those under the EP constraint, Table [5|shows that, with one exception (stock variance, monthly
horizon), the EP approach generates higher CER values for all predictors at all horizons. The
average improvement in CER values is 0.35% (from -0.07% to 0.28%), 0.37% (from -0.08% to
0.29%), and 0.50% (from -0.17% to 0.33%) at the monthly, quarterly, and annual horizons,
respectively. Given the better performance under the EP constraint than under the truncation
approach, we do not report further results from the latter.

In Table 6], we show that the observed improvements in economic utility carry over to our
two subsamples. There again, the constrained models do better than the unconstrained ones
for the vast majority of cases. Interestingly, there is no evidence that the economic benefits
from using economically constrained forecasts deteriorates over time. For example, over the
subsample 1979-2010 the mean CER value for the annual model is -0.62% for the unconstrained
model and 0.08% and 0.76% for the EP and SR constrained models — a bigger differential than
in the earlier subsample 1947-78.

Using the log dividend-price ratio as a predictor, Figure [14] plots the sequence of stock port-
folio weights along with the cumulative (continuously compounded) CER estimates computed
according to Equation . The portfolio weights vary considerably over time under the uncon-
strained and SR-constrained model that allows for stochastic volatility, but are much smoother
under the EP constraint and the constant-volatility SR-constrained model. Moreover, the cu-
mulative CER values of the constrained models consistently lie above the CER estimates of the
unconstrained model. At the end of the sample, the cumulative CER value of the unconstrained
model is around -30%, whereas it exceeds 20% and 80% for the EP and SR (stochastic volatility)
constrained models, respectively. These numbers capture the cumulative risk-adjusted economic
value of the economically constrained forecasts relative to the prevailing mean forecasts.

We conclude that there are economically large benefits from imposing economic constraints

on the equity premium prediction models. The benefits appear to be present at monthly, quar-
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terly, and annual horizons and are largest for the SR constraint that allows for time-varying

volatility. Moreover, the benefits do not appear to be deteriorating over time.

5. Extensions and Robustness Analysis

This section extends our analysis to incorporate multivariate information. Moreover, we

present a range of sensitivity analyses that shed light on the robustness of our findings.

5.1. Multivariate Results

So far, we have followed much of the finance literature on return predictability and focused
on univariate prediction models. We next extend the analysis to a multivariate setting. With
N predictor variables available, there are N different predictive densities. Using ¢ to index
the predictors as we have done above, we denote these predictive densities by p (rt+1] Dt, Mi),
i =1,...,N, where M; refers to model 7. Instead of conditioning only on a single predictor,
investors may want to take advantage of the information contained in all of the N predictors.
We consider two different ways to combine the information contained in N different predictors.

The first approach relies on forecast combination methods. Specifically, we construct a

combined predictive density as an equal-weighted average of the N predictive densities

N
p(res1| DY) = Zwi,t x p (re1| DY, M), (33)
=1

where w;; = 1/N for alliand t = t—1,...,t—1. We compute the equal weighted predictive density
in across all predictor variables applying this approach separately to the unconstrained, EP
and SR constrained models. For point forecasts, this approach was previously adopted by
Rapach et al. (2010).

Our second approach relies on diffusion indexes. As shown by Stock and Watson! (2006),
diffusion indexes provide a convenient framework for extracting the key common drivers from
a large number of potential predictors. [Ludvigson and Ng| (2007)) and Neely et al.| (2012) show
that diffusion indexes can be used to improve equity premium forecasting.

The diffusion index approach assumes a common factor structure for the N potential pre-
dictors,

x’iT:A;fT_}—ei,T? T=1..,t-1 (34)
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where ¢ indexes the predictor, A is a (¢ x 1) vector of factor loadings (¢ << N), frisa (¢ x 1)
vector of latent factors containing the common components extracted from the N predictors,
and e; - is a zero-mean disturbance term. Following|Rapach et al.|(2010), we restrict our analysis
to considering a single factor; the results do not appear to improve if we include two or more
factors in the model.

We estimate the common factors using principal components, and use them as predictors for

stock returns in the following equation:

Tr41 :/AD[—i-ﬁD[f-,——i-ETJrl, T=1,.,t—1, (35)

where Spy is a (¢ x 1) vector of slope coefficients and £,41 ~ N <0, af} D I). As for the univariate
models in Section 2, we specify an independent normal-gamma prior for the parameters in ,
and use a Gibbs sampler for estimation. Next, draws from the corresponding predictive density

are obtained as

p (Tt+1|Dt) = / D (Tt+1\ MDI,ﬁDI,U;%)th) (36)
.U'DIyﬁDIvO';%)]
Xp (#Dl, BpI, 0’;,%[‘ Dt) d,UDIdBDIdU;%[

where p (MDL Bpr, 0;1%)[‘ Dt) is the joint posterior density of all parameters in . We estimate
the diffusion index model in and derive the predictive density in for the unconstrained,

EP constrained, and SR constrained models.

5.1.1.  Empirical Findings

Table [7] presents empirical results for the equal-weighted combination as well as for the
diffusion index. First consider the statistical measures of forecast performance. In all cases these
improve when compared to the average forecast performance computed across the individual
models. At all three horizons, the equal weighted combination yields the largest improvement
in R% os—performance for the unconstrained models. For example, at the monthly horizon the
equal-weighted combination of unconstrained forecasts generates a RQO og Of 0.62% versus -0.53%
as the average value of the individual models. We also see improvements for the constrained
models, but these tend to be smaller. Which equal-weighted combination is best depends on the

frequency: At the monthly horizon, combining unconstrained forecasts seem to work best; at
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the quarterly horizon, combining the SR constrained forecasts produces the best performance,
while at the annual horizon the three approaches perform comparably.

The performance improves even more in the case of the diffusion index that works particu-
larly well under the economic constraints. In fact, the EP-constrained forecasts deliver higher
R% ,s—Vvalues than the equal-weighted unconstrained forecasts at all three horizons, and across
both subsamples. The SR-constrained forecasts based on the diffusion index also perform very
well.

Turning to the economic performance measures, again, these generally lead to higher CER
values when compared against the average values produced by the individual univariate models.
While the benefit from using equal-weighted forecasts remains largest for the unconstrained
forecasts, the resulting CER values are always smaller than those produced by the corresponding
equal-weighted constrained forecasts with differences ranging from 0.13% to 0.31% for the EP-
constrained forecasts, and from 0.39% to 0.72% for the SR-constrained forecasts. Moreover,
the best results from using the diffusion index is obtained for the constrained forecasts with
differences ranging from 0.51% to 0.71% for the EP-constrained forecasts and from 0.99% to
1.27% for the SR-constrained forecasts. In fact, the diffusion index approach works better than
the equal-weighted combination for the EP-constrained and the SR-constrained cases at all

horizons.
5.2.  Performance in Recessions and Expansions

Table [8|shows results separately for recession and expansion periods as defined by the NBER
indicator and applied to the monthly and quarterly data. This type of analysis has been pro-
posed by authors such as |[Rapach et al.| (2010) and Henkel et al. (2011). Consistent with the
findings in these studies, the unconstrained return prediction models perform better versus the
prevailing mean during recessions than during expansions. Interestingly, the converse holds
for the constrained monthly forecasts that far outperform the unconstrained forecasts during
expansions, but perform worse during recessions.

While seemingly surprising, this finding can be explained by the fact that the state variable
being sorted on (recessions) is correlated with returns. Returns tend to be negative during

recessions and positive during expansions and so models that impose non-negative predictions
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will almost by construction do relatively better during expansions and worse during recessions.

Despite this effect, at the quarterly horizon the EP constrained forecasts do almost as well
as the unconstrained forecasts during recessions (and much better during expansions), while the
SR constrained forecasts do substantially better than the unconstrained forecasts both during

expansions and recessions.

5.3. Upper bound on Sharpe Ratio

In practice it can be difficult to determine the upper bound on “reasonable” Sharpe ratios.
Ross| (1976)) introduces asset pricing constraints by assuming that portfolios cannot have Sharpe
ratios greater than twice the Sharpe ratio of the market portfolio, which would be roughly in
line (though a bit below) with the upper bound SR* = 1 that we focus on here. Cochrane and
Saa-Requejo (2000) are less specific but point out that there is a “long tradition in finance that
regards high Sharpe ratios as ‘good deals‘ that are unlikely to survive, since investors would
quickly grab them up.”

One way to approach this issue is to view the upper bound as another parameter about
which there is uncertainty and then conduct a sensitivity analysis. To this end, Table [9] shows
results for the three predictors of particular focus (the dividend-price ratio, the T-bill rate, and
the default yield spread) for a wide range of values for the upper bound on the Sharpe ratio
{0.5,0.75, 1, 1.25, 1.5}. The table shows that the RQOOS-value is even higher than in the baseline
scenario with SR = 1 when the upper bound is set to 0.75, rather than at one, although for
two of the predictors (the dividend-price ratio and the T-bill rate), a larger value of the upper
bound (SR" = 1.25) gives the best results. At the quarterly and annual horizons (not shown),
slight improvements are observed (relative to the benchmark SR* = 1) by either increasing or
decreasing S R" by 0.25, but the conclusions about the performance of the return forecasts under

the SR constraint again appear robust@

22 Another perspective on this issue is that, given one’s beliefs on what may constitute a reasonable upper bound
on the Sharpe ratio, we can use our proposed methodology to impose the resulting constraint on the predictive
regression.
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5.4. Sensitivity to Risk Aversion

Our main analysis of the economic value of equity premium forecasts in Section 4 assumed
a coefficient of relative risk aversion of A = 5. To explore the sensitivity of our results to this
value, we also consider lower (A = 2) and higher (A = 10) values of this parameter. Results are
shown in Table 10

First consider the case with A = 2, i.e., lower risk aversion compared with the baseline case,
A = 5. At the monthly horizon, the average CER performance of the unconstrained performance
models is reduced from -0.12% to -0.27%, while conversely the average CER value of the EP
constrained models increases from 0.28% to 0.68% and the SR constrained models’ average
performance is essentially unchanged at 0.79%. At the quarterly horizon, the mean CER value
of the unconstrained forecasts remains unchanged, while the mean CER values under the EP
and SR constraints increase from around 0.3% to 0.8% and 1.0%, respectively. Similarly, the
constrained models’” mean CER values increase to 0.83% and 1.03%, respectively (previously
0.33% and 0.67%) at the annual horizon, whereas the unconstrained model’s mean CER value,
at -0.07%, remains negative (previously -0.24%). Lowering the coefficient of risk aversion from
A =5 to A = 2 thus has the effect of boosting the economic performance of the constrained
models whose mean CER value exceeds that of the unconstrained model by more than 0.90%
(EP constraint) and 1.06% (SR constraint).

Conversely, increasing the risk aversion from A = 5 to A = 10 reduces the spread in the
performance of the different models, as an investor with such a high level of risk aversion re-
frains from taking large positions in equity even in the presence of strong evidence of return
predictability. At this higher level of risk aversion, the constrained models continue to out-
perform the unconstrained ones, although the difference in average CER values is reduced to
between 0.2% and 0.35% for the EP constrained models and to between 0.3% and 0.5% for the

SR constrained models.
5.5, Sensitivity to Priors

We also test the robustness of our results to alternative prior assumptions, and perform
a sensitivity analysis in which we experiment with different values for some of the key prior

hyperparameters. Given the similarities in the results obtained under the models based on the
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EP and SR constraints, as well as the more computationally demanding estimation algorithm
required by models imposing the SR constraint, we focus our attention on the effectiveness
of the equity premium constraint as the priors change, and explore the effect of altering the
hyperparameter ¢ and v, in and . As discussed in section the hyperparameter
¥ plays the role of a scaling factor controlling the tightness of the priors for 1 and 3, and our
benchmark models set 1) = 2.5. As sensitivities, we experiment with 1) = 1.25 and ¢ = 5, which
imply more concentrated prior distributions (in the case of ¢ = 1.25) or more dispersed prior
distributions (in the case of 1) = 5) for p and 8. Similarly, the prior parameter v, controls the
tightness of the prior for o 2 and our benchmark models set v, = 0.1, which corresponds to a
hypothetical prior sample size as large as 10% of the actual sampleﬁ In a sensitivity analysis,
we experiment with v, = 0.5 and vy = 0.05, which imply, respectively, an hypothetical prior
sample as large as 50% of the underlying estimation sample (in the case of vy = 0.5), or as large
as 5% of the underlying estimation sample (in the case of v, = 0.05). Representing an even
greater detour from the baseline priors, we also consider values of ¢ = 0.5,v5 = 1, corresponding
to very precise priors, and ¢ = 10, v, = 0.01 corresponding to very diffuse priors.

Table and Table summarize the (relative) statistical and economic performances of
both unconstrained and equity premium constrained models under these four alternative prior
choices, over the period 1947-2010. A comparison with tables [4, and [f] reveal that the key
results derived under the benchmark priors remain largely unaffected when the priors change,
with perhaps the only noticeable difference being related to the |Clark and West| (2007)) p-values
in table for the more dispersed prior choices, which is a direct consequence of the slightly
wider predictive densities resulting from this prior. For the unconstrained model, the best
results are generally associated with tighter priors that tend to reduce the effect of parameter
estimation errors. Conversely, for the EP-constrained forecasts, we obtain slightly better results
for the more diffuse priors, although variations in results across different priors are minor. Thus,
our findings are robust to choosing ¢» and v, to take on very different values from those in the

baseline analysis.

23Under conjugate priors, the information contained in the priors can be viewed as “fictitious sample informa-
tion” in that it is combined with the sample in exactly the same way that additional sample information would
be combined (see [Koop| (2003))).

34



5.60.  Other predictor variables

So far we focused our empirical analysis exclusively on the predictor variables considered by
Welch and Goyal| (2008). One additional predictor variable that has recently garnered consid-
erable interest is the single factor extracted from the cross-section of book-to-market ratios by
Kelly and Pruitt| (2012)). For comparison, we compute the out-of-sample R? obtained from this
predictor for the same sample period as that used here, 1947—2012@ For the unconstrained, EP
and SR constrained models, we obtain R%2—values of 0.16, -0.16, and 0.01, respectively. This
suggests, first, that the economic constraints do not improve the forecasts from a linear regres-
sion model based on this particular predictor variable. Second, however, it is interesting to note
that many of our models produce higher out-of-sample R?-values than those obtained for this

new predictor variable.

6. Conclusion

We develop a new methodology for imposing constraints that rule out negative equity premia
and bound the conditional Sharpe ratio from above and below. Our approach efficiently exploits
the information in such constraints in a way that incorporates the entire sequence of data points,
while accounting for parameter uncertainty.

When evaluated empirically, we find that a key effect of the economic constraints is to
reduce the impact of “large” values of the predictor variables on the expected equity premium.
Conventional linear models tend to generate noisy forecasts following large variations in the
predictor variables. In contrast, economic constraints effectively shrink the predicted equity
premium and reduce the effect of outliers since they are more likely to bind for “large” values
of the predictor variables. This gives rise to dynamic learning effects that can shift the entire
predictive distribution for the equity premium even in situations in which no such change is
observed under a conventional unconstrained model.

Imposing economic constraints on the equity premium forecast improves the predictive ac-
curacy for nearly all of the prediction models we consider. Moreover, the benefits from the

economic constraints seem to improve, the longer the forecast horizon. In turn, when used to

24We are gratefull to Seth Pruitt for making the data available to us.
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select portfolio weights, the constrained forecasts are found to yield higher certainty equivalent

returns than their unconstrained counterparts.
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A. Appendix

This appendix explains how we obtain parameter estimates for the models described in
Section 2, and how we use these to generate predictive densities for excess returns. We begin

by discussing the unconstrained model in , and next turn to the models that incorporate the

constraints in and .
A.1. No constraints

In the unconstrained case, the goal is to obtain draws from the joint posterior distribution
p(u,B,0-2| D) with D' denoting all information available up to time ¢. Combining the priors

in @— with the likelihood function yields the following conditional posteriors:

[ g ] o-2, D' ~ N (b,V), (A-1)
and
0.2 1 8,D" ~ G (572,0) (A-2)
where
t—1 -1
Vv = (vt +J;222TZ/T] ,
T=1
t—1
b =V V—1b+a;22zTrT+1] : (A-3)
T=1
vo= Yyt (t - 1) )

zr = (1 z;)" and

o Xl — = fa)’ + (82 xw (= 1) (At)

v

A Gibbs sampler algorithm can be used to iterate back and forth between (A-1) and (A-2),

yielding a series of draws for the parameter vector (,u,ﬁ,a; 2). Draws from the predictive

density p (rt+1| Dt) can then be obtained by noting that

p (11| D') = / , P (rgal s, B.022, DY) p (. 8,022 DY) dudfdo®. (A-5)
H,P,0e
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A.2.  Equity premium constraints

The approach used for the unconstrained model also works when EP constraints are imposed

subject to simply introducing an accept-reject step in (A-1)):

5]

o %, B, D ~ G(3%7), (A-6)

o2 D" ~ N(Ob,V)xupBeA,

with A; defined in Equation , and, once again, using Equation (A-5) to draw from the

predictive density p (7441|D").
A.3.  Conditional Sharpe Ratio Constraints

To obtain draws from the joint posterior distribution p ( 1, B,ht,ag 2‘ Dt) under the SR
constraints, we use the Gibbs sampler to draw recursively from the following three conditional

distributions:
1.p (ht| Lt B,UEQ,Dt) .
2. p (,u,ﬁ| ht,ag2,Dt) .
3. p <0g2‘ ,u,ﬁ,ht,Dt) .

We simulate from each of these blocks as follows. Starting with p (ht‘ W, B’Uf_ Q,Dt> , we
employ the algorithm of Kim et al.| (1998). Define r},; = r; 11 — u — B2, and note that 77 is

observable conditional on u, 5. Next, rewrite as
741 = exP (hry1) Urg1. (A-7)

Squaring and taking logs on both sides of ({A-7)) yields a new state space system that replaces
—@ with
re = 2hen Hurl, (A-8)

h‘r+1 = hT+£T+1; (A-Q)

where 7% =1In (r2,,), and w} | = In (u2,,) , with u}* independent of & for all 7 and s. Since

uj*y ~ In(x}), we cannot resort to standard Kalman recursions and simulation algorithms
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such as those in |Carter and Kohn| (1994) or [Durbin and Koopman (2002). To obviate this
problem, Kim et al.| (1998) employ a data augmentation approach and introduce a new state
variable s;41, 7 = 1,..,t—1, turning their focus on drawing from p <ht| 1, 3, 05—2, st Dt> instead
of p (ht} 72 ﬁ,ag 2,Dt) The introduction of the state variable s;y; allows us to rewrite the
linear non-Gaussian state space representation in — as a linear Gaussian state space
model, making use of the following approximation,

uity ~ Y gify (my — 1.2704,07) (A-10)

j=1

where m, v]?, and ¢j, j = 1,2,...,7, are constants specified in [Kim et al.| (1998) and thus need

not be estimated. In turn, (A-10) implies
W] s =74 ~ N (m; — 1.2704,v7) | (A-11)

where each state has probability
Pr(s;41 =J) =gq;. (A-12)

t

Conditional on s*, we can rewrite the nonlinear state space system as follows:

Kok
Try1 — 2hry1 + €741,

hey1 = he+ &4, (A'13)

where e;11 ~ N (mj - 1.2704,1)]2-) with probability g;. For this linear Gaussian state space
system, we can use the algorithm of (Carter and Kohn| (1994) to draw the whole sequence of
stochastic volatilities, hl.

Finally, conditional on the whole sequence h’, draws for the sequence of states s’ can easily

be obtained, noting that

fx (7’3‘-11\ hrp1 —my + 1.2704, 1)]2)
S I (7] 2R — my + 1.2704,02)

Pr (ST+1 = Jl Tij-la h7'+1) = (A-14)

Moving on to p ( w, B ht,ag Q,Dt> , conditional on h! it is straightforward to draw u, [, and

apply standard results. Specifically,

B

2°Here st = {s2, s3, ..., 5t} denotes the history up to time ¢ of the new state variable s.

[ H } ‘ht,ogQ,Dt ~N b, V) xu,be A, (A-15)
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where A, is defined in , with

=1 exp
t—1 1
b = VIV i+ 2T .
{ Y ey }

Next, the posterior distribution for p (O'g 2‘ w, 3, ht, Dt) is readily available as,

-1
ke + S50 (hoyt — hy)?
052‘ w B e D~ G = ZT? ( I“ ) =1 (A-16)
Finally, draws from the predictive density p (rt+1| Dt) can be obtained by noting than
p(res1| DY) = / p(Tt+1|ht+1,M,5,ht,UgQ,Dt)
p,Bht+ o
Xp(ht+1’/1’767ht7o-§_27pt> (A_]'7)

Xp ( 1, B, B, 05_2’ Df> dpdBdh*+ do 2.

The first term in the integral above, p (rt+1| hiv1, i, B, ht, %—2’ Dt), represents the period t + 1
predictive density of excess returns, treating model parameters as if they were known with cer-
tainty, and so is straightforward to calculate. The second term in the integral, p (ht+1| i, B, ht, o¢ 2 Dt) ,
reflects how period ¢ + 1 volatility may drift away from h; over time. Finally, the last term in

the integral, p (,u, B, ht, o¢ 2‘ Dt), measures parameter uncertainty in the sample.

To obtain draws for p (Tt—i-l’ Dt), we proceed in three steps:

1. Simulate from p (,u, B, ht, 05—2‘ Dt): draws from p (u, B, ht, 0{2‘ Dt> are obtained from the

Gibbs sampling algorithm described above;

2. Simulate from p (ht+1| w, B, ht,aE_Q,Dt>: having processed data up to time ¢, the next
step is to simulate the future volatility, h;y1. For a given h; and o¢ 2 note that p and j
and the history of volatilities up to ¢ become redundant, i.e., p (ht+1| w, B, ht, agQ, Dt> =
P (ht+1\ ht, o¢ 2,Dt>. Note also that (@) along with the distributional assumptions made

with regards to £;41 imply that
ht_;,_l‘ht,O'gQ,Dt ~ N(ht,O'g) . (A—18)
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. Simulate from p (rt+1| hiy1, i, 3, ht, 052, Dt): For a given h;y1, i, and 3, note that htand
052 become redundant, i.e., p (Tt+1‘ hiy1, i, 3, ht, 0{2, Dt) =p (Tt+1’ hiv1, 1, B, Dt) . Then
use the fact that

i1 | g1, s B, DY~ N (4 By, exp (hi1)) - (A-19)
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Fig. 1. Equity premium constraint

-10 -
/ -15
' _ i
(a) Log dividend-price ratio, —4.52 < z; < —1.87 (b) T-bill rate, 0.0001 < z¢ < 0.163
B
0.05}

7 —0.05-

-0.101

(c¢) Log dividend-payout ratio, —1.22 < z; < 1.38

This figure shows the effect on the parameters p (shown on the x axis) and 8 (shown on the y axis) from imposing
the equity premium constraint u + Sz; > 0, as indicated by the shaded area. The blue solid and green dotted
lines correspond to the cases where the predictor value is set to the smallest and largest values attained in sample,
while the red dashed line depicts the case where the predictor value is set to its sample average.
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Fig. 2. Comparison of in-sample fitted values and out-of-sample forecast under the equity
premium constraint and the truncation approach

CT truncated (in-sanllple fitted values) ‘ —1.6
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Excess returns (percentage points)
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= | | | | 1 | —-0.4
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This figure compares the in-sample fitted values and out-of-sample predicted excess return for January 1947 under
the equity premium constraint versus under the truncation approach of Campbell and Thompson (2008, labeled
CT truncated). We regress excess returns (r:+1) on an intercept and the lagged log dividend-price ratio, z; over
the period January 1927-December 1946: 7r:11 = pu + Szt + €¢41. Estimates from this model are then used to
generate in-sample fitted values as well as a one-step out-of-sample forecast of excess returns for January 1947.
The equity premium constrained model imposes that 7,11 = [(u+ Ba-)p( 1, B] DYHYdudB > 0, for 7 = 1,...,t and
information set D¢.
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Fig. 3. Comparison of coefficient estimates under the
bell and Thompson (2008) truncation approach
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This figure shows a comparison of the posterior means of the coefficient estimates in the excess return regression
re41 = p + Bxr + €441. The truncation approach uses unconstrained OLS to estimate the coefficient estimates,
whereas the equity premium constrained model imposes that 7,41 = [(p + Bz )p(u, B DHdpdB > 0, for
7 =1,...,t and information set D'. Coefficient estimates are updated recursively in time from January 1947—
December 2010 and the model uses the default yield spread as a predictor.
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Fig. 4. Slope coeflicient of predictors under constrained and unconstrained models
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This figure shows the posterior density of the slope coefficient, 3, from a regression of monthly excess returns
(r¢++1) on an intercept and a lagged predictor variable, x¢: T44+1 = pu+ Bzt +ert1. The equity premium constrained
model imposes that 7,11 = [ (1 + Bz )p(p, 8] D")dudB > 0, for 7 = 1,...,¢ and information set D*, while the
Sharpe ratio constraint imposes that 0 < 7, 1¢/6,11s <1, for 7 =1,...,t, where &, 1; is the posterior volatility
estimate obtained from a stochastic volatility model. The posterior density estimates shown here are based on the
full sample at the end of 2010. Panels A, B, and C use the log dividend-price ratio, T-bill rate, and the default
yield spread as predictors, respectively.
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Fig. 5. Posterior density of the equity premium under constrained and unconstrained models
(Dividend-price ratio)
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This figure shows the posterior density of the equity premium as a function of the log dividend-price ratio,
u + Bxr, where x7 is set at the sample mean of the log dividend-price ratio Z (top window), & — 2st.dev ()
(middle window), and Z + 2st.dev (z) (bottom window). The equity premium constrained model imposes that
Pri1je = S+ Bz )p(p, B D")dudB > 0, for T = 1,...,t and information set D*, while the Sharpe ratio constraint
imposes that 0 < 7y /6,41 < 1, for 7 = 1,...,t, where 6,1, is the posterior volatility estimate obtained from
a stochastic volatility model. All posterior density estimates are based on the full data sample as of end-2010.
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Fig. 6. Posterior density of the equity premium under constrained and unconstrained models
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This figure shows the posterior density of the equity premium as a function of the T-bill rate, pu + Bz,

where zr is set at the sample mean of the T-bill rate Z (top window), T — 2st.dev (z) (middle window),
and T + 2st.dev (z) (bottom window). The equity premium constrained model imposes that 7,1 = [(p +
Bx.)p(w, B D*)dudB > 0, for 7 = 1,...,t and information set D, while the Sharpe ratio constraint imposes that
0 < Prjae/6rqae <1, for 7 =1,...,t, where 6,41 is the posterior volatility estimate obtained from a stochastic
volatility model. All posterior density estimates are based on the full data sample as of end-2010.
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Fig. 7. Posterior density of the equity premium under constrained and unconstrained models
(default spread)
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This figure shows the posterior density of the equity premium as a function of the default yield spread, u + Sz,
where z7 is set at the sample mean of the default yield spread Z (top window), T — 2st.dev (x) (middle window),
and T + 2st.dev (z) (bottom window). The equity premium constrained model imposes that 7,1 = [(p +
Bx.)p(w, B D*)dudB > 0, for 7 = 1,...,t and information set D, while the Sharpe ratio constraint imposes that
0 < Prjae/6rqae <1, for 7 =1,...,t, where 6,41 is the posterior volatility estimate obtained from a stochastic
volatility model. All posterior density estimates are based on the full data sample as of end-2010.
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Fig. 8. Posterior mean and variance of the equity premium as a function of the value of the
predictor variable
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This figure plots the posterior mean (top window) and posterior variance (bottom window) of the equity premium
as a function of the T-bill rate under unconstrained, equity premium constrained and Sharpe ratio constrained
models, respectively. The equity premium constrained model imposes that #,41; = [(p+ Bz )p(p, 8] D*)duds >
0, for 7 = 1,...,t and information set D!, while the Sharpe ratio constraint imposes that 0 < Frgift/Fr1e < 1,
for 7 =1,...,t, where 6,1; is the posterior volatility estimate obtained from a stochastic volatility model. All
posterior density estimates are based on the full data sample as of end-2010.
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Fig. 9. Out-of-sample equity premium forecasts under unconstrained and constrained models
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Each month we regress excess returns (r;4+1) on an intercept and a lagged predictor, x¢: Te41 = p + Bxe + €41.
Estimates from this model are then used to generate recursive one-step out-of-sample forecasts of excess returns
and the process is repeated up to the end of the sample in 2010. Unconstrained forecasts, 7,11, are based on
recursive least-squares estimates and uninformative priors. The equity premium constrained model imposes that
Fri1e = [(u+ Bzr)p( 1, B] DYdudB > 0, for 7 = 1, ..., t and information set D, while the Sharpe ratio constraint
imposes that 0 < 7ryq1¢/6r41p < 1, 7 =1,...,t, where 6,41 is the posterior volatility estimate obtained from a
stochastic volatility model. The three windows use different predictor variables, namely, the log dividend-price
ratio (top window), the T-bill rate (middle), and the default yield spread (bottom).
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Fig. 10. Volatility forecasts
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This figure shows the one-step-ahead recursive conditional volatility forecasts computed from the predictive return
distribution based on the stochastic volatility model that uses the log dividend-price ratio as predictor, r¢+1 =

w+ Blog(Dy/Pt) + exp(hit1)ues1, hetr = he + g
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Fig

. 11. Conditional Sharpe
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This figure shows the time series of conditional Sharpe ratios computed from the
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returns based on the unconstrained, equity premium constrained, and Sharpe ratio constrained models (the latter
computed under both constant volatility (CV) and stochastic volatility (SV)). The three windows use different
predictor variables, namely, the log dividend-price ratio (top window), the T-bill rate (middle), and the default

yield spread (bottom).
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Fig. 12. Posterior probability intervals for the parameters of the return prediction model
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FEach month we update the posterior density of the parameters u, of the return prediction model riy1 =
u—+ Bxe + €441, where x; is the T-bill rate and ry4+; is the return on the S&P 500 index, measured in excess
of the T-bill rate. We then compute posterior probability intervals for these parameter estimates. Windows to
the left report the (2.5,97.5) percentile posterior probability intervals for the parameters of the unconstrained
model, while windows to the right show results for the equity-premium constrained model. The equity premium
constrained model imposes that 7.1, = [(1 + Bz-)p(p, 8| D)dudB > 0 for all 7 = 1,...,¢ and information set
Dt. All density estimates are updated recursively through time.
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Fig. 13. Forecast performance: cumulative sum of squared forecast error differentials
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This figure shows the sum of squared forecast errors of the prevailing mean model minus the sum of squared
forecast errors of a forecast model with time-varying predictors. Each month we estimate the parameters of the
forecast models recursively and generate one-step-ahead forecasts of excess returns which are in turn used to
compute out-of-sample forecast errors. This procedure uses univariate forecast models based on the log dividend-
price ratio (top window), the T-bill rate (middle window), or the default yield spread (bottom window) or a
simple prevailing mean model which is our benchmark. We then plot the cumulative sum of squared forecast
errors (SSE;) of the prevailing mean forecasts (SSFE{ ™) relative to the univariate forecasts, SSEf* — SSE;.
Values above zero indicate that a univariate forecast model generates better performance than the prevailing
mean benchmark, while negative values suggest the opposite. The equity premium constrained model imposes
that 7,410 = [(u + Bzr)p(p, 8| DY)dpdB > 0, for 7 = 1,...,¢ and information set D!, while the Sharpe ratio
constraint imposes that 0 < #,.1;/6,41); < 1, for 7 = 1,...,t, where 6,1, is the posterior volatility estimate
from a stochastic volatility model.
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Fig. 14. Portfolio allocation and economic value of forecasts
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This figure plots the percentage allocation to stocks and the resulting cumulative certainty equivalent returns
measured relative to the prevailing mean model. Each month we compute the optimal allocation to stocks and
T-bills based on the predictive density of excess returns. The investor is assumed to have power utility with a
coefficient of relative risk aversion of five and the weight on stocks is constrained to lie in the interval [0, 0.99].
The top window shows the recursively computed optimal weight on stocks, while the bottom window shows the
cumulative certainty equivalent return measured relative to the prevailing mean model. The equity premium
constrained model imposes the constraint that 7.41;; = [(u + Bz )p( w, B DHdudB > 0, for 7 = 1,...,t and
information set D!, while the Sharpe ratio constrained models impose that 0 < Friije/Grp1pe < 1, for 7 =1,..,¢,
where 64| is the posterior volatility estimate obtained from either a constant volatility model (CV), or a
stochastic volatility model (SV). The predictor used is the log dividend-price ratio.
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Table 1: Summary statistics

Monthly

Variables Mean Std. deviation Skewness Kurthosis
Excess returns 0.005 0.056 -0.405 10.603
Log dividend price ratio -3.329 0.452 -0.403 3.044
Log dividend yield -3.324 0.450 -0.435 3.030
Log earning price ratio -2.720 0.426 -0.708 5.659
Log smooth earning price ratio -2.912 0.376 -0.002 3.559
Log dividend-payout ratio -0.609 0.325 1.616 9.452
Book-to-market ratio 0.589 0.267 0.671 4.456
T-Bill rate 0.037 0.031 1.025 4.246
Long-term yield 0.053 0.028 0.991 3.407
Long-term return 0.005 0.024 0.618 8.259
Term spread 0.016 0.013 -0.218 3.128
Default yield spread 0.011 0.007 2.382 11.049
Default return spread 0.000 0.013 -0.302 11.490
Stock variance 0.003 0.005 5.875 48.302
Net equity expansion 0.019 0.024 1.468 10.638
Inflation 0.002 0.005 -0.069 6.535
Log total net payout yield -2.137 0.224 -1.268 6.213

Quarterly

Variables Mean Std. deviation Skewness Kurthosis
Excess returns 0.014 0.108 0.201 11.087
Log dividend price ratio -3.328 0.456 -0.372 3.077
Log dividend yield -3.314 0.450 -0.471 3.037
Log earning price ratio -2.719 0.432 -0.777 5.932
Log smooth earning price ratio -2.906 0.378 0.028 3.654
Log dividend-payout ratio -0.609 0.332 1.702 9.919
Book-to-market ratio 0.594 0.268 0.745 4.905
T-Bill rate 0.037 0.031 1.040 4.313
Long-term yield 0.053 0.028 1.008 3.484
Long-term return 0.014 0.045 1.067 7.369
Term spread 0.016 0.013 -0.260 3.285
Default yield spread 0.011 0.007 2.390 11.007
Default return spread 0.001 0.021 0.355 16.437
Stock variance 0.008 0.013 4.523 28.492
Net equity expansion 0.019 0.025 1.416 10.179
Inflation 0.007 0.013 -0.383 5.341

Annual

Variables Mean Std. deviation Skewness Kurthosis
Excess returns 0.053 0.202 -0.904 4.104
Log dividend price ratio -3.337 0.464 -0.415 2.873
Log dividend yield -3.286 0.444 -0.732 3.115
Log earning price ratio -2.722 0.420 -0.339 3.672
Log smooth earning price ratio -2.895 0.377 -0.097 3.078
Log dividend-payout ratio -0.615 0.319 1.068 5.664
Book-to-market ratio 0.585 0.263 0.506 3.285
T-Bill rate 0.037 0.031 1.028 4.388
Long-term yield 0.053 0.028 0.914 3.168
Long-term return 0.058 0.096 1.035 4.591
Term spread 0.016 0.014 -0.453 3.925
Default yield spread 0.012 0.008 2.278 9.532
Default return spread 0.004 0.043 -0.134 7.845
Stock variance 0.030 0.040 2.906 12.014
Net equity expansion 0.019 0.026 2.498 15.603
Inflation 0.030 0.038 -0.343 5.876
Percent equity issuing 0.194 0.110 1.733 8.368

This table reports summary statistics for excess returns, computed as returns on the S&P500 portfolio minus the
T-bill rate, and for the predictor variables used in the study. The sample period is 1927-2010.
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Table 8: Out-of-sample forecast performance: Recessions and expansions

Monthly
Panel A: Expansions Panel B: Recessions
Variables No EP SR [0,1] No EP SR [0,1]
constraint constraint constraint | constraint constraint constraint
Log dividend price ratio -0.93% 0.72%***  0.70%*** |  2.39%***  0.47% 0.02%
Log dividend yield -1.77% 0.77%***  0.67%*** | 3.44%***  0.75%* 0.27%
Log earning price ratio -0.96%**  0.85%***  0.75%*** | -2.32% -1.07% -0.72%
Log smooth earning price ratio | -2.25% 0.79%***  0.88%*** | 2.45%**  -0.21% -0.43%
Log dividend-payout ratio -0.50% 0.34%* 0.41%** -3.95% -1.13% -0.83%
Book-to-market ratio -2.08% 0.38%* 0.46%** 0.12% -0.79% -0.91%
T-Bill rate -0.77% 0.30%* 0.78% *** 1.75%* -0.36% -0.01%
Long-term yield -1.81% 0.50%** 0.79%*** | 0.98% -0.09% 0.04%
Long-term return -1.35% 0.40%**  -0.17% 0.61% -0.29% 2.07%**
Term spread -0.37% 0.28%* 0.49%** 1.01%* -0.48% -0.31%
Default yield spread -0.28% 0.30%** 0.41%* 0.02% -0.07% -1.18%
Default return spread -0.16% 0.46%** 0.42%** -0.41% -0.52% -1.90%
Stock variance -0.08% 0.03% 0.24% 0.95% -0.62% -1.47%
Net equity expansion 0.49%**  0.37%** 0.48%** -3.66% -0.86% -1.32%
Inflation -0.10% 0.39%** 0.59%** -0.20% -0.63% -1.70%
Log total net payout yield -1.21% 0.52%** 0.48%** 1.12% -0.55% -1.13%
Average -0.88% 0.46% 0.53% 0.27% -0.40% -0.59%
Quarterly
Panel A: Expansions Panel B: Recessions
Variablos No EP SR [0,1] No EP SR [0,1]
constraint constraint constraint | constraint constraint constraint
Log dividend price ratio -4.35% 2.81%***  1.81%*** | 6.42%***  1.00% 1.46%*
Log dividend yield -2.54% 2.66%*** 1.91%*** 5.94%*** 1.08% 1.82%**
Log earning price ratio -5.82%* 2.76%***  1.63%*** | -7.13% -2.53% -0.20%
Log smooth earning price ratio | -9.43% 2.93%***  2.29%*** 5.63%**  -0.57% 0.50%
Log dividend-payout ratio -1.24% 1.21%** 1.35%** -7.56% -1.80% -0.02%
Book-to-market ratio -10.20% 1.25%** 1.46%** -0.02% -2.36% 0.17%
T-Bill rate -1.61% 1.04%** 2.31%*** 1.17% -1.61% 1.19%
Long-term yield -4.711% 1.36%** 1.87%*** 0.47% -0.56% 1.05%
Long-term return 0.70% 1.73%** 1.83%** -2.74% -1.59% -1.17%
Term spread -0.51% 0.96%* 1.40%* 1.09% -1.41% 0.90%
Default yield spread -1.25% 1.14%** 1.43%** -0.16% -0.50% -1.18%
Default return spread -4.07% 1.00%** 1.33%** -9.40% -4.70% -0.11%
Stock variance -0.09% 1.31%***  1.59%** -0.21% -1.76% -3.16%
Net equity expansion -0.30%**  1.28%** 1.43%** | -12.17% -2.50% -1.49%
Inflation -0.41% 1.36%** 1.27%** 0.68% -1.11% 0.44%
Average -3.06% 1.65% 1.66% -1.20% -1.40% 0.01%

This table reports the out-of-sample R? of unconstrained and constrained univariate prediction models for the

monthly excess return, r:+1, measured relative to the prevailing mean model:

where 7,4 1; is the posterior mean of the predictive return distribution based on a regression of monthly excess
returns on an intercept and a lagged predictor variable, z¢: 7141 = o+ B2t + €141. Tyq1)¢ is the forecast from the
prevailing mean model which assumes that 8 = 0. The equity premium (EP) constrained model imposes that
Fri1e = (14 Bzr)p(p, B| DY)dpdB > 0, for 7 = 1, ..., ¢ and information set D*, while the Sharpe ratio (SR [0,1])
constraint imposes that 0 < #,,1;/6,41); < 1, for 7 = 1,...,t, where 6,1 is the posterior volatility estimate
obtained from a stochastic volatility model. Panels A and B show monthly results for expansions and recessions,
while panels C and D show quarterly results for expansions and recessions. Bold figures highlight instances where
the constrained R%,g is higher than its unconstrained %o%mterpart, * gignificance at 10% level; ** significance at

, T
Roos =1— S

5% level; *** significance at 1% level.
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Table 9: Sensitivity analysis for the upper bound on the Sharpe ratio

Panel A: Forecast Performance (out of sample R-squared)

. No EP SR [0,0.5] SR [0,0.75] SR [0,1] SR [0,1.25] SR [0,1.5]
Variables . . . . . . .
constraint constraint constraint constraint constraint constraint constraint
Log dividend price ratio | 0.10%* 0.64%***  0.17% 0.50%*** 0.49%** 0.54%** 0.48%**
T-Bill rate 0.01%* 0.10% 0.33%** 0.58%*** 0.54%** 0.60%** 0.60%**
Default yield spread -0.19% 0.18% 0.14% 0.20% -0.08% -0.26% -0.31%
Panel B: Economic Performance (Certainty equivalent return)
. No EP SR [0,0.5] SR [0,0.75] SR [0,1] SR [0,1.25] SR [0,1.5]
Variables . . . . . . .
constraint constraint constraint constraint constraint constraint constraint
Log dividend price ratio | -0.28% 0.32% 0.20% 0.57% 0.74% 0.93% 0.96%
T-Bill rate -0.15% 0.25% 0.38% 0.83% 1.06% 1.33% 1.48%
Default yield spread -0.11% 0.10% 0.19% 0.49% 0.56% 0.68% 0.74%

Panel A reports the out-of-sample R? of unconstrained and constrained univariate prediction models for monthly
excess returns, r¢+1, measured relative to the prevailing mean model:

ZT:;_l(TH'l - 7A't+1|t)2
F _ 3
S (regn = Tugape)?

where 7;;1)¢ is the mean of the predictive return distribution based on a regression of excess returns on an
intercept and a lagged predictor variable, x;: ri4+1 = pu + Bxe + €¢41- Teq1e 18 the forecast from the prevailing
mean model which assumes that § = 0. The equity premium (EP) constrained model imposes that .y =
S+ Bx)p( i, B DY)dudB > 0, for 7 = 1,...,t and information set D’, while the Sharpe ratio (SR) constraint
imposes that 7,11);/6¢41)¢ is bounded between 0 and the specified upper bound, where &,,1}; is the posterior
volatility estimate obtained from a stochastic volatility model and t = 1,...,7 — 1. Panel B reports certainty
equivalent values for portfolio decisions based on recursive out-of-sample forecasts of excess returns. Each period
an investor with power utility and coefficient of relative risk aversion of five selects stocks and T-bills based on his
predictive density. Certainty equivalent values are annualized and are measured relative to the prevailing mean
model which assumes a constant equity premium. Bold figures highlight instances where the constrained R%,g
(Panel A) or annualized certainty equivalent returns (Panel B) are higher than their unconstrained counterparts.
* significance at 10% level; ** significance at 5% level; *** significance at 1% level.
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