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1 Introduction

The trade-o↵ between risk and returns is fundamental to finance. According to Merton’s ICAPM (Merton

(1973)), the expected excess return on the market portfolio, Et[rt+1], should reflect its conditional variance,

V art+1|t, and the conditional covariance between market returns, rt+1, and economic state variables, xt+1,

capturing time variation in the investment opportunity set, Covt+1|t:

Et[rt+1] =

✓
�JWWW

JW

◆
V art+1|t +

✓
�JWxW

JW

◆
Covt+1|t. (1)

Here W is wealth, J(W,x, t) is the investor’s indirect utility function and JW , JWW , and JWx denote

partial derivatives, so that (�JWWW/JW ) measures the representative investor’s relative risk aversion.

Empirical work on the risk-return relation has mostly tested the relation between the equity risk

premium and the conditional variance, i.e., the first term on the right hand side of equation (1). Studies

such as Campbell (1987), Breen, Glosten, and Jagannathan (1989), Turner, Startz, and Nelson (1989),

Nelson (1991), Glosten, Jagannathan, and Runkle (1993), Whitelaw (1994, 2000), Harvey (2001), and

Brandt and Kang (2004) find a negative trade-o↵. Conversely, Bali and Peng (2006), Bollerslev, Engle, and

Wooldridge (1988), Harvey (1989), Scruggs (1998), Harrison and Zhang (1999), Scruggs and Glabadanidis

(2003), Ghysels, Santa-Clara, and Valkanov (2005), Guo and Whitelaw (2006), Ludvigson and Ng (2007),

Lundblad (2007), and Pástor, Sinha, and Swaminathan (2008) find a positive trade-o↵.1

A key di�culty in testing the ICAPM is that ex-ante measures of the conditional variance and covari-

ance are unobserved. A large literature has proposed di↵erent ways to estimate the conditional variance

using data on high-frequency returns as well as a variety of dynamic specifications. Far less work has

been undertaken on estimating the conditional covariance term in the ICAPM. In part this reflects the

lack of specific guidance from theory – the ICAPM implies that the conditional covariance term should

track time-varying investment opportunities but it does not specify the identity of the state variables or

how such variables map into the conditional covariance. Scruggs (1998) and Guo and Whitelaw (2006)

1Other studies report an insignificant risk-return relation; see French, Schwert, and Stambaugh (1987), Baillie and De-
Gennaro (1990), Campbell and Hentschel (1992), Harrison and Zhang (1999) and Bollerslev and Zhou (2006). Bekaert and
Hoerova (2014) do not find that the conditional variance predicts stock returns although they find that it is negatively
correlated with future economic growth.
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estimate covariance models using state variables from the literature on return predictability. Specifically,

Scruggs (1998) adopts a two-factor GARCH-in-mean model to estimate covariance risk in which the nom-

inal risk-free rate drives movements in the conditional covariance. Guo and Whitelaw (2006) assume

that the conditional covariance is a linear function of a vector of observable state variables such as the

relative T-bill rate and the CAY variable of Lettau and Ludvigson (2001). Bali (2008) uses a bivariate

GARCH model to estimate conditional covariances and tests the ICAPM on stock portfolios formed on

firm characteristics or industry membership. Bali and Engle (2010) extend this setting to a model with

dynamic conditional correlations. None of these studies test the significance of the portfolios’ exposure to

a broad economic activity index, however.

This paper proposes a new approach for constructing the covariance risk measure that distills infor-

mation from a large set of (conditioning) state variables in a parsimonious and robust manner. First, we

extract a daily economic activity index from macroeconomic and financial variables observed at mixed

frequencies using a dynamic (latent) factor approach similar to that proposed by Aruoba, Diebold, and

Scotti (2009). We find that this economic activity measure is procyclical and significantly correlated with

variables previously proposed as measures of time-varying investment opportunities such as the dividend-

price ratio, interest rates, and consumption growth. We use this daily economic activity index to estimate

monthly “realized covariances” between stock returns and economic activity.

The second step in our analysis estimates the conditional covariance by projecting the realized covari-

ance on a large set of conditioning variables that predict time-varying investment opportunities. These

projections are performed non-parametrically and use a new technique known as boosted regression trees.

This approach, first, allows us to condition on a large set of state variables and, second, avoids imposing re-

strictive linearity assumptions on the relation between the conditioning variables and the covariance. This

is important since theory does not impose such restrictions on this step and assumptions such as linearity

can lead to a misspecified model. Indeed, empirical tests show that a linear model for the conditional

covariance term is grossly misspecified.

Using our new conditional covariance measure, the third step in our analysis estimates Merton’s

ICAPM by performing a linear regression of stock market (excess) returns on the conditional variance
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and the conditional covariance. We obtain positive and significant coe�cients for both the conditional

variance and covariance terms.2 Moreover, at between 2 and 2.6 in the monthly data and between 3.6 and

4.3 in the quarterly data, our estimates of the representative investor’s coe�cient of relative risk aversion

are very sensible. These estimates do not depend on the use of our new conditional covariance measure

and are generated using an EGARCH specification for the conditional variance.

To understand why the coe�cient on the conditional covariance term is positive, note that both

expected returns and the conditional variance of returns vary countercyclically and tend to be higher

during recessions when stock returns are generally low. Their higher expected returns during recessions

make stocks more attractive from a hedging perspective while their higher (conditional) variance makes

them less attractive. Empirically, we find that cyclical variation in the conditional variance component

dominates variation in expected returns, making investment opportunities overall worse during economic

downturns and better in expansions. This suggests that stocks do not provide a hedge against adverse

shifts to investment opportunities and so the coe�cient on the conditional covariance term should be

positive.

To gain further insights into the performance of our new conditional covariance measure, the fourth

step in our analysis compares it to covariance estimates from a linear model and to covariance estimates

obtained using the approaches of Scruggs (1998) and Guo and Whitelaw (2006). We find evidence that

an ICAPM specification based on these alternative parametric covariance measures is misspecified. In

contrast, the ICAPM based on our new covariance measure does not appear to be misspecified and fits

the returns data better than alternative covariance measures.

As a final test of Merton’s ICAPM, we perform a pseudo out-of-sample forecast analysis that predicts

stock returns by means of the recursively estimated conditional variance and covariance. We find that

our new conditional covariance model performs notably better than forecasts using the covariance risk

measures proposed by Scruggs (1998) and Guo and Whitelaw (2006). This indicates that the positive risk-

return relation uncovered by our model is stable enough to provide more accurate out-of-sample return

forecasts.
2Lundblad (2007) and Bali (2008) note that time-series tests of the ICAPM tend to have weak power.
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The remainder of the paper is organized as follows. Section 2 introduces the daily economic activity

index and shows how it is related to existing proxies for time-varying investment opportunities. Section

3 explains how we construct the conditional covariance measure. Section 4 analyzes the ICAPM relation

empirically and compares our approach to existing methods. Section 5 concludes.

2 Construction of the Daily Economic Activity Index

The state variables in the ICAPM should capture time variation in investment opportunities and so can

be expected to depend on broad measures of the state of the economy. Economic variables tracking such

measures are typically only available weekly, monthly or quarterly and are often published on an irregular

basis. To overcome this, we construct a new economic activity measure using a methodology similar to

the dynamic latent factor approach developed by Aruoba, Diebold, and Scotti (2009).

We construct our economic activity index (EAI) using a variety of variables. Investment opportunities

likely depend on real economic activity which can be proxied by variables such as growth in industrial

production, personal income, and GDP. Labor market variables have also been shown to be closely related

to the state of the economy so we include jobless claims which are available weekly. Finally, interest rates

matter directly to investment opportunities as they represent an alternative investment to stocks and have

also been found to predict future economic activity and be correlated with stock market volatility.3

Our first EAI (“EAI1” henceforth) uses both real (non-financial) and financial variables. Specifically,

we use weekly observations on jobless claims, which track how many people file for unemployment benefits

over a given week, monthly observations on growth in real personal income less transfers and industrial

production, and quarterly GDP figures. Following Merton (1973) we add to these variables a daily interest

rate series in the form of the current 3-month T-bill rate, measured relative to a twelve-month moving

average so as to account for local trends.

Ultimately, a smaller set of primitive shocks are likely to drive most variables, making it di�cult to

distinguish clearly between real and financial e↵ects. Nevertheless, comparing the results based on an index

3Merton (1973, p. 879) writes “one should interpret the e↵ects of a changing interest rate ... in the way economists have
generally done in the past: namely, as a single (instrumental) variable representation of shifts in the investment opportunity
set.”
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constructed from real and financial variables versus an index that uses only real economic variables allows

us to gauge the marginal e↵ect of conditioning on financial variables measured at the daily frequency.

We therefore construct a second EAI (“EAI2”) based only on the real (non-financial) macroeconomic

variables listed above, i.e., exclusive of the detrended 3-month T-bill rate. Even though none of these

series is measured at the daily frequency, we can still construct a daily index series because di↵erent

variables get released on di↵erent days. The weekly payroll figures start in 1960 and so both indexes are

available from March 1960 to December 2012, a total of 19,299 daily observations.4

2.1 Methodology

Following Aruoba, Diebold, and Scotti (2009) we model the daily business cycle, zt, as a latent variable

that follows a (zero-mean) first-order autoregressive process:

zt = ⇢zt�1 + ✏t. (2)

Although zt is unobserved, we can extract information about it through its relation with a vector of

observed economic and financial state variables, yt, with ith component yit. At the daily frequency the

observed variables are assumed to follow processes of the form:

yit = ki + �izt + �i1y
i
t�Di

+ uit. (3)

The lag length for variable i, Di, depends on the observation frequency of variable i; it is constant and

equals seven days if the variable is observed weekly but varies over time if the variable is observed at the

monthly or quarterly frequencies due to variation in the number of days in a month.

4Following standard practice, we account for trends in the variables by modeling their changes (log first-di↵erences) with
exception of the weekly initial jobless claim numbers which, following Aruoba, Diebold, and Scotti (2009) are de-trended
using a polynomial trend model. All non-daily variables are therefore “flow” variables and their temporal aggregation is
handled using cumulator variables following Harvey (1990, pp. 313-318).
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The model (2)-(3) can be written in state-space form as:

yt = �↵t + �wt + ut, ut ⇠ (0,H), (4)

↵t+1 = Tt↵t +R⌘t+1, ⌘t+1 ⇠ (0,Q), (5)

where ↵t is a vector of state variables that includes zt, wt is a vector of lagged dependent variables,

and ut and ⌘t are shocks associated with the measurement and transition equations, respectively. All

matrices (�,�,R,H,Q) are constant while Tt varies over time due to the temporal aggregation of the

flow variables observed at the weekly, monthly and quarterly frequencies. The appendix describes the

Kalman filter equations used to extract the business cycle index from (4)-(5) and explains how we deal

with missing values in yt.

As an illustration, consider a model containing the following observables: detrended interest rates

(daily, ỹ1t ); initial jobless claims (weekly, ỹ2t ); personal income (monthly, ỹ3t ); industrial production

(monthly, ỹ4t ); and GDP (quarterly, ỹ5t ). Following Aruoba, Diebold, and Scotti (2009), we model the

weekly, monthly and quarterly variables as AR(1) processes by including their lagged values in wt. Con-

versely, we model the autocorrelation structure of the daily T-bill rate using an AR(1) process for the

innovation to the measurement equation, u1t . This leads to the following model:5
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5Temporal aggregation implies that element (2,2) of the Tt matrix equals one on the first day of each week and is zero
otherwise. Element (3,3) of the Tt matrix equals one on the first day of each month and is zero otherwise. Finally, element
(4,4) of the Tt matrix equals one on the first day of each quarter and is zero otherwise. The formulation of the model is
similar to that used for the updated ADS index published by the Philadelphia Federal Reserve.
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Similarly, the covariance matrices for the innovations to this model take the form:
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2.2 Properties of the Economic Activity Index

Figure 1 plots the two daily economic activity index series while Panel A in Table 1 reports summary

statistics. Both EAI series closely track the economic business cycle with dips during recessions and

marked increases as the economy emerges from a downturn. The mean of the EAI is -1.20 in recessions

and 0.2 in expansions. Both EAI series are persistent, with a first-order autocorrelation of 0.97, left skewed

and with fat tails, suggesting that bad news tend to move the indices more than good news. Since the

two EAI series are very similar (with a daily correlation of 0.993), in most of the analysis we refer to them

jointly as the EAI and base our discussion on EAI1. However, in some cases the two EAI measures yield

su�ciently di↵erent results to be of economic interest and we highlight these cases below.

To help further interpret the EAI measure, we correlate it with a range of variables conventionally

used to track time-variation in investment opportunities. Merton (1973) models such variation through

changes to the mean and variance-covariances of asset returns. To capture variation in expected returns,

we consider the monthly correlation between the EAI and the dividend-price ratio, the T-bill rate measured

relative to a twelve-month trailing average, the term spread (measured as the di↵erence in yields on 10-year

and 3-month Treasury bonds), consumption deviations from its long-term trend (“consumption growth”),

stock market returns and the CAY variable used by Lettau and Ludvigson (2001) as a predictor of expected
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returns. To capture variation in the volatility of returns, we consider the default spread (measured as

the spread between yields on BAA and AAA rated bond portfolios) and the realized variance. Following

studies such as Campbell and Shiller (1988) and Keim and Stambaugh (1986), the dividend price ratio is

generally thought to be positively correlated with expected returns, as is the CAY variable. The T-bill

rate, on the other hand, has been found to be negatively correlated with the equity risk premium, see Ang

and Bekaert (2007) and Campbell (1987). The default spread is commonly used to measure risk in the

economy and is usually found to be positively correlated with expected returns, whereas the term spread

has been found to be positively correlated with future economic activity.

Panel B of Table 1 shows that the EAI has a significantly negative (-0.52) correlation with the dividend-

price ratio. Conversely, it is positively correlated with both the de-trended T-bill rate (correlation of 0.45)

and consumption growth (correlation of 0.23).6 These correlations are all statistically significant and hold

irrespective of whether daily interest rates are used to construct the EAI. In contrast, the EAI is only

weakly correlated with monthly stock returns (correlation of 0.01), the term spread (-0.08), and CAY

(0.07). The strongly negative correlations between the EAI and the realized variance (correlation of -0.30)

and the default spread (-0.53) suggest that the EAI tends to be lower during times with highly volatile

returns and a high default spread.

Summarizing time variation in the investment opportunity set is not an easy task as witnessed by the

fact that the finance literature has proposed numerous state variables for capturing variation in expected

returns and the conditional variance. One way to summarize common variation in such measures is by

extracting principal components (PCs) from the cross-section of variables believed to be capturing time-

varying investment opportunities. We therefore correlate the EAI with the first and second PCs extracted

from the variables listed in Panel B of Table 1. Plots of the first two PCs against the EAI—shown in

Figure 2—reveal a positive and highly significant correlation between the EAI and both the first and

second PCs with correlations of 0.53 and 0.28, respectively. Both PCs load strongly negatively on the

6Because daily consumption data is not available, we consider instead the correlation between changes to the EAI and
log-growth in real personal non-durable consumption (rather than the deviation from trend used in Panel B of Table 1) at
the monthly, quarterly, semi-annual and annual horizons. We find that the correlation between changes to the EAI and real
non-durable consumption growth is uniformly positive and increases with the horizon: it is 7.7% at the monthly horizon,
15.4% at the quarterly horizon, 31.3% at the semi-annual horizon and 39.7% at the annual horizon. Correlations with real
durable consumption growth are similar.
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dividend-price ratio and the realized variance. Moreover, the realized variance explains a larger fraction of

the variation in the first PC than does the dividend-price ratio, whereas the reverse holds for the second

PC. Risk measures such as the default spread receive a greater weight in (and explains a greater fraction

of) the first PC while the opposite holds for stock returns. These observations suggest that the first,

and more important, PC broadly captures variation in risk whereas the second PC puts more weight on

variation in expected returns.

The variables in Panel B of Table 1 are selected based on their ability to predict future mean returns,

as tested in a large literature summarized in Goyal and Welch (2008), or the volatility of returns. This

suggests a more direct predictive test of whether the EAI captures time variation in investment opportu-

nities measured either by expected returns or by their conditional variance. Specifically, we simply regress

returns or the realized variance over the following month, quarter or year on the current EAI measure.

Panel C in Table 1 shows that the EAI is uncorrelated with stock returns over the following month and

quarter but is negatively correlated with stock returns over the following year. Moreover, the EAI is

strongly negatively correlated with stock market variance at the monthly, quarterly and annual horizons.

We conclude that the EAI measure is significantly correlated with a range of proxies for time-varying

investment opportunities previously studied in the finance literature. As such it appears to provide a

parsimonious summary of daily changes in investment opportunities.

2.3 Realized Covariance

Using daily changes in the EAI as a proxy for time-variation in investment opportunities, we next construct

a proxy for monthly “realized covariances” between stock returns and changes in the EAI:7

ccovt =
NtX

d=1

�EAId,t ⇥ rd,t, (6)

where �EAId,t is the change in the EAI on day d during month t, rd,t is the corresponding daily stock

market return on the value-weighted CRSP index and Nt is the number of trading days in month t. We

7Given the very high persistence in the EAI, the change, �EAI, essentially captures innovations to this index.
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scale ccovt by the (unconditional) standard deviations of the two variables to make it easier to interpret.

Given the very volatile nature of stock returns, unsurprisingly the realized covariance series (shown in

Figure 3) is quite spiky at the monthly horizon (top window)—possibly due to measurement error—

although it also displays systematic variation linked to the business cycle: The realized covariance measure

has an overall mean of 0.11, but the mean in recessions is 0.25 versus a mean of 0.08 during expansions.8

At the quarterly and annual horizons (middle and bottom plots) the index is notably smoother and less

a↵ected by individual daily observations.

A key advantage of the realized covariance measure is that it gives a “target” variable to model by

means of observable state variables used to track time-varying investment opportunities. Absent such a

proxy, we would need parametric modeling assumptions on how the conditional covariance is related to a

list of candidate state variables, raising the danger of introducing model misspecification biases.

3 Construction of the Conditional Covariance Measure

The second step in our empirical analysis constructs the conditional covariance measure. We do so using

a novel approach based on boosted regression trees (BRTs) which avoid imposing restrictive (linearity)

assumptions on the unknown form of the projection of the realized covariance on economic state variables,

while allowing for a large number of conditioning variables as advocated by Ludvigson and Ng (2007). We

next describe our approach in detail and contrast it with a conventional linear approach.

3.1 Boosted Regression Trees

Regression trees can be used to model how a dependent variable (here, the realized covariance), yt+1,

depends on a vector of predictor (state) variables, xt, for t = 1, 2, ..., T . Regression trees are characterized

by the predictor variables they use to split the sample space and by their split points. For each split point

we simply form two disjoint states, S1, S2 and model the dependent variable as a constant, cj , within

each state, Sj , j = 1, 2. The value fitted by a regression tree, T (xt,⇥), with two nodes and parameters

8The monthly plot winsorizes the October 2008 observation which generated a very large negative realized covariance.
This was the result of extremely large negative (almost -18%) and very volatile returns during this month, accompanied by
an improvement in the EAI during the first week of October followed by a deterioration in the index thereafter.
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⇥ = {Sj , cj}2j=1 can be written as a simple step function

T (xt,⇥) =
2X

j=1

cjI{xt 2 Sj}, (7)

where the indicator variable I{xt 2 Sj} equals one if xt 2 Sj and is zero otherwise.

Under the objective of minimizing the sum of squared errors, the estimated constant, bcj , becomes the

simple average of yt+1 in state Sj :

bcj =
PT

t=1 yt+1I{xt 2 Sj}PT
t=1 I{xt 2 Sj}

. (8)

Regression trees are very flexible and can capture local features of the data that linear models overlook.

Moreover, they can handle large-dimensional data without being as sensitive to outliers as linear models.

This is relevant here because the identity of the best predictor variables is unknown and so must be

determined empirically.

A single tree generally is too simple a model. Boosting uses the idea that combining a series of simple

models can lead to more accurate forecasts than those available from a single model. Boosted regression

trees (BRTs) are simply the sum of individual regression trees:

fB(xt) =
BX

b=1

Tb(xt;⇥b), (9)

where Tb(xt,⇥b) is the regression tree used in the b-th boosting iteration and B is the number of boosting

iterations. Given the previous model, fB�1(xt), the subsequent boosting iteration finds parameters ⇥B =

{Sj,B , cj,B}2j=1 for the next tree to solve

⇥̂B = argmin
⇥B

T�1X

t=0

[et+1,B�1 � TB(xt,⇥B)]
2 , (10)

where et+1,B�1 = yt+1 � fB�1(xt) is the forecast error remaining after B � 1 boosting iterations. The

solution to (10) is the regression tree that most reduces the average of the squared residuals
PT

t=1 e
2
t+1,B�1

and ĉj,B is the mean of the residuals in the jth state. As the number of boosting iterations increases, the
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area covered by individual states shrinks and the fit becomes better.

In summary, the BRT algorithm selects, by exhaustive search, the predictor variable whose sample

space is going to be split, the optimal splitting point, and the constant value for the dependent variable

in each region. The selected variable, the splitting points and the constant values are all chosen optimally

to reduce the model’s residuals by the greatest amount; see (Hastie, Tibshirani, and Friedman (2009)).9

To reduce the risk of overfitting we adopt three common refinements to the basic regression tree

methodology, namely (i) shrinkage, (ii) subsampling, and (iii) minimization of absolute errors. Specifically,

following Friedman (2001) we use a small shrinkage parameter, � = 0.001, that reduces the amount by

which each boosting iteration contributes to the overall fit:

fB(xt) = fB�1(xt) + �

2X

j=1

cj,BI{xt 2 Sj,B}. (11)

Each tree is fitted on a randomly drawn subset of the training data, whose length is set at one-half of the

full sample, the default value most commonly used. Again this reduces the risk of overfitting. Finally, we

minimize mean absolute errors to reduce the weight on extreme observations.

Our empirical analysis uses a range of state variables from Goyal and Welch (2008) designed to track

time-varying investment opportunities. Specifically, we include the log dividend-price ratio, log earnings-

price ratio, de-trended 3-month T-bill rate, yield on long-term government bonds, long-term returns, the

term spread (10-year minus 3-month treasury yield), the default spread (yield spread between BAA and

AAA-rated corporate bonds) and the inflation rate measured by the rate of change in the consumer price

index. Additional details on data sources and the construction of these variables are provided by Goyal

and Welch (2008). We add to this list the lagged realized covariance, for a total of nine predictors, all

of which are appropriately lagged so they are known at time t for purposes of forecasting the realized

covariance in period t+ 1.

If each of the nine state variables used to model the conditional covariance had a linear e↵ect on the

conditional covariance, there would not be any need to use BRTs. To illustrate that nonlinearities are

9Our estimations follow the stochastic gradient boosting approach of Friedman (2001, 2002) and employs B = 5, 000
boosting iterations. Robustness analysis revealed that the results are not sensitive to this choice.
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important, Figure 4 provides so-called partial dependence plots. These show how each of the predictor

variables maps into the conditional covariance plotted on the vertical axis. The BRT rules out interaction

e↵ects between the predictors so the marginal e↵ect of one variable on the conditional covariance does not

depend on the values taken by the other variables.

The plots in Figure 4 suggest marked non-linearities in the mapping from the predictors to the condi-

tional covariance. For example, while the conditional covariance is predicted to be negative for negative

values of the detrended T-bill rate (RRELt), it is predicted to be positive or close to zero for positive

values of this variable. A simple threshold regression with nodes at -0.005 and 0 confirms the impression

from this plot:

covt+1 = ↵+ 35.34
(0.181)

RRELt ⇥ I{RRELt<�0.005} + 94.54
(0.080)

RRELt ⇥ I{�0.005RRELt<0} (12)

� 51.14
(0.126)

RRELt ⇥ I{RRELt�0} + �0xt + "t+1.

Here xt are the remaining (eight) variables in the covariance specification. For negative values of RRELt

up to -0.005, there is a modestly increasing but insignificant relation between covt+1 and RRELt. This

part resembles the flat portion of the plot. For values of RRELt between -0.005 and zero we find a steep

and positive relation between RRELt and covt+1. Finally, for positive values of RRELt we find a negative

but insignificant relation between RRELt and covt+1. A test of the null that the coe�cients on RRELt

are identical across the three regions generates a p-value of 0.093.

The e↵ect of most covariates on the conditional covariance is muted at very high or very low values

of the predictors (the flat spots in Figure 4), showing no additional e↵ect when moving from a very low

(high) to a modestly low (high) value of each state variable. This makes the BRT approach more robust

to outliers than linear models for which extreme values of x would generally have a stronger e↵ect.10

A comparison of the range of fitted values across the nine predictor variables in Figure 4 suggests

that the conditional covariance is most sensitive to variation in the lagged covariance, long term return,

10We test this feature by including an indicator variable that equals one if a particular predictor (x�variable) is in the top
or bottom 10% of its range. We find that this indicator, when interacted with the x-variable to control for shifts in the slope,
is significant at the 5% level for three of the predictor variables in a linear covariance model, namely long-term returns, the
log dividend-price ratio, and the log earnings-price ratio.

13



detrended interest rate and the log dividend-price ratio. Variables with notably smaller marginal e↵ects

on the conditional covariance include past inflation and the long-term yield.

As a more formal way to test the BRT versus the linear covariance specification, we undertake a Ramsey

RESET specification test that regresses the residuals from models fitted to the realized covariance series

on the squared value of the nine predictors. If the functional form of the model is correct, then the squared

value of the predictors (or any other transformation of these) should not be correlated with the residuals

and this can be tested through a Wald test. The linear covariance model is always rejected by this test

at the 5% level, whereas the BRT model fitted to the realized covariance based on EAI2 is not rejected

at the 10% level. The presence of the outlier in October 2008 leads the BRT covariance model based on

EAI1 to be rejected although, when this single outlier is removed, the specification test no longer rejects

at the 10% level.

The top window in Figure 5 plots conditional covariance estimates generated by either a linear speci-

fication or the BRT model, in both cases using the nine predictors listed earlier. The two series are very

di↵erent and the linear model generates more volatile and extreme estimates of the conditional covariance

than the BRT model. Di↵erences between the two estimates are particularly large during the recession in

the early eighties and during the more recent global financial crisis.

3.2 Interpreting the Conditional Covariance Estimates

Whether the conditional covariance between stock market returns and changes to the EAI varies pro-

or countercyclically is ultimately an empirical question. Counter-cyclical movements in the conditional

covariance can be induced either by a stronger (positive) correlation between changes to the EAI and

stock market returns during recessions or by a higher variance of the EAI and/or stock returns. Stock

market volatility is known to follow a countercyclical pattern (Schwert (1989)). Similarly, economic un-

certainty as measured, e.g., by the conditional volatility of macroeconomic variables, tends to be higher

during recessions (Veldkamp (2005); Van Nieuwerburgh and Veldkamp (2006); Jurado, Ludvigson, and Ng

(2014)), leading us to expect that the volatility of changes to the EAI is higher at such times.11 Both fac-

11Ferson and Merrick Jr (1987) also find evidence of business cycle related shifts in the parameters governing the joint
distribution of consumption growth and stock returns.

14



tors induce countercyclical patterns in the conditional covariance. Turning to the correlation component,

whether news about the state of the economy is more or less informative about future investment oppor-

tunities is an empirical question that may, in equilibrium, also depend on the market price of investment

opportunity set risk.

Empirically, we find that movements in the conditional covariance are countercyclical. Specifically,

the conditional covariance is 5.2% in recessions and 3.6% in expansions. Since the conditional correlations

are almost identical in recessions and expansions (2.3% versus 2.1%), this di↵erence is driven by the two

conditional variances which are 22.6% (recession) versus 17.6% (expansions) for the EAI and 5.4% versus

4.5% for stock returns.

4 Estimating and Testing the ICAPM

Merton’s ICAPM implies that time-variation in expected stock returns are linearly related to the condi-

tional variance of stock market returns as well as variation in the conditional covariance. We next test

this implication. To do so we also need an estimate of the conditional variance. In contrast to the case for

the conditional covariance, few state variables other than the past variance and (signed) returns appear to

possess much predictive power over the conditional variance. Following Glosten, Jagannathan, and Runkle

(1993), we therefore estimate the following flexible EGARCH model (with p-values in parentheses):12

rt+1= 0.04
(0.001)

+ 0.01
(0.029)

dpt � 1.58
(0.001)

Tbillt + "t+1, "t+1 ⇠ N(0, vart+1|t) (13)

log(vart+1|t)=� 0.23
(0.001)

+ 0.96
(0.001)

log(vart|t�1) + 0.23
(0.001)


|"t|p

vart|t�1
� E

✓
|"t|p

vart|t�1

◆�
� 0.08

(0.001)

✓
"tp

vart|t�1

◆
+ 3.04

(0.138)
Tbillt.

Here Tbillt is the 3-month T-bill rate and dpt is the dividend-price ratio, both of which are allowed to

a↵ect the conditional mean. The inclusion of these linear terms in the conditional mean in (13), while

12Unlike Glosten et al. (1993) we model the logarithm of the conditional variance to ensure that the conditional variance
is non-negative. Because we find little evidence that the state variables used to generate the BRT estimate of the conditional
covariance are powerful in forecasting the variance of stock returns once information on the past variance and (signed) returns
is included, we use the flexible EGARCH estimates rather than a boosted regression tree to model the conditional variance
of returns. This is consistent with empirical studies such as Paye (2012) which find that lagged volatility is by far the most
important predictor of future volatility. In addition, we find that outliers (jumps) in daily returns tend to make BRT estimates
based on the realized variance quite noisy. An attractive robustness feature of our realized covariance measure is that the
economic activity index rarely gets a↵ected by outliers since jumps in one variable (daily returns) generally do not carry over
to jumps in the other variable (daily changes in the EAI).
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clearly an approximation, serves the purpose of extracting a more precise estimate of the conditional

variance but only has a marginal e↵ect on such estimates or on the resulting ICAPM analysis.13

This variance specification allows for rich dynamics as negative and positive shocks are allowed to have

di↵erent e↵ects on the conditional variance. Following Glosten et al. (1993), the conditional variance

can also be influenced by the T-bill rate. This specification of the variance dynamics is comparable to

estimates commonly used in the literature on volatility modeling, see, e.g., Bali (2008). The bottom

window in Figure 5 shows a time-series graph of the conditional variance. This is clearly countercyclical

as it increases during most recessions and comes down during expansions. Moreover, the time series of

this conditional variance has a correlation of only 0.09 with the BRT conditional covariance series.

We test the ICAPM by regressing excess returns on the value-weighted CRSP index (rt+1) on the

conditional variance (V art+1|t) and conditional covariance (Covt+1|t) measures:

rt+1 = ↵+ �1vart+1|t + �2covt+1|t + "t+1. (14)

Table 2 presents estimates for this model. Results in Panel A use EGARCH conditional variance estimates

and BRT conditional covariance estimates. Consistent with the ICAPM, the coe�cient estimate on the

variance term is positive and statistically significant at the 10% level in the monthly data. Moreover, at

a little higher than two, our model yields a sensible estimate of the representative investor’s coe�cient of

relative risk aversion and is consistent with the range of values reported by Bali (2008) and Bali and Engle

(2010). Similarly, the conditional covariance term obtains a positive coe�cient with a p�value around 1,

suggesting that time-varying investment opportunities are important in explaining the risk premium on

stocks. The ICAPM’s predictive R2 is 3.2% which is quite high compared to values typically found in

studies of monthly return predictability, see, e.g., Goyal and Welch (2008).

To get a sense of the relative contributions of the variance and covariance terms, Panel A in Table

2 also shows the coe�cient estimates and R2�values when only one of these terms is included in (14).

For the specification that only includes the conditional variance, we estimate a �1�coe�cient of 2.5 with

13This is also true when we implement a two-step procedure that first uses the BRT approach to fit the mean of stock
returns, then estimates an EGARCH model to the residual variation in returns and, finally, includes the resulting conditional
variance estimate in the ICAPM.
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a p�value of 4% and an R2 of 0.6%. For the model that only includes the conditional covariance, the

estimate of �2 remains the same (0.11) with a p�value less than 1% and an R2 of 2.8%. These results

suggest that the conditional covariance explains roughly three times as much of the variation in monthly

stock returns as the conditional variance. Interestingly, although the EAI1 and EAI2 measures are very

strongly correlated at the daily frequency, the R2 estimates in Table 2 suggest that the interest rate

information used to construct EAI1 (but not EAI2) contains a small but persistent component that is

correlated with subsequent returns. Indeed, the residuals from regressing EAI1 on EAI2 have a first-order

serial correlation of 0.62 at the monthly horizon.14

In sharp contrast, if the conditional covariance measure is constructed using linear regression in place of

our nonparametric projections, Panel B in Table 2 shows that the ICAPM coe�cient estimate for �2 falls

to 0.0, becomes insignificant (p�value of 0.47) and the resulting R2 obtained for the conditional covariance

declines to essentially zero. The contrast between the estimated slope on the conditional covariance term

in Panel A (BRT estimate) and Panel B (linear estimate) highlights the importance of using a flexible

and robust estimation approach to construct the conditional covariance term in the ICAPM.

We next construct the realized covariance measure from quarterly data, thus reducing the e↵ect of

daily outliers, and use this to estimate quarterly conditional covariances. The ICAPM results, reported in

Panel C in Table 2, continue to be strong. Specifically, the ICAPM estimate of �1 is 3.65 for the quarterly

data, while the coe�cient on both the variance and covariance terms continue to be significant at the 10%

level (jointly) or at the 1% level when considered separately. The quarterly results for the EAI2 measure

are slightly stronger than those using the EAI1 measure.

Figure 6 plots expected excess returns implied by (14) at the monthly (top window) and quarterly

(bottom window) frequencies using the two economic activity indices. In both cases the time series for the

conditional risk premium are very similar regardless of whether we construct the conditional covariance

14To further address this point, we conduct an encompassing test that first computes the residuals from the ICAPM that
uses EAI1 to compute the conditional covariance. We then regress these residuals on the conditional covariance measure
based on EAI2 to see if this second covariance measure explains variations in future stock returns left unexplained by the
covariance measure that uses EAI1. Finally, we reverse this regression to see if the return residuals from the ICAPM that
uses EAI2 to compute the conditional covariance are predicted by variations in the covariance based on EAI1. We find
that the model that uses the EAI1 covariance measure encompasses the model that uses the EAI2 measure to construct the
conditional covariance, but not the reverse. This suggests that the interest rate information used by the EAI1 measure does
make a significant di↵erence when it comes to explaining time-varying expected returns.
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from the EAI that uses only real economic variables or the EAI that also includes daily interest rates. As

expected, the quarterly series is notably smoother, however.

4.1 Economic Interpretation of findings

To interpret these results, particularly the positive sign on the covariance term in (14), it is useful to

consider the ICAPM with stochastic volatility developed by Campbell, Giglio, Polk, and Turley (2014).

Campbell et al. (2014) assume that investors have Epstein-Zin preferences and that the state variables in

the economy, xt, follow a VAR process with time-varying volatility driven by the conditional variance of

stock returns, �2t . Specifically, the VAR takes the form

xt+1 = x+ �(xt � x) + �tut+1. (15)

Here rt+1 and �2t+1 are the first and second elements of xt+1, respectively, x̄ and � are vectors and matrices

of constant parameters and ut+1 is a vector of shocks with constant variance-covariance matrix ⌃ and

⌃11 = 1. This specification makes the stochastic volatility process a�ne.

Using this setting, Campbell et al. (2014) show that the expected excess return (adjusted for a

convexity term) takes the approximate form

Et[rt+1]� rft +
1

2
vart(rt+1) = � vart(rt+1) + (� � 1) covt

0

@rt+1, [Et+1 � Et]
1X

j=1

⇢jrt+j+1

1

A (16)

�!
2
covt

0

@rt+1, [Et+1 � Et]
1X

j=1

⇢j�2t+j

1

A ,

where ! > 0 is a positive scalar that is an increasing function of � (for � > 1) and � is the investor’s

coe�cient of relative risk aversion.

Assuming that � > 1, assets whose returns have a negative covariance with revisions to expected

future returns (the first covariance term in (16)) will earn a lower risk premium. Such assets’ returns tend

to be high in states with bad news about expected future returns and so these assets provide a hedge.
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Conversely, assets whose returns have a negative covariance with (conditional) variance shocks (the second

covariance term in (16)) will earn a higher risk premium. Such assets pay low returns in states with bad

news (higher variance) and thus do not provide a hedge against adverse shocks to investment opportunities.

Thus, if stocks hedge against shocks to future discount rates, covt
⇣
rt+1, [Et+1 � Et]

P1
j=1 ⇢

jrt+j+1

⌘
<

0, they are more desirable and should command a lower risk premium. However, if stocks become more

risky during bad economic states with low returns, covt
⇣
rt+1, [Et+1 � Et]

P1
j=1 ⇢

j�2t+j

⌘
< 0, they should

command a higher risk premium.

We estimate the VAR specification in (15) as follows. Using monthly data from 1960-2012, we use

weighted least squares to estimate a first-order VAR for the state variables xt+1 = [rt+1 RV ARt+1 EPt+1

TMSt+1 DEFSPRt+1], where rt+1 is the excess return on the CRSP value-weighted index, RV ARt+1

is the realized variance computed from daily stock returns, EPt+1 is the log earnings-price ratio, TMSt+1

is the term spread, and DEFSPRt+1 is the default spread as defined earlier in Subsection 3.1.

The VAR specification used by Campbell et al. (2014) is di↵erent from the models considered earlier

in our analysis such as (13). Despite such di↵erences, their framework can be used to compute an

estimate that approximates the relative importance of the expected return and conditional variance terms.

Empirically, we find that low values of the EAI measure are associated with high values of both expected

future returns and conditional variances. The positive coe�cient on the conditional covariance term in the

ICAPM therefore suggests that the conditional variance term dominates the expected return component.

Consistent with this we find that for values of � within the range we estimate empirically, the conditional

variance term in (16) dominates the expected return component and the conditional variance e↵ect is

particularly strong during recessions, suggesting that investment opportunities become less attractive

during times with low values of the EAI. Stated di↵erently, provided that investors are not too risk

tolerant, the conditional equity risk premium is more sensitive to variation in the conditional variance

than to variation in expected returns.

Campbell et al. (2014) substitute consumption out of their analysis. However, the ICAPM and

consumption-based models are equivalent representations of the same basic economic setup which suggests

an alternative way to get intuition for the positive sign on the covariance term in the ICAPM. Suppose
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that the derivative of the marginal utility of consumption with respect to the EAI is high when the EAI

is low so reductions in economic activity increase the marginal utility of consumption. Further, suppose

that stock market returns and the EAI are positively correlated as we find holds empirically.15 Then

we would expect the coe�cient on the conditional covariance term in the ICAPM to be positive. Assets

whose returns are higher in states with higher values of the EAI tend to perform better in states with

high consumption growth given the positive correlation between consumption growth and the EAI (Table

1, Panel B). Conversely, such assets tend to have lower returns when the EAI and consumption growth is

low and the marginal utility of consumption is high. Such assets must command a higher risk premium.

To obtain an explicit expression for how covariance risk relates to expected returns in a model that

features both the conditional variance and conditional covariance, assume that investors are endowed

with Epstein-Zin preferences. In such a setting, the expected excess return (adjusted for a convexity

term) becomes (e.g., Campbell (2003))

Et[rt+1]� rft +
1

2
V art(rt+1) = (1� ✓)V art(rt+1) +

✓

 
Covt(�ct+1, rt+1), (17)

where ✓ = (1 � �)/(1 � 1/ ), � is a risk aversion parameter and  is the intertemporal elasticity of

substitution parameter. Under power utility � = 1/ and so ✓ = 1. In this case the conditional variance

term in (17) disappears. More broadly, when � 6= 1/ , both the variance and covariance terms matter.

Specifically, when � > 1 and  < 1 (as many studies suggest, e.g., Mankiw (1981), Campbell and Mankiw

(1989), Yogo (2004), and the review article by Campbell (2003)), ✓ > 0 and the e↵ect of covariance risk

on expected excess returns will be positive, consistent with our empirical finding.

4.2 Tests of the ICAPM Specification

To test more formally if the ICAPM in (14) is correctly specified, we report a range of diagnostic tests.

If the ICAPM is correctly specified, the di↵erence between the realized return and the predicted (fitted)

return (i.e., the forecast error) should be uncorrelated with any function of the conditional variance or

covariance regressors in (14). Such functions can be approximated by means of a polynomial in these

15At the annual horizon, the correlation between the EAI and stock market returns is 0.63.
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regressors. To test this implication we adopt the Ramsey RESET specification test described earlier. This

projects the regression residual on the squared value of the regressors and uses a Wald test to test the

null that they are jointly insignificant, as implied by a correct specification. The results from this test,

provided in Panel A of Table 3, show no significant evidence against the ICAPM based on our conditional

covariance measure.

An implication of the ICAPM (14) is that mean returns increase monotonically in both the condi-

tional variance and the conditional covariance. To test this implication, we use the approach in Patton

and Timmermann (2010). To see how this works for the conditional covariance, suppose we sort pairs

of monthly observations into g = 1, .., G bins, {rgt+1, ccov
g
t+1|t} ranked by the conditional covariance esti-

mate. A monotonic mean-covariance relation implies that, as we move from periods with low conditional

covariance to periods with high conditional covariance, mean returns should rise. Specifically, the null

hypothesis is that the expected return increases when ranked by the associated value of ccovgt+1|t :

H0 : E
h
rgt+1|ccov

g
t+1|t

i
� E

h
rg�1
t+1 |ccov

g�1
t+1|t

i
, for g = 2, .., G. (18)

Because ccovgt+1|t > ccovg�1
t+1|t, this hypothesis says that the expected return associated with observations

where the conditional covariance is high exceeds the expected return associated with observations with

lower conditional covariance. The null that the conditional mean increases monotonically in the conditional

covariance is rejected if there is su�cient evidence against it so that low p-values suggest a rejection of

the ICAPM.16

For robustness, we perform the test on di↵erent numbers of bins, G, with 50 or 100 observations per

bin. Panel B in Table 3 shows that the null hypothesis of a monotonically increasing relation between

either the conditional variance and expected returns or between the conditional covariance and expected

returns is not rejected. Hence, investors receive higher compensation for bearing increased variance risk

as well as increased risk of unfavorable shifts in the investment opportunity set, i.e., covariance risk.

16The test statistic has a distribution that, under the null, is a weighted sum of chi-squared variables whose critical values
can be computed via Monte Carlo simulation.
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4.3 Alternative Estimates of Covariance Risk

To evaluate the contribution of our new conditional covariance risk measure, it is important to compare it

to existing measures from the literature. Previous studies such as Scruggs (1998) and Guo and Whitelaw

(2006) also use estimates of covariance risk to test the ICAPM. In the absence of a proxy for realized co-

variance risk, these studies make model-dependent assumptions to identify the covariance risk component.

Guo and Whitelaw (2006) assume that the covariance is a linear function of conditioning state variables.

Specifically, let Xt+1 = (CAYt+1, RRELt+1)0 be a vector comprising the CAY variable of Lettau and

Ludvigson (2001), and the de-trended T-bill rate, RREL. Zt+1 = (v2t+1, CAYt+1, RRELt+)0 adds the

squared volatility, v2t+1 to Xt+1. Guo and Whitelaw assume that Xt+1 and Zt+1 follow V AR processes

Xt+1 = A0 +A1Xt + ✏Xt+1,

Zt+1 = B0 +B1Zt + ✏Zt+1. (19)

Using Merton’s ICAPM along with the assumption that the hedge component, covt+1|t, is a linear function

of Xt, i.e., �2covt+1|t = �0+�1Xt, Guo and Whitelaw (2006) derive an equation for market excess returns

rt+1 = �0 + �1

h
!0 + !1Zt � ⇢ !1 (I � ⇢B1)

�1 ✏Zt+1

i
+ �1

h
Xt � ⇢ (I � ⇢A1)

�1 ✏X,t+1

i
+ ✏t+1,

where !0 and !1 are functions of the coe�cients in the B matrices in (19) and ⇢ is a constant log-

linearization term.

Scruggs (1998) models the conditional covariance through an EGARCH model for stock market re-

turns which uses the T-bill rate to capture time-varying investment opportunities. Scruggs’ univariate

EGARCH-X-in-mean specification is most closely related to our approach

rt+1 = �0 + �1vart+1|t + �2Tbillt + ✏t+1, (20)

log(vart+1|t) = ✓0 + ✓1 log(vart|t�1) + ✓2
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The RESET specification test for the Guo-Whitelaw model (shown in Panel A of Table 3) suggests that

this model is grossly misspecified. The Scruggs specification generates a p-value of 0.08, suggesting mild

evidence that this model is misspecified. Monotonicity is rejected for the Scruggs model for the variance

term (using bins with 50 observations) but not for the covariance term. Similarly, monotonicity tests

reject the null of a monotonically increasing relation between the Guo-Whitelaw variance term and the

covariance term based on RREL when 100 observations are included in each bin for the monotonicity test.

The BRT approach uses more instruments (nine) than the small set used by Scruggs or Guo and

Whitelaw. To address the importance of this, we use the BRT approach based only on CAY and RREL to

construct the conditional covariance measure. These are the two variables used by Guo and Whitelaw to

construct their covariance measure (RREL is similar to the T-bill rate used in Scruggs’ GARCH model).

When we re-estimate the ICAPM using the conditional covariance measure based on this reduced set

of instruments, the covariance term remains significant at the 5% level (p-value of 0.03) but the R2

declines from 3.2% to 1.2%, for the full model that includes both conditional variance and covariance

terms. Moreover, when only the covariance term based on these two instruments is used to predict excess

returns, the p-value on this term is 0.08 (previously below 0.01) and the R2 is 0.4% (previously 2.8%).

These results suggest that using a relatively large set of instruments makes a di↵erence.

4.4 Out-of-sample forecast comparisons

To further evaluate our new conditional covariance measure and compare it against alternative approaches,

we finally report the outcome of a pseudo out-of-sample forecast experiment.17 This serves two purposes.

First, out-of-sample forecasts can be used to assess the e↵ect of overfitting. Second, the results of the

analysis serve as an indication of the stability of the risk-return relation. Clark and McCracken (2005)

argue that good in-sample forecasting results accompanied by a failure to produce good out-of-sample

forecasts are indicative of model instability.

We use the first 10 years of the sample to construct initial estimates of the conditional variance and

17We use the term “pseudo” out-of-sample to account for the fact that the forecasts are not generated in real time and
there are various choices in such experiments (such as the sample split between the estimation and evaluation sample) which
can a↵ect the outcome.
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covariances followed by a 20-year training sample used to estimate the ICAPM parameters. We then

generate recursive forecasts of excess returns for the remainder of the period, 1990-2012, adding new data

points as they become available.

Table 4 shows results from this exercise using the out-of-sample R2-measure (R2
OoS) of Campbell and

Thompson (2008). This is computed relative to the prevailing mean model so positive values indicate more

precise forecasts than those from the prevailing mean, while negative values suggest less precise forecasts.

At the monthly horizon (Panel A) the ICAPM that includes both conditional variance and covariance

terms generates a slightly negative but insignificant R2
OoS�value. A univariate model that only includes

the conditional covariance measure generates an R2
OoS�value of 1.00% (significant at the 10% level), while

the model that uses only the EGARCH conditional variance generates an R2
OoS�value of -1.06%. Hence,

although the conditional variance is a significantly positive predictor of expected returns in-sample, it has

insu�cient power to improve equity premium forecasts out-of-sample.

When we use a linear model for the conditional covariance, the out-of-sample forecasting performance

deteriorates substantially and the R2
OoS becomes negative (-2.67% for EAI1 and -1.46% for EAI2).

Both the Guo-Whitelaw and Scruggs models generate large negative R2
OoS�values, suggesting worse

performance than the ICAPM and particularly than the forecasts based on our new covariance measure.

Quarterly results shown in Panel B of Table 4 suggest that the two ICAPM specifications based on

the EAI1 and EAI2 measures produce good out-of-sample forecasts with positive R2
OoS�values that are

significant at either the 5% or 10% levels.

4.5 Robustness to the conditioning information set

Following the analysis in Ludvigson and Ng (2007), we consider using a much larger information set.

Specifically, suppose that a large set of state variables zit, i = 1, ..., N is generated by a factor model of

the form zit = �0ift+ eit, where ft is a vector of common factors, �i is a set of factor loadings, and eit is an

idiosyncratic error. Using common factors as predictor variables rather than the N individual regressors

achieves a substantial reduction in the dimension of the information set. We follow Ludvigson and Ng

(2007) and extract factors through the principal components method. Their extended data contain 132
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macroeconomic time series and 147 financial time series for a total of 279 series over the period 1959-2011.

By considering this large set of predictor variables, we address a potentially important source of model

misspecification caused by omitted variables. Following Jurado, Ludvigson, and Ng (2014) we use 12

factors extracted from the 279 economic time series and one factor extracted from their squared values.

We add these 13 factors to the 9 baseline regressors in the construction of the conditional covariance.

Panel D in Table 2 shows that the ICAPM results continue to be strong for the conditional covariance

estimates that include the factors in the conditioning information set. For EAI1 the e↵ect of the conditional

covariance continues to be strongly positive and significant at the 1% level, while for EAI2 the conditional

covariance term generates a p-value of 0.06.

Our results are also robust to changes in the composition of the variables used to extract the EAI

measure. For example, adding consumption growth to the list of economic variables does not alter the

conclusions. Nor does using a daily term spread variable in place of the detrended T-bill rate alter the

results–most notably, we continue to find that both the conditional variance and covariance terms obtain

positive and significant coe�cients in the ICAPM regression.

5 Conclusion

Merton’s ICAPM is a cornerstone in the finance profession’s understanding of the trade-o↵ between risk

and returns. A central part of the model is that expected returns depend not only on the conditional

variance but also on a conditional covariance term or hedge factor. While many empirical studies have

tested for a positive, linear relation between expected returns and the conditional variance, fewer studies

have attempted to construct measures of conditional covariance risk, notable exceptions being Scruggs

(1998), Guo and Whitelaw (2006) and Bali (2008).

Our paper develops a new daily economic activity index that summarizes news about the state of

the economy obtained from mixed-frequency data and is shown to be strongly correlated with existing

measures of time-varying investment opportunities. Using this daily index and daily stock returns we

construct a proxy for realized covariances. We use nonparametric projections of this proxy on a large set

of state variables previously linked to time-varying investment opportunities to construct an estimate of
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the conditional covariance. We find economically strong and statistically significant evidence of a strongly

positive relation between this conditional covariance term and expected returns. Our results thus suggest

that information on real economic activity helps explain time variation in expected stock returns.
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Appendix: Kalman filter extraction of the economic activity index

Let Yt ⌘ {y1, . . . ,yt} denote the current information set and, using the notation from (4)-(5), define the

conditional expectation of the unobserved state given current and lagged information as ↵t|t ⌘ E (↵t|Yt),

↵t|t�1 ⌘ E (↵t|Yt�1) . Similarly, define the conditional variance estimates for the unobserved state Pt|t ⌘

var (↵t|Yt), Pt|t�1 ⌘ var (↵t|Yt�1). Finally, let the expectation error be given by ut = yt��↵t|t�1��wt,

while Ft = � Pt|t �
0 +H.

Given these definitions, the following Kalman Filter equations are used to extract and update estimates

of the latent variable that tracks the state of the economy:

↵t|t = ↵t|t�1 + Pt|t�1Z
0F�1

t ut

Pt|t = Pt|t�1 + Pt|t�1Z
0F�1

t ZP 0
t|t�1

↵t+1|t = Tt↵t|t

Pt+1|t = TtPt|tT
0
t +RQR0,

The Kalman filter is well suited for handling missing data. If all elements of yt are missing, we can skip

the updating step and the recursion becomes

↵t+1|t = Tt↵t|t

Pt+1|t = TtPt|tT
0
t +RQR0

If only some (but not all) of the elements are missing, we modify the observation equation as follows:

y⇤
t = �⇤↵t|t + �⇤

twt + u⇤
t , u⇤

t ⇠ N (0,H⇤
t ) ,

where y⇤
t = Wtyt, �⇤ = Wt�, �⇤

t = Wt�, u⇤
t = Wtut and H⇤

t = WtHW 0
t and Wt is a matrix whose

N⇤
t rows are the rows of the identity matrix IN corresponding to the observed elements of yt. Model

parameters are estimated using the prediction error decomposition.
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Table 1: Statistical and Economic Properties of the Economic Activity Indices

Panel A. Summary Statistics

EAI1 EAI2

Mean 0.00 0.01

St.Dev 0.70 0.69

Skewness -1.03 -1.00

Kurtosis 4.90 4.82

AR(1) 0.97 0.97

Exp mean 0.21 0.21

Rec mean -1.20 -1.18

Panel B. Correlation with Variables Tracking
Time-Varying Investment Opportunities

EAI1 EAI2

Corr p-value R2 Corr p-value R2

Dividend-Price Ratio -0.52 0.00 27.5% -0.52 0.00 27.2%

De-trended T-bill 0.45 0.00 20.0% 0.45 0.00 19.9%

Consumption Growth 0.23 0.05 5.30% 0.23 0.05 5.40%

Term Spread -0.08 0.39 0.7% -0.08 0.38 0.7%

Default Spread -0.53 0.00 27.6% -0.53 0.00 27.6%

CAY 0.07 0.73 0.43% 0.07 0.74 0.46%

Stock Returns 0.01 0.91 0.00% 0.01 0.92 0.00%

Realized Variance -0.30 0.06 8.9% -0.30 0.05 8.8%

Principal Component 1 0.53 0.00 28.5% 0.53 0.00 28.4%

Principal Component 2 0.28 0.01 7.6% 0.27 0.01 7.5%

Panel C. Predictive Power of
Economic Indices

EAI1 EAI2

Coe↵ p-value R2 Coe↵ p-value R2

Monthly Stock Returns -0.002 0.63 0.1% -0.002 0.62 0.1%

Monthly Stock Market Variance -0.002 0.06 7.4% -0.002 0.06 7.3%

Quarterly Stock Returns -0.010 0.26 0.6% -0.009 0.28 0.6%

Quarterly Stock Market Variance -0.004 0.00 8.7% -0.004 0.00 8.6%

Annual Stock Returns -0.075 0.02 10.1% -0.076 0.02 9.9%

Annual Stock Market Variance -0.009 0.07 6.7% -0.010 0.07 6.8%

We construct two daily economic activity indices. The first measure (EAI1) extracts the index from
data on daily interest rates, weekly initial jobless claims, monthly growth in real personal income and
industrial production and quarterly GDP, while the second index (EAI2) removes the daily interest rate
series from the list. Panel A provides summary statistics for these indices. Panel B correlates the indices
with monthly observations on alternative measures of time-varying investment opportunities such as
the dividend-price ratio, the detrended 3-month T-bill rate, consumption growth, term and default
spread variables, the CAY variable of Lettau and Ludvigson (2001) (interpolated to obtain monthly
series from quarterly figures), stock returns, realized variances estimated using daily stock returns and
the first two principal components extracted from these series. We also show the R2 from univariate
regressions of each variable on the economic activity indices. Finally, Panel C reports the outcome of
predictive regressions of 1, 3 and 12-month stock returns and realized variances on the lagged economic
activity indices. In all cases the sample runs from 1960 through 2012.
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Table 2: ICAPM Regression Estimates

Panel A. Baseline Results

EAI1 EAI2

Constant Variance Covariance R2 Constant Variance Covariance R2

-0.00 2.01 0.11 3.2% 0.00 2.61 0.09 1.7%
(0.18) (0.07) (0.00) (0.15) (0.01) (0.01)
0.00 2.48 0.6% 0.00 2.48 0.6%
(0.73) (0.04) (0.73) (0.04)
0.00 0.11 2.8% 0.00 0.08 1.0%
(0.86) (0.00) (0.51) (0.01)

Panel B. Results Using Linear Covariance Estimates

EAI1 EAI2

Constant Variance Covariance R2 Constant Variance Covariance R2

0.00 2.49 0.00 0.6% 0.00 2.38 0.00 0.6%
(0.73) (0.06) (0.47) (0.82) (0.03) (0.37)
0.00 2.48 0.6% 0.00 2.48 0.6%
(0.73) (0.04) (0.73) (0.04)
0.01 0.00 0.0% 0.01 -0.01 0.1%
(0.03) (0.45) (0.02) (0.77)

Panel C. Quarterly Results

EAI1 EAI2

Constant Variance Covariance R2 Constant Variance Covariance R2

-0.02 3.65 0.04 5.6% -0.03 3.64 0.07 6.7%
(0.04) (0.00) (0.07) (0.03) (0.00) (0.02)
-0.02 4.26 4.7% -0.02 4.26 4.7%
(0.06) (0.00) (0.06) (0.00)
0.00 0.07 2.5% 0.00 0.08 3.5%
(0.64) (0.00) (0.60) (0.00)

Panel D. Results with Factor-based BRT Estimates

EAI1 EAI2

Constant Variance Covariance R2 Constant Variance Covariance R2

-0.01 2.59 0.13 3.8% 0.00 2.74 0.07 1.4%
(0.09) (0.04) (0.00) (0.21) (0.02) (0.06)
0.00 2.45 0.6% 0.00 2.45 0.6%
(0.74) (0.07) (0.74) (0.07)
0.00 0.13 3.2% 0.00 0.07 0.7%
(0.99) (0.00) (0.45) (0.08)

This table reports least squares estimates of the coe�cients of the ICAPM along with heteroskedasticity
and autocorrelation consistent p-values in brackets. We also show estimates for univariate models that
include either the conditional variance or the conditional covariance term, but not both. The conditional
covariance estimates reported in Panels A and B are constructed by using boosted regression trees
(BRT) to nonparametrically project realized covariances on a set of conditioning state variables. The
conditional variance is constructed using an EGARCH model that uses the dividend-price ratio and the
T-bill rate as covariates in the mean equation and the T-bill rate as covariate in the variance equation.
For comparison, Panel B uses a linear model to construct the conditional covariance measure. Panel C
reports results when the ICAPM is fitted to observations sampled at the quarterly horizon. Panel D
expands the set of conditioning variables using 12 common factors extracted from 279 economic time
series and one factor from their squared values, as reported by Jurado, Ludvigsson and Ng (2014).
Estimates in Panels A-C use data from 1960 to 2012, while the factor results in Panel D use data from
1960 through 2011:11.
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Table 3: Specification Tests for the ICAPM

Panel A. Ramsey RESET Tests

Wald-Test p-value

Conditional Covariance: EAI1 0.09 0.92

Conditional Covariance: EAI2 0.21 0.81

Guo-Whitelaw 14.65 0.00

Scruggs 2.51 0.08

Panel B. Monotonicity Tests

Measure of Risk 50 Obs. per group 100 Obs. per group

Variance 0.409 0.527

Covariance : EAI1 0.858 0.996

Covariance : EAI2 0.437 0.981

Scruggs - Variance 0.000 0.174

Scruggs - Covariance 0.267 0.411

Guo-Whitelaw - Variance 0.722 0.075

Guo-Whitelaw - RREL 0.181 0.042

Guo-Whitelaw - CAY 0.998 0.984

Panel A reports the outcome of Ramsey RESET specification tests. The test first obtains the residuals
from a linear ICAPM regression of stock returns on the conditional variance and covariance term ob-
tained from the model listed in the corresponding row. If the linear ICAPM is correctly specified, these
residuals should be uncorrelated with squares (or other transformations) of the conditional variance and
covariance. We test this implication by regressing the ICAPM residuals on the squared values of the
conditional variance and covariance and report a Wald test for their joint significance (p-value reported
in the second column). Panel B reports the outcome of a test of a monotonically increasing relation
between di↵erent conditional variance or covariance measures on the one hand and mean returns on the
other. The null is that the mapping from the conditional variance and covariance terms into expected
returns is increasing, so high p-values are consistent with the ICAPM, whereas low p-values suggest
that the relationship is non-monotonic and therefore nonlinear, in contradiction of the ICAPM. For
the Guo-Whitelaw approach, we provide separate tests for the individual instruments (detrended T-bill
rate, RREL, and CAY). The test is based on forming bins of observations ranked by the magnitude of
the conditional variance or covariance. Each bin contains either 50 (left column) or 100 observations
(right column). The test statistic is based on the test described in Patton and Timmermann (2010).
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Table 4. Out-of-Sample Performance of Return Forecasts

Generated by ICAPM Specifications

Panel A. Monthly Results

OOS R McCracken p-value

ICAPM-(EAI1) -0.07 (>0.10)

ICAPM-(EAI2) -0.37 (>0.10)

Covariance (EAI1) 1.00 (<0.10)

Covariance (EAI2) 0.36 (<0.05)

EGARCH Variance -1.06 (>0.10)

ICAPM-(EAI1) (Linear) -2.67 (>0.10)

ICAPM-(EAI2) (Linear) -1.46 (>0.10)

Guo-Whitelaw -2.29 (>0.10)

Scruggs -1.25 (>0.10)

Panel B. Quarterly Results

OOS R McCracken p-value

ICAPM-(EAI1) 1.68 (<0.10)

ICAPM-(EAI2) 2.59 (<0.05)

Covariance (EAI1) 1.62 (<0.10)

Covariance (EAI2) 2.43 (<0.05)

EGARCH Variance 0.78 (<0.05)

This table reports the out-of-sample R2 measure of Campbell and Thompson (2008) along with Mc-
Cracken (2007) p-values. Results are based on recursive one-step-ahead forecasts of monthly (panel
A) or quarterly (panel B) stock returns. We use the first 10 years of the sample to obtain conditional
variance and covariance estimates followed by a 20-year warm-up period to estimate the parameters
of the ICAPM. The remaining sample (1990-2012) is used to evaluate the forecasts. Forecasts are
generated using estimates based only on information up to the time of the prediction and parameter
estimates are updated recursively as new information arrives, using an expanding estimation window.
The Campbell-Thompson R2 value is computed relative to forecasts from a prevailing mean (constant
expected return) model, with positive values suggesting that the model listed in the row generates more
accurate return forecasts than this benchmark, while negative values suggest the opposite.
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Plots of the Daily Economic Activity Index Series

(a) EAI1

(b) EAI2

Figure 1: The plots show values for our two daily economic activity index series. The first measure
(EAI1) extracts the index from data on daily interest rates, weekly initial jobless claims, monthly
growth in real personal income and industrial production and quarterly GDP, while the second index
(EAI2) removes daily interest rates from the list. Grey areas show recession periods as tracked by the
NBER recession indicator.
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Principal Components Extracted from Variables Tracking Time-Varying
Investment Opportunities Versus the Economic Activity Index

(a) First Principal Component

(b) Second Principal Component

Figure 2: We extract the first two principal components from the set of variables tracking time-varying
investment opportunities listed in Panel B of Table 1. We then plot the first principal component (top
window) and second principal component (bottom window) against the economic activity index EAI1.
For comparability, the series have been standardized so they lie on a similar scale.
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Realized Covariance Series

(a) Monthly

(b) Quarterly

(c) Annual

Figure 3: The plots show monthly (top window), quarterly (middle window) and annual (bottom
window) values of the realized covariance between daily changes to the economic activity index and
daily stock returns. The monthly plot in the top window has winsorized the October 2008 observation.

38



Partial Dependence Plots

Figure 4: We use boosted regression trees to nonlinearly project the realized covariance on nine
conditioning variables. Each panel plots the conditional covariance on the vertical axis against the
predictor variable listed on the x-axis. The support of the x-axis corresponds to the actual values taken
by each predictor. Thus, each plot shows how the marginal e↵ect of each predictor on the conditional
covariance changes with the range of each predictor variable.
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Time-Series Plots of the Conditional Variance and Covariance

Figure 5: The top window plots conditional covariance estimates generated by fitting either a linear
model or a boosted regression tree to the monthly realized covariance series. Both of these covariance
models use nine predictors. The bottom window shows the conditional variance generated from an
EGARCH model that uses the dividend-price ratio and the T-bill rate as covariates in the mean
equation and the T-bill rate as covariate in the variance equation.
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Expected Returns Implied by the ICAPM

(a) Monthly Frequency

(b) Quarterly Frequency

Figure 6: The figures plot monthly (top window) and quarterly (bottom window) time series of
expected excess returns (conditional risk premia) implied by the ICAPM specification that uses our
nonparametric conditional covariance estimate. EAI1 and EAI2 represent di↵erent ways of constructing
the underlying economic activity index (EAI1 extracts the index from data on daily interest rates,
weekly initial jobless claims, monthly growth in real personal income and industrial production and
quarterly GDP, while EAI2 removes the daily interest rate series from the list).
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