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Abstract

We develop conditions under which the expected predictive accuracy of a set
of competing forecasting models can be ranked either unconditionally, based on
their average performance, or conditionally, based on a set of time-varying moni-
toring instruments. We characterize the properties that monitoring instruments
must possess and show that these reflect both the accuracy of the predictors
used by the competing nested or non-nested forecasting models and the strength
of the monitoring instruments. We derive finite-sample bounds on forecasting
performance that account for estimation error both in the underlying forecast-
ing models and in monitoring regressions used to compute the expected loss
of the forecasts. We quantify the expected gains from monitoring forecasting
performance for a decision maker that, at each point in time, chooses between
competing forecasts conditional on information in the monitoring instruments.
Using Monte Carlo simulations and empirical applications to inflation forecast-
ing and predictability of stock market returns, we demonstrate the gains from
monitoring forecasting performance.
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1 Introduction

Large international organizations such as the IMF and the World bank as well as
central banks all over the world routinely generate economic forecasts that are widely
followed and play a key role in these organizations’ decision process.1 Monitoring the
performance of these forecasts in “real time” is crucial as evidence that forecasting
performance is deteriorating or particularly poor in certain economic states could be
used either for gauging the likely accuracy of a forecast at a given point in time or to
improve on an existing forecasting approach and switch to a better one. Indications
that a forecast is likely to be surrounded by higher-than-normal uncertainty should
reduce decision makers’ dependence on that forecast. In this regard, monitoring
forecasting performance is similar to the task of an asset manager who is evaluating
portfolio risk at regular points in time.

Given the presence of an often wide range of alternative model specifications and
different methods for implementing a particular model, it is not surprising that a large
academic literature has been devoted to developing ways for comparing predictive
accuracy.2 Such comparisons typically consider whether one forecast “on average” (or
unconditionally) is more accurate than other, competing, forecasts. However, it is
possible for forecasts to be poor on average, yet still be relatively accurate in some
states of the world. Provided that these states can be ex-ante identified by means
of a set of time-varying monitoring instruments, a forecast that is poor on average
could be the preferred forecast at a given point in time, conditional on information
contained in the monitoring instruments.

The existence of monitoring instruments that contain information either on a
particular forecast’s absolute performance, measured relative to the outcome, or its
relative performance measured against competing forecasts is important given the
widespread empirical evidence of model instability in macroeconomics and finance.3

This evidence suggests that it is rare to find a single forecasting model that uniformly
1In fact, the IMF regularly reviews the performance of its World Economic Outlook forecasts,

comparing the accuracy of their forecasts to those of other organizations such as Consensus Eco-
nomics. See Timmermann (2007) for such a comparison.

2See Granger and Newbold (1977), Chong and Hendry (1986), Diebold and Mariano (1995),
and West (1996) for early work on comparison of different models’ predictive accuracy. Clark and
McCracken (2013) provide a review of recent work in the literature.

3See, e.g., Giacomini and Rossi (2009), Pesaran et al. (2006), Pettenuzzo and Timmermann
(2015), Rossi (2013), Rossi and Sekhposyan (2015), and Stock and Watson (1996).
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dominates other forecasts through time.4 More broadly, time variation in the expected
performance of different forecasts can make it attractive to select the forecast that, at
a given point in time and conditional on a set of monitoring instruments, is expected
to produce the most accurate forecast.

To understand the importance of the strength of the predictor(s) used by a par-
ticular forecast, we follow the literature and consider the case where the forecasts
are generated by a set of linear forecasting models whose parameters get updated
recursively through time. This setup allows us to rank the expected performance of
different models and quantify the effect of parameter estimation error. Accounting for
estimation error poses technical challenges to the analysis but turns out to be crucial
for understanding the models’ forecasting performance. We first consider the case in
which one model uses a strictly stronger predictor than its competitor. Under the
assumption that the strong predictor’s signal is more powerful than local to zero, we
show that bounds can be established on the two models’ mean squared error (MSE)
loss difference. Importantly, our uniform bounds hold in finite samples and account
for estimation error. As expected, the bounds on the expected reduction in MSE
from using the best model depends on the strength of the predictor.

The idea of conducting forecast comparisons conditional on time-varying instru-
ments was introduced to economics by Diebold and Mariano (1995) and Giacomini
and White (2006) but has not been widely pursued, nor have conditions been estab-
lished under which monitoring instruments with predictive power over loss differen-
tials will exist or the possible gains from monitoring forecasting performance when
two or more forecasts are available. We characterize in this paper the properties that
monitoring instruments must possess in order to contain valuable information about
the competing models’ forecasting performance. We first consider the case with non-
nested forecasting models in which each forecasting model uses at least one predictor
that is excluded by the other model. For this case a monitoring instrument can be
used to track time variation in the models’ relative squared error forecasting perfor-
mance if the instrument is sufficiently strongly correlated with the cross-product of
the residual and predictors included by one model but excluded by others. Both the
strength of the predictor and of the monitoring instrument turn out to matter for our

4Stock and Watson (1996) find that model instability impacts a majority of a large range of
macroeconomic variables. Rossi and Sekhposyan (2013) arrive at similar conclusions and provide a
thorough review of the literature on how model instability affects forecasting performance.
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ability to rank different models’ conditional forecasting performance, and we present
finite-sample bounds on the expected gain from using a switching rule that chooses
the best model conditional on the monitoring instruments, relative to always using a
particular model. These bounds account for estimation error both in the underlying
forecasting model and in the monitoring (switching) regression.

We next consider the nested case using a setting with a “small” (benchmark)
model and a “large” competing model that nests the benchmark as a special case.
If the additional predictor included in the large model is either uninformative or
very strong, one of the models can be expected to always produce better forecasts.
Alternatively, when the additional predictor contains “weak” information (i.e., its
coefficients in the forecasting model is at most local-to-zero) the identity of the model
with the best expected performance may vary over time in a way that is correlated
with information in the monitoring instruments.5

As an empirical illustration of the approach developed in this paper, consider
the predictive accuracy of the Greenbook inflation forecasts, published by the US
Federal Reserve, relative to that of inflation forecasts from the Survey of Professional
Forecasters (SPF).6 The left window in Figure 1 shows (in blue) the squared error dif-
ferential between the Greenbook and SPF forecasts using one-quarter-ahead forecasts
of the growth in the GDP price deflator. Negative values indicate that the Greenbook
forecast was more accurate (produced a smaller squared forecast error) in a particu-
lar quarter than the corresponding SPF forecast. The figure shows that Greenbook
forecasts were generally more accurate than the SPF forecasts in the early part of the
sample, while the converse holds for most of the last part of the sample. We also show
(in red) forecasts of squared error differentials generated by recursive regressions of
squared error differentials on an intercept and the lagged value of the macroeconomic
uncertainty factor constructed by Jurado et al. (2015).7 Negative forecasts of the

5Under model misspecification arising from time-varying parameters or due to the use of the
wrong functional form of the forecasting model, monitoring instruments can contain valuable infor-
mation if they are correlated with the model specification error.

6This is clearly a case of non-nested forecasts. Comparisons of the predictive accuracy of the
Federal reserve to that of private sector forecasters have been the subject of previous research such as
Romer and Romer (2000) and Capistrán (2008) and have important policy implications. The earlier
studies were concerned with comparing the average performance of these forecasts; our approach
instead focuses on comparing their conditional forecasting performance so as to track possible shifts
in the forecasts’ relative accuracy.

7The correlation between this instrument and the squared error loss difference for the Greenbook
versus the SPF forecasts is -0.18, suggesting that the Greenbook forecasts tend to do relatively better
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squared error differential indicate that the expected loss for the Greenbook forecasts
are smallest while positive values indicate that the SPF forecasts are expected to be
more accurate. These forecasts are then used in a simple switching rule that chooses
the Greenbook forecast if its conditionally expected loss is smaller than that of the
SPF forecast, otherwise goes with the SPF forecast.8 The Greenbook forecasts are
selected in most quarters up to 2000, whereas the SPF forecasts are selected most of
the time thereafter.

The right window in Figure 1 tracks the cumulative loss difference associated with
different forecasting strategies. The blue line shows the cumulative difference in the
squared forecast errors from the Greenbook minus their SPF counterpart. Whenever
this line is negative and declining, the Greenbook forecasts generate a lower squared
error loss than the SPF forecasts. Conversely, positive and increasing values of the
line suggest that the SPF forecasts are more accurate than the Greenbook forecasts
at that point in time. Greenbook forecasts were better during most of the 1980s, the
two sets of forecasts performed broadly similarly during the 1990s, while the SPF
forecasts have been better since 2000, with the notable exception of the financial
crisis of 2008/2009. The other lines track the cumulative squared error performance
of forecasts from the switching rule measured relative to the Greenbook forecasts
(in green) or relative to the SPF forecasts (in red). The conditional switching rule
performs as well as the Greenbook forecasts up to 2003, but outperforms after this
period as a result of successfully identifying the improved performance of the SPF
forecasts in the latter half of the sample. Measured against the SPF forecasts, the
performance of the conditional switching rule is even better at the end of the sample.

This application shows that our method for monitoring forecasting performance
can be beneficial for decision makers such as central banks in “benchmarking” their
forecasts against forecasts from other sources to see if there is evidence in real time
that the quality of their forecasts is lagging behind competing forecasts. While it may
not be feasible for such decision makers to adopt another agency’s forecasts, evidence
of inferior performance would suggest the need to improve on their own forecasting
methods.

A key difference between the conditional forecast evaluation approach considered
here and conventional unconditional tests of forecasting performance, highlighted by

than the SPF forecasts during times with high levels of macroeconomic uncertainty.
8This regression uses a rolling window of 10 years, i.e., 40 quarterly observations.
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Figure 1, is that the former allows us to identify the economic sources (states) of time
variation in a model’s predictive ability. This type of dynamic attribution analysis
can be helpful in two regards. First, at a minimum, a rational decision maker will
use a forecast with less confidence in economic environments where the forecasts are
expected to perform poorly compared to states in which the forecast is expected to
perform well. Second, information on a forecast’s conditional performance might be
used to suggest ways in which the underlying forecasting method could be improved.
For example, knowing that a forecast is poor relative to some other benchmark when
macroeconomic uncertainty is high is a lot more informative than simply knowing
that a forecast is poor on average.

Our analysis builds on the seminal paper by Giacomini and White (2006) which
formalizes the notion of conditional forecast evaluation in the context of regression-
based tests that can capture non-zero correlations between a set of monitoring instru-
ments and the predictive accuracy of a particular forecasting model measured relative
to some benchmark. However, these authors do not develop conditions under which
such monitoring instruments exist, let alone when they should not simply be added
to the underlying forecasting models. Nor do they characterize the finite-sample ex-
pected gains from a conditional decision rule that, at each point in time, chooses the
model with the best expected forecasting performance. Their analysis also does not
relate time variation in predictive accuracy to parameter estimation error and the
notion of “weak” predictors, which is central to our analysis.

Finally, our analysis suggests alternative monitoring instruments that can be ex-
pected to track forecasting performance in real time. One approach is to simply use
the lagged loss differential or the lagged loss of the individual forecasting models.
These instruments can capture highly persistent sources of forecast errors such as
parameter estimation error. Another monitoring instrument is the lagged difference
between the squared forecasts. Provided that the differences in the squared values of
the predictors are persistent, lags of the loss differential can be helpful for comput-
ing which model is expected to have the best future performance. Neither of these
instruments requires that the predictor variables underlying the forecasting models
are observed and can be used in situations where we only observe the outcome and a
sequence of forecasts.

The outline of the paper is as follows. Section 2 introduces the setup for the
analysis, including the conditional testing methodology. Sections 3, 4, and 5 contain
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our formal theoretical analysis which establishes how competing forecasting models,
as well as a conditional decision rule, can be ranked. We first perform the analysis for
the general non-nested case (Section 3) and then cover the case with nested forecasting
models (Section 4). Section 5 studies the case without parameter estimation errors
and extends the analysis to cover highly persistent (near unit root) predictors. Section
6 reports the outcome of a set of Monte Carlo simulations that we use to illustrate the
theoretical analysis, while Section 7 presents an empirical analysis of predictability of
US inflation and stock market returns. Section 8 concludes.

2 Conditional Tests of Equal Predictive Accuracy

Conventional tests of equal predictive accuracy inspect whether alternative forecasts
are equally accurate, on average, given a sample of forecasts and outcomes. Suppose,
however, that one forecast is expected to be more accurate than another forecast
conditional on some state variable (monitoring instrument) taking certain values,
while the ranking of the two forecasts’ expected performance is reversed for other
values of the state variable. In this case, the strategy of always using the forecast
that is most accurate “on average” could be dominated by a decision rule that selects
the forecast that, at each point in time, has the smallest expected loss.

This point highlights the value from implementing conditional tests of equal pre-
dictive accuracy though it does not establish the conditions under which such state
variables exist or the conditions under which such tests might work. In this section
we introduce more formally the forecast environment and discuss ways to test for
equal conditional and unconditional forecasting performance. Lastly, we introduce a
switching rule that exploits the conditional information in the monitoring instruments
to choose between forecasting models.

2.1 Out-of-Sample Tests of Forecasting Performance

Pairwise comparisons of predictive accuracy are now routinely carried out in macroe-
conomic and financial studies.9 Typically it is assumed that forecasts are generated
from a set of underlying linear models whose parameters are updated recursively
as new information arrives. In the same spirit, it is common practice to compute

9For a recent review of the literature, see Clark and McCracken (2013).
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tests of relative predictive accuracy by studying the models’ out-of-sample forecast-
ing performance. Out-of-sample tests assume that part of the sample is reserved for
initial estimation of model parameters and that these parameters get updated recur-
sively (using a rolling or an expanding estimation window) as new information arrives.
Forecasting performance is evaluated using these recursively generated forecasts, thus
avoiding that the same sample of data is used to estimate model parameters and eval-
uate the resulting forecasts. Out-of-sample performance is studied, first, to address
whether economically useful forecasts could have been generated in real time and,
second, to guard against data mining or overfitting biases.10

In common with much of the literature, we shall focus on univariate forecasting
problems. Specifically, let ŷ1,t+1|t and ŷ2,t+1|t be a set of one-step-ahead forecasts of the
outcome yt+1 generated using information known at time t.11 Following Diebold and
Mariano (1995), we can evaluate the accuracy of the forecasts using a loss function
L(ŷt+1|t, yt+1), where ŷt+1|t ∈ {ŷ1,t+1|t, ŷ2,t+1|t}. By far the most common loss function
is squared error loss

L(ŷt+1|t, yt+1) = (yt+1 − ŷt+1|t)
2. (1)

Under squared error loss, the loss differential between two forecasts, ∆Lt+1 ≡
L(ŷ1,t+1|t, yt+1)− L(ŷ2,t+1|t, yt+1), takes the form

∆Lt+1 = e2
1,t+1 − e2

2,t+1, (2)

where ej,t+1 = yt+1 − ŷj,t+1|t for j = 1, 2 are the individual forecast errors. Negative
values of ∆Lt+1 in (2) show that the first forecast produced a smaller squared forecast
error than the second forecast in period t+ 1.

2.2 Tests of Equal Unconditional Forecasting Performance

Following Diebold and Mariano (1995), we can test if the two forecasts have the same
unconditional expected (“average”) loss through the null hypothesis

H0 : E[∆Lt+1] = 0, (3)

where E[.] is the expectation operator.
10See Hansen and Timmermann (2015a) for further discussion of this point.
11Note that our setup can easily be generalized to allow for a multi-period forecast horizon.
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The null in (3) has been tested extensively in empirical studies in economics and
finance. The simplest way of testing if one of the forecasts dominates the other on
average is to test if the mean of the sequence of loss differentials ∆Lt+1 is non-zero
through a Diebold and Mariano (1995) regression

∆Lt+1 = θ0 + ut+1. (4)

A t-test can be used to test if θ0 6= 0, in which case the average MSE performance of
the two forecasts is significantly different from zero. Provided that ∆Lt+1 is covariance
stationary, such t−tests will follow a standard distribution as discussed in Diebold
(2015). The effect of recursive updating of parameter estimates when the forecasts are
generated by linear forecasting models has been considered by West (1996) (for non-
nested models) and by Clark and McCracken (2001), McCracken (2007) and Hansen
and Timmermann (2015b) (for nested models).

2.3 Tests of Equal Conditional Forecasting Performance

Even if one forecast is worse on average than another forecast, it might perform
better in certain states of the world. This suggests using a conditional test of predic-
tive accuracy that conditions on observable information when evaluating competing
forecasts’ relative accuracy. Giacomini and White (2006) (GW, henceforth) propose
a method for doing this. Let Gt denote the information set consisting of variables
used to assess the two forecasts’ predictive accuracy. GW extend unconditional tests
implied by the null in (3) to conditional tests based on the null

H0 : E[∆Lt+1|Gt] = 0. (5)

Note that the null in (3) could be true even if (5) is false: Two forecasts may generate
the same average loss even though information in Gt can be used to predict when one
forecast performs better than the other. Conversely, if the null in (5) holds for all
elements in Gt, then (3) follows trivially, assuming that Gt includes a constant.

Following GW, we can turn the null in (5) into a test statistic by using a set of
monitoring instruments (“testers”) Zt ∈ Gt, so that we test H0 : E [∆Lt+1|Zt] = 0

where Zt ∈ RdZ ⊆ Gt is a sequence of conditioning variables which typically includes
a constant and dZ is the dimension of Zt.
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Under the null in (5), Zt should be orthogonal to the loss differential ∆Lt+1. This
can be tested using a linear regression:

∆Lt+1 = (θ0, θ1)

(
1

z1t

)
+ ut+1 ≡ θ′zt + ut+1, (6)

where zt = (1, z1t)
′, E[ut+1z1t] = 0, and z1t ∈ Zt.12

Under the null of equal conditional predictive accuracy, θ0 = 0 and θ1 = 0 in (6).
Non-zero values of θ1 suggest that the monitoring instruments, z1t, can help forecast
differences in predictive accuracy across the two forecasts.

Under the moment and mixing conditions in Theorem 1 of Giacomini
and White (2006) the null hypothesis in (5) can be tested on a sample
{yt+1, ŷ1,t+1|t, ŷ2,t+1|t, z1t}T−1

t=T−p by computing the GW test statistic

JT =

[
p−1/2

T−1∑
t=p

∆Lt+1Zt

]′
Ω̂−1
T

[
p−1/2

T−1∑
t=p

∆Lt+1Zt

]
d−→ χ2 (dZ) , (7)

where Ω̂T = p−1
∑T−1

t=p (∆Lt+1Zt − µT ) (∆Lt+1Zt − µT )′ is a consistent estimate of
the variance of ∆Lt+1Zt, and µT = p−1

∑T−1
t=p ∆Lt+1Zt is the mean of the product of

the loss differential and the dZ monitoring instrument Zt.

2.4 Expected Gains from Monitoring

Suppose the test in (7) rejects that E (∆Lt+1|Zt) = 0 for some monitoring instrument,
Zt, suggesting that Zt can be used to predict the mean of ∆Lt+1 and tell when one
forecast is likely to perform better than the other. Using the monitoring regression in
(6), we can compute the expected future loss E (∆Lt+1|Zt) by θ′Zt. This expectation
can be the basis for choosing which forecast to use for period t + 1. Following GW,
we consider a simple switching rule that chooses forecast 1 if E(∆Lt+1 | Zt) ≤ 0,
otherwise chooses forecast 2:

ŷSW,t+1|t = ŷ1,t+1|t {E[∆Lt+1|zt] ≤ 0}+ ŷ2,t+1|t1 {E[∆Lt+1|zt] > 0} , (8)

12Non-linearities can easily be incorporated by using transformations of z1t.
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where 1 {E[∆Lt+1|zt] > 0} is an indicator variable that equals one if the first fore-
casting model has the highest expected loss conditional on Zt = zt, otherwise is zero.

To establish if the instrument Zt can be useful in tracking the relative perfor-
mance of the two forecasts, note that if E[∆Lt+1|zt] < 0 with positive probability–so
the conditionally expected loss of the second forecast exceeds that of the first forecast
for some value of zt–then E[∆Lt+1] < E[∆Lt+11 {E (∆Lt+1|zt) > 0}].13 Moreover, the
amount by which the switching rule (8) is expected to outperform forecast 1, condi-
tional on forecast 2 having the lowest expected loss, is E [∆Lt+11 {E[∆Lt+1|zt] > 0}] .
Equivalently, the expected gain from using the switching rule (8), conditional on
forecast 1 having the lowest expected loss, is E [−∆Lt+11{E[∆Lt+1|zt] ≤ 0}] and the
switching rule is expected to outperform forecast 1 unconditionally provided that
E(∆Lt+1 | Zt) > 0 occurs with strictly positive probability.

These arguments show that there are gains expected from forecast monitoring
relative to always using forecasts from a particular model provided that neither of
the underlying forecasting models is too dominant since E [∆Lt+1|zt] is required to
switch sign for different values of zt. These conclusions only assume the existence
of E [|∆Lt+1|] and so are established under very weak conditions. However, they do
not account for estimation error, nor do they quantify the potential benefits from
monitoring forecasting performance and, at each point in time, selecting the forecast
with the lowest conditionally expected loss. This is the topic of the next two sections.

3 Comparing Forecasts from Non-nested Models

This section studies pair-wise comparisons of forecasts generated by non-nested mod-
els, both of which only partially captures the information in the data generating
process for yt+1. The case with nested models is covered in the next section. We
derive conditions under which approximate finite sample bounds can be established
on the relative performance of non-nested forecasting models in the presence of es-
timation error and also characterize conditions under which a switching rule can be

13To see this, notice that if E [∆Lt+1|zt] < 0 with positive probability, then

E[∆Lt+1]− E [∆Lt+11 {E[∆Lt+1|zt] > 0}] = E [∆Lt+11 {E (∆Lt+1|zt) ≤ 0}]
= E [{E [∆Lt+11 {E (∆Lt+1|zt) ≤ 0} |zt]}] < 0.
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expected to produce better forecasts than either model.

3.1 Pairwise Comparisons

Consider the data generating process (DGP)

yt+1 = β1x1,t + β2x2,t + εt+1, (9)

where x1t and x2t are a set of predictor variables that are known at time t. To
capture the case with non-nested models, we assume that model 1 takes the form
yt+1 = β1x1,t+ε1t+1, while model 2 takes the form yt+1 = β2x2,t+ε2t+1. For simplicity,
we assume that x1t and x2t are univariate processes.14

Our analysis assumes that we observe a sample of T data points {(xj,t, yt)}Tt=1. To
allow for mild time variation in the parameters of the prediction models, in line with
standard practice in the literature on out-of-sample forecasting we assume that the
parameters of the forecasting models (β̂j,n,t) are estimated using a rolling window of
the most recent n observations

β̂j,n,t =

(
t−1∑

s=t−n

x2
j,s

)−1( t−1∑
s=t−n

xj,sy,s+1

)
, j = 1, 2. (10)

The resulting forecasts are generated as ŷj,t+1|t = β̂j,n,txj,t for j = 1, 2. Under this
setup, the sample size, T , is split into a rolling window of length n used to estimate
β̂j,n,t, the parameters of the jth forecasting model, and an evaluation sample contain-
ing the remaining p observations so that T = n+p. Both n and p can be functions of
T and may or may not tend to infinity but, for simplicity, we write n and p instead
of nT and pT .15 The tests that evaluate the performance of the two models are based
on the p forecasts {(ŷ1,t+1|t, ŷ2,t+1|t)}n+p−1

t=n .
Using (9), the squared error loss differential ∆Lt+1 becomes

∆Lt+1 = (yt+1 − ŷ1,t+1|t)
2 − (yt+1 − ŷ2,t+1|t)

2

= 2εt+1 (β2x2,t − β1x1,t − δ1,n,tx1,t + δ2,n,tx2,t)

14Note that we do not rule out that β1 or β2 equal zero.
15Giacomini and White (2006) assume that the length of the estimation window, n, is fixed.

However, Timmermann and Zhu (2016) generalize this setup to allow for an expanding estimation
window.
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+ (β2x2,t − β1x1,t − δ1,n,tx1,t + δ2,n,tx2,t) (β1x1,t + β2x2,t − δ1,n,tx1,t − δ2,n,tx2,t) ,

(11)

where δj,n,t = β̂j,n,t − βj denotes the estimation error for model j.

3.2 Determinants of Average Forecasting Performance

To ensure that our analysis of forecasting performance allows for a broad set of time-
series dependencies, we adopt the β-mixing condition formulated as in Section 2.1 of
Chen et al. (2016) adapted to an array setting similarly to Andrews (1988):

Definition 1. The array {WT,t}∞t=−∞ is said to be β-mixing with coefficient βmix(·)
if

βmix(t) = sup
−∞<i<∞, T≥1

E

(
sup

B∈FTi+t,∞

∣∣P (B|FT−∞,i)− P(B)
∣∣)→ 0 as t→∞,

where FT−∞,i = σ(· · · ,WT,i−1,WT,i) and FTi+t,∞ = σ(WT,i+t,WT,i+t+1, · · · ).

The array structure in this definition is general enough to allow for many types
of nonstationary data and provides a convenient way of analyzing data generating
processes indexed by the sample size. For example, we can allow the signal strength
of the predictor, x, and monitoring instrument, z, to decay to zero as T gets large.

Characterizing the expectation of ∆Lt+1 in a way that is relevant for testing
purposes is technically challenging. Standard asymptotic results, such as the classical
central limit theorem (CLT), require n to tend to infinity in order to approximate the
behavior of δj,n,t. For example, for a fixed t, one can use a CLT to show that δj,n,t =

OP (n−1/2) and thus ∆Lt+1 = β2
2x

2
2,t− β2

1x
2
1,t + 2(β2x2,t− β1x1,t)εt+1 +OP (n−1/2). For

β = cn−αx and large n, with αx < 1/4 the leading term of E∆Lt+1 is β2
2Ex2

2,t−β2
1Ex2

1,t

since E [xj,tεt+1] = 0. However, for αx > 1/4, it is unclear how E∆Lt+1 behaves and
the outcome of a GW test on ∆Lt+1 is not obvious.

Moreover, the potential lack of uniformity in the OP (n−1/2) terms presents chal-
lenges. Since the OP (n−1/2) term might not be uniform in t, one cannot conclude
that performing a GW test on ∆Lt+1 is asymptotically equivalent to implementing
the test using β2

2x
2
2,t − β2

1x
2
1,t + 2(β2x2,t − β1x1,t)εt+1, even if αx < 1/4. The reason is

that, for an array of random variables, each of which converges to zero in probability,
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the average of these random variables need not converge to zero in probability.16

To overcome these difficulties, we derive bounds that are valid uniformly across
t, hold in finite samples, and thus do not require an asymptotic framework. To this
end, we make use of the following list of assumptions:

Assumption 1. The following hold for j ∈ {1, 2}:

(i) There exist constants r > 8 and D > 0 such that E|xj,t|r and E|εt+1|r are
bounded above by D. Moreover, Exj,t = Ex1,tx2,t = Exj,tεt+1 = 0.

(ii) {xj,t, εt+1}∞t=−∞ is a β-mixing array with coefficient βmix(·) such that ∀t > 0,
βmix(t) ≤ b exp(−tc), for constants b, c > 0. Moreover, for some constants
Q1, Q2 > 0, E(k−1/2

∑t−1
s=t−k x1,s(x2,sβ2 + εs+1))2, E(k−1/2

∑t−1
s=t−k x2,s(x1,sβ1 +

εs+1))2, Ex2
1,t and Ex2

2,t lie in [Q1, Q2] for all k, t.

(iii) There exist constants αx,j ∈ [0,∞], cβ,j > 0 such that βj = cβ,jn
−αx,j , where

(a) αx,2 < αx,1,

(b) αx,2 < 1/2.

(iv) n/T > κ for some constant κ > 0.

Assumption 1(i) imposes relatively weak moment conditions on xj,t and εt+1 and
holds for many processes, including many GARCH specifications. Notice that we do
not require exponential-type tails, which are routinely imposed in papers that han-
dle uniformly valid bounds; see e.g., Fan et al. (2011) and Bonhomme and Manresa
(2015). The mixing condition in Assumption 1(ii) ensures weak dependence in the
data and is commonly used in the literature. Importantly, we do not impose station-
arity and allow for heteroskedasticity. Assumption 1(iii) characterizes the strength of
the predictors through the order of magnitude of their coefficients in the forecasting
model, βj = cβ,jn

−αx,j . The smaller the value αx,j, the stronger the predictor, with
αx,j = 0 representing the conventional case with a very strong predictor whose pres-
ence can be detected with certainty as the sample size increases, while αx,j = 1/2

represents the local-to-zero case with a weaker predictor whose importance is much
16For example, consider the array an,t = t4/n: for a fixed t, limn→∞ an,t = 0 but the average

n−1
∑n
t=1 an,t →∞.
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harder to detect. Without loss of generality, we assume that the predictor in the sec-
ond model is stronger than the predictor in the first model (αx,2 < αx,1) and we further
assume that the dominant predictor is stronger than local-to-zero (αx,2 < 1/2). The
case with local-to-zero predictors (αx,2 = 1/2) has been the subject of many studies
including, most recently, Hirano and Wright (2017). Studying sequences of parameter
values whose magnitude declines as the sample size grows bigger ensures that param-
eter uncertainty is preserved asymptotically. In contrast, with a fixed alternative
(αx,2 = 0), uncertainty about the parameter estimates disappears asymptotically.

Finally, assumption 1(iv) requires that the estimation window, n, grows at (at
least) the same rate as the sample size, T .

The following result allows us to study the finite-sample properties of the expected
squared error performance of the two models:

Proposition 1. Consider the DGP

yt+1 = β1x1,t + β2x2,t + εt+1,

Moreover, assume that the parameters of the forecasting models, β̂j,n,t, are estimated
recursively using n observations. Then, under squared error loss and Assumption 1,

(1) there exist constants G1, G2 > 0 and an array of random variables {∆Lt+1,∗}T−1
t=n

such that for T ≥ G1,

P

(
T−1⋂
t=n

{∆Lt+1,∗ = ∆Lt+1}

)
≥ 1−G2T

max{1−r/8, 1+(αx,2−1/2)(2+r/4)}.

(2) there exist constants G3, G4 > 0 such that, for n ≤ t ≤ T − 1,

G3T
−2αx,2 ≤ E∆Lt+1,∗ ≤ G4T

−2αx,2 .

Part 1 of Proposition 1 establishes a coupling result that allows us to study the
behavior of ∆Lt+1. Since ∆Lt+1 might not have bounded moments for finite n, we
consider {∆Lt+1,∗}, which coincides with {∆Lt+1} with high probability. Specifically,
if Tmax{1−r/8, 1+(αx,2−1/2)(2+r/4)} vanishes, i.e., r > max{8, 16αx,2/(1 − 2αx,2)}, tests
computed based on {∆Lt+1}n+m+p−1

t=n+m have the same asymptotic properties as those
computed using {∆Lt+1,∗}n+m+p−1

t=n+m .
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Our result provides finite-sample properties of E∆Lt+1,∗ for each t, n and T with-
out requiring T or n to tend to infinity. Further, notice that ∆Lt+1 is not necessarily
stationary. For example, if n grows with T or (xt, εt) is not stationary even for fixed
n, then ∆Lt+1 will not, in general, be stationary.

Proposition 1 shows that Model 2 is expected to generate a smaller out-of-sample
MSE than Model 1 provided that Assumption 1 holds. In other words, provided
that the predictor of Model 2 is stronger than local to zero (αx,2 < 1/2) and more
powerful than the predictor of Model 1 (αx,2 < αx,1), we can establish bounds on the
amount by which Model 2 is expected to dominate Model 1. Moreover, the expected
MSE gains depend on the strength of the predictive signals, as a stronger predictor (a
smaller αx,2) is associated with a larger expected gain from using the forecasts from
model 2 rather than forecasts from model 1.17

3.3 Expected Gains from Forecast Monitoring

In situations where two or more alternative forecasts of the same outcome are avail-
able, we can define the gain from monitoring forecasting performance of a particular
model as the expected reduction in loss from selecting the other model when this is
expected to perform better. We next describe the setup for forecast monitoring and
analyze the expected gains from forecast monitoring. We assume that the parameters
of the forecast monitoring regression in (6) are estimated using a monitoring window
based on the most recent m observations

θ̂m,t =

(
m−1

t−1∑
s=t−m

zsz
′
s

)−1(
m−1

t−1∑
s=t−m

zs∆Ls+1

)
, (12)

where zs = (1, z1s)
′.

The switching rule chooses model 2 if and only if z′tθ̂m,t > 0. Using (8), the
forecasts from the monitoring rule {ŷSW,t+1}T−1

t=n+m take the form

ŷSW,t+1|t = ŷ1,t+1|t1{z′tθ̂m,t ≤ 0}+ ŷ2,t+1|t1{z′tθ̂m,t > 0}. (13)

17Using a Diebold-Mariano test based on a sample of size T , we can detect differences of an order
larger than O(T−1/2). Hence, by Proposition 1, a Diebold-Mariano test will have power in large
samples to detect differences in the average performance of models 1 and 2 if αx,2 < 1/2. Conversely,
for larger values of αx,2, and hence for weaker predictors, such tests will not be very powerful.
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Under the recursive monitoring rule, the sample size, T , is split into rolling win-
dows of length n and m used to estimate β̂j,n,t (the parameters of the jth forecasting
model) and θ̂m,t (the parameters of the monitoring regression), respectively, and an
evaluation sample containing the remaining p observations so that T = n + m + p.
The tests that evaluate the performance of the two models and the switching rule are
thus based on the p forecasts {(ŷ1,t+1|t, ŷ2,t+1|t, ŷSW,t+1|t)}n+m+p−1

t=n+m . Again, n,m and p
are viewed as functions of T which may or may not tend to infinity and, for simplicity,
we write n, m and p, instead of nT , mT and pT . Figure 2 illustrates the setup of
our analysis, showing how the observations are split into estimation, monitoring and
forecast evaluation samples.

To establish results on the expected gains from forecast monitoring, using (11) we
need to make assumptions about the correlation between the monitoring instrument,
z1t, and the xi,tεt+1 terms in the forecast errors. We collect these in Assumption 2:

Assumption 2. The following hold for j ∈ {1, 2}:

(i) {xj,t, z1t, εt+1}∞t=−∞ is a β-mixing array with coefficient βmix(·) such that ∀t > 0,
β(t) ≤ b exp(−tc), for constants b, c > 0.

(ii) There exist constants αz,1, αz,2 ∈ [0,∞], cρ,1, cρ,2 > 0 such that
corr(xj,tεt+1, z1t) = cρ,jm

−αz,j , where

(a) 2rαz,2/(r − 2) < αx,2,

(b) αx,2 + αz,2 < αx,1 + αz,1.

(iii) For some constants κ1, κ2 > 0, κ1Ex2,tεt+1z1t ≤ Ex2,tεt+11{z1t > 0} ≤
κ2Ex2,tεt+1z1t.

(iv) On some fixed neighborhood of zero, the p.d.f. of z1t is uniformly bounded.

(v) Ez1t = 0. Moreover, for constants r,D > 0, and E|z1t|r ≤ D.

(vi) T/m is bounded.

The mixing condition in Assumption 2(i) ensures weak dependence in the predic-
tors, monitoring instrument, and outcomes and so this assumption naturally extends
Assumption 1(i). Assumption 2(ii) ensures that the monitoring instrument, z1t, is not
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too weak for the second model (part a) and that the “combined“ strength of the pre-
dictor and monitoring instrument (αx,2 +αz,2) is stronger for model 2 than for model
1 (part b). Assumption 2(iii) links the selection rule and the correlation between
x2,tεt+1 and z1t. The condition says that the correlation between x2,tεt+1 and z1t is
of the same order of magnitude as the correlation between x2,tεt+1 and 1{z1t > 0}.
This means that the dependence between x2,tεt+1 and z1t can be measured in approx-
imately equivalent ways, either by the correlation between x2,tεt+1 and z1t or by the
correlation between x2,tεt+1 and 1{z1t > 0}.18 Assumptions 2(iv)-(v) impose mild
assumptions on the distribution and moments of z1t. We also assume in part (vi)
that the length of the monitoring window, m, grows in proportion with the sample
size, T .

With Assumptions 1 and 2 in place, we can characterize the expected gains from
monitoring forecasting performance, i.e., the expected performance of the switching
rule relative to models 1 and 2:

Proposition 2. Consider the DGP

yt+1 = β1x1,t + β2x2,t + εt+1.

Moreover, assume that the parameters of the forecasting models, β̂j,n,t, (j = 1, 2) and
of the monitoring rule, θ̂m,t, are estimated recursively using n and m observations,
respectively. Then, assuming squared error loss, under Assumptions 1 and 2, the
following hold:

(1) There exist constants G1, G2, G3 > 0 and an array {St+1}T−1
t=n+m such that for

T ≥ G1 and n+m ≤ t ≤ T − 1

P

(
T−1⋂

t=n+m

{
St+1 = ∆Lt+11{z′tθ̂m,t > 0}

})
≥ 1−G2T

max{1−r/8, 1+(αx,2−1/2)(2+r/4)}

18Notice that the switching rule aims to predict the sign of ∆Lt+1 using z1t. However, the
success of the switching rule in terms of E∆Lt+11{z1t > 0} is not guaranteed merely by a strong
correlation between x2,tεt+1 and z1t even if x2,tεt+1 is the dominant term of ∆Lt+1. To see this,
consider the following situation. Let ut be a random variable with a symmetric distribution around
zero. For any αx ∈ (0, 1), let ξt be a Bernoulli random variable that equals 1/(αx − 1) with
probability (1− αx)/2 and equals 1/(1 + αx) with probability (1 + αx)/2. Consider z1t = utξt and
x2,tεt+1 = αxz1t + ut. It is not hard to show that corr(x2,tεt+1, z1t) = αx; however, it can be easily
shown that Ex2,tεt+11{z1t > 0} = 0 for any αx ∈ (0, 1).

18



and
ESt+1 ≥ G3T

−(αx,2+αz,2).

(2) There exist constants G4, G5, G6 > 0 and an array {S̃t+1}T−1
t=n+m such that for

T ≥ G4 and n+m ≤ t ≤ T − 1

P

(
T−1⋂

t=n+m

{
S̃t+1 = −∆Lt+11{z′tθ̂m,t < 0}

})
≥ 1−G5T

max{1−r/8, 1+(αx,2−1/2)(2+r/4)}

and
ES̃t+1 ≥ G6T

−(αx,2+αz,2).

To interpret part 1 of Proposition 2, notice that (yt+1 − ŷ1,t+1|t)
2 − (yt+1 −

ŷSW,t+1|t)
2 = ∆Lt+11{z′tθ̂m,t > 0} so St+1 captures the expected gains from moni-

toring the performance of model 1, i.e., the squared error loss of model 1 relative to
the switching rule, provided that Tmax{1−r/8, 1+(αx,2−1/2)(2+r/4)} is small. When this
holds, the result shows that tests computed based on {∆Lt+11{z′tθ̂m,t > 0}} have the
same asymptotic properties as those computed using St+1.

By part 1 of Proposition 2, the expected gain from monitoring the performance of
the first model is bounded below by a positive sequence of order T−(αx,2+αz,2). Hence,
the more accurate the predictor variable of model 2 (i.e., the smaller is αx,2) and the
better the monitoring instrument (smaller αz,2), the bigger the expected gain from
monitoring the performance of model 1 and switching to use the forecasts from model
2 when this model is expected to have the best performance.

Part 2 of Proposition 2 computes the expected gain from monitoring the perfor-
mance of Model 2. To see this, notice that (yt+1 − ŷ2,t+1|t)

2 − (yt+1 − ŷSW,t+1|t)
2 =

−∆Lt+11{z′tθ̂m,t < 0}, so S̃t+1 captures the squared error loss of model 2 relative to
the switching rule with a high probability if G5T

max{1−r/8, 1+(αx,2−1/2)(2+r/4)} is small.
Hence, part 2 of Proposition 2 says that, to a good approximation, the expected loss
of the switching rule measured relative to the second model is also bounded below by
a positive sequence of order T−(αx,2+αz,2).

Proposition 1 established that model 2 is expected to outperform model 1. To
see why the expected gain from monitoring the performances of models 1 or 2 are
of the same order of magnitude, note that the leading term in the MSE differential
of the switching rule versus either model 1 or model 2 in equation (11) is of order

19



T−(αx,2+αz,2) whereas the expected MSE differential of model 2 versus model 1 is of
order T−2αx,2 . Our assumption that αz,2 < αx,2 therefore ensures that the expected
MSE differential of the two models is of a smaller order than T−(αx,2+αz,2).

An important condition for the switching rule to work is that E[xjtεt+1z1t] 6= 0,
so that the monitoring instrument, z1t, is capable of picking up predictable forecast
errors. This condition can hold even if E[εt+1z1t] = 0. Hence, the instrument need not
have any predictive power if added to the forecasting model on its own. Monitoring
instruments can therefore be useful for tracking the (relative) expected loss of a par-
ticular forecast even though they need not have predictive power over the outcome as
stand-alone predictors. Of course, adding the cross-product term xjtz1t as a predictor
to the original forecasting model might produce better results. However, this strategy
is often not a feasible option since xt might not be observed, as in the case of survey
data or any third-party forecasts that are not generated by the forecast user.19

3.4 Weak Predictor with a Strong Monitoring Instrument

Proposition 2 establishes results for the switching rule under conditions ensuring
that the predictor and monitoring instrument are more powerful for Model 2 than
for Model 1 through the assumptions αx,2 < αx,1 and αx,2 + αz,2 < αx,1 + αz,1.
In this case, the dominant term in the monitoring rule is the correlation between
z1t and 2β2εt+1x2,t. However, suppose that model 2 uses the strongest predictor
(αx,2 < αx,1) but that the monitoring instrument is stronger for model 1 and that
αx,2 + αz,2 > αx,1 + αz,1. In this case, the dominant term in the monitoring rule
becomes the correlation between z1t and 2β1εt+1x1,t. We next show that it is possible
to generate gains from forecast monitoring also in this case. We capture the case
with a weak predictor and a strong monitoring instrument through the following
assumption:

Assumption 3. Let Assumption 2 (i), (iii)-(vi) hold for some r ≥ 10, but replace
Assumption 2(ii) with the assumption that there exist constants αz,1, αz,2 ∈ [0,∞],
cρ,1, cρ,2 > 0 such that corr(xj,tεt+1, z1t) = cρ,jm

−αz,j and

19Note that if r > max{8, 16αx,2/(1− 2αx,2)}, then Tmax{1−r/8, 1+(αx,2−1/2)(2+r/4)} vanishes and
tests computed based on {∆Lt+11{z′tθ̂m,t > 0}} have the same asymptotic properties as those
computed using {St+1}. Hence, using a Diebold-Mariano test and a sample of size T , we can detect
differences in forecasting performance of an order larger than O(T−1/2). By Proposition 2, differences
between the switching rule and models 1 or 2 can therefore be detected if αx,2 + αz,2 < 1/2.
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1. αz,1 < αx,1,

2. αx,1 + αz,1 < min{1/2, (3r − 2)αx,2/(2r − 2)}, and

3. αx,2 + αz,2 > αx,1 + αz,1.

Note the new parameter restrictions for this case. We require that the monitor-
ing instrument be more strongly correlated with the cross-product x1,tεt+1 than the
correlation between the “weak” predictor and the outcome (αz,1 < αx,1), at least for
large T . We also require that the sum αx,1 + αz,1 < 1/2, although this bound could
be tighter, depending on the values of r and αx,2. The last part of Assumption 3
captures that the combined strength of the predictor and monitoring instrument for
model 1 is stronger than that for model 2.

Proposition 3. Suppose that Assumptions 1 and 3 are satisfied. Then, the following
hold:

(1) There exist constants G1, G2, G3 > 0 and an array {St+1}T−1
t=n+m such that for

T ≥ G1 and n+m ≤ t ≤ T − 1

P

(
T−1⋂

t=n+m

{
St+1 = ∆Lt+11{z′tθ̂m,t > 0}

})
≥ 1−G2T

max{1−r/8, 1+(αx,2−1/2)(2+r/4)}

and
ESt+1 ≥ G3T

−αx,1−αz,1 .

(2) There exist constants G4, G5, G6 > 0 and an array {S̃t+1}T−1
t=n+m such that for

T ≥ G4 and n+m ≤ t ≤ T − 1

P

(
T−1⋂

t=n+m

{
S̃t+1 = −∆Lt+11{z′tθ̂m,t < 0}

})
≥ 1−G5T

max{1−r/8, 1+(αx,2−1/2)(2+r/4)}

and
ES̃t+1 ≥ G6T

−(αx,1+αz,1).

Proposition 3 shows that the expected gain from monitoring forecasting perfor-
mance relative to either always using the forecasts from model 1 or always using the
forecasts from model 2 is bounded from below by terms that are of order T−(αx,1+αz,1),
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which, by assumption, is bigger than T−1/2. Together with the result in Proposition 2,
this shows that we can have expected gains from monitoring either in situations where
we have a strong predictor and a monitoring instrument that is strongly correlated
with the cross-product of this predictor and the residual from the forecasting model
(Proposition 2) or in cases with a weak predictor but a monitoring instrument that
is strongly correlated with the cross-product of the weak predictor and the residual
from the forecasting model (Proposition 3).

4 Nested Models

Comparisons of forecasts from nested models arise in a number of applications in
economics and finance and this case can be addressed by modifying the analysis in
Section 3. Suppose the data generating process (DGP) includes an intercept and a
time varying regressor and thus takes the form

yt+1 = µ+ βxt + εt+1, (14)

Moreover, suppose that model 2 (the “big” model) coincides with the DGP in (14),
while model 1 is a (nested) small model that only includes an intercept:

yt+1 = µ+ εt+1. (15)

This setup captures a number of economically interesting cases, including attemps
to capture time-varying predictability of asset returns measured relative to a constant
expected returns benchmark.

We estimate both models using OLS so that, for n ≤ t ≤ T ,

µ̃t = n−1

t∑
s=t−n+1

ys,(
µ̂t

β̂t

)
=

[
n−1

t−1∑
s=t−n

(
1

xs

)(
1 xs

)]−1 [
n−1

t−1∑
s=t−n

(
1

xs

)
ys+1

]
, (16)

and ŷ1,t+1|t = µ̃t, while ŷ2,t+1|t = µ̂t + β̂txt.
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Using these notations, the difference in squared error losses is

∆Lt+1 = (yt+1 − µ̃t)2 − (yt+1 − µ̂t − β̂txt)2

= (−δt,small + βxt + εt+1)2 − (−δt,big + εt+1)2

= β2x2
t + 2βxtεt+1 + δ2

t,small − δ2
t,big + 2δt,bigεt+1 − 2δt,small(βxt + εt+1), (17)

where δt,small = µ̃t − µ and δt,big = µ̂t − µ+ (β̂t − β)xt.
A particularly simple case with nested models arises when the DGP and forecast-

ing models do not include an intercept. For this case (17) simplifies to

∆Lt+1 ≡ (yt+1 − 0)2 −
(
yt+1 − β̂n,txt

)2

= (β2 − δ2
β,n,t)x

2
t + 2(β + δβ,n,t)xtεt+1. (18)

Using the earlier notations, we can capture this case by setting αx,1 = αz,1 = ∞,
so that β1 = δ1,n,t = 0. This allows us to simplify the notations by setting β2 = β =

cn−αx and corr(xtεt+1, z1t) = cρn
−αz , where c, cρ > 0 and αx, αz ≥ 0 are constants.

Moreover, δβ,2,n,t = δβ,n,t, where δβ,n,t = (
∑t−1

s=t−n x
2
s)
−1(
∑t−1

s=t−n xsεs+1).
Note a subtle difference between the nested and non-nested case: In the nested

case, we impose on the small model that the parameter of the additional predictor that
is only included in the big model takes a value of zero so that fewer parameters are
estimated by the small model. Conversely, in the non-nested case, no such constraint
is imposed and so we do not have a “big” and a “small” model for this case.

4.1 Expected Performance of Big versus Small Forecasting

Models

We summarize our list of assumptions for the case with nested models in Assumption
4:

Assumption 4. Assume that the following hold
(i) The r-th moments of xt, z1t and εt+1 are uniformly bounded for some constant
r > 8.
(ii) {xt, z1t, εt}∞t=−∞ is a β-mixing array with coefficient βmix(·) such that ∀t > 0,
βmix(t) ≤ b exp(−tc), for constants b, c > 0.
(iii) E(εt+1 | {(xs, εs)}ts=−∞) = 0 and Ext = Ez1t = 0.
(iv) β = cn−αx for some constants αx ∈ [0,∞), c > 0.
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(iv) M1 ≤ Ex2
t ≤M2 for some constants M1,M2 > 0.

(v) T/n and T/m are bounded.

Using this assumption, we can characterize the expected squared error loss per-
formance of the small versus the big models for the nested case:

Proposition 4. Consider the data generating process

yt+1 = µ+ xtβ + εt+1,

and suppose that Assumption 4 holds.

(1) Suppose that αx < 1/2. Then there exist constants C1, · · · , C4 > 0 and an array
{∆Lt+1,∗}T−1

t=n such that for T ≥ C1

P

(
T−1⋂

t=n+m

{∆Lt+1 = ∆Lt+1,∗}

)
≥ 1− C2T

max{1−r/8, 1+(αx−1/2)(2+r/4)}

and
C3T

−2αx ≤ E∆Lt+1,∗ ≤ C4T
−2αx ∀n ≤ t ≤ T − 1.

(2) Suppose that αx > 1/2. Then there exist constants C5, · · · , C8 > 0 and an array
of random variables {∆Lt+1,∗}T−1

t=n such that for T ≥ C5

P

(
T−1⋂

t=n+m

{∆Lt+1 = ∆Lt+1,∗}

)
≥ 1− C6T

max{1−r/8, 1+(αx−1/2)(2+r/4)}

and
−C7T

−1 ≤ E∆Lt+1,∗ ≤ −C8T
−1 ∀n ≤ t ≤ T − 1.

Part 1 of Proposition 4 shows that the expected squared error loss of the big model
is smaller than that of the small model that excludes this predictor provided that the
strength of the predictor included in the big model is sufficiently large to overcome the
effect of estimation error (αx < 1/2). Moreover, the amount by which the big model is
expected to outperform the small model gets bigger, the stronger the predictive signal,
i.e., the smaller is αx. Conversely, part 2 of Proposition 4 says that if the predictive
signal underlying the big model is “too weak” (αx > 1/2), then the estimation error
of the big model dominates the signal, leading us to expect that the big model will
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underperform the small model, although the expected underperformance is only of
order O(T−1).

Next, consider whether a statistical test will have the power to differentiate be-
tween the predictive accuracy of the big and the small model. From equation (17), it
is not hard to see that E(∆Lt,n,∗)

2 is roughly of order O(n−2αx). Assuming that p and
n are of the same order, this means that for αx < 1/2, T 1/2E∆Lt,n,∗/

√
E(∆Lt,n,∗)2

is roughly of order O(T 1/2−αx), which tends to infinity. Hence, a Diebold-Mariano
t-test or a GW test will tend to reject E [∆Lt,n,∗] = 0 if αx < 1/2. In the case with a
weak predictor in the large model (αx > 1/2), the usual Diebold-Mariano test using
p observations of ∆Lt+1 will not detect such underperformance when T/p = O(1)

because the expected underperformance is only of order O(T−1).

4.2 Expected Gains from Monitoring Forecasting Perfor-

mance

As in the case with non-nested models, we next characterize the behavior of the
switching rule for the nested case. For this analysis we make use of the following
assumption:

Assumption 5. The following hold

(i) There exist constants αz ∈ [0,∞], cρ > 0 such that corr(xtεt+1, z1t) = cρm
−αz ,

where 2rαz/(r − 2) < αx.

(ii) For some constants κ1, κ2 > 0, κ1Extεt+1z1t ≤ Extεt+11{z1t > 0} ≤
κ2Extεt+1z1t.

(iii) On some fixed neighborhood of zero, the p.d.f. of z1t is uniformly bounded.

Using Assumption 5, we have the following result for the switching rule in the
nested case:

Proposition 5. Consider the data generating process

yt+1 = µ+ xtβ + εt+1.

Suppose Assumptions 4 and 5 hold. Then
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(1) there exist constants M1,M2,M3 > 0 and an array {St+1}T−1
t=n+m such that for

T ≥M1 and ∀n+m ≤ t ≤ T − 1,

P

(
n+m+p−1⋂
t=n+m

{
St+1 = ∆Lt+11{z′tθ̂m,t > 0}

})
≥ 1−M2T

max{1−r/8, 1+(αx−1/2)(2+r/4)}

and
ESt+1 ≥M3T

−(αx+αz).

(2) there exist constants M4,M5,M6 > 0 and an array{S̃t+1}T−1
t=n+m such that for

T ≥M4 and ∀n+m ≤ t ≤ T − 1,

P

(
n+m+p−1⋂
t=n+m

{
S̃t+1 = −∆Lt+11{z′tθ̂m,t < 0}

})
≥ 1−M5T

max{1−r/8, 1+(αx−1/2)(2+r/4)}

and
ES̃t+1 ≥M6T

−(αx+αz).

Part 1 of Proposition 5 shows that the switching rule is expected to perform better
than the small model by an amount that is bounded by a factor of order T−(αx+αz).
A similar result holds for the amount by which the switching rule is expected to
outperform the big model.

4.2.1 Effect of Persistent Estimation Errors

Under the rolling estimation scheme, estimation errors are highly persistent and, thus,
predictable by means of their lagged values. Under some conditions, it is possible to
utilize this fact and build a switching rule that generates superior performance.

As an illustration, consider the simple DGP yt+1 = εt+1 with a serially correlated
error, εt+1 = ρεεt+uε,t+1. Suppose that the big model takes the form yt+1 = βxt+εt+1,

where xt+1 = ρxxt+ux,t+1. Further, assume that uε,t ∼ i.i.d N(0, σ2
u,ε) is independent

of ux,t ∼ i.i.d N(0, σ2
u,x). Because the true population value of β is zero, the loss

differential is given by

∆Lt+1 = δ2
β,n,tx

2
t + 2δβ,n,txtεt+1. (19)

In cases with a fixed t and a large n, δβ,n,t = OP (n−1/2) and so ∆Lt+1 =
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OP (n−1) + 2δβ,n,txtεt+1. Thus, E∆Lt+1 = O(n−1), E(∆Lt+1)2 = O(n−2) +

4E(δ2
β,n,tx

2
t )E(ε2

t+1), and E(∆Lt+1∆Lt+2) = O(n−1) + 4E(δβ,n,tδβ,n,t+1xtxt+1εt+1εt+2).
Assuming weak dependence of the data, (δβ,n,t, δβ,n,t+1) is asymptotically inde-
pendent of (xt, xt+1, εt+1, εt+2).20 Hence, we can compute (a) E(∆Lt+1)2 =

O(n−2) + 4E(δ2
β,n,t)E(x2

t )E(ε2
t+1) and (b) cov(∆Lt+1,n,∆t+2,n) = O(n−1) +

4E(δβ,n,tδβ,n,t+1)E(xtxt+1εt+1εt+2) = O(n−1)+4E(δβ,n,tδβ,n,t+1)ρxE(x2
t )ρεE(ε2

t+1). Now
(a) and (b), together with E∆Lt+1 = O(n−1), imply that corr(∆Lt+1,∆Lt+2) =

ρxρεcorr(δβ,n,t, δβ,n,t+1) + o(1). Since corr(δβ,n,t, δβ,n,t+1)→ 1, we have

corr(∆Lt+1,∆Lt+2)→ ρxρε.

This observation yields a simple monitoring rule: if ρxρε > 0, then choose the big
model at time t when ∆Lt > 0; if ρxρε < 0, then choose the big model at time t when
∆Lt < 0.21

5 Results in the Absence of Estimation Error

The analysis in the previous two sections is complicated by the presence of estima-
tion error in the models used to generate forecasts. To gain intuition and simplify
the analysis, this section considers the case without estimation error. In addition,
we consider the case with a highly persistent (near unit root) predictor and go on to
discuss the choice of monitoring instruments and possible sources of gains from moni-
toring forecasting performance which become particularly transparent in the absence
of estimation error.

20To see this, we provide an intuitive argument in the spirit of Bernstein’s block technique. Con-
sider δβ,n,t−kn for some kn →∞ but kn/n→ 0. Since the data used to compute δβ,n,t, δβ,n,t+1 and
δβ,n,t−kn mostly overlap (kn/n = o(1)); they all contain {(xs, ys+1) | t − n + 2 ≤ s ≤ t − kn − 1}.
Thus, δβ,n,t = (1 + oP (1))δβ,n,t−kn and δβ,n,t+1 = (1 + oP (1))δβ,n,t−kn . On the other hand, due to
the weak dependence, δβ,n,t−kn and (xt, xt+1, εt+1, εt+2) are asymptotically independent as kn →∞.
See Bradley (2007) for formal arguments.

21To determine the size of the correlation, one can simply observe that 2δβ,n,txtεt+1 is the leading
term in (19) and estimate the autocorrelation of xtε̂t+1, where ε̂t+1 is the regression residual from
the big model.
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5.1 Non-nested case

In the absence of estimation error, equation (11) simplifies to

∆Lt+1 = (β2x2,t + εt+1)2 − (β1x1,t + εt+1)2

=
(
β2

2x
2
2,t − β2

1x
2
1,t

)
+ 2 (β2x2,t − β1x1,t) εt+1. (20)

Thus, to forecast ∆Lt+1, an instrument must be able to predict x2
1,t, x2

2,t, x1,tεt+1 or
x2,tεt+1.

Defining Wt = E[∆Lt+1|zt], it suffices to bound E [Wt1{Wt > 0}] and
E [Wt1{Wt ≤ 0}]. In the absence of estimation error, E [Wt] = β2

2Ex2
2,t − β2

1Ex2
1,t

and
|Wt| ≥ 2 |E [(β2x2,t − β1x1,t) εt+1 | zt]| −

∣∣E[(β2
2x

2
2,t − β2

1x
2
1,t) | zt]

∣∣ . (21)

Using that Wt1{Wt > 0} = (Wt + |Wt|)/2, we have22

E [Wt1{Wt > 0}]

≥
2E |E [(β2x2,t − β1x1,t) εt+1 | zt]| − E

∣∣E[(β2
2x

2
2,t − β2

1x
2
1,t) | zt]

∣∣+ β2
2Ex2

2,t − β2
1Ex2

1,t

2

≥ E |E [(β2x2,t − β1x1,t) εt+1 | zt]|+ min
{

0, β2
2Ex2

2,t − β2
1Ex2

1,t

}
,

Since E [Wt1{Wt > 0}] ≥ 0, we get the following bound on the amount by which the
switching rule is expected to outperform model 1:

E [Wt1{Wt > 0}] ≥ max

{
0,E |E [(β2x2,t − β1x1,t) εt+1 | zt]|+min

{
0, β2

2Ex2
2,t − β2

1Ex2
1,t

}}
.

Similar arguments apply in deriving a bound for the switching rule versus model
2. Notice that −Wt1{Wt ≤ 0} = (|Wt| −Wt)/2, so (21) implies that

− E [Wt1{Wt ≤ 0}]

≥
2E |E [(β2x2,t − β1x1,t) εt+1 | zt]| − E

∣∣E[(β2
2x

2
2,t − β2

1x
2
1,t) | zt]

∣∣− (β2
2Ex2

2,t − β2
1Ex2

1,t

)
2

≥ E |E [(β2x2,t − β1x1,t) εt+1 | zt]|+ min
{

0, β2
1Ex2

1,t − β2
2Ex2

2,t

}
.

22The last inequality follows from E|X| ≥ |EX| = max{EX,−EX} with X = E[(β2
2x

2
2,t−β2

1x
2
1,t) |

zt].
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We summarize these results in the following proposition.

Proposition 6. Assuming that all expectations exist, in the absence of estimation
error the following bounds on the squared error loss apply to the case with non-nested
models and a data generating process (9):

(i) E [∆Lt+11{E[∆Lt+1|zt] > 0}] ≥ max

{
0,E |E [(β2x2,t − β1x1,t) εt+1 | zt]| +

min
{

0, β2
2Ex2

2,t − β2
1Ex2

1,t

}}
.

(ii) E [−∆Lt+11{E[∆Lt+1|zt] ≤ 0}] ≥ max

{
0,E |E [(β2x2,t − β1x1,t) εt+1 | zt]| +

min
{

0, β2
1Ex2

1,t − β2
2Ex2

2,t

}}
.

Proposition 6 says that if β2
2Ex2

2,t − β2
1Ex2

1,t is small and the instrument is infor-
mative for (β2x2,t − β1x1,t) εt+1, then positive lower bounds can be established on the
expected squared error performance of the switching rule relative to models 1 and 2.

5.2 Nested case

In the absence of estimation error, for the simple case in (18) the loss differential is
given by

∆Lt+1 = (yt+1 − 0)2 − (yt+1 − βxt)2 = β2x2
t + 2βxtεt+1. (22)

Since E [∆Lt+1] = E [β2x2
t ], it is better in expectation to always use the big model

than always using the small model. This is intuitive given the assumption that we
know the true value of β and any signal (xt) will make the big model outperform the
small model. However, even in this ideal case, it is still possible that the switching
rule can beat both the big and the small models. The reason is that the big model
beats the small model only on average and fluctuation in the term 2βxtεt+1 makes
it possible for the small model to sometimes generate forecast with lower expected
loss conditional on information in the monitoring instruments. For example, a large
negative value of βxtεt+1 is associated with underperformance for the big model and
if some variable can predict when βxtεt+1 is likely to be negative, then this variable
can be used as a monitoring instrument in the switching rule.

To see by how much the switching rule is expected to outperform the small model,
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note that

E [∆Lt+11 {E(∆Lt+1 | zt)}]

= E [Wt1{Wt > 0}]

=
E [Wt1{Wt > 0}+Wt1{Wt ≤ 0}] + E [Wt1{Wt > 0} −Wt1{Wt ≤ 0}]

2

=
EWt + E|Wt|

2

≥ E
∣∣∣∣|β| · |E(xtεt+1 | zt)| −

1

2
β2E(x2

t | zt)
∣∣∣∣+

1

2
β2Ex2

t

≥ max
{
|β| · E |E(xtεt+1 | zt)| , β2Ex2

t − |β| · E |E(xtεt+1 | zt)|
}
, (23)

where the first inequality follows from EWt = β2Ex2
t and |Wt| ≥ 2|β| · |E(xtεt+1 |

zt)| − β2E(x2
t | zt).

Since E[∆Lt+1] = β2Ex2
t , equation (23) also tells us by how much the switching

rule is expected to outperform the big model. In the absence of estimation error, the
switching rule cannot underperform the big model, and so

E [−∆Lt+11 {E(∆Lt+1 | zt) ≤ 0}] ≥ max
{
|β| · E |E(xtεt+1 | zt)| − β2Ex2

t , 0
}
. (24)

We summarize these computations in the following result:

Proposition 7. Assuming that all expectations exist, in the absence of estimation
error the following bounds hold under squared error loss for the nested case
(i) E [∆Lt+11 {E(∆Lt+1 | zt) > 0}] ≥ max {|β| · E |E(xtεt+1 | zt)| , β2Ex2

t − |β| · E |E(xtεt+1 | zt)|}.
(ii) E [−∆Lt+11 {E(∆Lt+1 | zt) ≤ 0}] ≥ max {|β| · E |E(xtεt+1 | zt)| − β2Ex2

t , 0} .

Part (i) of Proposition 7 establishes a lower bound on the amount by which the
switching rule is expected to outperform the small forecasting model. The switch-
ing rule is expected to perform better than the small model in cases where |β| and
E |E(xtεt+1 | zt)| are large because an option for the switching rule is to always choose
the big model. Hence, if the big model is much better than the small model (large
|β| or large β2Ex2

t ), we should expect the switching rule to dominate the small fore-
casting model by always choosing the big model. If, in addition, E |E(xtεt+1 | zt)| is
large, then zt provides an accurate signal on when to use either the small or the large
model and so we would expect the switching rule to dominate the small model.
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Part (ii) of Proposition 7 shows that large values of both |β| and E |E(xtεt+1 | zt)|
allow the switching rule to beat the big forecasting model by a bigger margin provided
that |β| · E |E(xtεt+1 | zt)| does not get dominated by β2Ex2

t . For example, if |β| is
close to zero, the small and large forecasting models generate very similar forecasts
and there is not much scope for switching between the two models. Similarly, if
E |E(xtεt+1 | zt)| is small, then zt does not provide accurate information on when the
small model might outperform the big model and so always choosing the big model
becomes the preferred choice.

5.3 Persistent Regressors

In many empirical applications, the predictor variables are highly persistent. Cases
with highly persistent predictor variables can be captured by using a local-to-unity
framework for the predictor, i.e., by modeling xt as an AR(1) process with an autore-
gressive parameter that is close to unity. The effect of estimation error for this case
is quite complicated, so we abstract from estimation error and focus on the case with
nested models.

We collect the assumptions required for the case with a persistent regressor in
Assumption 6.

Assumption 6. The following conditions hold for the nested case with a highly per-
sistent predictor
(i) The predictor xt is generated by an AR(1) process

xt = φxt−1 + ut,

where {ut}Tt=1 is an independent sequence with Eut = 0.
(ii) the array {(ut, εt, z1t)}nt=1 is strong mixing with mixing coefficient αmix(·).
(iii) φ = exp(−cφ/T ) for some cφ > 0.
(iv) β = cβT

−αx for αx > 0.
(v) C1 ≤ E|ut|2+C0 ≤ C2 for some constants C1, C2 > 0.

In the absence of estimation error, using Assumption 6 we can show the following
result:
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Proposition 8. Consider the data generating process

yt+1 = xtβ + εt+1

Suppose that Assumption 6 holds. Then

(1) there exist constants M1,M2 > 0 such that M1T
1−2αx ≤ E∆Lt+1 ≤M2T

1−2αx.

(2) there exist constants M3, ...,M6 > 0 such that

P (E(∆Lt+1 | z1t) ≤ 0)

≤ T−1 min
1≤G≤t

(
M3G+M4

√
G(t−G) +M5[α(G)]C0/(C0+2)(t−G)

)
+M6T

αx−1

t−1∑
i=0

[αmix(i)]
(C0+1)/(C0+2) .

(3) there exist constants M7,M8 > 0 such that∣∣∣∣E∆Lt+11{E(∆Lt+1 | z1t) > 0}
E∆Lt+1

− 1

∣∣∣∣
≤ T−1M7 min

1≤G≤t

(
M3G+M4

√
G(t−G) +M5[α(G)]C0/(C0+2)(t−G)

)
+M8T

αx−1

t−1∑
i=0

[αmix(i)]
(C0+1)/(C0+2) .

The first part of Proposition 8 shows that the big model that uses the near-
unit root predictor is expected to outperform the smaller model that excludes this
predictor and establishes bounds on the expected squared error gains from using the
big model. Note that whenever αx < 1/2, the expected gain from using the big model
grows without bounds as the sample size gets big.

To better understand the last two claims in Proposition 8, consider the simple
case with αmix(i) ≤ τ i ∀i ≥ 1 for some constant τ ∈ (0, 1). Then

min
1≤G≤t

(
M3G+M4

√
G(t−G) +M5[α(G)]C0/(C0+2)(t−G)

)
≤ K1

√
log T

and
∑t−1

i=0 [αmix(i)]
(C0+1)/(C0+2) ≤ K2, where K1, K2 > 0 are constants. Therefore, in

this case, P(E(∆Lt+1 | z1t) ≤ 0) and
∣∣∣E∆Lt+11{E(∆Lt+1|z1t)>0}

E∆Lt+1
− 1
∣∣∣ are at most of order
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O(T−1
√

log T + Tαx−1).
Hence, if αx < 1, part (2) of Proposition 8 states that the probability of switching

between the big and the small model goes to zero as the big model that accounts for
the effect of the persistent regressor is expected to outperform the smaller (nested)
model. Under the same conditions, Part (3) of Proposition 8 establishes that the
relative performance of the switching rule and the big model is the same. This is
unsurprising since, by part (2), there is not expected to be any switching between the
big and the small models.

5.4 Choice of Monitoring Instruments

Our analysis is suggestive of which monitoring instruments to use in the switching
rule. For example, suppose that E(εt+1 | x1,t, x2,t) = 0. Using the squared forecasts
z1t = (ŷ2

1,t+1, ŷ
2
2,t+1)′ as test instruments, we have E(∆Lt+1 | z1t) = β2

2x
2
2,t − β2

1x
2
1,t =

ŷ2
2,t+1 − ŷ2

1,t+1 and so we can regress ∆Lt+1 on ŷ2
1,t+1 and ŷ2

2,t+1 to obtain E(∆Lt+1 |
z1t).23

Alternatively, for regressors whose squared value is persistent, we can simply use
the lagged value of ∆Lt+1 as a monitoring instrument. This is an easy strategy since
such lags are always observed even if x1,t and x2,t are not observable to the forecast
evaluator, as in the case of survey forecasts. To see why this works, suppose that
one of the regressors is persistent in squares, e.g., x2,t = ρx2,t−1 +

√
1− ρ2ut, where

{x1,t}, {ut} and {εt+1} are mutually independent i.i.d sequences of standard normal
random variables.24 It is not hard to show that V ar(∆Lt+1) = 2(β4

1 +β4
2)+4(β2

1 +β2
2)

and cov[∆Lt+1,∆Lt] = 2ρ2β4
2 , so that, ignoring estimation error,

corr(∆Lt+1,∆Lt) =
ρ2β4

2

(β4
1 + β4

2) + 2(β2
1 + β2

2)
.

Because the correlation between ∆Lt+1 and ∆Lt is always nonnegative, a simple
switching rule is to choose model 1 if and only if this model outperformed model 2 in
the current period, i.e., if ∆Lt < 0.25

23Even if xj,t is not observable, we always observe ŷj,t+1|t, functions of which which can therefore
serve as z1t in the switching rule.

24This situation might arise if one or both of the x variables has ARCH-type heteroskedasticity
dynamics which introduces persistence in its squared value.

25In practice, we might need to take into account that E(∆Lt+1) 6= 0 and thus a regression-based
switching rule might be more appropriate.
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5.5 Sources of Gains from Monitoring

Gains from monitoring forecasting performance arise from the non-zero correlation
between xtεt+1 and z1t. It is worth briefly discussing how this non-zero correlation
might arise. We consider three possible sources, namely time-varying parameters,
model misspecification, and persistent estimation errors. Throughout the analysis we
focus on the simple nested case in which the small model forecasts zero while the
big model assumes a linear relation between yt+1 and xt, i.e., i.e., yt+1 = βxt + εt+1.
Moreover, again we ignore estimation error.

5.5.1 Time-varying Parameters

Using the nested setup with a small and a big forecasting model, consider the case
where the parameters of the data generating process are time-varying, i.e., yt+1 =

βtxt + εt+1 follows a stationary but time-varying process, while the big forecasting
model assumes constant parameters. In this case, the big model uses the “long-run
mean”, β̄ = t−1

∑t
τ=1 βτ , so that

∆Lt+1 = (yt+1 − 0)2 −
(
yt+1 − β̄xt

)2
= β̄(2βt − β̄)x2

t + 2β̄xtεt+1. (25)

Suppose that xt and z1t are independent. Then

E(∆Lt+1 | z1t) =
[
β̄2 + 2β̄E

(
(βt − β̄) | z1t

)]
Ex2

t . (26)

It is not hard to see that the switching rule based on z1t is expected to outperform both
the big and the small forecasting models as long as the following two events both have
positive probability: β̄2 + 2β̄E

(
(βt − β̄) | z1t

)
< 0 and β̄2 + 2β̄E

(
(βt − β̄) | z1t

)
> 0.

5.5.2 Misspecified Forecasting Model

Suppose the data generating process takes the form

yt+1 = f(xt) + εt+1, (27)

where f(xt) is a general (nonlinear) function of xt and we assume that E[xt] =

E[εt+1] = E[xtεt+1] = 0.
Under these assumptions, β = E[xtyt+1]/Ex2

t = E(xtf(xt))/Ex2
t and so the loss
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differential is given by

∆Lt+1 = (yt+1 − 0)2 − (yt+1 − βxt)2 = βxt(2f(xt)− βxt) + 2βxtεt+1. (28)

Again, it is easy to construct examples where the monitoring instrument z1t is
correlated with xt(2f(xt) − βxt) and so might be used to increase the predictive
accuracy of either of the underlying forecasting models.

As a concrete example of how this might work, suppose that xt, z1t, ξt+1 ∼ N(0, 1)

are independent normal random variables and the forecast error for the big model is
given by εt+1 = sign(xtz1t) |ξt+1| . Then we have E[xtz1t] = E[xtεt+1] = E[z1tεt+1] = 0

and the covariance matrix of (xt, z1t, εt+1) is the 3×3 identity matrix. From (22), the
expected loss differential is E[∆Lt+1] = β2. Although z1t is independent of (xt, εt+1),
z1t contains information on the mean of ∆Lt+1:

E (∆Lt+1|z1t) = β2 + 2βE (xtsign(xtz1t) |ξt+1| | z1t) =


β2 + 2βa if z1t > 0

β2 if z1t = 0

β2 − 2βa if z1t < 0

,

where a = E |xtξt+1| > 0. For this case the sign of z1t contains information about the
loss differential and thus can be used to monitor the models’ (relative) forecasting
performance. For example, if β2 − 2βa < 0 < β2 + 2βa, then one should use the big
model if and only if z1t > 0.

6 Simulation Results

This section presents results from a set of Monte Carlo simulations which illustrate
the theoretical analysis in sections 3 and 4. For the nested case we show the joint
effects of varying the strength of the predictor and the monitoring instrument on
the predictive performance of (i) a small forecasting model; (ii) a big forecasting
model; and (iii) a switching rule. We also consider alternative forecasting methods
based on augmenting the forecasting model with the monitoring instrument, a pre-
test for determining whether to include a predictor, and an equal-weighted forecast
combination.

For each point in time t ≥ m + n + 1, define the rolling window estimator for a
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model that includes xit as a predictor

β̂it =

[
t−1∑

s=t−n

xisxis

]−1 [ t−1∑
s=t−n

xisys+1

]
.

with resulting forecast ŷi,t+1|t = β̂i,txt. The squared error loss differential of models 1
versus 2 is given by

∆Lt+1 = (yt+1 − β̂1,tx1t)
2 − (yt+1 − β̂2,tx2t)

2. (29)

To evaluate the switching rule, for t ≥ m+n+1, define the estimates from regressing
∆Lt+1 on (1, z1t) :

(θ̂0,t, θ̂1,t)
′ =

[
t−1∑

s=t−m

(1, z1s)(1, z1s)
′

]−1 [ t−1∑
s=t−m

(1, z1s)
′∆Ls+1

]

and the associated conditional forecast of the loss differential

∆̂Lt+1|t = θ̂0,t + θ̂′1,tzt. (30)

Forecasts from the switching rule take the form

ŷSW,t+1|t = 1{∆̂Lt+1|t ≤ 0}β̂1,tx1t + 1{∆̂Lt+1|t > 0}β̂2,tx2t

For each simulated sample we compute the mean squared errors of the two fore-
casts and for the switching rule as MSEj = p−1

∑T−1
t=m+n+1(yt+1 − xjtβ̂j,t)

2, and
MSESW = p−1

∑T−1
t=m+n+1(yt+1 − ŷSW,t+1|t)

2, where T = n+m+ p.
To shed light on the power of the GW test for equal forecasting performance, for

each sample we compute ∆Lt+1 and ∆̂Lt+1 from (29) and (30), respectively. Statis-
tical significance of the loss differentials of forecasts j1and j2 is then evaluated using
the test statistics

J j1−j2T = p−1/2

T−1∑
t=m+n+1

∆Lj1−j2t+1

σ̂(
{

∆Lj1−j2t+1

}
)
, (31)

where σ̂(
{

∆Lj1−j2t+1

}
) is the Newey-West standard deviation of the loss differential
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between models j1 and j2.

6.1 Nested case

In the nested case, data are generated from a simple linear regression model

yt+1 = βxt + εt+1, (32)

where xt ∼ i.i.d.U(−1, 1). The residual εt+1 is generated as follows. Let st+1 ∈ {0, 1}
be a binary random variable such that P(st+1 = 1 | xt > 0) = µ+ δ and P(st+1 = 1 |
xt ≤ 0) = µ− δ, where µ = 1/2. Define

εt+1 = st+1Q1,t + (1− st+1)Q2,t, (33)

where Q1,t and Q2,t are N(0, 1) random variables that are mutually independent and
independent of st+1 and xt. To control the correlation between the residual in (32)
and the monitoring instrument, z1t, we generate the latter as

z1t = a1Q1,t + a2Q2,t, (34)

where a1 = 1 and a2 = −1. It is now easy to see that Extεt+1 = Ez1tεt+1 = Eεt+1 =

Ez1t = Ext = 0 and

Corr(xtεt+1, z1t) =

√
3

2
δ.

Our simulations set β = 3n−αx and we choose δ such that Corr(xtεt+1, z1t) =

0.6n−αz . We report the outcome of 5,000 simulations based on a sample size
(n,m, p) = (100, 100, 200), so that T = 400.

Table 1 presents results from the simulations. In each panel we show the propor-
tion of simulations for which the null of equal predictive accuracy is rejected against
a one-sided alternative, using the JT test in (31) and a 5% size. The higher the value
of P(J1−2

T > 1.64), the stronger the evidence that forecasts from model 1 generate
larger out-of-sample MSE values than forecasts from model 2.

First consider the performance of the big versus the small forecasting model (top
row) in Panel A. When αx ≤ 0.25, the big model produces far more accurate forecasts
than the small model–as indicated by rejection rates exceeding 99% for a test that
the MSE of the small model exceeds that of the big model. As αx rises to 0.5, the
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rejection rate declines to around 10%, and the forecasting performances of the big
and small models become increasingly similar. In fact, for αx = 0.75 and αx = 1,
the small model produces lower MSE values than the big model, consistent with our
theoretical analysis (Proposition 4).

Turning to the comparison of the switching rule and the small forecasting model
(Panel B), we see that the switching rule strongly dominates the small model (with
rejection rates above 85%) if either (i) the predictor is strong, i.e., αx ≤ 0.25, or the
monitoring instrument is strong (αz ≤ 0.1) and the predictor is not weaker than local-
to-zero (αx < 0.5). In the first case, the accuracy of the monitoring instrument does
not matter because one option is to always select the big model which, on average,
performs better than the small model provided that αx is small, ensuring that the
predictor is informative. The better average performance of the big model relative to
the small model is picked up by the intercept θ0 in the switching rule and so holds
independently of the value of θ1. In the second case, a precise monitoring instrument
allows for accurate determination of when the small or the big forecasting model is
likely to be best–even in situations with a less accurate forecasting signal. As both
αx and αz rise beyond these values, the predictive accuracy of the switching rule,
measured relative to the small model, deteriorates, consistent with what we would
expect from the theoretical analysis (Proposition 5).

Measured relative to the big model, Panel C of Table 1 shows that the predictive
accuracy of the switching rule is, in contrast, very poor when the predictive instrument
(xt) is quite accurate, i.e., when αx is small. However, as αx rises above 0.5, we
start to see that the switching rule increasingly dominates the big forecasting model.
Interestingly, even when αx is small and so the predictor is accurate, the switching rule
can produce more accurate forecasts than the big model provided that the monitoring
instrument is very accurate, i.e., αz ≤ 0.2.

Table 2 reports the performance of the switching rule measured relative to three
alternative, widely used, forecasting methods. Panel A shows that the switching rule
dominates an equal-weighted average of the two forecasting models if either (i) the
big model is very good (i.e., αx is small), regardless of the accuracy of the monitoring
instrument; or (ii) if the monitoring instrument is very accurate (small αz), regardless
of the precision of the predictor. The switching rule only loses out to the equal-
weighted forecast combination if both the monitoring instrument and the predictor
are poor, i.e., if αx and αz are both large. Panel B compares the performance of the
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switching rule to that of a pre-test approach that includes x in the forecasting model
only if its slope coefficient is statistically significant using a t-test. We find that the
switching rule performs best provided that the predictor is not too accurate and the
monitoring instrument is fairly accurate (small αz). Panel C shows that the switching
rule is particularly likely to generate more accurate forecasts than those from an
augmented model that includes the monitoring instrument, z1t, as a predictor in the
big forecasting model provided that the monitoring instrument is accurate (αz is low)
and the predictor variable is not too strong. Note the non-monotonic pattern in the
rejection rates which first increase, then decline as a function of αx (for small αz) or
conversely first decline, then rise (for large αz) when we measure the performance of
the switching rule relative to the pre-test or augmentation methods.

6.2 Non-nested case

For the non-nested case, let {(x1,t, z1t,1, s1,t, ε1,t+1)}Tt=1 and {(x2,t, z1t,2, s2,t, ε2,t+1)}Tt=1

be independent copies of the process {(xt, z1t, st, εt+1)}Tt=1 in (32) - (34) such that in
generating {(xj,t, z1t,j, sj,t, εj,t+1)}Tt=1, we use δj =

√
2/3 × 0.6n−αz,j for j ∈ {1, 2}.

Then we set z1t = (z1t,1 + z1t,2)/2, εt+1 = (ε1,t+1 + ε2,t+1)/2 and βj = 3n−αx,j in

yt+1 = β1x1,t + β2x2,t + εt+1. (35)

Table 3 shows the outcome of three comparisons of predictive accuracy for model 1
versus model 2, model 1 against the switching rule, and model 2 versus the switching
rule. We let αx,1 and αx,2 take values of {0, 0.25, 0.5, 1}. The four panels in the table
correspond to different combinations of the accuracy of the monitoring instrument for
models 1 and 2, with {αz,1, αz,2} = {0, 0} (panel A), {αz,1, αz,2} = {0, 1} (panel B),
{αz,1, αz,2} = {0.5, 0.5} (panel C), and {αz,1, αz,2} = {1, 1} (panel D). When αz,1 = 0,
we find that the first model produces significantly more accurate forecasts than the
second model (rejection rates near zero) provided that αx,2 is larger than αx,1, so
that the predictor for model 1 is more accurate than that for model 2, and x1,t is
a reasonably strong predictor (αx,1 ≤ 0.25). Conversely, by symmetry, the second
model produces significantly more accurate forecasts than the first model (rejection
rates near one) when αx,2 ≤ 0.25 and αx,2 is smaller than αx,1, so that the predictor
for model 2 is quite strong and more accurate than that used by the first model.

Next consider the performance of the switching rule relative to the individual
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forecasts when both monitoring instruments are strong (αz,1 = αz,2 = 0 in panel A).
The switching approach generates better forecasts than model 1 when αx,1 ≥ 0.5 so
that this model uses a fairly weak predictor and switching away from this is beneficial.
Interestingly, this holds even when αx,1 is quite large, so that the predictor used by
the second forecasting model is quite poor. The switching rule performs distinctly
worse relative to always using model 1 if αx,1 is very small, while αx,2 is high, so that
there is little reason for switching away from model 1 and towards model 2. The
opposite pattern holds when we compare the performance of the switching rule to
that of model 2. Relative to model 2, the switching rule generates more accurate
forecasts for small values of αx,1 and big values of αx,2 while it underperforms for the
reverse scenario. Results only change marginally when we use a weaker instrument for
model 2, i.e., when αz,2 = 1 (Panel B). Interestingly, when both predictor variables
are local-to-zero, i.e., αx,1 = αx,2 = 1/2, there is more than a 25% chance that the
switching rule produces more accurate than both model 1 and model 2.

Panels A and B assume that at least one monitoring instrument (αz,1) is highly
accurate. In Panels C and D, we instead let both instruments be relatively poor.
The absence of accurate monitoring instruments means that the probability that the
switching rule outperforms both of the underlying forecasting models deteriorates
significantly. In particular, the probabilities that the switching rule will perform
better than the underlying models when the signals are neither very weak nor very
strong, i.e., αx,i is at 0.25 or 0.50, are now much reduced compared to the case where
at least one of the monitoring instruments is strong.

7 Empirical Analysis

We next provide empirical illustrations of how monitoring instruments can be used,
first, to understand time variation and state dependencies in the performance of pre-
diction models and, second, to evaluate the performance of the switching rule. We
present two empirical applications. Our first application is to inflation forecasting.
To illustrate the non-nested case, we compare the Federal Reserve’s Greenbook fore-
casts to forecasts from the Survey of Professional forecasters. For the nested case, we
also compare the accuracy of a simple backward-looking Phillips curve model to that
of an autoregressive specification. This example displays stronger evidence of pre-
dictability and is interesting given the strong evidence of parameter instability found
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for inflation forecasting models; see, e.g., Stock and Watson (2003). Second, we study
predictability of U.S. monthly stock market returns–a case with weak predictability
and large estimation errors.

7.1 Inflation Forecasts

Our first empirical application looks at the predictability of U.S. inflation. Inflation
forecasting has generated a lot of interest in the economics literature despite appearing
to have become more difficult over time (Stock and Watson (2007)). We perform
our analysis in two stages. First, we compare forecasts from the Federal Reserve
Greenbook to forecasts from the Survey of Professional Forecasters (SPF)-the data
underlying the plots in Figure 1. Second, we compute recursively generated forecasts
from a backward-looking Phillips curve and compare them to forecasts from a simple
autoregressive model.

7.1.1 Greenbook versus SPF Forecasts

Our first application compares the predictive accuracy of the Federal Reserve’s quar-
terly Greenbook forecasts of the GDP price deflator to the mean forecast of the same
variable from the SPF using forecast horizons ranging from one through four quarters
over the sample period 1968Q4-2010Q4.26 It is highly unlikely that the two sets of
forecasts use the exact same predictor variables, so this application represents the
non-nested case.

The first column in Table 4 shows t-statistics from a simple Diebold-Mariano
regression of the squared error loss associated with the Greenbook forecasts minus that
from the SPF on an intercept. Negative values suggest that the Greenbook forecasts,
on average, are more accurate than the SPF forecasts and this is indeed what we
find. The subsequent columns show Diebold-Mariano t-statistics from comparing the
MSE performance of the switching rule versus always using the Greenbook forecasts
(labeled GB-SW) or comparing the conditional selection rule versus always using the
SPF forecasts (labeled SPF-SW). In these comparisons, positive values indicate that
the conditional switching rule performs better than the individual forecasts. We use
four different test instruments, namely the unemployment gap (UG) proposed by

26Data on the forecasts are obtained from the Federal Reserve Bank of Philadelphia.
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Stock and Watson (2010),27 a measure of macroeconomic uncertainty proposed by
Jurado et al. (2015) (labeled U and constructed as the first principal component from
a variety of uncertainty measures), the lagged loss measured over the most recent four
quarters, ∆L̄t−3:t = (1/4)

∑4
τ=1 ∆Lt+1−τ , along with the squared difference ŷ2

1t − ŷ2
2t,

again averaged over the most recent four quarters, i.e., ∆ŷ2
t−3:t = (1/4)

∑3
τ=0(ŷ2

1t+1−τ−
ŷ2

2t+1−τ ) . We consider both a 10-year rolling estimation window for the switching
regression (m = 40, panels A and C) and a 15-year rolling estimation window (m = 60,
panels B and D) and report results that measure the actual inflation figure using either
the final revision to the GDP deflator (panels A and B) or real-time vintage estimates
(panels C and D).

Overall, the results show that it is easy to find monitoring instruments that allow
us to identify periods where the Greenbook forecasts outperform the SPF forecasts.
This is not surprising because we know that the Greenbook forecasts are better on
average than the SPF forecasts (column 1) and so a conditional selection rule that
always prefers the Greenbook forecasts should also produce good results. More in-
terestingly, it is also possible to find instruments for which the conditional switching
rule improves significantly on the Greenbook forecasts for at least some horizons.

As an illustration of how our approach can be used to monitor forecasting per-
formance at a higher frequency than the daily data, we regressed the quarterly series
of squared error differences (Greenbook minus SPF) on the term spread measured at
the end of the previous quarter.28 We use this monitoring instrument in part because
it is easy to construct on a daily basis. While the dependent variable (the squared
error loss difference) is only observed once a quarter, in this case the predictor, z1t,
is observed daily and so, using our estimates of θ, we can generate daily estimates
of the conditionally expected loss, ∆Lt+1. These estimates are plotted in Figure 3
over the sample period 2000-2012. We see that the expected loss difference fluctuates
substantially and reverses sign during the financial crisis. This suggests that whereas
the Greenbook forecasts were expected to be less accurate leading up to the financial

27This is measured as z1t = ugt = ut − min(ut, ..., ut−35), where ut is the unemployment rate
in month t so the gap is computed relative to the unemployment rate during the previous three
years. This variable rises during recessions and comes down during the early expansion phase of
most economic cycles and can be viewed as a “real time” alternative to the NBER recession indicator
which is only released with several months’ lag.

28The term spread is the difference in the yield of a long (10-year) Treasury bond and the yield on
a short (3-month) T-bill. The estimate of θ1 is statistically significant in the monitoring regression
which uses a forecast horizon of h = 2 quarters.
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crisis, they were expected to perform better than the SPF forecasts during the crisis.
This application shows that our method for monitoring forecasting performance

can be beneficial for decision makers such as central banks in “benchmarking” their
forecasts against forecasts from other sources to see if there is evidence in real time
that the accuracy of their forecasts is lagging behind competing forecasts. While it
may not be feasible for such decision makers to adopt another agency’s forecasts,
evidence of inferior performance would suggest the need to improve on their own
forecasting methods.

7.1.2 Forecasts from a Backward looking Phillips Curve Model

Our second inflation example compares the forecasting performance of a backward-
looking Phillips curve to that of a nested autoregressive model. First, define the
annualized quarterly inflation rate as πt = 400×log(Pt/Pt−1), where Pt is the quarterly
price index for the U.S. GDP deflator. Because the quarterly inflation rate is highly
persistent, we model the change in the inflation rate, ∆πt. The small model is assumed
to be an AR(4) specification:

∆πt+1 = β0 +
4∑
i=1

βi∆πt+1−i + ε1t+1. (36)

Autoregressive models such as (36) have proven difficult to outperform in many fore-
cast comparisons. The big forecasting model (B) adds the lagged unemployment rate,
ut, to (36) to obtain a backward-looking Phillips curve model of the form

∆πt+1 = β0 +
4∑
i=1

βi∆πt+1−i + γ1ut + ε2t+1, (37)

As our monitoring instrument, z1t, we use the first principal component (PCt) ex-
tracted from a large cross-section of more than 100 macroeconomic variables, using
the data set provided by Jurado et al. (2015).

Our sample runs from 1950Q1 to 2011Q4 and we use an estimation window of
50 quarterly observations. The monitoring window used to implement the switching
rule is also set at 50 quarterly observations (n = m = 50). Accounting for lags in the
model, this leaves 103 observations over the period 1986Q2-2011Q4 for out-of-sample
forecast evaluation.
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The upper panel in Figure 4 compares out-of-sample forecasts of ∆Lt+1 = e2
S,t+1−

e2
B,t+1, generated by regressing ∆Lt+1 on a constant and z1t = PCt, to the realized
values of ∆Lt+1. For most of the sample, the expected loss ∆̂Lt+1|t hovers around zero
with frequent shifts in which model is expected to perform best. Even so, the baseline
AR(4) model is expected to produce the most accurate forecasts for long stretches
of time during the intervals 1988-1997, 2006-2008 and 2010-2011. The periods where
the backward-looking Phillips curve (37) is expected to perform best are typically
shorter-lived with exception of the earliest part of the sample 1986-1987.

The lower panel in Figure 4 shows the cumulative differences in MSE values for
four different model comparisons. Gray areas show periods where the small model
is expected to generate a smaller loss than the big model. The blue line tracks
the performance of the big model (37) against the small model (36). Adding the
unemployment rate to the AR specification does not change the precision of the
forecasts by much until the second half of 2009 at which point it leads this model
to greatly underperform the smaller model. This is related to the extreme value of
the realized inflation rate in the fall of 2009 and causes the big model to marginally
underperform the small model with a test statistic JS−BT = −0.08 for the full sample.

Comparing an augmented model that adds z1t as an additional predictor to the
small model in (36),

∆πt+1 = β0 +
4∑
i=1

βi∆πt+1−i + γ1ut + γ2PCt + εt+1, (38)

the augmented model (38) performs worse than the big model (37) although the
difference (t-statistic of 0.92) is not statistically significant.

The conditional switching rule that chooses the forecasting model based on the ex-
pected value of the forecast differential ∆Lt+1 produces more accurate forecasts than
using either of these models. The red line shows that the conditional switching rule
produces better forecasts than the autoregressive model for much of the sample up
to the fall of 2009 where, again, this approach gets on the wrong side of the extreme
value of the inflation rate and so underperforms the small model. On average, across
the full out-of-sample period, the conditional switching rule performs marginally bet-
ter than the small model. Compared to the big forecasting model (black line), the
switching rule outperforms most of the time. Moreover, the difference in MSE value
is statistically significant with a t-statistic of 2.15.
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We conclude the following from these results. First, always using the unemploy-
ment rate to predict inflation as is done by the big model (37) does not lead to
improved forecasts. However, it seems that there are states where this variable adds
predictive ability to a simple autoregressive model of inflation, the fall of 2009 ex-
cluded, and these states can be predicted by means of a variable that summarizes
aggregate economic information. Second, consistent with our earlier theoretical anal-
ysis, using the monitoring instrument z1t to switch between the small and big models
leads to significantly better forecasting performance than simply using this instrument
as a predictor variable in the conventional way as is done in equation (38).

7.2 Predictability of US Stock Market Returns

Our second application considers predictability of U.S. stock market returns. Specif-
ically, our dependent variable is the monthly excess return on the S&P500 index,
measured net of a short T-bill rate. Welch and Goyal (2008) analyze a large set
of univariate prediction models and find that none of these is capable of generating
smaller out-of-sample MSE values than a simple prevailing mean (constant equity
premium) model. We follow their analysis in using the prevailing mean model as our
benchmark (small model):

yt+1 = µ+ εSt+1. (39)

This is compared to a univariate prediction model that uses the lagged value of the
one-month T-bill rate as a predictor and thus takes the form

yt+1 = µ+ βxt + εBt+1. (40)

In addition, following Rapach et al. (2010), we consider a simple equal-weighted fore-
cast combination scheme that combines forecasts from 14 univariate models. This is
shown by Rapach et al. (2010) to produce more accurate forecasts than the individual
univariate forecasting models whose performances are strongly affected by estimation
error.29 Forecasts from the equal weighted (EW) combination are computed as

ỹt+1|t =
1

14

14∑
i=1

ŷi,t+1|t, (41)

29Such combined forecasts also perform far better than forecasts from a multivariate “kitchen sink”
regression that includes all 14 predictor variables.
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where ŷi,t+1|t = µ̂i + β̂ixi,t is the forecast from the ith univariate return prediction
model.

All data are obtained from Goyal’s web site and cover the sample 1927-2013. We
use a 20-year rolling window to estimate the parameters of the underlying forecasting
models (n = 240) and also use 20 years of out-of-sample forecasts to conduct switching
rule regressions (m = 240) and compute the expected loss differential in (6). Our
analysis of the small and big models’ out-of-sample forecasting performance thus
runs from 1967 through 2013, a total of 47 years or 564 monthly observations. As
monitoring instruments, we use a list similar to those used in the analysis of the
inflation data

7.2.1 Empirical Findings

Table 5 reports the outcome of different tests of H0 : E[∆Lt+1|Zt] = 0 versus the
alternative H1 : E[∆Lt+1|Zt] 6= 0 under squared error (MSE) loss. Panel A shows
results for the equal-weighted forecast combination, while the subsequent panels show
results from the univariate forecasting model that uses one of our three predictor
variables. In each panel, the top row reports results for Zt = 1 corresponding to
a test of equal unconditional expected forecasting performance, i.e., a conventional
Diebold and Mariano (1995) test of H0 : E[∆Lt+1] = 0. .

The subsequent rows present estimates from a linear regression of the loss dif-
ferential on an intercept and the monitoring instrument, ∆Lt+1 = θ0 + θ1z1t + ut+1.
The first two columns show t-statistics for the estimates of the associated regression
coefficients, θ0, θ1 followed by 100 × R2 of this regression in the third column. The
R2 value shows how much of the difference in the big and small models’ squared
forecast errors can be predicted by the various monitoring instruments. The fourth
column, labeled GW , shows the p-value of the Giacomini-White test (7) based on this
regression. Low p-values indicate rejection of the null of equal conditional forecasting
performance and thus suggest that differences in the performance of the big versus
small forecasting models can be tracked by means of information in Zt.

First consider the results for the forecast combination (Panel A). With a t-statistic
of 1.82, there is some evidence that the forecast combination produces a lower MSE
“on average” than the benchmark prevailing mean model. Turning to the conditional
performance estimates, the GW test rejects the null of equal predictive performance
for three of four instruments at the 5% critical level or better. Some of this is driven
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by the significance of the intercept, i.e., the better average performance of the forecast
combination compared to the performance of the benchmark, prevailing mean model.
However, the lagged value of the squared forecast differential is significantly negatively
correlated with the future loss differential, 4Lt+1.

Turning to the results for the univariate forecasts, we find that the T-bill rate
model’s average MSE forecasting performance is actually worse than that of the pre-
vailing mean, as indicated by the negative estimate of θ0 in the first row of Panel B.
Interestingly, when used as monitoring instruments, both the unemployment gap and
the squared forecast difference are capable of identifying time variation in the loss
differential 4Lt+1 of the prevailing mean model relative to the T-bill model, resulting
in a rejection of the GW test of equal predictive accuracy at the 5% level for the
former instrument.

Figure 5 provides further details of this result using the prevailing mean model as
the small model and comparing its performance to a model that adds the T-bill rate
(big model) and uses the unemployment gap variable as a monitoring instrument.
The lines in the figure show the cumulative sum of squared forecast error differentials
for the small minus the big model (blue line), the small model minus the switching
rule (red), the big model minus the switching rule (black) and the “biggest” model
augmented with the monitoring instrument (the unemployment gap) versus the small
model (purple). When any of these graphs is rising and positive, the first model
underperforms (produces higher squared errors) the second model and vice versa.30

From these graphs it follows that the big model produces large gains in predictive
accuracy (measured relative to the small model) between 1968 and 1975 only to
see these gains disappear between 1975 and 1981 and, again, after 2009. Overall,
measured across the full sample, adding the T-bill rate to the constant expected
return model does not lead to lower cumulative squared error values. In contrast, the
switching rule produces more accurate forecasts than both the small (red line) and
big (black line) prediction models. Relative to the big model that always includes
the T-bill rate as a predictor, the switching rule avoids the very large deterioration in
forecasting performance observed in 1975-1976 and after 2009. Notably, the switching
rule takes advantage of the T-bill rate model’s good performance in the early seventies

30During periods (marked in gray) where the small model is expected to generate more accurate
forecasts than the big model, the switching rule chooses the former and so the cumulative loss
differential line for the switching rule relative to the small model becomes flat.
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and, again, during the early part of the global financial crisis. Notice, finally, that
the biggest model that adds the monitoring instrument (here the unemployment gap)
as a predictor underperforms the small model and falls far short of the performance
of the switching approach that uses the same information to choose between the big
and the small models.

8 Conclusion

We construct finite-sample bounds on the expected mean squared error performance
of different forecasting models which account for parameter estimation error and hold
both on average (unconditionally) or conditional on a set of monitoring instruments.
Our analysis covers both the case with nested and non-nested forecasting models.
We show that the possibility of establishing gains from monitoring the loss differ-
ence between competing forecasting models and selecting at each point in time the
model with the smallest expected loss requires conditions on the accuracy of both the
predictors used by the underlying forecasting models as well as the strength of the
monitoring instruments.

Through Monte Carlo simulations we demonstrate that there is indeed scope for
the presence of monitoring instruments to help improve forecasting performance. For
a switching rule to work, at least one of the models must use predictors that are not too
weak. None of the underlying forecasting models can be too dominant as, otherwise,
there is little space for improvements by alternating between the two forecasting
models. Cases with forecasting models that have broadly similar predictive accuracy
are frequently encountered in empirical studies and so this situation seems to match
commonly found situations.

Our empirical applications to inflation forecasting and predictability of stock mar-
ket returns demonstrate that it is not difficult to find examples of monitoring instru-
ments that do not have predictive power if added directly to a forecasting model but
that the monitoring instruments nevertheless can add value by containing information
on when a particular forecasting model is likely to perform best conditional on such
information.
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Appendix

This appendix provides proofs of the theoretical results in the paper. The appendix
is structured as follows. Appendix A provides technical tools used in the proofs while
the theoretical results in the main text are proved in Appendix B.

First, some comments on notation. Throughout the appendix, the constants do
not depend on T , n or t. For a vector x = (x1, · · · , xp)′ ∈ Rp, ‖x‖r = (

∑p
i=1 |xi|r)1/r.

For a random variable or vector X, let ‖X‖Lr(P) = (E‖X‖rr)1/r. For two sequences
aT , bT > 0, we say that aT � bT if aT = O(bT ) and bT = O(aT ). For any real number
x ≥ 0, we define bxc to be the largest integer no larger than x.

A Technical results used in the proofs

Lemma 1. Let F and G be σ-algebras with strong mixing coefficient α. Let X ∈
F and Y ∈ G be random variables with EX = 0. Suppose that ‖X‖Lp(P) ≤ C1,
‖Y ‖Lq(P) ≤ C2 for some constants C1, C2 > 0 and p, q ∈ (1,∞] satisfying 1/p+ 1/q <

1. Then E |E(X|G)Y | ≤ 8α1−1/p−1/qC1C2.

Proof. Let Z = E(X | G). Define h to be the sign of Y Z, i.e., h = 1{Y Z >

0} − 1{Y Z < 0}. Therefore, Z, h ∈ G. We notice that

E|ZY | (i)
= E(ZY h) = E [E(X | G)Y h]

(ii)
= E(XY h)

(iii)

≤ 8α1−1/p−1/q‖X‖Lp(P)‖hY ‖Lq(P),

where (i) holds by |ZY | = ZY h, (ii) follows by Y, h ∈ G and the law of iterated
expectations and (iii) holds by EX = 0 and Davydov’s Theorem (Theorem 3.7 of
Bradley (2007)). By the above display and P(|h| ≤ 1) = 1, the desired result follows.

Lemma 2. Let X and Y satisfy that E|X|c1 ,E|Y |c2 ≤ D. Then E|XY |v ≤ D, where
v = c1c2/(c1 + c2).

Proof. Let p = c1/v and q = c2/v. Then p−1 +q−1 = 1. The result follows by Holder’s
inequality:

E|XY |v ≤ (E|X|vp)1/p (E|Y |vq)1/q = (E|X|c1)1/p (E|Y |c2)1/q ≤ D.
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Lemma 3. Let {Xi}ni=1 be independent random variables. Suppose that EXi = 0 and
max1≤i≤n E|Xi|p < K for some constants p > 2 and K <∞. Then ∀a, t > 0,

P

(∣∣∣∣∣
n∑
i=1

Xi1{|Xi| ≤ a}

∣∣∣∣∣ ≥ √nt+ na1−pK

)
≤ 2 exp

[
− t2

2 (a2−pK + atn−1/2 + n−1
∑n

i=1 EX2
i )

]
.

Proof. Let X̃i = Xi1{|Xi| ≤ a}, Zi = X̃i − EX̃i and B2
n =

∑n
i=1 EZ2

i . Thus, EZi = 0

and P(Zi ≤ 2a) = 1. It follows by Theorem 2.17 of Peña et al. (2008) that ∀z > 0

P

(
n∑
i=1

Zi ≥ z

)
≤ exp

(
− z2

2(B2
n + 2az)

)
.

Applying the same result to {−Zi}ni=1, we obtain

P

(
−

n∑
i=1

Zi ≥ z

)
≤ exp

(
− z2

2(B2
n + 2az)

)
.

The above two inequalities imply that

P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ ≥ z

)
≤ 2 exp

(
− z2

2(B2
n + 2az)

)
. (42)

We now bound EX̃i. Notice that

|EX̃i| = |E(Xi −Xi1{|Xi| > a})| (i)
= |EXi1{|Xi| > a}| ≤ E|Xi|1{|Xi| > a}

≤ E
∣∣∣∣ |Xi|p−1

ap−1
(|Xi|1{|Xi| > a})

∣∣∣∣ ≤ E|Xi|pa1−p,

where (i) holds by EXi = 0. Therefore,∣∣∣∣∣
n∑
i=1

EX̃i

∣∣∣∣∣ ≤
n∑
i=1

|EX̃i| ≤ nKa1−p. (43)

Moreover, ∀t > 0,

P

(∣∣∣∣∣
n∑
i=1

Xi1{|Xi| ≤ a}

∣∣∣∣∣ ≥ √nt+ na1−pK

)
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= P

(∣∣∣∣∣
(

n∑
i=1

Zi

)
+

(
n∑
i=1

EX̃i

)∣∣∣∣∣ ≥ √nt+ na1−pK

)

≤ P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

EX̃i

∣∣∣∣∣ ≥ √nt+ na1−pK

)
(i)

≤ P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ ≥ √nt
)

(ii)

≤ 2 exp

(
− nt2

2(B2
n + 2a

√
nt)

)
, (44)

where (i) follows by (43) and (ii) follows by (42) with z =
√
nt.

It remains to bound B2
n. Notice that

B2
n −

n∑
i=1

EX2
i =

n∑
i=1

[
EX̃2

i − EX2
i − (EX̃i)

2
]

=
n∑
i=1

[
EX2

i 1{|Xi| > a} − (EX̃i)
2
]

≤
n∑
i=1

EX2
i 1{|Xi| > a}

≤
n∑
i=1

E
[
|Xi|p−2

ap−2

(
X2
i 1{|Xi| > a}

)]
≤

n∑
i=1

E|Xi|pa2−p ≤ na2−pK.

The desired result follows from the above inequality and equation (44).

Lemma 4. Let {Yt}Tt=1 be random variables with β-mixing coefficient satisfying
β(i) ≤ τ1 exp(−τ2i

τ3) for some constants τ1, τ2, τ3 > 0. Suppose that EYt = 0 and
max1≤t≤T E|Yt|p ≤ D for some constants p > 2 and D > 0. Then for any p0 ∈ (2, p),
there exist constants K1, ..., K5 > 0 such that ∀w ≥ 1,

P

(∣∣∣∣∣
s+n∑
t=s+1

Yt

∣∣∣∣∣ ≥ √nK1w

)
≤ 2 exp

(
−K2w

2
)

+K3n
1−p0/2 log−K4 n

and

P

(
max

1≤s≤T−n

∣∣∣∣∣
s+n∑
t=s+1

Yt

∣∣∣∣∣ ≥√n log TK5

)
≤ 2K3Tn

1−p0/2 log−K4 n.

Proof. Fix 1 ≤ s ≤ T − n. Let m1 > m2 and k = bn/mc, where m = m1 + m2. For
1 ≤ j ≤ k, define Hj,1 = {(j − 1)m + i : 1 ≤ i ≤ m1} and Hj,2 = {(j − 1)m + i :≤
m1 + 1 ≤ i ≤ m}. Also define H∗ = {km + 1, ..., n}. Let Wj,1 = m

−1/2
1

∑
t∈Hj,1 Yt,

51



Wj,2 = m
−1/2
2

∑
t∈Hj,2 Yt and W∗ =

∑
t∈H∗ Yt.

Step 1: bound
∑k

j=1Wj,1.
We apply Lemma 3 together with a Berbee-type coupling result. By Lemma 7.1

of Chen et al. (2016), there exist independent random variables {Zj}kj=1 (possibly on
an extended probability space) such that Zj and Wj,1 have the same distribution and

P

(
k⋃
j=1

{Zj 6= Wj,1}

)
≤ kβ(m2) ≤ kτ1 exp (−τ2m

τ3
2 ) . (45)

Lemma 7.2 of Chen et al. (2016) also implies that there exist constants
M0,M1,M2 > 0 such that

E|Wj,1|p0 ≤M1M
p0
2 and E|Wj,1|2 ≤M0. (46)

Let Qm1,k,p0 := max1≤j≤k E|Wj,1|p0 . Let aT →∞ be a sequence to be chosen later.
Applying Lemma 3, we obtain that ∀t > 0,

P

(∣∣∣∣∣
k∑
j=1

Zj1{|Zj| ≤ aT}

∣∣∣∣∣ ≥ √kt+ ka1−p0
T Qm1,k,p0

)

≤ 2 exp

− t2

2
(
a2−p0
T Qm1,k,p0 + aT tk−1/2 + k−1

∑k
j=1 EZ2

j

)
 .

Hence, by (46), we have

P

(∣∣∣∣∣
k∑
j=1

Zj1{|Zj| ≤ aT}

∣∣∣∣∣ ≥ √kt+ ka1−p0
T M1M

p0
2

)

≤ 2 exp

[
− t2

2
(
a2−p0
T M1M

p0
2 + aT tk−1/2 +M0

)] .
The above display and (45) imply that

P

(∣∣∣∣∣
k∑
j=1

Wj,11{|Wj,1| ≤ aT}

∣∣∣∣∣ ≥ √kt+ ka1−p0
T M1M

p0
2

)
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≤ 2 exp

[
− t2

2
(
a2−p0
T M1M

p0
2 + aT tk−1/2 +M0

)]+ kτ1 exp (−τ2m
τ3
2 ) . (47)

By (46), we have

P

(
k⋃
j=1

{|Wj,1| ≥ aT}

)
≤

k∑
j=1

P (|Wj,1|p0 ≥ ap0T ) ≤
k∑
j=1

E|Wj,1|p0a−p0T ≤ ka−p0T M1M
p0
2 .

By the above two displays,

P

(∣∣∣∣∣
k∑
j=1

Wj,1

∣∣∣∣∣ ≥ √kt+ ka1−p0
T M1M

p0
2

)

≤ 2 exp

[
− t2

2
(
a2−p0
T M1M

p0
2 + aT tk−1/2 +M0

)]+ kτ1 exp (−τ2m
τ3
2 ) + ka−p0T M1M

p0
2 .

(48)

Step 2: bound
∑k

j=1Wj,2 and W∗
Similar to Step 1, we can show that for any t > 0,

P

(∣∣∣∣∣
k∑
j=1

Wj,2

∣∣∣∣∣ ≥ √kt+ ka1−p0
T M1M

p0
2

)

≤ 2 exp

[
− t2

2
(
a2−p0
T M1M

p0
2 + aT tk−1/2 +M0

)]+ kτ1 exp (−τ2m
τ3
1 ) + ka−p0T M1M

p0
2 .

(49)

Notice that there are fewer than m elements in H∗. Hence, ∀t > 0,

P (|W∗| ≥ t) ≤ E|W∗|p0
tp1

(i)

≤ M1M
p0
2 (
√
m/t)p0 , (50)

where (i) follows by Lemma 7.2 of Chen et al. (2016) (with the same constants M1

and M2 as in (46)).
Step 3: derive the final result.
Now we choose m2 = 1 +

⌊
[(p0/τ2) log n]4+1/τ3

⌋
, m1 = m2

2, m = m1 + m2, k =
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bn/mc and aT =
√
k. Let

gn =kτ1 exp (−τ2m
τ3
2 ) + ka−p0T M1M

p0
2

+ 2 exp

− n/(m2k)

2
(
a2−p0
T M1M

p0
2 + aT

√
n/(m2k)k−1/2 +M0

)


+ kτ1 exp (−τ2m
τ3
1 ) + ka−p0T M1M

p0
2 +M1M

p0
2 (m/n)p0/2,

For large n and z ≥ 1, we have that

P

(∣∣∣∣∣
s+n∑
t=s+1

Yt

∣∣∣∣∣ ≥ 5
√
nz

)

=P

(∣∣∣∣∣√m1

k∑
j=1

Wj,1 +
√
m2

k∑
j=1

Wj,2 +W∗

∣∣∣∣∣ ≥ 5
√
nz

)

≤P

(∣∣∣∣∣√m1

k∑
j=1

Wj,1

∣∣∣∣∣ ≥ 2
√
nz

)
+ P

(∣∣∣∣∣√m2

k∑
j=1

Wj,2

∣∣∣∣∣ ≥ 2
√
n

)
+ P

(
|W∗| ≥

√
n
)

(i)

≤P

(∣∣∣∣∣
k∑
j=1

Wj,1

∣∣∣∣∣ ≥ √kz + ka1−p0
T M1M

p0
2

)

+ P

(∣∣∣∣∣
k∑
j=1

Wj,2

∣∣∣∣∣ ≥ √k√n/(m2k) + ka1−p0
T M1M

p0
2

)
+ P

(
|W∗| ≥

√
n
)

(ii)

≤2 exp

[
− z2

2
(
a2−p0
T M1M

p0
2 + aT zk−1/2 +M0

)]︸ ︷︷ ︸
Ψn(z)

+ gn,

where (i) holds by z ≥ 1 ≥
√
ka1−p0

T M1M
p0
2 and n/m1 ≥ k and (ii) follows by

(48), (49) and (50). By straight-forward computations, we have that Ψn(z) ≤
2 exp(−M3z

2) and gn ≤ n1−p0/2 log−M4 n, where M3 and M4 are positive constants.
This proves the first claim. The second claim follows by the union bound.

To study properties of estimation errors of the form (
∑n

s=1Xsεs+1)/(
∑n

s=1X
2
s ),

we consider the following condition.

Condition 1. Let {Xs, es+1}ns=1 be random variables with β-mixing coefficient sat-
isfying βmix(i) ≤ τ1 exp(−τ2i

τ3) for some constants τ1, τ2, τ3 > 0. Suppose that
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EXses+1 = 0, max1≤s≤n E|Xs|p ≤ D and max1≤s≤n E|es+1|p ≤ D for some constants
p > 4 and D > 0. Moreover, D0 ≤ E(n−1/2

∑n
s=1 Xses+1)2 ≤ D1 and D2 ≤ EX2

s ≤ D3

for some constants D0, .., D3 > 0.

Lemma 5. Let Condition 1 hold. Define

δ =

∑n
s=1Xses+1∑n
s=1X

2
s

.

Then for any p0 ∈ (2, p/2), there exist δ̃ ∈ σ ({Xs, es+1}ns=1) and constants C1, ..., C5 >

0 such that P(δ̃ 6= δ) ≤ C1n
1−p0/2 log−C2 n, |Eδ̃| ≤ n−1

√
log nC3 and n−1C4 ≤ Eδ̃2 ≤

n−1C5. Moreover, |Eδ̃2 − E(
∑n

s=1Xses+1)2/E(
∑n

s=1X
2
s )2| ≤ C6

√
n−3 log n for some

constant C6 > 0.

Proof. Let Zn,1 = n−1
∑n

s=1 Xses+1 and Zn,2 = n−1
∑n

s=1X
2
s . Hence, δ = Zn,1/Zn,2.

The proof proceeds in two steps.
Step 1: bound E|Zn,1|.
By Davydov’s inequality (Corollary 16.2.4 of Athreya and Lahiri (2006)) and the

uniform boundedness of E|Xses+1|2+c for some c > 0, we have that for |s1 − s2| > 1,
|EXs1Xs2es1+1es2+1| ≤ M1[β(|s1 − s2 − 1|)]M2 for some constants M1,M2 > 0. The
exponential-decay of the β-mixing coefficient implies that for |s1 − s2| > 1,

|EXs1Xs2es1+1es2+1| ≤M3 exp
(
−M4|s1 − s2 − 1|M5

)
, (51)

whereM3,M4,M5 > 0 are constants. Let S = {(s1, s2) : 1 ≤ s1, s2 ≤ n, |s1−s2| > 1}.
LetM6 > 0 be a constant such that |EXs1Xs2es1+1es2+1| ≤M6; such a constant exists
since E|Xses+1|2 ≤ (E|Xs|4E|es+1|4)1/2 is uniformly bounded. Notice that

E|Zn,1|2 =n−2

n∑
s1=1

n∑
s2=1

EXs1Xs2es1+1es2+1

=n−2

n∑
s=1

EX2
s e

2
s+1 + n−2

n−1∑
s=1

EXsXs+1es+1es+2

+ n−2

n−1∑
s=2

EXsXs−1es+1es + n−2
∑

(s1,s2)∈S

EXs1Xs2es1+1es2+1

≤n−1M6 + 2n−2(n− 1)M6 + n−2
∑

(s1,s2)∈S

EXs1Xs2es1+1es2+1
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(i)

≤n−1M6 + 2n−2(n− 1)M6 + n−2
∑

(s1,s2)∈S

M3 exp
(
−M4|s1 − s2 − 1|M5

)
≤n−1M6 + 2n−2(n− 1)M6 + n−2

n∑
s1=1

∞∑
s2=1

M3 exp
(
−M4|s1 − s2 − 1|M5

)
(ii)

≤n−1M6 + 2n−2(n− 1)M6 + n−2nM7 (52)

for some constant M7 > 0, where (i) follows by (51) and (ii) follows by the fact that∑∞
s2=1 M3 exp(−M4|s1 − s2 − 1|M5) is uniformly bounded for any 1 ≤ s1 ≤ n. Hence,

there exists a constant M8 > 0 such that

E|Zn,1| ≤
√

E|Zn,1|2 ≤M8n
−1/2. (53)

Step 2: derive the desired result.
Notice that X2

s − EX2
s has uniformly bounded 0.5p-th moments. By Lemma 4

(applied with Ys = X2
s − EX2

s ), we have that

P
(
|Zn,2 − EZn,2| ≥ K1

√
n−1 log n

)
≤ K2n

1−p0/2 log−K3 n,

where K1, K2, K3 > 0 are constants. Let δ̄ = Zn,1/EZn,2 and δ̃ = Zn,1/Z̃n,2 with

Z̃n,2 =


EZn,2 +K1

√
n−1 log n if Zn,2 ≥ EZn,2 +K1

√
n−1 log n

EZn,2 −K1

√
n−1 log n if Zn,2 ≤ EZn,2 −K1

√
n−1 log n

Zn,2 otherwise

.

Clearly, δ̃ ∈ σ ({Xs, es+1}ns=1). Moreover,

P
(
δ 6= δ̃

)
= P

(
Zn,2 6= Z̃n,2

)
≤ K2n

1−p0/2 log−K3 n. (54)

Notice that

E|δ̃ − δ̄| = E

∣∣∣∣∣Zn,1Z̃n,2
− Zn,1

EZn,2

∣∣∣∣∣ = E

∣∣∣∣∣Zn,1(Z̃n,2 − EZn,2)

Z̃n,2EZn,2

∣∣∣∣∣
(i)

≤ K1

√
n−1 log n

(EZn,2)
(
EZn,2 +K1

√
n−1 log n

)E |Zn,1|
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(ii)

≤ K4n
−1
√

log n for some constant K4 > 0,

where (i) holds by |Z̃n,2 − EZn,2| ≤ K1

√
n−1 log n (by the definition of Z̃n,2) and (ii)

follows by (53) and EZn,2 ≥ D2. Since EXses+1 = 0, we have EZn,1 = 0 and Eδ̄ = 0.
Hence, the above display implies that

|Eδ̃| ≤ |Eδ̄|+ E|δ̃ − δ̄| ≤ K4n
−1
√

log n. (55)

Lastly, notice that

∣∣∣E(δ̃2 − δ̄2)
∣∣∣ = E

[
Z2
n,1|Z̃n,2 − EZn,2| · |Z̃n,2 + EZn,2|

Z̃2
n,2 (EZn,2)2

]

(i)

≤

K1

√
n−1 log n(2EZn,2 +K1

√
n−1 log n)

(EZn,2)2
(
EZn,2 −K1

√
n−1 log n

)2

EZ2
n,1

(ii)

≤ K5

√
n−3 log n (56)

for some constant K5 > 0, where (i) follows by |Z̃n,2 − EZn,2| ≤ K1

√
n−1 log n

(by the definition of Z̃n,2) and (ii) follows by (52) and EZn,2 ≥ D2. Since Eδ̄2 =

EZ2
n,1/(EZn,2)2, D2 ≤ EZn,2 ≤ D3 and n−1D0 ≤ EZ2

n,1 ≤ n−1D1, it follows, by (56),
that there exist constants K6, K7 > 0 such that for large n,

n−1K6 ≤ Eδ̄2 −
∣∣∣E(δ̃2 − δ̄2)

∣∣∣ ≤ Eδ̃2 ≤ Eδ̄2 +
∣∣∣E(δ̃2 − δ̄2)

∣∣∣ ≤ n−1K7.

The desired result follows by (54), (55) and the above display.

Lemma 6. Let Condition 1 hold. Define

δ =

∑n
s=1Xses+1∑n
s=1X

2
s

and δ̄ =

∑n−an
s=1 Xses+1∑n−an
s=1 X2

s

,

where an ≤ cn for some constant c ∈ (0, 1). Then for any p0 ∈ (2, p/2), there exists
a constant M > 0 such that ∀x > 0,

P
(
|δ̄ − δ| ≥ x

)
≤M max

{
n1−p0/2 log−K3 n, (nx/

√
an)
−p0 ,

(
a−1
n n3/2x/

√
log n

)−p/2}
.
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Proof. After straightforward computations, we have that

δ − δ̄ =

∑n
s=n−an+1 Xses+1∑n

s=1 X
2
s︸ ︷︷ ︸

J1

−
(∑n−an

s=1 Xses+1

) (∑n
s=n−an+1 X

2
s

)
(
∑n

s=1X
2
s )
(∑n−an

s=1 X2
s

)︸ ︷︷ ︸
J2

. (57)

Notice that by Lemma 2, both X2
s − EX2

s and Xses+1 has uniformly bounded
0.5p-th moments. Applying Lemma 4 (with Ys = X2

s − EX2
s and Ys = Xses+1) and

using (1− c)n ≤ n− an ≤ n, we have that for some constants K1, K2, K3 > 0,

P
(
|
∑n

s=1(X2
s − EX2

s )| ≥ K1

√
n log n

)
≤ K2n

1−p0/2 log−K3 n

P
(∣∣∑n−an

s=1 (X2
s − EX2

s )
∣∣ ≥ K1

√
n log n

)
≤ K2n

1−p0/2 log−K3 n

P
(∣∣∑n−an

s=1 (X2
s − EX2

s )
∣∣ ≥ K1

√
n log n

)
≤ K2n

1−p0/2 log−K3 n

P
(∣∣∑n−an

s=1 Xses+1

∣∣ ≥ K1

√
n log n

)
≤ K2n

1−p0/2 log−K3 n.

By Condition 1, EX2
s ≥ D2. Since K1

√
n−1 log n < D2/2 for large n, we

have max
{
P (
∑n

s=1X
2
s ≤ nD2/2) ,P

(∑n−an
s=1 X2

s ≤ nD2/2
)}
≤ K4n

1−p0/2 log−K3 n for
some constant K4 ≥ K2. Notice that

P (J1 ≥ x/2) ≤ P

(
n∑
s=1

X2
s ≤ nD2/2

)
+ P

(∣∣∣∣∣
n∑

s=n−an+1

Xses+1

∣∣∣∣∣ ≥ D2nx/4

)

≤ P

(
n∑
s=1

X2
s ≤ nD2/2

)
+ (D2nx/4)−p0 E

∣∣∣∣∣
n∑

s=n−an+1

Xses+1

∣∣∣∣∣
p0

(i)

≤ P

(
n∑
s=1

X2
s ≤ nD2/2

)
+ (D2nx/4)−p0 K5a

p0/2
n for a constant K5 > 0

≤ K4n
1−p0/2 log−K3 n+K5 (D2nx/4)−p0 ap0/2n ,

where (i) holds by Lemma 7.2 of Chen et al. (2016). Also notice that

P (J2 ≥ x/2)

≤ P

(
n−an∑
s=1

X2
s ≤ nD2/2

)
+ P

(
n∑
s=1

X2
s ≤ nD2/2

)

+ P

(∣∣∣∣∣
n−an∑
s=1

Xses+1

∣∣∣∣∣ ≥ K1

√
n log n

)
+ P

(∣∣∣∣∣
n∑

s=n−an+1

X2
s

∣∣∣∣∣ ≥ D2
2n

2x

8K1

√
n log n

)
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≤ 3K4n
1−p0/2 log−K3 n+ P

(∣∣∣∣∣
n∑

s=n−an+1

X2
s

∣∣∣∣∣ ≥ D2
2n

2x

8K1

√
n log n

)

≤ 3K4n
1−p0/2 log−K3 n+

(
D2

2n
2x

8K1

√
n log n

)−p/2
E

∣∣∣∣∣
n∑

s=n−an+1

X2
s

∣∣∣∣∣
p/2

(i)

≤ 3K4n
1−p0/2 log−K3 n+

(
D2

2n
2x

8K1

√
n log n

)−p/2
(anD)p/2,

where (i) follows by E|
∑n

s=n−an+1X
2
s |p/2 = ‖

∑n
s=n−an+1X

2
s‖

p/2

Lp/2(P)
≤

(
∑n

s=n−an+1 ‖X2
s‖Lp/2(P))

p/2 ≤ (anD)p/2. The desired result follows by combin-
ing (57) with the above two displays.

B Proofs of main results

B.1 Proof of Proposition 1

Our proof of Proposition 1 relies on two lemmas, Lemma 7 and 8. We first state and
prove these lemmas before proving the proposition.

Lemma 7. Let Assumption 1 hold. For any constants K > 0, h ∈ (0, 1) and p1 ∈
(2, r/2), we can enlarge the probability space and construct random variables δ1,t,∗,
δ2,t,∗, δ̄1,t and δ̄2,t such that for j ∈ {1, 2},

P (δj,t,∗ 6= δj,t) ≤ C1T
−min{p1/2−1, (1−h)p1}

P
(
|δj,t,∗ − δ̄j,t| ≤ KT−h

)
= 1

δ̄1,t and δ̄2,t are independent of {x1,s, x2,s, εs+1}s≥t−1

|Eδ̄j,t| ≤ T−1
√

log TC2 and T−1C3 ≤ Eδ̄2
j,t ≤ T−1C4∣∣Eδ̄2

j,t − E[
∑t−1

s=t−n x1,t(εt+1 + β2x2,t)]
2/E(

∑t−1
s=t−n x

2
1,t)

2
∣∣ ≤ C5

√
n−3 log n,

where C1, ..., C5 > 0 are constants depending only on the constants in Assumption 1.

Proof. We construct δj,t,∗ for j = 1; the case for j = 2 is analogous. Notice that

δ1,t =

∑t−1
s=t−n x1,t(εt+1 + β2x2,t)∑t−1

s=t−n x
2
1,t

.

59



Recall the constants in Assumption 1. Let an = min{a ∈ N | a ≥ (r/2 −
1)1/c log1/c n}.

By Theorem 16.2.1 of Athreya and Lahiri (2006), we can extend the probability
space with random variables {ẋ1,s, ẋ2,s, ε̇s+1}t−an−1

s=t−n such that
{ẋ1,s, ẋ2,s, ε̇s+1}t−an−1

s=t−n has the same distribution as {x1,s, x2,s, εs+1}t−an−1
s=t−n

{ẋ1,s, ẋ2,s, ε̇s+1}t−an−1
s=t−n is independent of {x1,s, x2,s, εs+1}s≥t−1

P
(
{ẋ1,s, ẋ2,s, ε̇s+1}t−an−1

s=t−n 6= {x1,s, x2,s, εs+1}t−an−1
s=t−n

)
= β(an) ≤ b exp(−acn).

(58)

Let Fn be the σ-algebra generated by {ẋ1,s, ẋ2,s, ε̇s+1}t−an−1
s=t−n . Hence, δ̇1,t ∈ Fn and

P
(
δ̇1,t 6= δ̈1,t

)
≤ b exp(−acn), (59)

where

δ̇1,t =

∑t−an−1
s=t−n ẋ1,t(ε̇t+1 + β2ẋ2,t)∑t−an−1

s=t−n ẋ2
1,t

and δ̈1,t =

∑t−an−1
s=t−n x1,t(εt+1 + β2x2,t)∑t−an−1

s=t−n x2
1,t

.

Now we apply Lemma 5 (with Xs = ẋ1,s and es+1 = β2ẋ2,s+ ε̇s+1) and obtain that
there exist δ̄1,t ∈ Fn satisfying

P
(
δ̇1,t 6= δ̄1,t

)
≤M0n

1−p1/2 log−M1 n

|Eδ̄1,t| ≤ n−1
√

log nM2

n−1M3 ≤ Eδ̄2
1,t ≤ n−1M4

(60)

where M0, ...,M4 > 0 are constants. Lemma 5 also implies that |Eδ̄2
1,t −

E[
∑t−an−1

s=t−n ẋ1,t(ε̇t+1 + β2ẋ2,t)]
2/E(

∑t−an−1
s=t−n ẋ2

1,t)
2| ≤ G

√
(n− an)−3 log(n− an) for

some constant G > 0. Notice that an � log1/c n. In computing this expecta-
tion, we can replace {ẋ1,s, ẋ2,s, ε̇s+1}t−an−1

s=t−n with {x1,s, x2,s, εs+1}t−an−1
s=t−n since they have

the same distribution. It is not hard to verify that |Eδ̄2
1,t − E[

∑t−1
s=t−n x1,t(εt+1 +

β2x2,t)]
2/E(

∑t−1
s=t−n x

2
1,t)

2| ≤ G
√
n−3 log n for some constant G′ > 0.

Since δ̄1,t ∈ Fn, (58) implies that

δ̄1,t is independent of {x1,s, x2,s, εs+1}s≥t−1. (61)
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By Lemma 6 (applied with Xs = x1,s and es+1 = β2x2,s + εs+1), we have that for
x = Kn−h,

P
(
|δ̈1,t − δ1,t| ≥ x

)
≤M5 max

{
n1−p1/2 log−K3 n, (nx/

√
an)
−p1 ,

(
a−1
n n3/2x/

√
log n

)−r/2}
, (62)

where M5 > 0 is a constant. Define

δ1,t,∗ =


δ̄1,t + x if δ1,t ≥ δ̄1,t + x

δ̄1,t − x if δ1,t ≤ δ̄1,t − x

δ1,t otherwise

.

Hence,
|δ1,t,∗ − δ̄1,t| ≤ x. (63)

Notice that, for some constant M6 > 0, we have

P (δ1,t,∗ 6= δ1,t)

≤ P
(
|δ1,t − δ̈1,t| ≥ x

)
+ P

(
δ̈1,t 6= δ̇1,t

)
+ P

(
δ̇1,t 6= δ̄1,t

)
(i)

≤ M6 max

{
n1−p1/2 log−K3 n, (nx/

√
an)
−p1 ,

(
a−1
n n3/2x/

√
log n

)−r/2
, exp(−acn)

}
(ii)

≤ M6 max
{
n1−p1/2, (nx)−p1 ,

(
n3/2x

)−r/2}
(iii)

≤ M6 max
{
n1−p1/2, (nx)−p1

}
≤M7n

−min{p1/2−1, (1−h)p1} for some constant M7 > 0,

where (i) holds by (59), (60) and (62), (ii) follows by the fact that exp(−acn) ≤
n1−r/2 < n1−p1/2 and (iii) follows by (n3/2x)−r/2 < (n3/2x)−p1 < (nx)−p1 (due to
p1 < r/2).

Since n � T , the desired result follows by the above display, (63), (61) and
(60).

Lemma 8. Let Assumption 1 hold. Then ∀p1 ∈ (2, r/2) and ∀h ∈ (2αx,2, 1), there
exist constants G1, ..., G4 > 0 and an array of random variables {∆Lt+1,∗}T−nt=n such
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that for T ≥ G1,

P

(
T−1⋂
t=n

{∆Lt+1,∗ = ∆Lt+1}

)
≥ 1−G2T

1−min{p1/2−1, (1−h)p1}

and
G3T

−2αx,2 ≤ E∆Lt+1,∗ ≤ G4T
−2αx,2 .

Proof. Let δj,t = β̂j,t − βj,t. Recall from (11) that

∆Lt+1 = 2εt+1 (β2x2,t − β1x1,t − δ1,tx1,t + δ2,tx2,t)

+ (β2x2,t − β1x1,t − δ1,tx1,t + δ2,tx2,t) (β1x1,t + β2x2,t − δ1,tx1,t − δ2,tx2,t) . (64)

Let δj,t,∗ and δ̄j,t be defined as in the statement of Lemma 7 (with K = 1):

P (δj,t,∗ 6= δj,t) ≤ C1T
−min{p1/2−1, (1−h)p1}

P
(
|δj,t,∗ − δ̄j,t| ≤ T−h

)
= 1

δ̄1,t and δ̄2,t are independent of {x1,s, x2,s, εs+1}s≥t−1

|Eδ̄j,t| ≤ T−1
√

log TC2 and T−1C3 ≤ Eδ̄2
j,t ≤ T−1C4,

(65)

where C1, C2, C3, C4 > 0 are constants. Define

∆Lt+1,∗ = 2εt+1 (β2x2,t − β1x1,t − δ1,t,∗x1,t + δ2,t,∗x2,t)

+ (β2x2,t − β1x1,t − δ1,t,∗x1,t + δ2,t,∗x2,t) (β1x1,t + β2x2,t − δ1,t,∗x1,t − δ2,t,∗x2,t) . (66)

The first statement in (65) implies that

P

(
T−1⋂
t=n

{∆Lt+1,∗ = ∆Lt+1}

)
≥ 1−

T−1∑
t=n

P (δ1,t 6= δ1,t,∗ or δ2,t 6= δ2,t,∗)

≥ 1− 2C1(T − n)T−min{p1/2−1, (1−h)p1}.

Since T − n < T , the first claim follows.
Now we compute E∆Lt+1,∗. Notice that there exist a constant K1 > 0 such that

for j1, j2 ∈ {1, 2},

|Eδj1,t,∗xj1,tεt+1| ≤ |Eδ̄j1,txj1,tεt+1|+ E|(δj1,t,∗ − δ̄j1,t)xj1,tεt+1|
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(i)
= E|(δj1,t,∗ − δ̄j1,t)xj1,tεt+1|,
(ii)

≤ T−hE|xj1,tεt+1| ≤ K1T
−h,

where (i) follows by the fact that δ̄j1,t is independent of xj1,tεt+1 and Exj1,tεt+1 = 0 and
(ii) follows by second statement in (65). Similarly, we have that for some constants
K2, K3, K4 > 0,

|Eδj1,t,∗xj1,txj2,t| ≤ |Eδ̄j1,txj1,txj2,t|+ E|(δj1,t,∗ − δ̄j1,t)xj1,txj2,t|
(i)
= |Eδ̄j1,t| · |Exj1,txj2,t|+ E|(δj1,t,∗ − δ̄j1,t)xj1,txj2,t|
(ii)

≤ T−1
√

log TC2K2 + T−hK3

(iii)

≤ T−hK4,

where (i) follows by the independence between δ̄j1,t and {xj1 , xj2}, (ii) follows by the
second and third statements in (65) and (iii) follows by h < 1. Moreover, we have
that for constants K5 ≥ E|xj1,txj2,t| and K6 large enough,

|Eδj1,t,∗δj2,t,∗xj1,txj2,t|

≤ |Eδ̄j1,tδ̄j2,txj1,txj2,t|+ E|(δj1,t,∗ − δ̄j1,t)δj2,t,∗xj1,txj2,t|+ E|(δj2,t,∗ − δ̄j2,t)δ̄j1,txj1,txj2,t|
(i)

≤ |Eδ̄j1,tδ̄j2,t| · E|xj1,txj2,t|+ T−hE|δj2,t,∗xj1,txj2,t|+ T−hE|δj1,t,∗xj1,txj2,t|
(ii)

≤ |Eδ̄j1,tδ̄j2,t| · E|xj1,txj2,t|+ T−hE
[
(|δ̄j2,t|+ T−h)|xj1,txj2,t|

]
+ T−hE

[
(|δ̄j1,t|+ T−h)|xj1,txj2,t|

]
(iii)

≤ |Eδ̄j1,tδ̄j2,t| · E|xj1,txj2,t|+ T−hE(|δ̄j2,t|+ T−h) · E|xj1,txj2,t|

+ T−hE(|δ̄j1,t|+ T−h) · E|xj1,txj2,t|
(iv)

≤ T−1C4K5 + 2T−h(T−1/2C
1/2
4 + T−h)K5

≤ K6 max
{
T−h−1/2, T−2h

}
,

where (i), (ii) and (iii) follow by computations based on the independence between
{δ̄j1,t, δ̄j2,t} and {xj1,t, xj2,t} and |δj,t,∗ − δ̄j,t| ≤ T−h, while (iv) follows by (65), i.e.,
|Eδ̄j1,tδ̄j2,t| ≤ [(Eδ̄2

j1,t
)(Eδ̄2

j2,t
)]1/2 ≤ T−1C4 and E|δ̄j,t| ≤ (Eδ̄2

j,t)
1/2 ≤ T−1/2C

1/2
4 .

By straight-forward computations based on the previous three displays and (66),
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we have that for some constant K7 > 0,

E
∣∣∆Lt+1,∗ −

[
2εt+1 (β2x2,t − β1x1,t) + β2

2x
2
2,t − β2

1,tx
2
1,t

]∣∣ ≤ K7T
−h. (67)

Since Eεt+1βjxj,t = 0, we have that for some constant K8 > 0,

∣∣E∆Lt+1,∗ −
(
β2

1Ex2
1,t − β2

2Ex2
2,t

)∣∣ ≤ K8T
−h.

Since αx,2 < αx,1 (by Assumption 1), β2
2Ex2

2,t − β2
1,tEx2

1,t ≥ K9T
−2αx,2 for some

constant K9 > 0. Since h > 2αx,2, we have that for large T ,

K10T
−2αx,2 ≤ E∆Lt+1,∗ ≤ K11T

−2αx,2 ,

where K10, K11 > 0 are constants. This proves the second claim.

Proof of Proposition 1. Let p1 = 2 + r/4 and h = αx,2 + 1/2. Since r > 8 and
αx,2 ∈ [0, 1/2), we have that p1 ∈ (2, r/2) and h ∈ (2αx,2, 1). Applying Lemma 8,
we obtain that there exist constants G1, ..., G4 > 0 and an array of random variables
{∆Lt+1,∗}T−nt=n such that for T ≥ G1,

P

(
T−1⋂
t=n

{∆Lt+1,∗ = ∆Lt+1}

)
≥ 1−G2T

1−min{p1/2−1, (1−h)p1}

and
G3T

−2αx,2 ≤ E∆Lt+1,∗ ≤ G4T
−2αx,2 .

Notice that

1−min{p1/2− 1, (1− h)p1} = max {2− p1/2, 1 + (h− 1)p1}

= max {2− p1/2, 1 + (αx,2 − 1/2)p1}

= max {1− r/8, 1 + (αx,2 − 1/2)(2 + r/4)}

The proof is complete.
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B.2 Proof of Proposition 2

Our proof of Proposition 2 relies on two lemmas, Lemma 9 and 10. We first state
and prove these lemmas before proving Proposition 2.

Lemma 9. Suppose that Assumptions 1 and 2 hold. Let ∆Lt+1,∗ be defined as in (66)
in the proof of Lemma 8. Let θ̃t = (θ̃1,t, θ̃2,t)

′ = (
∑t−1

s=t−m zsz
′
s)
−1(
∑t−1

s=t−m zs∆Lt+1,∗),
where zs = (1, z1s)

′. Fix p ∈ (2, r/3). Then there exist constants G0, G1, G2, G3 > 0

such that for T ≥ G0,

P

(∣∣∣∣∣ θ̃1,t

θ̃2,t

∣∣∣∣∣ ≥ G1T
αz,2−αx,2

)
≤ G2T

1−p/2 log−G3

and
P
(
θ̃2,t ≤ 0

)
≤ G2T

1−p/2 log−G3 .

Proof. Let Ψt+1 = mαx,2∆Lt+1,∗, πt = (
∑t−1

s=t−m Ezsz′s)−1(
∑t−1

s=t−m EzsΨs+1), π̂t =

(
∑t−1

s=t−m zsz
′
s)
−1(
∑t−1

s=t−m zsΨs+1) and {ξs+1}t−1
s=t−m with ξs+1 = Ψs+1 − z′sπt. Clearly,

π̂t = mαx,2 θ̃t. Let γt = π̂t − πt. The proof proceeds in two steps. We first bound γt
and then show the desired results.

Step 1: bound γt
By simple computation, we have

γt =

[
m−1

t−1∑
s=t−m

zsz
′
s

]−1

︸ ︷︷ ︸
Jt

·m−1

t−1∑
s=t−m

zsξs+1︸ ︷︷ ︸
Bt

·

Since entries of zsz′s − Ezsz′s has uniformly bounded 0.5r-th moments, it follows,
by Lemma 4, that for some constants K1, K2, K3 > 0,

P

(∥∥∥∥∥m−1

t−1∑
s=t−m

(zsz
′
s − Ezsz′s)

∥∥∥∥∥
∞

≥ K1

√
m−1 logm

)
≤ K2m

1−p/2 log−K3 m.

Since m−1
∑t−1

s=t−m Ezsz′s = diag(1,m−1
∑t−1

s=t−m Ez2
1s) and Ez2

1s is bounded away
from zero and infinity, the eigenvalues of m−1

∑t−1
s=t−m Ezsz′s lie in [K4, K5] for some

constants K4, K5 > 0. By the above display, the eigenvalues of m−1
∑t−1

s=t−m zsz
′
s lie

in [K4/2, 2K5] for large n with probability at least 1−K2m
1−p/2 log−K3 m. Hence, for
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some constants K6, K7 > 0, we have that for n ≥ K6,

P (‖Jt‖∞ ≥ K7) ≤ K2m
1−p/2 log−K3 m.

Recall the definition of ∆Lt+1,∗ (in (66) in the proof of Lemma 8). We apply
Lemma 2. By straight-forward computations, we have that Ψt+1 has uniformly
bounded 0.5r-th moments. Hence, ξs+1 = Ψs+1− z′sπs has uniformly bounded 0.5r-th
moments. Again by Lemma 2, entries of zsξs+1 has uniformly bounded r

3
-th moments.

Notice that p ∈ (2, r/3). It follows by Lemma 4 (applied to each entry of zsξs+1) that
for some constants K8, K9, K10 > 0, we have

P
(
‖Bt‖∞ ≥ K8

√
m−1 logm

)
≤ K9m

1−p/2 log−K10 m.

It follows by the above two displays that for large m,

P
(
‖γt‖∞ ≥ 2K7K8

√
m−1 logm

)
≤ P

(
2‖Jt‖∞‖Bt‖∞ ≥ 2K7K8

√
m−1 logm

)
≤ P (‖Jt‖∞ ≥ K7) + P

(
‖Bt‖∞ ≥ K8

√
m−1 logm

)
≤ K2m

1−p/2 log−K3 m+K9m
1−p/2 log−K10 m.

Since T � m, there are constants K11, ..., K14 > 0 such that for T ≥ K11,

P
(
‖γt‖∞ ≥ K12

√
T−1 log T

)
≤ K13T

1−p/2 log−K14 . (68)

Step 2: show the desired results.
Partition πt = (π1,t, π2,t)

′. By Ez1s = 0, it fol-
lows that π1,t = m−1

∑t−1
s=t−m Emαx,2∆Ls+1,∗ and π2,t =

(
∑t−1

s=t−m Emαx,2z1s∆Ls+1,∗)/(m
−1
∑t−1

s=t−m Ez2
1s). By Lemma 8, there are con-

stants K15, K16 > 0 such that

K15T
−αx,2 ≤ π1,t ≤ K16T

−αx,2 . (69)

By computations similar to (67) in the proof of Lemma 8, one can show that

E
∣∣z1t∆Lt+1,∗ − z1t

[
2εt+1 (β2x2,t − β1x1,t) + β2

2x
2
2,t − β2

1,tx
2
1,t

]∣∣ ≤ K17T
−1/2

√
log T ,
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where K17 > 0 is a constant. By Assumption 1,

E
{
z1t

[
2εt+1 (β2x2,t − β1x1,t) + β2

2x
2
2,t − β2

1,tx
2
1,t

]}
≥ K18T

−αx,2−αz,2 .

It follows that for large T , Ez1t∆Lt+1,∗ ≥ K18T
−αx,2−αz,2/2. Hence, for some

constant K19 > 0,
π2,t ≥ K19T

−αz,2 . (70)

Let x = 2K16T
−αx,2 and M = 2x/(K19T

−αz,2). Then

P (|π̂1,t| ≥M |π̂2,t|)

≤ P (|π̂1,t| ≥ x) + P (|π̂2,t| ≤ x/M)

≤ P (|π̂1,t − π1,t| ≥ x− |π1|) + P (|π̂2,t − π2,t| ≥ |π2,t| − x/M)

(i)

≤ P
(
|π̂1,t − π1,t| ≥ x−K16T

−αx,2
)

+ P
(
|π̂2,t − π2,t| ≥ K19T

−αz,2 − x/M
)

≤ P
(
‖γt‖∞ ≥ x−K16T

−αx,2
)

+ P
(
‖γt‖∞ ≥ K19T

−αz,2 − x/M
)

= P
(
‖γt‖∞ ≥ K16T

−αx,2
)

+ P
(
‖γt‖∞ ≥ K19T

−αz,2/2
)

(ii)

≤ 2K13T
1−p/2 log−K14 ,

where (i) holds by (69) and (70) and (ii) follows by (68) together with T−αx,2 �√
T−1 log T and T−αz,2 �

√
T−1 log T . The first claim follows by |π̂1,t/π̂2,t| =

|θ̃1,t/θ̃2,t| and M = 2x/(K19T
−αz,2) = (4K16/K19)Tαz,2−αx,2 .

To see the second claim, notice that

P
(
θ̃2,t ≤ 0

)
(i)
= P (π̂2,t ≤ 0) = P (γ2,t ≤ −π2,t)

(ii)

≤ P
(
γ2,t ≤ −K19T

−αz,2
)

≤ P
(
‖γt‖∞ ≥ K19T

−αz,2
)

(iii)

≤ K13T
1−p/2 log−K14 ,

where (i) holds by θ̃t = m−αx,2π̂t, (ii) follows by (70) and (iii) holds by (68) and
T−αz,2 �

√
T−1 log T .

Lemma 10. Let Assumptions 1 and 2 hold. Fix any p1 ∈ (2, r/2) and h ∈ (2αx,2, 1).
Then there exist constants G0, G1, ..., G5 > 0 and an array {St+1}T−1

t=n+m such that
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∀T ≥ G0,

P

(
T−1⋂

t=n+m

{
St+1 = ∆Lt+11{z′tθ̂m,t > 0}

})
≥ 1−G2T

1−min{p1/2−1, (1−h)p1}

and
ESt+1 ≥ K5T

−αx,2−αz,2 .

Proof. Let θ̃t = (
∑t−1

s=t−m zsz
′
s)
−1(
∑t−1

s=t−m zs∆Lt+1,∗), where ∆Lt+1,∗ is defined as in
(66) in the proof of Lemma 8. Define St+1 = ∆Lt+1,∗1{z′tθ̃t > 0}. Notice that

T−1⋂
t=n

{∆Lt+1,∗ = ∆Lt+1} ⊆
T−1⋂

t=n+m

{
St+1 = ∆Lt+11{z′tθ̂m,t > 0}

}
.

Hence, the first claim follows by Lemma 8.
It remains to bound ESt+1. To this end, let q = r/2 and ν = r/(r − 2). Hence,

q, ν > 1 and q−1 + ν−1 = 1. Notice that

E
(
|∆Lt+1,∗|

∣∣∣1{z′tθ̃t > 0} − 1{z1t > 0}
∣∣∣)

= E
(
|∆Lt+1,∗| ·

∣∣∣∣1{z1t > −θ̃1,t/θ̃2,t and θ̃2,t > 0}

+ 1{z1t < −θ̃1,t/θ̃2,t and θ̃2,t ≤ 0} − 1{z1t > 0}
∣∣∣∣)

≤ E
(
|∆Lt+1,∗|

[
1
{

0 < z1t ≤ −θ̃1,t/θ̃2,t

}
+ 1

{
θ̃2,t ≤ 0

}])
(i)

≤ ‖∆Lt+1,∗‖Lq(P)

∥∥∥1{0 < z1t ≤ −θ̃1,t/θ̃2,t

}
+ 1

{
θ̃2,t ≤ 0

}∥∥∥
Lν(P)

≤ ‖∆Lt+1,∗‖Lq(P)

[∥∥∥1{0 < z1t ≤ −θ̃1,t/θ̃2,t

}∥∥∥
Lν(P)

+
∥∥∥1{θ̃2,t ≤ 0

}∥∥∥
Lν(P)

]
= ‖∆Lt+1,∗‖Lq(P)

([
P
(

0 < z1t ≤ −θ̃1,t/θ̃2,t

)]1/ν

+
[
P
(
θ̃2,t ≤ 0

)]1/ν
)

(71)

where (i) follows by Holder’s inequality. By Assumption 2, the p.d.f of z1t in a fixed
neighborhood of zero is bounded above by some constant K0 > 0. Recall constants
G1, ..., G4 > 0 in the statement of Lemma 9. Hence,

P
(

0 < z1t ≤ −θ̃1,t/θ̃2,t

)
≤ P

(
0 < z1t ≤

∣∣∣θ̃1,t/θ̃2,t

∣∣∣)
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≤ P
(
0 < z1t ≤ G1T

αz,2−αx,2
)

+ P
(∣∣∣θ̃1,t/θ̃2,t

∣∣∣ ≥ G1T
αz,2−αx,2

)
(i)

≤ K0G1T
αz,2−αx,2 +G2T

1−p/2 log−G3 , (72)

where (i) follows by the bounded p.d.f of z1t near zero and Tαz,2−αx,2 = o(1), as well
as by Lemma 9.

Since r > 8, it is not hard to show that r/3 > 2 + r/(2r − 4) = 2 + ν/2. By
Assumptions 1 and 2, 2ναz,2 < αx,2 < 1/2. Since r > 8, we have that r/3 > 8/3 >

2 + 1/2 > 2 + 2ναz,2. Fix p ∈ (2 + 2ναz,2, r/3). Now (71), (72) and Lemma 9 imply
that for some constants K1, K2 > 0

E
(
|∆Lt+1,∗|

∣∣∣1{z′tθ̃t > 0} − 1{z1t > 0}
∣∣∣)

≤ K1‖∆Lt+1,∗‖Lq(P)

[
T (αz,2−αx,2)/ν +

(
T 1−p/2 log−K2

)1/ν
]
. (73)

By (66), we have that

E∆Lt+1,∗1{z1t > 0} ≥ 2E [εt+1 (β2x2,t − β1x1,t)1{z1t > 0}]− At, (74)

where

At = 2E |εt+1 (δ2,t,∗x2,t − δ1,t,∗x1,t)|

+ E |(β2x2,t − β1x1,t − δ1,t,∗x1,t + δ2,t,∗x2,t) (β1x1,t + β2x2,t − δ1,t,∗x1,t − δ2,t,∗x2,t)| .

After computations similar to (67) in the proof of Lemma 8, we can use the rate
conditions in Assumption 1 and show that for some constant K3 > 0,

At ≤ K3T
−2αx,2 . (75)

(74) and (75) imply that for some constants K4, K5, K6 > 0, we have that for
T ≥ K4,

E∆Lt+1,∗1{z1t > 0} ≥ 2E [εt+1 (β2x2,t − β1x1,t)1{z1t > 0}]−K3T
−1/2 −K4T

−2αx,2

(i)

≥ K5T
−αx,2−αz,2 −K3T

−2αx,2 ,

where (i) holds by Assumption 1. By the above display and (73), we have that for

69



large T ,

ESt+1 ≥ K5T
−αx,2−αz,2 −K3T

−2αx,2

−K1‖∆Lt+1,∗‖Lq(P)

[
T (αz,2−αx,2)/ν +

(
T 1−p/2 log−K2

)1/ν
]
.

Recall that in Step 1 of the proof of Lemma 9, we have that mαx,2∆Lt+1,∗ has uni-
formly bounded 0.5r-th moments. Since q = 0.5r, we have that ‖mαx,2∆Lt+1,∗‖Lq(P)

is bounded above by a constant. Hence, for some constant K7 > 0,

ESt+1 ≥ K5T
−αx,2−αz,2 −K3T

−2αx,2

−K1K7T
−αx,2

[
T (αz,2−αx,2)/ν +

(
T 1−p/2 log−K2

)1/ν
]
. (76)

Since p > 2 + 2ναz,2 and ν = r/(r − 2), it is not hard to show that −αx,2 +

(1 − p/2)/ν < −αx,2 − αz,2. By Assumption 1, it is straight-forward to verify that
−2αx,2 < −αx,2 − αz,2 and −αx,2 + (αz,2 − αx,2)/ν < −αx,2 − αz,2. The desired result
follows by (76).

Proof of Proposition 2. We choose p1 and h as in the proof of Proposition 1. Then
Part (1) follows by Lemma 10 and the computations in the proof of Proposition 1.
Part (2) follows by Part (1) and Proposition 1.

B.3 Proof of Proposition 3

Our proof of Proposition 3 relies on two lemmas, Lemma 11 and 12. We first state
and prove these lemmas before proving Proposition 3.

Lemma 11. Suppose that the assumptions of Proposition 3 hold. Let ∆Lt+1,∗

be defined as in (66) in the proof of Lemma 8. Let θ̃t = (θ̃1,t, θ̃2,t)
′ =

(
∑t−1

s=t−m zsz
′
s)
−1(
∑t−1

s=t−m zs∆Lt+1,∗), where zs = (1, z1s)
′. Fix p ∈ (2, r/3). Then

there exist some constants G0, G1, G2, G3 > 0 such that for T ≥ G0,

P

(∣∣∣∣∣ θ̃1,t

θ̃2,t

∣∣∣∣∣ ≥ G1T
αx,1+αz,1−2αx,2

)
≤ G2T

1−p/2 log−G3

and
P
(
θ̃2,t ≤ 0

)
≤ G2T

1−p/2 log−G3 .
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Proof. Let Ψt+1 = mαx,2∆Lt+1,∗, πt = (
∑t−1

s=t−m Ezsz′s)−1(
∑t−1

s=t−m EzsΨs+1), π̂t =

(
∑t−1

s=t−m zsz
′
s)
−1(
∑t−1

s=t−m zsΨs+1) and {ξs+1}t−1
s=t−m with ξs+1 = Ψs+1 − z′sπt. Clearly,

π̂t = mαx,2 θ̃t. Let γt = π̂t − πt. The proof proceeds in two steps. We first bound γt
and then show the desired results.

Step 1: bound γt
By simple computation, we have

γt =

[
m−1

t−1∑
s=t−m

zsz
′
s

]−1

︸ ︷︷ ︸
Jt

·m−1

t−1∑
s=t−m

zsξs+1︸ ︷︷ ︸
Bt

·

Notice that p ∈ (2, r/3). Since entries of zsz′s − Ezsz′s has uniformly bounded
0.5r-th moments, it follows, by Lemma 4, that for some constants K1, K2, K3 > 0,

P

(∥∥∥∥∥m−1

t−1∑
s=t−m

(zsz
′
s − Ezsz′s)

∥∥∥∥∥
∞

≥ K1

√
m−1 logm

)
≤ K2m

1−p/2 log−K3 m.

Since m−1
∑t−1

s=t−m Ezsz′s = diag(1,m−1
∑t−1

s=t−m Ez2
1s) and Ez2

1s is bounded away
from zero and infinity, the eigenvalues of m−1

∑t−1
s=t−m Ezsz′s lie in [K4, K5] for some

constants K4, K5 > 0. By the above display, the eigenvalues of m−1
∑t−1

s=t−m zsz
′
s lie

in [K4/2, 2K5] for large n with probability at least 1−K2m
1−p/2 log−K3 m. Hence, for

some constants K6, K7 > 0, we have that for n ≥ K6,

P (‖Jt‖∞ ≥ K7) ≤ K2m
1−p/2 log−K3 m.

Recall the definition of ∆Lt+1,∗ (in (66) in the proof of Lemma 8). We apply
Lemma 2. By straight-forward computations, we have that Ψt+1 has uniformly
bounded 0.5r-th moments. Hence, ξs+1 = Ψs+1− z′sπs has uniformly bounded 0.5r-th
moments. Again by Lemma 2, entries of zsξs+1 has uniformly bounded r

3
-th moments.

Notice that p ∈ (2, r/3). It follows by 4 (applied to each entry of zsξs+1) that for
some constants K8, K9, K10 > 0, we have

P
(
‖Bt‖∞ ≥ K8

√
m−1 logm

)
≤ K9m

1−p/2 log−K10 m.
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It follows by the above two displays that for large m,

P
(
‖γt‖∞ ≥ 2K7K8

√
m−1 logm

)
≤ P

(
2‖Jt‖∞‖Bt‖∞ ≥ 2K7K8

√
m−1 logm

)
≤ P (‖Jt‖∞ ≥ K7) + P

(
‖Bt‖∞ ≥ K8

√
m−1 logm

)
≤ K2m

1−p/2 log−K3 m+K9m
1−p/2 log−K10 m.

Since T � m, there are constants K11, ..., K14 > 0 such that for T ≥ K11,

P
(
‖γt‖∞ ≥ K12

√
T−1 log T

)
≤ K13T

1−p/2 log−K14 . (77)

Step 2: show the desired results.
Partition πt = (π1,t, π2,t)

′. By Ez1s = 0, it fol-
lows that π1,t = m−1

∑t−1
s=t−m Emαx,2∆Ls+1,∗ and π2,t =

(
∑t−1

s=t−m Emαx,2z1s∆Ls+1,∗)/(m
−1
∑t−1

s=t−m Ez2
1s). By Lemma 8, there are con-

stants K15, K16 > 0 such that

K15T
−αx,2 ≤ π1,t ≤ K16T

−αx,2 . (78)

By computations similar to (67) in the proof of Lemma 8, one can show that

E
∣∣z1t∆Lt+1,∗ − z1t

[
2εt+1 (β2x2,t − β1x1,t) + β2

2x
2
2,t − β2

1,tx
2
1,t

]∣∣ ≤ K17T
−1/2

√
log T ,

where K17 > 0 is a constant. By the assumptions of Proposition 3,

E
{
z1t

[
2εt+1 (β2x2,t − β1x1,t) + β2

2x
2
2,t − β2

1,tx
2
1,t

]}
≥ K18T

−αx,1−αz,1 .

It follows that for large T , Ez1t∆Lt+1,∗ ≥ K18T
−αx,1−αz,1/2. Hence, for some

constant K19 > 0,
π2,t ≥ K19T

αx,2−αx,1−αz,1 . (79)

Let x = 2K16T
−αx,2 and M = 2x/(K19T

αx,2−αx,1−αz,1). Then

P (|π̂1,t| ≥M |π̂2,t|)

≤ P (|π̂1,t| ≥ x) + P (|π̂2,t| ≤ x/M)

≤ P (|π̂1,t − π1,t| ≥ x− |π1|) + P (|π̂2,t − π2,t| ≥ |π2,t| − x/M)
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(i)

≤ P
(
|π̂1,t − π1,t| ≥ x−K16T

−αx,2
)

+ P
(
|π̂2,t − π2,t| ≥ K19T

αx,2−αx,1−αz,1 − x/M
)

≤ P
(
‖γt‖∞ ≥ x−K16T

−αx,2
)

+ P
(
‖γt‖∞ ≥ K19T

αx,2−αx,1−αz,1 − x/M
)

= P
(
‖γt‖∞ ≥ K16T

−αx,2
)

+ P
(
‖γt‖∞ ≥ K19T

αx,2−αx,1−αz,1/2
)

(ii)

≤ 2K13T
1−p/2 log−K14 ,

where (i) holds by (78) and (79) and (ii) follows by (77) together with T−αx,2 �√
T−1 log T and Tαx,2−αx,1−αz,1 �

√
T−1 log T . The first claim follows by |π̂1,t/π̂2,t| =

|θ̃1,t/θ̃2,t| and M = 2x/(K19T
αx,2−αx,1−αz,1) = (4K16/K19)Tαx,1+αz,1−2αx,2 .

To see the second claim, notice that

P
(
θ̃2,t ≤ 0

)
(i)
= P (π̂2,t ≤ 0) = P (γ2,t ≤ −π2,t)

(ii)

≤ P
(
γ2,t ≤ −K19T

αx,2−αx,1−αz,1
)

≤ P
(
‖γt‖∞ ≥ K19T

αx,2−αx,1−αz,1
)

(iii)

≤ K13T
1−p/2 log−K14 ,

where (i) holds by θ̃t = m−αx,2π̂t, (ii) follows by (79) and (iii) holds by (77) and
Tαx,2−αx,1−αz,1 �

√
T−1 log T .

Lemma 12. Let the assumptions of Proposition 3 hold. Then ∀p1 ∈ (2, r/3), there
exist constants G0, G1, ..., G5 > 0 and an array {St+1}T−1

t=n+m such that ∀T ≥ G0,

P

(
T−1⋂

t=n+m

{
St+1 = ∆Lt+11{z′tθ̂m,t > 0}

})
≥ 1−G1T

2−p1/2 log−G2 T

and
ESt+1 ≥ K5T

−αx,1−αz,1 .

Proof. Let θ̃t = (
∑t−1

s=t−m zsz
′
s)
−1(
∑t−1

s=t−m zs∆Lt+1,∗), where ∆Lt+1,∗ is defined as in
(66) in the proof of Lemma 8. Define St+1 = ∆Lt+1,∗1{z′tθ̃t > 0}. Notice that

T−1⋂
t=n

{∆Lt+1,∗ = ∆Lt+1} ⊆
T−1⋂

t=n+m

{
St+1 = ∆Lt+11{z′tθ̂m,t > 0}

}
.

Hence, the first claim follows by Lemma 8.
It remains to bound ESt+1. To this end, let q = r/2 and ν = r/(r − 2). Hence,
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q, ν > 1 and q−1 + ν−1 = 1. Notice that

E
(
|∆Lt+1,∗|

∣∣∣1{z′tθ̃t > 0} − 1{z1t > 0}
∣∣∣)

= E
(
|∆Lt+1,∗| ·

∣∣∣∣1{z1t > −θ̃1,t/θ̃2,t and θ̃2,t > 0}

+ 1{z1t < −θ̃1,t/θ̃2,t and θ̃2,t ≤ 0} − 1{z1t > 0}
∣∣∣∣)

≤ E
(
|∆Lt+1,∗|

[
1
{

0 < z1t ≤ −θ̃1,t/θ̃2,t

}
+ 1

{
θ̃2,t ≤ 0

}])
(i)

≤ ‖∆Lt+1,∗‖Lq(P)

∥∥∥1{0 < z1t ≤ −θ̃1,t/θ̃2,t

}
+ 1

{
θ̃2,t ≤ 0

}∥∥∥
Lν(P)

≤ ‖∆Lt+1,∗‖Lq(P)

[∥∥∥1{0 < z1t ≤ −θ̃1,t/θ̃2,t

}∥∥∥
Lν(P)

+
∥∥∥1{θ̃2,t ≤ 0

}∥∥∥
Lν(P)

]
= ‖∆Lt+1,∗‖Lq(P)

([
P
(

0 < z1t ≤ −θ̃1,t/θ̃2,t

)]1/ν

+
[
P
(
θ̃2,t ≤ 0

)]1/ν
)

(80)

where (i) follows by Holder’s inequality. By the assumptions of Proposition 3, the
p.d.f of z1t in a fixed neighborhood of zero is bounded above by some constant K0 > 0.
Recall constants G1, ..., G4 > 0 in the statement of Lemma 11. Hence,

P
(

0 < z1t ≤ −θ̃1,t/θ̃2,t

)
≤ P

(
0 < z1t ≤

∣∣∣θ̃1,t/θ̃2,t

∣∣∣)
≤ P

(
0 < z1t ≤ G1T

αx,1+αz,1−2αx,2
)

+ P
(∣∣∣θ̃1,t/θ̃2,t

∣∣∣ ≥ G1T
αx,1+αz,1−2αx,2

)
(i)

≤ K0G1T
αx,1+αz,1−2αx,2 +G2T

1−p/2 log−G3 , (81)

where (i) follows by the bounded p.d.f of z1t near zero and Tαx,1+αz,1−2αx,2 = o(1), as
well as by Lemma 9.

It is not hard to show that r/3 > 2 + r/(r − 2) = 2 + ν for r ≥ 10. Fix
p ∈ (2 + ν, r/3). Now (80), (81) and Lemma 11 imply that for some constants
K1, K2 > 0

E
(
|∆Lt+1,∗|

∣∣∣1{z′tθ̃t > 0} − 1{z1t > 0}
∣∣∣)

≤ K1‖∆Lt+1,∗‖Lq(P)

[
T (αx,1+αz,1−2αx,2)/ν +

(
T 1−p/2 log−K2

)1/ν
]
. (82)
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By (66), we have that

E∆Lt+1,∗1{z1t > 0} ≥ 2E [εt+1 (β2x2,t − β1x1,t)1{z1t > 0}]− At, (83)

where

At = 2E |εt+1 (δ2,t,∗x2,t − δ1,t,∗x1,t)|

+ E |(β2x2,t − β1x1,t − δ1,t,∗x1,t + δ2,t,∗x2,t) (β1x1,t + β2x2,t − δ1,t,∗x1,t − δ2,t,∗x2,t)| .

After computations similar to (67) in the proof of Lemma 8, we can use the
rate conditions in the assumptions of Proposition 3 and show that for some constant
K3 > 0,

At ≤ K3T
−2αx,2 . (84)

(83) and (84) imply that for some constants K4, K5, K6 > 0, we have that for
T ≥ K4,

E∆Lt+1,∗1{z1t > 0} ≥ 2E [εt+1 (β2x2,t − β1x1,t)1{z1t > 0}]−K3T
−1/2 −K4T

−2αx,2

(i)

≥ K5T
−αx,1−αz,1 −K3T

−2αx,2 ,

where (i) holds by the assumptions of Proposition 3. By the above display and (82),
we have that for large T ,

ESt+1 ≥ K5T
−αx,1−αz,1 −K3T

−2αx,2

−K1‖∆Lt+1,∗‖Lq(P)

[
T (αx,1+αz,1−2αx,2)/ν +

(
T 1−p/2 log−K2

)1/ν
]
.

Recall that in Step 1 of the proof of Lemma 9, we have that mαx,2∆Lt+1,∗ has uni-
formly bounded 0.5r-th moments. Since q = 0.5r, we have that ‖mαx,2∆Lt+1,∗‖Lq(P)

is bounded above by some constant K7 > 0. Hence,

ESt+1 ≥ K5T
−αx,1−αz,1 −K3T

−2αx,2

−K1K7T
−αx,2

[
T (αx,1+αz,1−2αx,2)/ν +

(
T 1−p/2 log−K2

)1/ν
]
. (85)

Since p > ν + 2 and ν = r/(r − 2), it is not hard to show that −αx,2 + (1 −
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p/2)/ν < (1− p/2)/ν < −1/2 < −αx,1 − αz,1. By the assumptions of Proposition 3,
−2αx,2 < −αx,1−αz,1 and −αx,2 + (αx,1 +αz,1− 2αx,2)/ν < −αx,1−αz,1. The desired
result follows by (85).

Proof of Proposition 3. Part (1) follows by Lemma 12 and the arguments in the
proof of Proposition 1. Part (2) follows by Part (1) and Proposition 1.

B.4 Proof of Proposition 4

Our proof of Proposition 4 relies on three lemmas, lemmas 13-15. We first state and
prove these lemmas before proving Proposition 4.

Lemma 13. Let Assumption 4 hold. Define ∆t,big = (µ̂t − µ, β̂t − β)′. For any con-
stants h ∈ (0, 1) and p1 ∈ (2, r/2), we can enlarge the probability space and construct
random variables δt,small,∗, ∆t,big,∗, δ̄t,small and ∆̄t,big such that

P (δt,small,∗ 6= δt,small) ≤ C1T
−min{p1/2−1, (1−h)p1}

P
(
|δt,small,∗ − δ̄t,small| ≤ T−h

)
= 1

δ̄t,small is independent of {xs, εs+1}s≥t−1

|Eδ̄t,small| ≤ T−1
√

log TC2 and T−1C3 ≤ Eδ̄2
t,small ≤ T−1C4∣∣Eδ̄2

t,small − n−2E(
∑t−1

s=t−n xsβ + εs+1)2
∣∣ ≤ C5

√
T−3 log T

and 

P (∆t,big,∗ 6= ∆t,big) ≤ C1T
−min{p1/2−1, (1−h)p1}

P
(
‖∆t,big,∗ − ∆̄t,big‖∞ ≤ T−h

)
= 1

∆̄t,big is independent of {xs, εs+1}s≥t−1

‖E∆̄t,big‖∞ ≤ T−1
√

log TC2 and T−1C3 ≤ E‖∆̄t,big‖2
∞ ≤ T−1C4∥∥E∆̄t,big∆̄

′
t,big − Σ−1

X,tE(n−2
∑t−1

s=t−n x̄sx̄
′
sε

2
s+1)Σ−1

X,t

∥∥
∞ ≤ C5

√
T−3 log T ,

where x̄t = (1, xt)
′, ΣX,t = n−1

∑t−1
s=t−n x̄sx̄

′
s and C1, ..., C4 > 0 are constants depend-

ing only on the constants in Assumption 4.

Proof. The result follows by essentially the same argument as in the proof of Lemma
7. For results on ∆t,big, adjustments to allow multivariate x̄s are needed but the
arguments are essentially identical.
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Lemma 14. Let Assumption 4 hold. Let αx < 1/2. Then ∀p1 ∈ (2, r/2) and
∀h ∈ (0, 1), there exist constants G1, ..., G4 > 0 and an array of random variables
{∆Lt+1,∗}T−nt=n such that for T ≥ G1,

P

(
T−1⋂
t=n

{∆Lt+1,∗ = ∆Lt+1}

)
≥ 1−G2T

1−min{p1/2−1, (1−h)p1}

and
G3T

−2αx ≤ E∆Lt+1,∗ ≤ G4T
−2αx .

Proof. Recall from (17) that

∆Lt+1 = β2x2
t + 2βxtεt+1 + δ2

t,small − δ2
t,big + 2δt,bigεt+1 − 2δt,small(βxt + εt+1). (86)

Recall δt,small = µ̃t − µ. Let ∆t,big = (µ̂t − µ, β̂t − β)′. Let δt,small,∗, ∆t,big,∗, δ̄t,small
and ∆̄t,big be defined as in Lemma 13. We define δt,big,∗ = ∆′t,big,∗x̄t with x̄t = (1, xt)

′

and

∆Lt+1,∗ = β2x2
t +2βxtεt+1+δ2

t,small,∗−δ2
t,big,∗+2δt,big,∗εt+1−2δt,small,∗(βxt+εt+1). (87)

The first claim follows by Lemma 13.
By computations similar to (67) using Lemma 13, we have that

E|∆Lt+1,∗ − β2x2
t | ≤ KT−h1

for some constants K > 0 and h1 ∈ (2αx, 1). The second claim follows.

Lemma 15. Let Assumption 4 hold. Let αx > 1/2. Then ∀p1 ∈ (2, r/2) and
∀h ∈ (0, 1), there exist constants G1, ..., G4 > 0 and an array of random variables
{∆Lt+1,∗}T−nt=n such that for T ≥ G1,

P

(
T−1⋂
t=n

{∆Lt+1,∗ = ∆Lt+1}

)
≥ 1−G2T

1−min{p1/2−1, (1−h)p1}

and
G3T

−1 ≤ E∆Lt+1,∗ ≤ G4T
−1.

Proof. Consider ∆Lt+1,∗ defined in (87). Recall δt,small,∗, ∆t,big,∗, δ̄t,small and ∆̄t,big be
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defined as in Lemma 13. Define

∆Lt+1 = β2x2
t + 2βxtεt+1 + δ̄2

t,small − δ̄2
t,big + 2δ̄t,bigεt+1 − 2δ̄t,small(βxt + εt+1).

By computations similar to (67) using Lemma 13, we have that

E|∆Lt+1,∗ −∆Lt+1| ≤ KT−1/2−αx (88)

for some constant K > 0. Let x̄t = (1, xt)
′. Now we compute

E∆Lt+1 = β2Ex2
t + Eδ̄2

t,small − E
(
x̄′t∆̄t,big

)2
+ 2E∆̄′t,bigx̄tεt+1 − 2Eδ̄t,small(βxt + εt+1)

(i)
= β2Ex2

t + Eδ̄2
t,small − E

(
x̄′t∆̄t,big∆̄

′
t,bigx̄t

)
,

where (i) follows by the fact that ∆̄t,big and δ̄t,small are independent of x̄t and εt+1.
By Lemma 13,∣∣∣∣∣[Eδ̄2

t,small − E
(
x̄′t∆̄t,big

)2
]
−

[
n−2E(

t−1∑
s=t−n

xsβ + εs+1)2 − E(x̄′tΣ
−1
X,tΩtΣ

−1
X,tx̄t)

]∣∣∣∣∣
≤ K1

√
T−3 log T

for some constant K1 > 0, where ΣX,t = n−1
∑t−1

s=t−n Ex̄sx̄′s and Ωt =

E(n−2
∑t−1

s=t−n x̄sx̄
′
sε

2
s+1). Notice that ΣX,t = diag(1, σ2

x,t) with σ2
x,t = n−1

∑t−1
s=t−n Ex2

s.
Hence,

E(x̄′tΣ
−1
X,tΩtΣ

−1
X,tx̄t)

= n−2

t−1∑
s=t−n

Eε2
s+1 + n−2

t−1∑
s=t−n

σ−4
x,tE(x2

tx
2
sε

2
s+1) + 2n−2

t−1∑
s=t−n

σ−2
x,tExtxsε2

s+1.

It follows that

n−2E

(
t−1∑

s=t−n

xsβ + εs+1

)2

− E(x̄′tΣ
−1
X,tΩtΣ

−1
X,tx̄t)

= n−1β2σ2
x,t − n−2

t−1∑
s=t−n

σ−4
x,tE(x2

tx
2
sε

2
s+1)− 2n−2

t−1∑
s=t−n

σ−2
x,tExtxsε2

s+1.
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By computations based on the exponential decay of β-mixing coefficients similar to
(51) and (52), it is not hard to show that

∑t−1
s=t−n σ

−2
x,tExtxsε2

s+1 is uniformly bounded
by a constant K2 > 0. Hence,∣∣∣∣∣E∆Lt+1 − β2Ex2

t − n−1β2σ2
x,t + n−2

t−1∑
s=t−n

σ−4
x,tE(x2

tx
2
sε

2
s+1)

∣∣∣∣∣ ≤ 2n−2K2+K1

√
T−3 log T .

Since σ−4
x,tE(x2

tx
2
sε

2
s+1) and σ2

x,t are bounded away from zero and infinity, β � T−αx

with αx > 1/2, it follows that −E∆Lt+1 � T−1. The desired result follows by (88)
and αx > 1/2.

Proof of Proposition 4. Part (1) follows by Lemma 14 and the arguments in the
proof of Proposition 1. Part (2) follows by Lemma 15 and the arguments in the proof
of Proposition 1.

B.5 Proof of Proposition 5

Our proof of Proposition 5 relies on two lemmas, Lemmas 16 and 17. We first state
and prove these lemmas before proving Proposition 5.

Lemma 16. Suppose that the assumptions of Proposition 5 hold. Let ∆Lt+1,∗

be defined as in (66) in the proof of Lemma 8. Let θ̃t = (θ̃1,t, θ̃2,t)
′ =

(
∑t−1

s=t−m zsz
′
s)
−1(
∑t−1

s=t−m zs∆Lt+1,∗), where zs = (1, z1s)
′. Fix p ∈ (2, r/3). Then

there exist some constants G0, G1, G2, G3 > 0 such that for T ≥ G0,

P

(∣∣∣∣∣ θ̃1,t

θ̃2,t

∣∣∣∣∣ ≥ G1T
αz−αx

)
≤ G2T

1−p/2 log−G3

and
P
(
θ̃2,t ≤ 0

)
≤ G2T

1−p/2 log−G3 .

Proof. The proof is similar to the proof of Lemma 11. Let Ψt+1 = mαx∆Lt+1,∗,
πt = (

∑t−1
s=t−m Ezsz′s)−1(

∑t−1
s=t−m EzsΨs+1), π̂t = (

∑t−1
s=t−m zsz

′
s)
−1(
∑t−1

s=t−m zsΨs+1)

and {ξs+1}t−1
s=t−m with ξs+1 = Ψs+1 − z′sπt. Clearly, π̂t = mαx θ̃t. Let γt = π̂t − πt. By

the same argument as Step 1 in the proof of Lemma 11, we can show that there exist
constants M1,M2,M3 > 0 such that

P
(
‖γt‖∞ ≥M1

√
T−1 log T

)
≤M2T

1−p/2 log−M3 . (89)
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Now we characterize πt. By Lemma 8, there are constants M4,M5 > 0 such that

M4T
−αx ≤ π1,t ≤M5T

−αx . (90)

By computations similar to (67) in the proof of Lemma 8, one can show that

E
∣∣z1t∆Lt+1,∗ − z1t(2βxtεt+1 + β2x2

t )
∣∣ ≤M6T

−1/2
√

log T ,

where M6 > 0 is a constant. By the assumptions of Proposition 5, there exists a
constant M7 > 0 with

E
[
z1t

(
2βxtεt+1 + β2x2

t

)]
≥M7T

−αx−αz .

Hence, for some constant M8 > 0 we have

π2,t ≥M8T
−αz . (91)

Let x = 2M5T
−αx and G = 2x/(M8T

−αz). Then

P (|π̂1,t| ≥ G|π̂2,t|)

≤ P (|π̂1,t| ≥ x) + P (|π̂2,t| ≤ x/G)

≤ P (|π̂1,t − π1,t| ≥ x− |π1|) + P (|π̂2,t − π2,t| ≥ |π2,t| − x/G)

(i)

≤ P
(
|π̂1,t − π1,t| ≥ x−M5T

−αx
)

+ P
(
|π̂2,t − π2,t| ≥M8T

−αz − x/G
)

≤ P
(
‖γt‖∞ ≥ x−M5T

−αx
)

+ P
(
‖γt‖∞ ≥M8T

−αz − x/G
)

= P
(
‖γt‖∞ ≥M5T

−αx,2
)

+ P
(
‖γt‖∞ ≥M8T

−αz/2
)

(ii)

≤ 2M2T
1−p/2 log−M3 ,

where (i) holds by (90) and (91) and (ii) follows by (89) together with T−αx �√
T−1 log T and T−αz �

√
T−1 log T . The first claim follows by |π̂1,t/π̂2,t| = |θ̃1,t/θ̃2,t|

and G = 2x/(M8T
−αz) = (4M5/M8)Tαz−αx .

To see the second claim, notice that

P
(
θ̃2,t ≤ 0

)
(i)
= P (π̂2,t ≤ 0) = P (γ2,t ≤ −π2,t)
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(ii)

≤ P
(
γ2,t ≤ −M8T

−αz
)
≤ P

(
‖γt‖∞ ≥M8T

−αz
)

(iii)

≤ M2T
1−p/2 log−M3 ,

where (i) holds by θ̃t = m−αxπ̂t, (ii) follows by (79) and (iii) holds by (89) and
T−αz �

√
T−1 log T .

Lemma 17. Let the assumptions of Proposition 5 hold. Then ∀p1 ∈ (2, r/3), there
exist constants G0, G1, ..., G5 > 0 and an array {St+1}T−1

t=n+m such that ∀T ≥ G0,

P

(
T−1⋂

t=n+m

{
St+1 = ∆Lt+11{z′tθ̂m,t > 0}

})
≥ 1−G1T

2−p1/2 log−G2 T

and
ESt+1 ≥ K5T

−αx−αz .

Proof. The proof is similar to the proof of Lemma 12. Let θ̃t =

(
∑t−1

s=t−m zsz
′
s)
−1(
∑t−1

s=t−m zs∆Lt+1,∗), where ∆Lt+1,∗ is defined as in (87). Define
St+1 = ∆Lt+1,∗1{z′tθ̃t > 0}. Notice that

T−1⋂
t=n

{∆Lt+1,∗ = ∆Lt+1} ⊆
T−1⋂

t=n+m

{
St+1 = ∆Lt+11{z′tθ̂m,t > 0}

}
.

Hence, the first claim follows by Lemma 14.
To show the second claim, let q = (r + 2)/4 and ν = (r + 2)/(r − 2). Hence,

q−1 + ν−1 = 1. Notice that by the same argument as (80) in the proof of Lemma 12,
we have that

E
(
|∆Lt+1,∗|

∣∣∣1{z′tθ̃t > 0} − 1{z1t > 0}
∣∣∣)

≤ ‖∆Lt+1,∗‖Lq(P)

([
P
(

0 < z1t ≤ −θ̃1,t/θ̃2,t

)]1/ν

+
[
P
(
θ̃2,t ≤ 0

)]1/ν
)
.

Similar to the argument in (81), we have

P
(

0 < z1t ≤ −θ̃1,t/θ̃2,t

)
≤ P

(
0 < z1t ≤

∣∣∣θ̃1,t/θ̃2,t

∣∣∣)
≤ P

(
0 < z1t ≤ G1T

αz−αx
)

+ P
(∣∣∣θ̃1,t/θ̃2,t

∣∣∣ ≥ G1T
αz−αx

)
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(i)

≤ K1G1T
αz−αx +G2T

1−p/2 log−G3

for some constant K1 > 0, where (i) holds by the bounded p.d.f of z1t around zero
and Lemma 16. The above two displays and Lemma 16 imply that for some constant
K2 > 0,

E
(
|∆Lt+1,∗|

∣∣∣1{z′tθ̃t > 0} − 1{z1t > 0}
∣∣∣)

≤ K2‖∆Lt+1,∗‖Lq(P)

(
T (αz−αx)/ν + (T 1−p/2 log−G3)1/ν

)
.

By (66), we have that

E∆Lt+1,∗1{z1t > 0} ≥ 2E [βxtεt+11{z1t > 0}]− At,

where

At = E
∣∣β2x2

t + δ2
t,small,∗ − δ2

t,big,∗ + 2δt,bigεt+1 − 2δt,small,∗(βxt + εt+1)
∣∣ .

After computations similar to (67) in the proof of Lemma 8, we can use the
rate conditions in the assumptions of Proposition 5 and show that for some constant
K3 > 0,

At ≤ K3(T−2αx + T−1/2). (92)

(92) implies that for some constants K4, K5 > 0, we have that for T ≥ K4,

E∆Lt+1,∗1{z1t > 0} ≥ 2E [βxtεt+11{z1t > 0}]−K3(T−2αx + T−1/2)

(i)

≥ K5T
−αx−αz −K3(T−2αx + T−1/2),

where (i) holds by the assumptions of Proposition 5. By the above display and (82),
we have that for T ≥ K4,

ESt+1 ≥ K5T
−αx−αz −K3(T−2αx + T−1/2)

−K2‖∆Lt+1,∗‖Lq(P)

(
T (αz−αx)/ν + (T 1−p/2 log−G3)1/ν

)
.

Recall that in Step 1 of the proof of Lemma 9, we have that Tαx∆Lt+1,∗ has
uniformly bounded 0.5r-th moments. Since q = (r + 2)/4 < 0.5r, we have that
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‖Tαx∆Lt+1,∗‖Lq(P) is bounded above by some constant K6 > 0. Hence,

ESt+1 ≥ K5T
−αx−αz −K3(T−2αx + T−1/2)

−K2K6T
−αx

(
T (αz−αx)/ν + (T 1−p/2 log−G3)1/ν

)
.

It is not hard to show that −αx − αz > −2αx, −αx − αz > −1/2, −αx − αz >
−αx+(αz−αx)/ν and −αx−αz > −αx+(1−p/2)/ν. The desired result follows.

Proof of Proposition 5. Part (1) follows by Lemma 17 and the arguments in the
proof of Proposition 1. Part (2) follows by Part (1) and Proposition 4.

B.6 Proof of Proposition 8

Our proof of Proposition 8 relies on two lemmas, Lemmas 18 and 19. We first state
and prove these lemmas before proving Proposition 8.

Lemma 18. Let the assumptions of Proposition 8 hold. Then there exist constants
K1, K2, K3 > 0 such that for any G ≥ 1,

E
∣∣E(x2

t | z1t)− Ex2
t

∣∣ ≤ K1G+K2

√
G(t−G) +K3[α(G)]C0/(C0+2)(t−G).

Proof. Notice that xt = φGxt−G + Dt, where Dt =
∑t

k=t−G+1 φ
t−kuk. The

proof proceeds in two steps. First, we derive a bound for |Ex2
t − φ2GEx2

t−G| and
E
∣∣E(x2

t | z1t)− φ2GE(x2
t−G | z1t)

∣∣; then we derive a bound for E|E(x2
t−G | z1t)−Ex2

t−G|.
Step 1: bound |Ex2

t − φ2GEx2
t−G| and

∣∣E(x2
t | z1t)− φ2GE(x2

t−G | z1t)
∣∣.

Clearly, x2
t − φ2Gx2

t−G = D2
t + 2φ2Gxt−GDt. Let M1 > 1 be a constant satisfying

Eu2
t ≤M1 and E|ut|2+C0 ≤M1. Notice that

ED2
t =

t∑
k=t−G+1

φ2(t−k)Eu2
k ≤ GM1. (93)

Also notice that xt−G and Dt are independent and can be written as xt−G =∑t−G
k=1 φ

t−G−kuk and Dt =
∑t

k=t−G+1 φ
t−kuk. Notice that by Rosenthal’s inequalities

(Theorem 9.1 in Gut (2013)), there exists some constant M2 depending only C0 such
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that

E|xt−G|2+C0 ≤M2 max


t−G∑
k=1

φ(t−G−k)(2+C0)E|uk|2+C0 ,

(
t−G∑
k=1

φ2(t−G−k)Eu2
k

)(1+C0/2)


(i)

≤ M2M
1+C0/2
1 (t−G)1+C0/2, (94)

where (i) holds by |φ| ≤ 1, Eu2
k ≤ M1 and E|uk|2+C0 ≤ M1. Similarly, we have

E|Dt|2+C0 ≤M2M
1+C0/2
1 G1+C0/2. Therefore,

E|xt−GDt|
(i)
= E|xt−G| · E|Dt| ≤

(
E|xt−G|2+C0

)1/(2+C0) (E|Dt|2+C0
)1/(2+C0)

(i)

≤ M1M
2/(C0+2)
2

√
G(t−G), (95)

where (i) holds by the independence between Xt−G and Dt and (ii) follows by the
bounds of E|xt−G|2+C0 and E|Dt|2+C0 .

By (93), (95) and |φ| ≤ 1, we have that ED2
t + 2φ2GE|xt−GDt| ≤ GM1 +

2M1M
2/(C0+2)
2

√
G(t−G). Since both |Ex2

t−φ2GEx2
t−G| and E

∣∣E(x2
t − φ2Gx2

t−G | z1t)
∣∣

is bounded above by E|x2
t − φ2Gx2

t−G|, we have that

max
{
|Ex2

t − φ2GEx2
t−G|, E

∣∣E(x2
t − φ2Gx2

t−G | z1t)
∣∣}

≤ E|x2
t − φ2Gx2

t−G|

≤ ED2
t + 2φ2GE|xt−GDt|

≤ GM1 + 2M1M
2/(C0+2)
2

√
G(t−G). (96)

Step 2: bound E|E(x2
t−G | z1t)− Ex2

t−G|.
Let r = 1 + C0/2. We apply Lemma 1 with X = x2

t−G − Ex2
t−G, Y = 1, F =

σ({u1, ..., ut−G}), G = σ(z1t), p = 1 and q =∞. It follows that

E
∣∣E (x2

t−G − Ex2
t−G | z1t

)∣∣ ≤ 8[α(G)]1−1/r‖x2
t−G − Ex2

t−G‖Lr(P).

Notice that

‖x2
t−G − Ex2

t−G‖Lr(P) ≤ 2‖x2
t−G‖Lr(P) = 2

(
E|xt−G|2+C0

)1/r (i)

≤ 2M
1/r
2 M1(t−G),
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where (i) holds by (94). The above two displays imply that

E
∣∣E (x2

t−G − Ex2
t−G | z1t

)∣∣ ≤ 16[α(G)]C0/(C0+2)M
2/(C0+2)
2 M1(t−G). (97)

Now we observe that

E
∣∣E(x2

t | z1t)− Ex2
t

∣∣
≤ E

∣∣E(x2
t | z1t)− E(x2

t−G | z1t)
∣∣+ E

∣∣E(x2
t−G | z1t)− Ex2

t−G
∣∣E ∣∣Ex2

t−G − E(x2
t−G | z1t)

∣∣
(i)

≤ 2GM1 + 4M1M
2/(C0+2)
2

√
G(t−G) + 16[α(G)]C0/(C0+2)M

2/(C0+2)
2 M1(t−G),

where (i) holds by (96) and (97). The desired result follows.

Lemma 19. Let the assumptions of Proposition 8 hold. Then there exists a constant
K4 > 0 such that

E |E (xtεt+1 | z1t)| ≤ K4

t−1∑
i=0

[α(i)](C0+1)/(C0+2) .

Proof. Let R = E(ut−i | z1t, εt+1). Then

E |E (ut−iεt+1 | z1t)| = E |E(R | z1t)| ≤ E (E (|R| | z1t))

= E |E(ut−i | z1t, εt+1)|
(i)

≤ 8 [α(i)](C0+1)/(C0+2) C
1/(C0+2)
2 ,

where (i) follows by applying Lemma 1 (with X = ut−i, Y = 1, F = σ(ut−i),
G = σ(εt+1, z1t), p = 2 + C0 and q =∞). Therefore,

E |E (xtεt+1 | z1t)| = E

∣∣∣∣∣
t−1∑
i=0

φiE (ut−iεt+1 | z1t)

∣∣∣∣∣ (i)

≤
t−1∑
i=0

E |E (ut−iεt+1 | z1t)|

≤ 8C
1/(C0+2)
2

t−1∑
i=0

[α(i)](C0+1)/(C0+2) ,

where (i) follows by |φ| ≤ 1. The proof is complete.

Proof of Proposition 8 . Since Extεt+1 = 0, we have E∆Lt+1 = β2Ex2
t . Notice

that xt =
∑t−1

i=0 φ
iut−i. Therefore, Ex2

t =
∑t−1

i=0 φ
2iEu2

t−i ∈ [C1

∑t−1
i=0 φ

2i, C2

∑t−1
i=0 φ

2i].
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Since
∑t−1

i=0 φ
2i = (1−φ2t)/(1−φ2) and φ = exp(−cφ/T ), we have that t−1

∑t−1
i=0 φ

2i →
1/2 as t, T →∞. It follows by n ≤ t ≤ T and n � T that Ex2

t � T . The first part is
proved.

For the second part, notice that

E |E(∆Lt+1 | z1t)− E(∆Lt+1)|

= E
∣∣β2
[
E(x2

t | z1t)− Ex2
t

]
+ 2βE(xtεt+1 | z1t)

∣∣
≤ β2E

∣∣E(x2
t | z1t)− Ex2

t

∣∣+ 2βE |E(xtεt+1 | z1t)|
(i)

≤ β2 min
1≤G≤t

(
K1G+K2

√
G(t−G) +K3[α(G)]C0/(C0+2)(t−G)

)
+K4β

t−1∑
i=0

[α(i)](C0+1)/(C0+2) (98)

for some constants K1, ..., K4 > 0, where (i) follows by Lemmas 18 and 19.
Let Wt = E(∆Lt+1 | z1t). Thus, EWt = E∆Lt+1 = β2Ex2

t > 0. By Markov’s
inequality, we have

P (Wt ≤ 0) = P (Wt − EWt ≤ −EWt)

≤ P (|Wt − EWt| ≥ EWt)

≤ E |Wt − EWt|
EWt

(i)

≤ T−1 min
1≤G≤t

(
K1G+K2

√
G(t−G) +K3[α(G)]C0/(C0+2)(t−G)

)
+ c−1

β Tα−1K3

t−1∑
i=0

[α(i)](C0+1)/(C0+2)

where (i) follows by (98) and EWt = β2Ex2
t with Ex2

t � T . This proves the second
claim.

To see the third claim, let A = EWt = E∆Lt+1 = β2Ex2
t . Then

E|Wt1{Wt > 0} − a| = E|(Wt − a)1{Wt > 0} − a1{Wt ≤ 0}|

≤ E|Wt − a|+ aP(Wt ≤ 0)

(i)

≤ 2E|Wt − a|,
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where (i) holds by P(Wt ≤ 0) ≤ E|Wt − a|/a from the proof of the second claim.
By (98), β � T−α, Ex2

t � T and a � T 1−2α, the third claim follows. The proof is
complete.
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Table 1: Predictive performance of nested models and the switching approach
A: Pr(JSmall−BigT > 1.64)

αz\αx 0 0.1 0.25 0.4 0.5 0.75 1
1.000 1.000 0.995 0.463 0.110 0.004 0.001

B: Pr(JSmall−SWT > 1.64)
0.0 1.000 1.000 1.000 0.999 0.965 0.623 0.519
0.1 1.000 1.000 1.000 0.973 0.851 0.369 0.269
0.25 1.000 1.000 0.996 0.677 0.358 0.094 0.049
0.5 1.000 1.000 0.993 0.419 0.121 0.014 0.010
0.75 1.000 1.000 0.991 0.393 0.087 0.008 0.005
1.0 1.000 1.000 0.994 0.389 0.092 0.009 0.005

C: Pr(JBig−SWT > 1.64)
0.0 0.297 0.729 0.990 0.998 0.977 0.820 0.762
0.1 0.058 0.118 0.360 0.693 0.753 0.630 0.597
0.25 0.005 0.018 0.036 0.097 0.166 0.284 0.280
0.5 0.000 0.004 0.007 0.010 0.026 0.141 0.170
0.75 0.000 0.002 0.004 0.006 0.018 0.126 0.167
1.0 0.000 0.003 0.005 0.004 0.016 0.122 0.154

This table reports result from 5,000 Monte Carlo simulations using a sample size of (n,m, p) = (100, 100, 200). The table reports
the probability of rejecting the null of equal MSE loss against a one-sided alternative that the MSE of one set of forecasts exceeds
the MSE from a second set of forecasts.
Data are generated from the linear regression model

yt+1 = βxt + εt+1,

where the predictor xt ∼ U(−1, 1) is iid. Let st+1 ∈ {0, 1} be a binary indicator such that P (st+1 = 1 | xt > 0) = µ + δ and
P (st+1 = 1 | xt ≤ 0) = µ− δ, where µ = 0.5. The residuals εt+1 are generated as

εt+1 = st+1Q1,t + (1− st+1)Q2,t,

where Q1,t and Q2,t are N(0, 1) independent of each other and of st+1 and xt. The monitoring instrument is generated as

z1t = a1Q1,t + a2Q2,t,

where a1 = 1 and a2 = −1. It is easy to see that Extεt+1 = Ez1tεt+1 = Eεt+1 = Ez1t = Ext = 0 and

Corr(xtεt+1, z1t) =

√
3

2
δ.

We choose β = 3n−αx and δ to satisfy Corr(xtεt+1, z1t) = 0.6n−αz . The big forecasting model always includes xt as a predictor
whereas the small model predicts zero. The switching rule regresses the squared error differences of the small and big model on
an intercept and the monitoring instrument, z1t, and chooses the model that is expected to generate the smallest expected loss
for the next period.
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Table 2: Predictive performance of the switching approach compared to model combination, pretesting and a model augmented
with the monitoring instrument

A: Pr(JComb−SWT > 1.64)
αz\αx 0 0.1 0.25 0.4 0.5 0.75 1
0.0 1.000 1.000 1.000 1.000 0.977 0.746 0.685
0.1 1.000 0.994 0.914 0.903 0.850 0.552 0.475
0.25 1.000 0.993 0.507 0.263 0.226 0.167 0.151
0.5 1.000 0.996 0.366 0.042 0.025 0.051 0.061
0.75 1.000 0.995 0.365 0.025 0.015 0.039 0.050
1.0 1.000 0.996 0.369 0.025 0.010 0.042 0.058

B: Pr(JPretest−SWT > 1.64)
0.0 0.300 0.734 0.988 1.000 0.969 0.653 0.558
0.1 0.057 0.118 0.365 0.798 0.859 0.452 0.347
0.25 0.005 0.021 0.033 0.272 0.391 0.150 0.101
0.5 0.001 0.004 0.005 0.094 0.136 0.045 0.029
0.75 0.000 0.003 0.005 0.076 0.111 0.037 0.024
1.0 0.000 0.003 0.005 0.063 0.095 0.028 0.023

C: Pr(JAugment−SWT > 1.64)
0.0 0.369 0.768 0.967 0.945 0.867 0.616 0.565
0.1 0.160 0.166 0.441 0.642 0.641 0.478 0.456
0.25 0.169 0.112 0.086 0.183 0.241 0.314 0.303
0.5 0.182 0.146 0.057 0.060 0.102 0.220 0.235
0.75 0.193 0.138 0.057 0.050 0.088 0.209 0.236
1.0 0.180 0.151 0.053 0.044 0.085 0.206 0.233

Using the nested model setup from Table 1, this table reports the probability of rejecting the null of equal MSE loss against a
one-sided alternative that the MSE of one set of forecasts exceeds the MSE from a second set of forecasts. In each panel, we
compare the MSE performance of the of the switching approach to that of an equal-weighted combination (Panel 1), an approach
that includes a predictor in the forecasting model if its regression coefficient is statistically significant (pretest, in Panel 2) and
forecasts from an augmented model that includes both the predictor, xt, and the monitoring instrument, z1t, in the forecasting
model. In each case, large values of the rejection probability indicates that the switching approach performs better (produces a
smaller MSE) than the alternative approach.
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Table 3: Pairwise comparisons of predictive performance for the non-nested case (with β2’s sign flipped)
Pr(Jj1−j2T > 1.64)

(j1, j2) = (1, 2) (j1, j2) = (1, SW ) (j1, j2) = (2, SW )

A: (αz,1, αz,2) = (0, 0)
αx,1\αx,2 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1
0.0 0.063 0.000 0.000 0.000 0.716 0.004 0.002 0.001 0.700 1.000 1.000 1.000
0.25 1.000 0.054 0.000 0.000 1.000 0.965 0.327 0.166 0.006 0.961 1.000 0.999
0.5 1.000 0.985 0.031 0.004 1.000 1.000 0.804 0.371 0.003 0.332 0.812 0.527
1.0 1.000 0.996 0.083 0.012 1.000 1.000 0.529 0.256 0.001 0.166 0.367 0.249

B: (αz,1, αz,2) = (0, 1)
αx,1\αx,2 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1
0.0 0.059 0.000 0.000 0.000 0.202 0.002 0.001 0.002 0.204 1.000 1.000 1.000
0.25 1.000 0.054 0.000 0.000 1.000 0.379 0.147 0.151 0.000 0.378 0.998 1.000
0.5 1.000 0.987 0.032 0.004 1.000 0.983 0.256 0.268 0.000 0.008 0.299 0.465
1.0 1.000 0.996 0.081 0.012 1.000 0.993 0.143 0.107 0.000 0.005 0.068 0.133

C:(αz,1, αz,2) = (0.5, 0.5)
αx,1\αx,2 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1
0.0 0.058 0.000 0.000 0.000 0.050 0.000 0.000 0.000 0.050 1.000 1.000 1.000
0.25 1.000 0.067 0.000 0.000 1.000 0.058 0.005 0.004 0.000 0.049 0.977 0.994
0.5 1.000 0.987 0.033 0.004 1.000 0.973 0.037 0.008 0.000 0.005 0.029 0.068
1.0 1.000 0.998 0.076 0.013 1.000 0.994 0.065 0.017 0.000 0.003 0.010 0.016

D: (αz,1, αz,2) = (1, 1)
αx,1\αx,2 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1
0.0 0.059 0.000 0.000 0.000 0.053 0.000 0.000 0.000 0.050 1.000 1.000 1.000
0.25 1.000 0.054 0.000 0.000 1.000 0.044 0.004 0.003 0.000 0.050 0.979 0.992
0.5 1.000 0.984 0.032 0.004 1.000 0.974 0.031 0.008 0.000 0.004 0.033 0.062
1.0 1.000 0.997 0.079 0.014 1.000 0.994 0.063 0.015 0.000 0.003 0.008 0.019

This table reports rejection probabilities of the null of equal MSE performance of models j1 and j2. Data are generated according
to the non-nested model

yt+1 = β1x1,t + β2x2,t + εt+1,

where x1t and x2t are a set of predictor variables that are known at time t. Model 1 takes the form yt+1 = β1x1,t + ε1t+1,
while model 2 takes the form yt+1 = β2x2,t + ε2t+1. The strength of the predictors in models 1 and 2 is parameterized as
βj = cβ,jn

−αx,j , while the accuracy of the monitoring instrument is captured as corr(xj,tεt+1, z1t) = cρ,jm
−αz,j . We report

the outcome of a one-sided test of the null of equal predictive performance against the alternative that Pr(Jj1−j2T > 1.64) .
Higher values of the probabilities indicate that model j2produces a lower MSE than model j1. All results are based on 5,000
MC simulations and use a sample size of (n,m, p) = (100, 100, 200).
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Table 4: Diebold-Mariano tests for equal forecasting performance: Greenbook versus SPF forecasts

A: Final, revised data (m = 40)
h \ Z Uncond UG U ∆Lt−3:t 4(ŷ21,s−3:t − ŷ22,s−3:t)

∆LGB−SPF ∆LGB−SW ∆LSPF−SW ∆LGB−SW ∆LSPF−SW ∆LGB−SW ∆LSPF−SW ∆LGB−SW ∆LSPF−SW

1 -1.97 1.26 1.80 1.21 1.68 1.05 2.19 1.50 2.07
2 -2.19 0.62 2.16 1.54 2.27 1.53 2.94 1.29 2.02
3 -2.25 1.56 2.23 0.97 1.94 1.74 2.36 1.49 1.24
4 -2.26 1.62 2.06 1.91 2.34 1.90 2.86 1.78 1.02

B: Final, revised data (m = 60)
1 -1.97 1.43 1.35 1.30 1.30 1.80 1.51 1.50 0.97
2 -2.19 1.30 1.53 1.47 1.29 1.51 2.01 1.30 0.92
3 -2.25 1.56 0.80 1.80 1.21 1.57 1.34 1.69 -0.13
4 -2.26 1.63 0.41 2.23 0.73 1.79 2.04 1.46 0.29

C: Vintage data (m = 40)
1 -3.24 1.72 3.42 -1.10 2.27 -0.62 2.43 -0.56 2.68
2 -2.29 -0.02 2.14 -0.19 1.81 -0.04 2.06 0.42 1.94
3 -2.41 0.36 2.83 0.92 2.42 1.69 2.92 1.43 2.33
4 -2.56 0.60 2.36 0.54 2.18 1.43 3.14 0.89 1.91

D: Vintage data (m = 60)
1 -3.24 1.38 2.44 -1.07 2.08 -1.51 1.75 -0.83 1.87
2 -2.29 -0.06 1.81 1.12 2.05 1.15 2.46 NA 1.54
3 -2.41 0.79 0.97 1.27 1.13 1.66 2.09 0.76 0.97
4 -2.56 0.03 1.22 -0.06 1.19 1.67 2.70 -0.31 1.20

This table reports Diebold-Mariano t-tests for equal mean squared error performance for the Greenbook and mean SPF forecasts
of the GDP deflator as well as for various rules that switch between these forecasts. All forecasts are reported quarterly using
forecast horizons (h, listed in the rows) ranging from one through four quarters. The first column reports the Diebold-Mariano
t-test for the unconditional forecasting performance with negative values suggesting that the Greenbook forecasts are more
accurate than the SPF forecasts. Subsequent columns compare the MSE performance of various switching rules against the
Greenbook forecasts (labeled ∆LGB−SW ) or against the SPF forecasts (∆LSPF−SW ) with positive values indicating that the
switching rule performs best. The switching rule uses a rolling window of m = 40 quarterly observations (panel A) or m = 60
observations (panel B) to regress loss differences on an intercept and the test variable, Z, which is either the unemployment
gap (UG), the macroeconomic uncertainty measure of Jurado et al. (2015) (U), the lagged loss differential averaged over the
most recent four quarters (∆L), or the difference between the squared forecasts, averaged over the most recent four quarters,
4(ŷ21,s − ŷ22,s). Results in panels A and B use the most recent vintage of the GDP deflator to measure the “actual” value while
results in panels C and D use real-time vintages. The sample period is 1968Q4-2010Q4.
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Table 5: Empirical results from forecasts of stock returns
A:Model combination

Z t0 t1 R2 GW
1 1.82*

∆L 2.70*** -0.68 0.44 0.01**
UG 2.87*** -1.31 0.38 0.01**

ŷ21 − ŷ22 0.32 -2.31*** 1.61 0.01**
U(1) -0.30 0.39 0.11 0.13

B: T-bill rate
1 -1.11

∆L -1.01 -0.42 0.16 0.54
UG 0.59 -2.63*** 0.47 0.04**

ŷ21 − ŷ22 -0.37 -1.96** 1.39 0.24
U(1) 0.08 -0.10 0.00 0.98

This table reports the outcome of conditional tests of equal forecasting performance that compare forecasts of monthly excess
returns on a U.S. stock market portfolio from a (small, S) prevailing mean model (yt+1 = β0 + εt+1) to forecasts from a (big, B)
model with time-varying predictors (yt+1 = β0+β1xt+εt+1). In both cases, the parameters of the forecasting model are estimated
using a rolling window with n = 240 (20 years) of observations, generating a sequence of loss differentials ∆Lt+1 = e2S,t+1−e2B,t+1.
We show tests of the null E[∆Lt+1|Zt] = 0 versus a two-sided alternative under squared error loss, using instruments Zt = 1
(corresponding to a test of equal unconditional expected loss), Zt = ∆Lt (the average loss differential over the preceding 12
months), Zt = ŷ2S,s − ŷ2B,s, the lagged difference in squared forecasts, Zt = ugt, the unemployment gap variable of Stock and
Watson (2010), or Zt = U(1)t, the lagged one-month uncertainty measure of Jurado, Ludvigson and Ng (2016). Numbers shown
are t-statistics on θ0 and θ1 from regressions ∆Lt+1 = θ0 + θ1z1t + εt+1, the R2 from this regression and the Giacomini-White
(GW) test of conditional predictability. In all cases the small (benchmark) forecasting model is a prevailing mean model while
the big model is a forecast combination (Panel A) or a univariate forecasting model that includes a T-bill rate (Panel B).

Figure 1: Mean squared error differences and forecasting performance for Greenbook, SPF and switching rule forecasts
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This figure shows the the squared error differences for Greenbook versus SPF forecasts (blue line, left panel) along with conditional
forecasts of these loss differences using the unemployment gap (red line, left panel) as a monitoring instrument. The right panel
shows the cumulative sums of squared forecast errors from comparisons of Greenbook and SPF forecasts (blue line), switching
rule versus Greenbook forecasts (green line) and switching rule versus SPF forecasts (red line).
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Figure 2: Split of sample (T ) into estimation (n), monitoring (m), and evaluation (n+m+ p) parts
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Figure 3: Daily forecasts of squared error difference for Greenbook versus SPF inflation forecasts
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This figure plots daily estimates of the squared error difference between Greenbook and SPF inflation forecasts, computed using
daily values of the term spread. Positive values indicate that the Greenbook forecasts are expected to be less accurate than the
SPF forecasts, while negative estimates suggest the reverse.
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Figure 4: Performance of Nested Forecasting Models for US Inflation
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Forecasting performance for models of US inflation. The top panel plots the conditionally expected squared error differential for
an AR(4) model (small) versus a model that adds a principal component extracted from a large cross-section of macroeconomic
variables to the AR(4) model (big). The conditional expectation is computed using the unemployment gap as a tester. The
bottom panel plots the cumulative sum of squared error differences for the big model versus the small model (blue line), the
switching rule versus the small model (red), the switching rule versus the big model (black) and the switching rule versus an
augmented model that adds the tester (unemployment gap) to the big forecasting model.
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Figure 5: Cumulative Sum of Squared Error Differences for Different Approaches to Forecasting US Stock Returns
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This figure plots the cumulative sums of squared forecast error differentials for big versus small forecasting model (blue line),
switching rule versus small forecasting model (red), switching rule versus big model (black) and big forecasting model augmented
with the monitoring instrument versus small model (purple). Positive and increasing values of the lines suggest that the first
model produces smaller squared forecast errors than the second model, while negative and decreasing values suggest the opposite.
Gray areas show when the big forecasting model is expected to generate the smallest squared error loss. The big forecasting
model includes a constant and the lagged T-bill rate, while the small forecasting model only includes a constant.

8


	Monitoring_performance_August_29__2017_unblinded
	Introduction
	Conditional Tests of Equal Predictive Accuracy
	Out-of-Sample Tests of Forecasting Performance
	Tests of Equal Unconditional Forecasting Performance
	Tests of Equal Conditional Forecasting Performance
	Expected Gains from Monitoring

	Comparing Forecasts from Non-nested Models
	Pairwise Comparisons
	Determinants of Average Forecasting Performance
	Expected Gains from Forecast Monitoring
	Weak Predictor with a Strong Monitoring Instrument 

	Nested Models
	Expected Performance of Big versus Small Forecasting Models
	Expected Gains from Monitoring Forecasting Performance
	Effect of Persistent Estimation Errors


	Results in the Absence of Estimation Error
	Non-nested case
	Nested case 
	Persistent Regressors
	Choice of Monitoring Instruments
	Sources of Gains from Monitoring
	Time-varying Parameters
	Misspecified Forecasting Model


	Simulation Results
	Nested case
	Non-nested case

	Empirical Analysis
	Inflation Forecasts
	Greenbook versus SPF Forecasts 
	Forecasts from a Backward looking Phillips Curve Model

	Predictability of US Stock Market Returns
	Empirical Findings


	Conclusion
	Technical results used in the proofs
	Proofs of main results
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 8


	Tables_and_figures_in_the_paper_20170829

