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Abstract

We develop new methods for testing equal predictive accuracy for panels
of forecasts, exploiting information in both the time series and cross-sectional
dimensions of the data. We examine general tests of equal forecasting perfor-
mance averaged across all time periods and individual units along with tests
that focus on subsets (clusters) of time or units. Our tests are demonstrated
in an empirical application that compares IMF forecasts of country-level real
GDP growth and inflation to private-sector survey forecasts and forecasts from
a simple time-series model.
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1 Introduction

Forecasts of economic and financial variables are increasingly recorded not only for
a single outcome variable but across multiple variables and at many points in time,
giving rise to panels of forecasts. A prominent example is survey data with indi-
vidual survey respondents or organizations reporting forecasts for multiple countries,
industries or macroeconomic variables over extensive periods of time. Panels are
also common in comparisons of the forecasting performance of alternative prediction
models fitted to different variables.1

The presence of both a cross-sectional and a time-series dimension in panel data
creates unique opportunities for testing economic hypotheses and comparing the pre-
dictive accuracy of different forecasts. At the most aggregate level, one can test
whether two sets of forecasts have the same predictive accuracy “on average”, i.e.,
when averaged both cross-sectionally and over time. This hypothesis does not rule
out that one forecast dominates another in expectation for some time periods or for
some units. Rather, it states that such differences in forecasting performance average
out across time and units. Tests of this hypothesis may therefore overlook differences
that arise only during some periods or affect only certain units.

To address this point, one can instead compare two forecasts’ accuracy either
by averaging along the time-series dimension (e.g., years) for individual variables or
groups of variables or, alternatively, by averaging along the cross-sectional dimension
for a cluster of units, in both cases testing whether a pair of forecasts are equally
accurate (in expectation) within each cluster.2 Tests of the resulting hypotheses can
yield important insights into the economic sources of rejections of equal predictive
accuracy. For example, a test that exploits cross-sectional information but uses only
a short time-series record might find that model-based forecasts are inferior to survey
forecasts only during financial crises or economic recessions, while the two sets of
forecasts are equally accurate during more normal times. This might indicate that the
model-based forecasts adapt too slowly to sharp shifts in the underlying state of the
economy, while conversely survey participants can exploit forward-looking information
to improve their forecasts during such periods. Alternatively, one could use a longer
time-series record to separately compare the predictive accuracy of two competing

1Baltagi (2013) provides an extensive review of forecast applications that use panel data.
2In fact, Qu et al. (2021) establish conditions under which comparisons of predictive accuracy

can be conducted on a single cross-section of data.
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approaches for predicting company earnings, clustering forecasts and outcomes into
pre-specified groups defined by industry, region, or country to gain insights into the
forecasts’ relative accuracy for different types of firms.

Considerations such as these lead us to study tests of equal predictive accuracy
that average over time for pre-specified cross-sectional groups of variables or pre-
specified blocks of time. These tests use the results of Ibragimov and Müller (2010,
2016) and so require normality assumptions for the average loss differential computed
for the individual clusters of forecast errors along with independence across clusters.
Such assumptions generally require invoking a Central Limit Theorem (CLT) for
the clusters and so restrict the kind of dependencies across forecast errors that can
be accommodated. Alternatively, one can use use the randomization test recently
proposed by Canay et al. (2017). We consider both types of tests and establish
conditions under which their usage is valid with panel data. Moreover, to address
situations in which the assumption of block diagonality in the forecast errors from
different clusters fails to hold, we develop a simple approach to correct for such
correlations.

To provide practical guidance on which approach to testing the null of equal pre-
dictive accuracy works best, we undertake an extensive set of Monte Carlo simulations
that allow for serial correlation in forecast errors as well as spatial dependencies and
factors both within and across clusters of forecast errors. In these simulations, we
also compare our test statistics to a variety of tests recently proposed by Akgun et al.
(2022). We find that it is important to account for these features as many tests
display important size distortions and tend to overreject–sometimes by a very large
amount–in the presence of temporal or cross-sectional dependencies in forecast errors.

We further illustrate the new tests in an empirical application to the Interna-
tional Monetary Fund’s (IMF) World Economic Outlook (WEO) forecasts of annual
real GDP growth and inflation for a large cross-section of countries covering 30 an-
nual observations and four forecast horizons over the period from 1990 to 2019. We
compare these forecasts to private-sector survey forecasts reported by the Consensus
Economics organization in addition to forecasts generated by a simple autoregressive
time-series model.

Empirically, for GDP growth forecasts, we mostly find that we cannot reject the
null that the IMF and Consensus Economics forecasts are equally accurate, except
during the peak of the Global Financial Crisis (2008) at which point the IMF forecasts
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became relatively more accurate.
Conversely, we find that the IMF current-year inflation forecasts are significantly

more accurate than their Consensus Economics counterparts, although they seem to
be equally accurate at the one-year horizon. This finding can be attributed mostly
to the accuracy of the IMF inflation forecasts for non-advanced economies along with
relatively accurate forecasts for advanced economies during the global financial crisis.

Looking at the term structure of squared forecast errors across different forecast
horizons, our tests allow us to identify the horizons at which the IMF forecasts gain
in precision. We find that the accuracy of the IMF’s GDP growth forecasts only
begins to improve in the fall of the previous year. This suggests that information
that facilitates more accurate forecasts of GDP growth tends to be quite short-lived
and that improvements in real GDP growth forecasts more than 15 months out from
the target date are relatively minor. Conversely, inflation forecasts tend to improve
both at longer and shorter forecast horizons.

A related literature has focused on evaluating the efficiency of forecasts with panel
data; see, e.g., Keane and Runkle (1990), Davies and Lahiri (1995), and Patton
and Timmermann (2012). However, this literature does not provide methods for
systematically comparing the relative accuracy of different forecasts or for conducting
tests of the null of equal predictive accuracy across different forecasts.

In work that is complementary to ours, Akgun et al. (2022) provide a comprehen-
sive analysis of the properties of tests of equal predictive accuracy with panel data
under assumptions of a strong factor structure in loss differentials. While these au-
thors focus on exploiting such linear factor structures in loss differentials, we propose
inference methods under generic forms of cross-sectional dependencies. For example,
we do not impose strong factor conditions or assume that the factors and idiosyn-
cratic error terms follow strictly stationary linear processes. Another advantage is
that our proposal can be applied in settings in which the factor structure is not di-
rectly imposed on the loss differential; in fact, we allow for cross-sectional dependence
structures that are more general than those associated with linear factor models. Fi-
nally, we also do not require hac standard errors to compute our test statistics, a
point that again differentiates our analysis from that in Akgun et al. (2022).

The outline of the paper is as follows. Section 2 introduces tests of equal predictive
accuracy for panels of forecasts conducted on the pooled average (pooling both cross-
sectionally and across time) or pooled separately across time clusters or cross-sectional
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clusters. Section 3 describes approaches for testing equal predictive accuracy within
clusters of time or for groups of variables. Using these tests, Section 4 conducts an
empirical analysis that compares the IMF forecasts of GDP growth and inflation to the
equivalent Consensus Economics and autoregressive forecasts. Section 5 concludes.

2 Panel Tests of Equal Predictive Accuracy

Consider a panel of data with yit denoting the realized value of unit i at time t, where
i = 1, ...., n refers to the cross-sectional dimension and t = 1, ...., T refers to the time-
series dimension.3 Further, suppose we observe a series of h-step-ahead forecasts of
the outcome, yit|t−h, generated conditional on information available to the forecaster
at time t−h. We denote these by ŷit|t−h,m, where m = 1, ..., M indexes the individual
forecasts (e.g., forecasting models) and h ≥ 0 is the forecast horizon. To keep the
analysis simple, we focus on the case with a pair of competing forecasts, M = 2.
However, our approach can easily be generalized to a setting with an arbitrary (and
growing) number of forecasts, M .

To compare the predictive accuracy of different forecasts we must have a loss func-
tion that quantifies the cost of different forecast errors. Following Diebold and Mar-
iano (1995), define the loss associated with forecast m as Lit|t−h,m = L(yit, ŷit|t−h,m).
Consistent with most empirical work, we assume that the loss is a quadratic function
of the forecast error, eit|t−h,m = yit − ŷit|t−h,m, and thus takes the form4

L(yit, ŷit|t−h,m) = e2
it|t−h,m. (1)

Following Diebold and Mariano (1995) and Giacomini and White (2006), we treat
the forecasts as given and make high-level assumptions on the distribution of the
forecast errors or, more generally, the sequence of losses Lit|t−h,m. In particular, we
do not consider the effect of estimation error on the distribution of the test statistics
which we derive.5

3To simplify notations, we assume that n does not depend on time, but our analysis readily allows
for unbalanced panels.

4See Elliott et al. (2005) for a more general loss function that nests squared error loss as a special
case.

5Estimation error and its effect on tests for equal predictive accuracy features prominently in
the analysis of West (1996), Clark and McCracken (2001), McCracken (2007), and Hansen and
Timmermann (2015).
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2.1 Tests for the Pooled Average

We can consider many different ways to aggregate the loss for panels of forecasts and
outcomes. A natural starting point is the pooled average loss associated with forecast
m averaged across the T time-series observations and n cross-sectional units:

Lm ≡ 1
nT

T∑
t=1

n∑
i=1

L(yit, ŷit|t−h,m). (2)

Our first hypothesis is that the pooled average loss is equal in expectation for a pair
of forecasts m1 and m2:

Hpool
0 : E[Lm1 ] = E[Lm2 ]. (3)

The null in (3) does not rule out that the expected predictive accuracy of a pair
of forecasts, m1 and m2, is different for a particular time period, t. It also does not
rule out that forecast m1 is more accurate than m2 for some units, i, while being
less accurate for others. Rather, it states that such differences average out across the
cross-sectional and time-series dimensions.

To test Hpool
0 , define the squared-error loss differential between forecasts m1 and

m2 for unit i at time t as

∆Li,t|t−h = e2
it|t−h,m1 − e2

it|t−h,m2 . (4)

We can then test the null in (3) using the test statistic

JDM
n,T = (nT ) −1/2

∑T
t=1

∑n
i=1 ∆Li,t|t−h

σ̂(∆Lt|t−h) , (5)

where σ̂(∆Lt|t−h) is a consistent estimator for
√

Var
(
(nT )−1/2 ∑T

t=1
∑n

i=1 ∆Li,t|t−h

)
.

The test statistic in (5) pools information across both the time-series and cross-
sectional dimensions and, as such, is naturally viewed as a Diebold-Mariano panel
test for equal predictive accuracy (Diebold and Mariano (1995)). Pooling information
across both dimensions can potentially provide greater statistical power in empirical
work.

Letting ∆Lt|t−h = n−1 ∑n
i=1 ∆Li,t|t−h be the cross-sectional average loss differential
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at time t, we can define the (scaled) average loss at time t as

Rt|t−h = n1/2∆Lt|t−h. (6)

Under standard assumptions of weak serial dependence in the sequence of forecast
losses, we can compute the standard error in the denominator of (5) using a Newey
and West (1987) estimator:

σ̂(∆Lt|t−h) =

√√√√√ J∑
j=−J

(1 − j/J)γ̂h(j), (7)

where J > 0 is the maximum lag length and γ̂h(j) = T −1 ∑T
t=j+1 R̃t−j|t−j−hR̃t|t−h with

R̃t|t−h = Rtt−h − R̄h and R̄h = T −1 ∑T
s=1 Rs−h. For j < 0, we set γ̂(j) = γ̂(−j).

Assuming that T is large, under standard conditions we can invoke a central limit
theorem (CLT) for the time series data {Rt}T

t=1. We summarize these arguments in
the following result:

Theorem 1. Suppose that max1≤t≤T E|Rt|t−h|r is bounded with r > 2 and that
{Rt|t−h}T

t=1 is α-mixing of size −r/(r − 2). Also assume that σ̂(∆Lt|t−h) =
σ̄n,T + oP (1) and σ̄n,T > 0 is bounded away from zero, where σ̄2

n,T =
Var

(
(nT )−1/2 ∑T

t=1
∑n

i=1 ∆Li,t|t−h

)
. Then under Hpool

0 in (3), JDM
n,T

d→ N(0, 1).

Theorem 1 follows by exploiting the assumption of weak serial dependence. Specif-
ically, by Theorem 5.20 of White (2014), we have

JDM
n,T

σ̂(∆Lt|t−h)
σ̄n,T

d→ N(0, 1).

By the consistency of σ̂(∆Lt|t−h), the desired result follows from Slutzky’s theo-
rem.

Note that we do not require restrictions on the degree of cross-sectional dependence
and can allow for arbitrary cross-sectional dependence in the loss differentials. The
panel data structure naturally has two dimensions (cross-sectional and temporal) and
we only need to exploit one dimension to establish the asymptotic normality. Since
the weak temporal dependence is a widely accepted assumption, we have the luxury
of being agnostic about the nature of cross-sectional dependence. Even if we have
decided to adopt a linear factor model, it might not be immediately clear whether we
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should impose this model on the forecast error or on the loss differential (such as in
Akgun et al. (2022)); it is possible that the final conclusion is sensitive to this subtle
modeling choice. Of course, the factor model might not be linear at all; for example,
consider ∆Li,t|t−h = g(ft, λi)+ui,t, where g(·, ·) is a non-parametric function, ft is the
factor and λi is the factor loading, see Section 2.4 of Chatterjee (2015). Here, the test
statistic JDM

n,T avoids having to take a stand on the exact structure of cross-sectional
dependence. 6

In practice, we may be interested in knowing if a particular forecast (m1 or m2)
was significantly more accurate than an alternative forecast in some time periods or
for some variables even if this does not carry over to other periods or hold for all
variables. To address this issue, we next develop test statistics that can be used to
identify differences across pre-defined groups of time or groups of units.

3 Testing Equal Predictive Accuracy for Sub-
groups

In many situations, the relative accuracy of a set of economic forecasts can be expected
to differ across time or across variables either due to their use of different information
sets or due to differences in modeling approaches. The Federal Reserve may, for
example, have superior information relative to private forecasters about the state of
the economy or the likely future path of interest rates that is particularly useful during
financial crises. During normal times, this informational advantage may be smaller.
Under this scenario, the economic forecasts of the Federal Reserve could be more
accurate than private sector forecasts during financial crises but not during normal
times. As a second example, the IMF may have superior expertise and information
about developing economies and program countries in particular, whereas information
is more symmetric–vis-a-vis private sector forecasters–for advanced economies. As a
third example, two forecasts could be equally accurate “on average” with one forecast
being better for advanced economies but worse for developing economies.

In situations such as these, the null in (3) of equal “average” predictive accuracy is
of less interest as we might be specifically interested in testing whether two forecasts

6Specifically, provided that Rt+h is weakly serially dependent and satisfies β-mixing, we can
establish asymptotic normality for J = (T )−1/2 ∑T

t=1 Rt+h/σ̂(∆Lt+h|t) in (5) without imposing
restrictions on the cross-sectional dependence in the loss differentials.
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are equally accurate either across certain periods of time or for different cross-sectional
groups or clusters. This section develops a framework for conducting such tests.

3.1 Time Clusters

We first consider testing whether a pair of forecasts are equally accurate during cer-
tain pre-defined blocks of time. To this end, we partition the panel of loss differ-
entials along the time-series dimension into a set of K clusters {t1, t2, ..., tK} which
are assumed to be mutually exclusive and exhaustive so that ∪K

j=1tj = [1 : T ]. De-
note the associated test statistics by {Rt1 , Rt2 , ..., RtK

}.7 For example, if each clus-
ter has equal length, q, the test statistic for the jth cluster can be computed as
Rtj

= q−1 ∑jq−1
t=(j−1)q Rt|t−h.8 When q = 1, each time period is a separate cluster.

Suppose we are interested in testing that the null of equal predictive accuracy for
two forecasts holds within each of the time clusters:

HT cluster
0 : ERt1 = ERt2 = · · · = ERtK

= 0. (8)

The null in (8) does not test whether the loss differential averaged across the K

clusters equals zero, i.e., K−1 ∑K
j=1 ERtj

= 0. This would be identical to testing the
null in (3) which arises as a special case with a single cluster, i.e., K = 1. Clearly
this null is less restrictive than, and indeed implied by, HT cluster

0 in (8) which tests
that equal predictive accuracy holds for each time cluster.

Suppose that n is large and assume that a CLT applies to the cross-section of fore-
cast errors so Rtj

is Gaussian.9 Then we can test the null in (8) using the framework
for inference with clusters developed by Ibragimov and Müller (2010, 2016). In the
present context, this approach offers several advantages. Besides arising naturally as
a way of testing (8), the approach does not require stationarity of the underlying loss
differentials. Moreover, it can be used with as little as T = 2 time periods and gives
rise to a t-test that is easily computed:

7For simplicity, we suppress the h subscript in our notations here, but it is implicit that all
underlying forecasts use a horizon of h periods.

8More generally, q = ⌊T/K⌋ is the average length of each cluster and we can let the cluster length
vary across the K clusters.

9This assumption also rules out strong serial dependence among the loss differentials.
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JR
n =

√
KR̄√

(K − 1)−1 ∑K
j=1(Rtj

− R̄)2
, (9)

where R̄ = K−1 ∑K
j=1 Rtj

is the loss differential averaged across the K clusters. We can
establish the distributional properties of the test statistic in (9) under the following
assumption:

Assumption 1. Let R(n) = (Rt1 , ..., RtK
)′ ∈ RK. Suppose that R(n) − ER(n) →d

N(0, Ω) as n → ∞, where Ω is a diagonal matrix.

The diagonal matrix in Assumption 1 requires that Rtj
is asymptotically inde-

pendent across the K clusters. This is a very mild assumption that is satisfied under
the usual mixing conditions or other weak temporal dependence assumptions. As
discussed in Section 3.1 of Ibragimov and Müller (2010), one way to achieve this is
by separating the subsamples (tj) by a sufficient number of time periods.10

Importantly, Assumption 1 refers to the properties of the loss differentials and
so we do not require that the data generating process for the outcome variable be
stationary provided that any non-stationary components either are incorporated in
both forecasts or, if this does not hold, affect both forecasts equally and so vanish
from the loss differentials.

By Theorem 1 of Ibragimov and Müller (2010) and the continuous mapping the-
orem, we have the following result:

Theorem 2. Suppose that Assumption 1 and one of the following conditions hold:
(1) K ≥ 2 and α ≤ 0.08326.
(2) 2 ≤ K ≤ 14 and α ≤ 0.1.
(3) K ∈ {2, 3} and α ≤ 0.2.
Then under HT cluster

0 we have

lim sup
n→∞

P
(
|JR

n | > tK−1,1−α/2
)

≤ α.

Here tK−1,1−α denotes the 1 − α quantile of the Student-t distribution with K − 1
degrees of freedom. When the test statistics computed for the individual clusters do
not have the same variance, using critical values from the student-t distribution can

10Provided that the data are weakly dependent, by a CLT it follows that the cluster averages will
be Gaussian with diagonal variance-covariance matrix.
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lead to conservative inference. With a conventional test size (α ≤ 0.05), we only need
K ≥ 2 clusters to apply the test. However, if α = 0.10, we can have at most K = 14
clusters.

An alternative strategy for testing the null in (8) is to use the randomization test
proposed by Canay et al. (2017). Define the randomization p-value:

p̂R = 2−K
∑

ξ1,...,ξK∈{−1,1}
1


∣∣∣∣∣∣

K∑
j=1

Rtj
ξj

∣∣∣∣∣∣ >

∣∣∣∣∣∣
K∑

j=1
Rtj

∣∣∣∣∣∣
 , (10)

where ξ1, ..., ξK ∈ {−1, 1} are all possible combinations of the K variables ξ1, ..., ξK ,
each of which takes a value of ±1.

Under the conditions stated in Assumption 1, we have the following result:

Theorem 3. Suppose Assumption 1 holds. Then under HT cluster
0 we have

lim sup
n→∞

|P (p̂R > α) − α| ≤ (3/2) × 2−K .

The formal proof of this result is available in the Appendix. The result here is
not the same as Theorem 3.1 of Canay et al. (2017) since we do not resolve ties by
a random coin flip. Although the assumptions of the randomization test in (10) are
the same as those used by the t-test in (9), the two tests have different properties.
For example, the t-test might be more accurate when K is very small. In empirical
applications with less than five clusters, inference at the 5% significance level only
rejects when the p-value is exactly zero. As pointed out in Canay et al. (2017),
the bound on the size distortion in Theorem 3 implies that, provided the number of
clusters is not too small, the null rejection probability will be at least α−(3/2)×2−K .
On the other hand, for larger values of K, Theorem 3 implies a similarity property
of the randomization test.11

We note that the proposal here for testing the time clusters can accommodate
cross-sectional dependencies. An important case is the factor models considered in
Akgun et al. (2022). Under the data-generating process in Equation (1) and As-
sumptions 1 and 6 therein, we can show (in their notations) that n−1 ∑n

i=1 E(∆Lit) =
n−1 ∑n

i=1 µi =: µ̄n, which does not depend on t. Hence, to test the null hypothesis of
µ̄n = 0 (or H0,1 therein), we can divide the time dimension into K clusters and apply

11A test is similar if its rejection probability is the same across all parameter values that satisfy
the null hypothesis.
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our proposed method above.

3.2 Cross-sectional Clusters

In addition to testing the null of equal predictive accuracy for a pair of forecasts,
averaged cross-sectionally for different blocks in time, we can also test whether the
forecasts are equally accurate within each of a set of pre-specified cross-sectional clus-
ters. This type of test typically averages over the full time-series sample, as opposed
to the test in (9) which performs cross-sectional averaging. For example, we may
be interested in testing whether two forecasts are equally accurate for advanced as
well as for developing economies. This null does not amount to testing whether the
predictive accuracy is the same for advanced and developing economies–we would gen-
erally expect forecasts to be less accurate for the more volatile developing economies.
Rather, it amounts to separately testing whether a pair of forecasts have the same
expected accuracy among developing economies as well as among advanced economies
even though, in absolute terms, their predictive accuracy could be different across the
two sets of economies.

To set up such a test, suppose that the individual units have been categorized
into K cross-sectional clusters, denoted by H1, ..., HK . Let |Hj| denote the number of
elements in the jth cluster, i.e., the cardinality of Hj, with ∑K

j=1 |Hj| = n and define

Dj = |Hj|−1/2T −1/2 ∑
i∈Hj

T∑
t=1

∆Li,t|t−h, (11)

The null hypothesis of equal predictive accuracy within each cross-sectional cluster
takes the form

HCcluster
0 : ED1 = ED2 = · · · = EDK = 0. (12)

This setup is equivalent to that in Section 3.1. However, here we rely on the time-
series dimension T being sufficiently large to ensure that the K time-series averages of
loss differentials are approximately Gaussian and the goal is to test that their means
are all zero.

Let D̄ = K−1 ∑K
j=1 Dj be the average of the loss differences across the K cross-
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sectional clusters and consider the test statistic

JD
n =

√
KD̄√

(K − 1)−1 ∑K
j=1(Dj − D̄)2

. (13)

Analogous to the result for the time-series clusters, we make the following assump-
tion:12

Assumption 2. Let Dn,T = (D1, ..., DK)′ ∈ RK. Suppose that Dn,T − E(Dn,T ) →d

N(0, Ω) as n, T → ∞, where Ω is a diagonal matrix.

Assumption 2 relies on a CLT for time-series averages and so rules out situations
with either a small T or strong serial dependency. By Theorem 1 of Ibragimov and
Müller (2010) and the continuous mapping theorem, we have the following result:

Theorem 4. Suppose Assumption 2 and one of the following conditions hold:
(1) K ≥ 2 and α ≤ 0.08326.
(2) 2 ≤ K ≤ 14 and α ≤ 0.1.
(3) K ∈ {2, 3} and α ≤ 0.2.
Then under HCcluster

0 the following holds

lim sup
n,T →∞

P
(
|JD

n | > tK−1,1−α/2
)

≤ α.

Theorem 4 establishes conditions under which the simple test procedure of Ibrag-
imov and Müller (2010) can be applied to test the null of equal predictive accuracy
within clusters of units formed as subsets of the cross-sectional data.

Similarly, we can establish a result that is equivalent to Theorem 3 for the cross-
sectional clusters. To this end, define the randomization p-value:

p̂D = 2−K
∑

ξ1,...,ξK∈{−1,1}
1


∣∣∣∣∣∣

K∑
j=1

Djξj

∣∣∣∣∣∣ >

∣∣∣∣∣∣
K∑

j=1
Dj

∣∣∣∣∣∣
 . (14)

Using Assumption 2, we have

Theorem 5. Suppose Assumption 2 holds. Then under HCcluster
0 we have

lim sup
n,T →∞

|P (p̂D > α) − α| ≤ (3/2) × 2−K .

12A sufficient condition for Dn,T − E(Dn,T ) →d N(0, Ω) is that |Hj | → ∞ for each j along with
weak serial dependence for ∆Li,t+h|t.
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Provided that the conditions in Assumption 2 hold, this result means that we can
apply the randomization test in (14) to the cross-sectional clusters.

3.3 De-correlating Clusters

Assumption 2 requires that the covariance matrix Ω is (block) diagonal. This may
well be a good approximation for some empirical applications but is likely to fail in
many other cases. In what follows we therefore consider both cases.

We begin with a data generating process (DGP) that satisfies Assumption 2. Let

et,i = λift,g(i) + ut,i, (15)

where ut,i is i.i.d N(0, σ2
u) across i and t and g(i) is the cluster of variable i, i.e.,

g(i) ∈ {1, ..., K}. We assume that ft,k is i.i.d across t and k ∈ {1, ..., K} so each
cluster maps into a unique factor consistent with the block-diagonal structure of Ω.
Further, we can allow for serial correlation in ft,k and ut,i.

Next, consider a DGP that fails to satisfy Assumption 2:

et,i = λift + ut,i,

ft = ϕft−1 + ξt, (16)

ut,i = ρut,i + vt,i

with i.i.d ξt and vt,i across t and i. In this case, the covariance matrix of the forecast
errors is not block-diagonal and tests that assume such a structure are unlikely to
work well.

A possible approach for handling deviations from block diagonality in forecast
errors is to first decorrelate the clusters of forecast errors and then apply the method
to the decorrelated data. We next explain how to implement these steps. Let At =
(A1,t, A2,t, ..., AK,t)′ be the loss differentials averaged within each of the K clusters:

Aj,t = |Hj|−1 ∑
i∈Hj

∆Li,t|t−h.

14



Next, define the estimated second-moment matrix Ω̂ = T −1 ∑T
t=1 AtA

′
t, and let

Bn,T = Ω̂−1/2
T∑

t=1
At.

We can now implement the tests in Theorems 4 and 5, except that Dn,T is replaced
by Bn,T . We consider this procedure both in the Monte Carlo simulations and in the
empirical work.

4 Monte Carlo Simulations

In this section we compare the finite-sample performance of the test statistics through
a set of Monte Carlo simulation experiments. We consider two new DGPs to eval-
uate the size and power of our panel tests. The first (DGP 1) assumes that the
cross-sectional forecast errors are independent but serially persistent. Conversely, the
second (DGP 2) posits an hierarchical factor structure in the forecast errors, allowing
for both cluster-specific as well as a global factor in the forecast errors. We also con-
sider two DGPs from Akgun et al. (2022): DGP 3 assumes a spatial AR(1) process in
forecast errors, while DGP 4 assumes that loss differentials follow a two-factor model.

4.1 Data Generating Processes

We begin by explaining how we set up our Monte Carlo experiments. Throughout
the analysis, we consider squared error loss L(et,i) = e2

t,i for a pair of forecast er-
rors denoted et,i,1 and et,i,2 with associated loss differentials ∆Lt,i = e2

t,i,1 − e2
t,i,2.13

Throughout the analysis, we focus on a test size of 5% and report results based on
1, 000 MC simulations.

Our main MC simulations consider four values for the time-series dimension:
T =50, 100, 500, 1,000 and two values of the cross-sectional dimension: N = 50, 100.

Our implementation of the permutation tests sets the number of blocks (K) equal to
5 and 10.14 Each set of forecast errors, et,i,1 of model 1 and et,i,2 of model 2, forms a
T × N -dimensional panel.

13For simplicity we drop references to the forecast horizon, h, of the forecast errors.
14Fixing the value of K is consistent with the assumptions in Theorem 2 and 3.
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Turning to the specific assumptions, DGP 1 assumes that the time series of indi-
vidual forecast errors follow AR(1) processes that are independent in the cross-section:

et,i,1 = µ1(1 − ϕ) + ϕet−1,i,1 + εt,i,1, εt1 ∼ N(0, σ2
ε),

et,i,2 = µ2(1 − ϕ) + ϕet−1,i,2 + εt,i,2, εt2 ∼ N(0, σ2
ε), (17)

where εt,i,1 and εt,i,2 are independent across time, variables and models and σε = 1.
We consider two values of the persistence parameter, ϕ, namely ϕ = 0.5 (DGP

1.1) and ϕ = 0.8 (DGP 1.2), corresponding to modest and fairly high persistence in
the forecast errors.15

In the simulations used to evaluate the size of our tests, we impose the null of
equal predictive accuracy by setting µ1 = µ2 = 0. For all simulation exercises, we
compute Newey-West standard errors for the DM tests based on a Bartlett kernel
with a maximum lag length set at T 1/3.

DGP 2 adopts a hierarchical factor structure in the forecast errors:16

et,i,m = λht,m + ft,g(i),m + ut,i,m, (18)

ht,m = ϕhht−1,m + εt,m,

ft,g(i),m = ϕft−1,g(i),m + ξt,g(i),m,

ut,i,m = (1 − ρ)µm + ρut,i,m + vt,i,m.

Here, g(i) is the cluster that variable i belongs to and g(i) ∈ {1, ..., K}. We further
assume that the factors ft,k,m are i.i.d across time t, models m ∈ {1, 2} and clusters k ∈
{1, ..., K}. Thus, each cluster is affected by its own factor. To generate dependencies
across units belonging to different clusters, we also include a global factor, ht, that
affect all units. We allow for serial correlation in ht, ft,k and ut,i. For the simulation
exercise, we assume ϕh = ϕ = ρ = 0.5 while εt, ξt,k and vt,i are standard Gaussian
variables that are i.i.d. across t, k and i. The size of each cluster is the same, N/K,
and g(i) = ⌈iK/N⌉.

We consider two values for λ in equation (18): λ = 0 for DGP 2.1 and λ = 1
for DGP 2.2. Hence, errors are independent across groups (λ = 0) under DGP

15While it is not uncommon for economic variables to be highly persistent, forecast errors can be
expected to be far less persistent, at least under squared error loss.

16By assuming a factor structure in the underlying forecast errors with separate factors for the
two sets of models, our setup allows loss differentials to be correlated within clusters.
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2.1. DGP 2.2 (λ = 1) represents the case where errors are not independent across
groups. DGP 2.3 assumes identical factors across forecast errors of two models by
putting further constraints on DGP 2.2: ht,1 = ht,2 and ft,g(i),1 = ft,g(i),2 for all i

and t. As proved in Qu et al. (2021), the sum of squared factors are offset in the
squared loss differentials, such that the DGP 2.3 satisfies the null hypothesis of equal
expected squared loss conditional on factor realizations, at each single cross-section.
To examine the size of the tests, again we set µ1 = µ2 = 0. To evaluate their power,
we set µ1 = κ/(NT )0.25, µ2 = 0.

Our third specification (DGP 3) is based on the model in equations (28) and (29)
in Akgun et al. (2023) applied to a pair of forecast errors:

et,i,m = ρ
n∑

j=1
wi,jet,j,m + ut,i,m, m ∈ {1, 2}, (19)

where ut,i,m are i.i.d. Gaussian N(0, σ2
m). and wij is an element from a spatial matrix

Wn. Letting et,m = (et,1,m, et,2,m, ..., et,n,m)′ and ut,m = (ut,1,m, ut,2,m, ..., ut,n,m)′, it can
be shown that et,m can be sampled as

et,m = (In − ρWn)−1 ut,m.

Spatial interactions between units are created with a row-normalized rooktype
weight matrix, W , whose units lie on a p1 × p2 rectangular grid such that the first p1

units are located in the first column of the grid, the second p1 units located in the
second column, and so on with n = p1p2. For each n ∈ {10, 20, 30, 50, 100}, we choose
p1 as 2, 3, 6, 10 and 50, respectively. Following Akgun et al. (2022), we set ρ = 0.5.
To evaluate the size of the tests, we set σ1 = σ2 = 1 and to estimate their power, we
set σ1 = 1 and σ2 = 1 + 0.05κ/(NT )0.25 and vary κ.

Our fourth and final specification (DGP 4) uses the model in equation (30) of
Akgun et al. (2022) and so directly specifies the loss differentials as a two-factor
model:

∆Lt,i = µ + λi1ft1 + λi1ft2 + εt,i, (20)

where εit follows (19) scaled by a constant:

εti =
√

Ntr ((I − ρW )(I − ρW )′)et,i,1. (21)
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Factor loadings are generated independently as λi1, λi2 ∼ N(1, 0.2) and the factors are
drawn from independent standard Gaussian distributions, ft1, ft2 ∼ N(0, 1). We set
µ = 0 when evaluating size. To compute the power of the tests, we set µ = 10κ/

√
NT .

4.2 Akgun et al. (2023) Test Statistics

Using a somewhat different modeling framework than ours, Akgun et al. (2022) pro-
pose a variety of test statistics to test the null hypothesis of equal predictive accuracy
of panel forecasts on average, (3). For comparison, and to illustrate the importance
of how cross-sectional dependency is treated, we consider both their test statistics
that assume no cross-sectional dependence as well as two of their tests that allow for
strong cross-sectional dependence. Their S1 test statistic is suitable for situations
with cross-sectional independence and is computed as

S
(1)
nT =

√
nT∆Lt

σ̂1,nT

, (22)

where

σ̂2
1,nT =

∑n
i=1

∑T
t,s=1 kT (|t − s|/dT ) ∆L̃it∆L̃is

NT
,

∆L̃it = ∆Lit − T −1
T∑

t=1
∆Lit,

∆LnT =
n∑

i=1

T∑
t=1

∆Lit/nT.

Here kT (·) is a kernel function, and dT is its width such that limT −→∞ d2
T /T −→ 0.

For the simulation exercise, we use a Bartlett kernel for kT (·) and set dT = T 1/3.
The S3 test of Akgun et al. (2022) allows for strong cross-sectional dependence

and is computed as

S
(3)
nT =

√
nT∆Lt

σ̂3,nT

, (23)

where
σ̂2

3,nT =
∑n

i,j=1
∑T

t,s=1 kT (|t − s|/dT ) ∆L̃it∆L̃js

nT
.

Akgun et al. (2022) also develop statistics to test hypothesis (12). Let −→
D =

(D1, D2, ..., DK)′, where Dk is defined in equation (11) Their C1 statistic requires
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cross-sectional independence and is computed as

C
(1)
NT = −→

D ′Ω̂−1
1,nT

−→
D, (24)

where
Ω̂1,nT = 1

T

n∑
i=1

T∑
t,s=1

kT (|t − s|/dT ) ιgi
ι′
gi

∆L̃it∆L̃is

ngi

with gi ∈ {1, 2, ..., K} indicating the group index that variable i belongs to. ngi
is

the number of variables in group gi. ιgi
is a column vector with n elements whose jth

element equals one if j belongs to group gi and otherwise equals zero.
Finally, the C3 test statistic of Akgun et al. (2022) allows for strong cross-sectional

dependence by considering the correlation between ∆L̃it and ∆L̃js to compute the
standard deviation of the loss differentials:

C
(3)
nT = −→

D ′Ω̂−1
3,nT

−→
D, (25)

where

Ω̂3,nT = 1
T

n∑
i,j=1

T∑
t,s=1

kT (|t − s|/dT ) ιgi
ι′
gj

∆L̃it∆L̃js
√

ngi
ngj

.

4.3 Simulation Results

Our first DGP (DGP1) allows forecast errors to be serially correlated though there
is no cross-sectional correlation, no group structure and no common factors affecting
the forecast errors. For this “plan vanilla” process, we would expect our tests to have
the right size and this is generally what we find. For the version with modest serial
correlation (DGP 1.1 in Table 1), our time-block and group tests all have excellent
size properties with close to the correct size of 5% across different combinations of
T, N, and K. Hence there is no need to use the decorrelated test statistics in this
scenario though these tests also appear to be properly sized.

In contrast, the S1 and S3 tests proposed by Akgun et al. (2022) are somewhat
oversized in the two small samples (T = 50, 100) with a rejection rates equal to roughly
twice the nominal size of 5%. These size distortions tend to disappear, however, as T

increases to T = 500, 1000. The C1 and C3 test statistics proposed by Akgun et al.
(2022) are both seriously oversized with rejection rates for C1 between 15% and 23%
and rejection rates of C3 between 25% and 57% in the smallest sample (T = 50) .
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Although these rejection rates are reduced in the largest sample (T = 1000), the C1
and C3 tests remain oversized with rejection rates close to twice the nominal size.

For the more persistent time series (DGP 1.2 in Table 2), our test statistics con-
tinue to have excellent size properties, though the time-block permuation test is some-
what oversized in the smallest sample (T = 50). Similarly, for both DGP 1.1 and
1.2, the single cross-section test of Qu, Timmermann, and Zhu (2023) has roughly
the correct size in both cross-sections (N = 50, 100).

Size distortions are pronounced for the S1 and S3 test statistics which have rejec-
tion rates around 25% for T = 50 and 11-13% for T = 1, 000. Thus, even in data with
a large time-series dimension, these tests over-reject. Similarly, the C1 and C3 tests
now hugely overreject with rejection rates around 60-80% for the C1 test statistic and
rejection rates in the 70-97% range for the C3 test for the data with the smallest time-
series dimension (T = 50). Even for the longest data (T = 1, 000), rejection rates for
both of these test statistics exceed 24% across different combinations of Nand K.

Next, consider the second DGP (DGP 2) which assumes a cluster dependence
structure with each cluster having its own separate factor (Table 3). For DGP 2.1,
which imposes that the errors are dependent within clusters but independent across
clusters (λ = 0), our test statistics continue to have excellent size properties as the
only systematic evidence of over-sizing occurrs for the permutation tests when T = 50
and K = 5. In contrast, the S1 test statistic of Akgun et al. (2022) is hugely oversized
with rejection rates typically exceeding 40% when N = 50 and K = 5 and rejection
rates that exceed 70% for N = 100 and K = 5. This holds even for the largest values
of T and so size distortions do not disappear even in data with a large time-series
dimension. The S3 test statistic performs much better with a size around 10% for
T = 50 and a size closer to 6% when T = 1, 000. The C1 test displays even greater
size distortions than the S1 test with rejection rates exceeding 90% in almost all cases.
The C3 test statistic also is greatly oversized in the samples with a smaller time-series
dimension (T = 50, 100) but has a rejection rate close to 10% when T = 1, 000.

DGP 2.2 allows the forecast errors to be correlated both within groups and across
groups (λ = 1). Under this setup (Table 4), the time-block t-test and time-block
permutation test continue to have good size properties. Now, however, the group
t-test and group permutation tests are seriously oversized with rejection rates around
15-20% for K = 5 and rejection rates of 27-29% for K = 10. Importantly, however,
the decorrelated group t-test and permutation test succeeds in effectively correcting
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these size distortions, leading to tests with approximately correct rejection rates. In
contrast, the S1 and C1 tests are even more oversized for DGP 2.2 than for DGP 2.1,
while the size distortions for the S3 and C3 test statistics are comparable to those
found for DGP 2.1.

DGP 2.3 (Table 5) assumes identical factors across the two panels of forecast
errors and the resulting size of the time-block and group tests is similar to those
found under DGP 1. The key difference is that, consistent with theory, the size of the
single cross-section test now is around 5%. The size of the S1 and S3 tests exceeds
10% when T is smaller than 100 while the C1 and C3 tests are even more oversized
than the S1 and S3 tests.

Next, we turn to the two DGPs proposed by Akgun et al. (2022). Recall that DGP
3 assumes a spatial dependence structure in the forecast errors.17 For this process
(Table 6), our time-block t-test and permutation test have no material size distortions
across all values of N, K, and T . The group t-test is mildly oversized for T = 50 if N

is small but oversizing in the rejection rate gets reduced as the T and N dimensions
grow larger. The group permutation test tends to be mildly oversized, particularly
when N = K = 10 with rejection rates around 10%. Moreover, while the upward
bias in the rejection rate tends to decrease when N increases, it does not disappear
when T grows. Once again, however, the decorrelated group t-test or permutation
test effectively gets rid of the over-rejection of these tests.

Due to the spatial correlation in forecast errors, the S1 test overrejects with a size
a little above 10% for most combinations of T and N . Conversely, the S3 test statistic,
which accounts for cross-sectional dependencies in forecast errors, has the right size
even for the smallest sample sizes such as T = 50, N = 10. For most combinations
of T, N the C1 test is oversized and rejects in about 10% of cases, though it has a
better size when N = K = 10 and T = 1, 000. The C3 test is somewhat oversized
mainly for small values of T (T = 50), particularly when K = 10 and N is small.
This tendency to overreject disappears, however, for large values of T .

The fourth DGP (DGP 4 reported in Table 7) is quite different from the first three
DGPs as it specifies factors directly for loss differentials with spatial dependencies in
the residuals. Under this DGP, the time-block t-test has near-perfect size while the
time-block permutation test is mildly oversized but generally has size close to the
nominal value. The Group t-test and group permutation tests are hugely oversized,

17Following Akgun et al. (2023), report results on a finer grid of values of N .
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however, with rejection rates between 50% and 80%. The decorrelated group t-test
and group permutation tests handle the correlation in loss differentials much better,
and are close to having the correct size.

For this DGP, the S1 test is hugely oversized with rejection rates between 45%
and 80%, while the S3 test comes close to being correctly sized, albeit with a modest
amount of over-rejection (1-2%) for T = 50. Again, this difference can be explained
by how the tests handle cross-sectional dependencies either by ignoring it (S1) or
accounting for it (S3). The C1 test is also strongly oversized with rejection rates that
hardly vary across different values of T but increase in N , e.g., from around 25%
for N = 10 to around 70% for N = 100 when K = 5. The C3 test is somewhat
biased when T = 50, 100 with rejection rates around 10%, but the size of this test
approaches the correct level for larger values of T such as T = 1, 000. Biases in size
do not depend much on the value of N but tend to increase a little when we move
from K = 5 to K = 10 blocks.

The null of equal conditionally expected loss differentials entertained by the single
cross-section test fails to hold under DGP 3 and DPG 4. We skip examining the
rejection rates of the single cross-section test under DGP 3 and 4.

4.4 Power of Tests

To evaluate the power of the tests for DGP 1.1 and 1.2, we set µ1 = κ/(NT )1/4

and µ2 = 0 and examine how the power shifts as κ moves away from zero. We set
N = 100 and T = 50. The x axis in Figures 1 and 2 is κ. When evaluating the power
of the single cross-section test, we take the last period as sample. Figure 1 shows the
results. The time-block t-test and time-block permutation test tend to have slightly
higher power than the grouped tests. Conversely, using decorrelated data can reduce
the power of the test. Unsurprisingly, ignoring time-series information and using
the single cross-section test leads to the largest decline in power. Stronger serial
correlation in forecast errors also tends to weaken the power of the tests, as can be
seen by comparing the top and bottom panels in Figure 1.18

Similar results are found for the tests implemented under DGP 2.1 and 2.2. Figure
2 shows that the time-block t-test and permutation tests produce power that is on a

18We omit results for the Akgun et al. (2022) tests which tend to be oversized in small samples
for these DGPs.
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par or better than the other tests - at least those that have the right size.19

5 Empirical Results

To illustrate the economic insights that can be gained from the test statistics in-
troduced in sections 2 and 3, we next conduct an empirical analysis that focuses
on the predictive accuracy of the International Monetary Fund’s (IMF) World Eco-
nomic Outlook (WEO) forecasts of real GDP growth and inflation across the world’s
economies.20 We compare the WEO forecasts to forecasts from a private-sector or-
ganization (Consensus Economics) as well as forecasts from a simple autoregressive
model.

5.1 Data

The IMF WEO forecasts are reported twice each year, namely in April (labeled
Spring, or S) and October (Fall, or F ), for the current-year (h = 0) and next year
(h = 1) horizons. As illustrated in Figure 3, this produces a set of four forecast
horizons, listed in decreasing order: {h = 1, S; h = 1, F ; h = 0, S; h = 0, F}.21 For a
subset of (mostly advanced) countries, current-year forecasts go back to 1990, while
next-year forecasts start in 1991. For other countries the forecasts start later, giving
a shorter data sample. For all countries, the last outcome is recorded for 2019. In
total, the WEO forecasts cover 182 countries.

We compare the WEO forecasts at the four forecast horizons to current-year and
next-year forecasts reported by the Consensus Economics organization in their April
and October surveys. Consensus Economics (CE) is a London-based organization
which each month surveys a range of private forecasters. Their forecasts are carefully
checked and are known to be of high quality. Moreover, their forecasts have been used
in prior studies such as Loungani (2001), Patton and Timmermann (2010) and Patton
and Timmermann (2011). The list of countries covered by CE is somewhat smaller
than that covered by the WEO forecasts, restricting the cross-sectional dimension of

19We have omitted results for the single cross-section test which is over-sized for these DGPs.
20The WEO forecasts are extensively followed by the public and have been the subject of a number

of academic studies, as summarized in Timmermann (2007).
21The WEO forecasts cover forecast horizons up to five years but we do not use the longer forecast

horizons due to the relatively short time span of our data.
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our comparison. In total, we can compare the WEO and CE forecasts for 85 (real
output growth) or 86 (inflation) countries.

We also compare the one-year-ahead (h = 1) WEO forecasts to forecasts gener-
ated by an AR(1) model estimated separately for each country. Though this is a very
simple approach, parsimonious models have often proven difficult to beat in empirical
analyses of out-of-sample forecasting performance, see, e.g., Faust and Wright (2013).
Autoregressive forecasts of the outcome variable in year t, yit, are based on a fore-
casting model that uses data on the outcome for the previous year, yit−1, to estimate
the intercept and AR(1) coefficient. This gives an advantage to the AR(1) model
because, in practice, the previous year’s GDP growth and inflation are not observed
until well into year t. Data on actuals extend back to 1985 and we use the 10-year
window 1985-1994 as a warm-up period, adopting a recursively expanding estimation
window to produce subsequent forecasts. Thus, the first AR(1) forecast uses data
from 1985-1994 to predict the outcome for 1995. The second forecast uses data from
1985-1995 to predict the outcome for 1996, and so on.

5.2 Comparisons of GDP Growth Forecasts

The top row in Table 8 reports values of the test statistic for the null of equal (pooled
average) predictive accuracy (Hpool

0 in (3)) which averages squared-error loss differ-
ences both cross-sectionally and across time. We set up the tests so that positive
values indicate that the WEO forecasts are, on average, more accurate than the CE
or autoregressive forecasts, while negative values suggest the opposite.22

First, consider the forecasts of real GDP growth (Panel A). The pooled average
t-test in equation (5) is positive or zero across all forecast horizons. However, the
tests comparing the accuracy of the WEO forecasts to the CE forecasts (four left-
most columns) fail to be significant for any of the individual horizons. Conversely,
the comparisons of the one-year-ahead WEO forecasts to the autoregressive forecasts
(listed in the two right-most columns in Table 8) show that the WEO Fall next-
year forecasts (though not the Spring forecasts) are significantly more accurate, on
average, than the AR forecasts with a t-statistic of 2.45 and a p-value of 0.01.

Next, consider testing the null HT cluster
0 in (8) that the forecasts are equally ac-

curate for all time clusters. We first treat individual calendar years as separate time
22In particular, this means that m1 refers to the CE or autoregressive forecasts while m2 refers to

the WEO forecasts.
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clusters so that the current-year forecasts (h = 0) are based on K = 30 one-year time
clusters, while next-year forecasts (h = 1) are based on K = 29 one-year clusters.
Rows 3 and 4 in Table 8 report the t-statistic from equation (9) along with the p-
value for a one-sided test against the alternative that the WEO forecasts are more
accurate. None of the t-tests comparing the WEO and CE forecasts is statistically
significant as evidenced by the p-values which all exceed 0.30. The randomization
test (10) reported in the fifth row leads to identical conclusions with p-values ranging
from 0.34 to 1.00, suggesting that there is no statistically significant differences in
the average predictive accuracy of the WEO vs CE forecasts for any of the individual
years during our sample.

We also consider an alternative time-clustering scheme that uses three time clus-
ters arranged around the Global Financial Crisis (GFC), namely 1995-2006, 2007-
2009, and 2010-2019.23 The results, listed in line six for the randomization p-value,
show that we cannot reject the null that the CE and WEO forecasts of GDP growth
were equally accurate before, during and after the GFC. Conversely, with p-values
below 0.01, there is very strong evidence that the one-year-ahead Spring and Fall
WEO forecasts of GDP growth were significantly more accurate than the autore-
gressive forecasts for at least one of these time clusters. This stands in contrast to
the results from applying the same test statistic to the individual years and suggests
that additional power can be gained from grouping time periods based on economic
characteristics–in this case the unfolding of a major global crisis.

We also consider results that cluster the country observations along a set of IMF
classifications which consider geographical regions and economic development stages.
Specifically, we use a partition of seven clusters of countries, namely (i) Advanced
Economies (labeled ae and containing 36 countries in 2016), (ii) Emerging and De-
veloping Europe (eeur, 9), (iii) Emerging and Developing Asia (dasia, 27), (iv) Latin
America and the Caribbean (lac, 32), (v) Middle East, North Africa, Afghanistan,
and Pakistan (menap, 21), (vi) Commonwealth of Independent States (cis, 12), and
(vii) Sub-Sahara Africa (ssa, 45), with the acronym for the cluster and the number
of countries within each cluster listed in parentheses. Consensus Economics cover
fewer countries in their forecasts–particularly among developing economies. To en-
sure that we have a sufficiently large number of members in each cluster in the WEO
vs. CE comparison, we therefore merge the Emerging and Developing Asia, Middle

23See https://www.stlouisfed.org/financial-crisis/full-timeline for a timeline of the financial crisis.
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East, North Africa, Afghanistan, and Pakistan, and Sub-Sahara Africa clusters into
one cluster labeled DMS.24 This leaves us with K = 5 clusters for the WEO vs. CE
comparisons.

Row seven in Table 8 reports the t-statistic from equation (13) with p-values in
rows eight and nine, the latter based on the randomization test (14). Again we fail
to find evidence of significant differences in the accuracy of the WEO versus CE fore-
casts. Conversely, the one-year Spring and Fall WEO forecasts are significantly more
accurate than the autoregressive forecast with p-values of 0.06 or 0.04, respectively.
Finally, the randomization test based on country group clusters finds no statistically
significant differences in the predictive accuracy of the WEO and CE GDP growth
forecasts but again finds that the WEO forecasts are significantly more accurate than
the autoregressive forecasts.

The corresponding p-values based on decorrelated data listed in the rows ten and
eleven of Panel A lead to fewer rejections of the null of equal predictive accuracy. For
example, the p-values for the decorrelated group cluster tests are 0.16 and 0.04 for
the Spring and Fall WEO forecasts versus 0.06 and 0.04 for the original data. Still,
using the decorrelated data, we still reject the null of equal predictive accuracy of the
WEO Fall and autoregressive forecasts at the 5% significance level.

The bottom two rows in Panel A of Table 8 report p-values of Sup tests proposed
in Qu et al. (2019). The first row of Sup tests (row 12) examines the null hypothesis
that, across all countries, the WEO forecasts are worse than either the CE or AR(1)
forecasts. Against the CE forecasts, this null is not rejected for one-year Spring and
Fall forecasts and Spring current-year forecasts but it is rejected with a p-value of 0.01
for current-year Fall forecasts. This suggests that there exists at least one country
for which the WEO current-year Fall GDP forecasts are significantly more accurate
than the corresponding CE forecasts. In addition, there are countries whose one-year
Spring and Fall WEO forecasts are significantly more accurate than the autoregressive
forecast, as indicated by the p-values of 0.00 for the Sup test applied to these cases.
Row thirteen reports results from testing the reverse null hypothesis, i.e., that the
WEO forecasts are superior to the CE or AR(1) forecasts for all countries. This null
is not rejected in a single case, indicating that the CE and AR(1) benchmarks fail

24Our comparison of the WEO and autoregressive inflation forecasts combines the Middle East,
North Africa, Afghanistan, and Pakistan and sub-Sahara Africa groups into a single cluster, yielding
a total of six clusters.
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to significantly outperform the WEO forecasts for even a single country at a single
forecast horizon.

These results show that we cannot reject the null that the WEO and CE forecasts
of GDP growth are equally accurate for the pooled average as well as within the
clusters formed along time-series or cross-sectional dimensions. However, we find
strong evidence that the one-year-ahead WEO Spring and Fall forecasts of GDP
growth are significantly more accurate than autoregressive forecasts for at least one
period (time cluster) and one cross-sectional group (regional cluster).

To help interpret the aggregate test statistics reported in Table 8, in Table 9 we
break down the comparisons of predictive accuracy by country clusters and, thus,
report the test statistic (5) applied to the countries in the individual clusters. Inter-
estingly, there is no evidence that the accuracy of the WEO and CE forecasts of GDP
growth differ significantly for any of the five clusters that we use to compare these
forecasts (Panel A). In contrast, the WEO forecasts are significantly more accurate
than the AR(1) forecasts for Emerging and Developing Europe and Latin America
and the Caribbean (Fall forecasts only).

5.3 Comparisons of Inflation Forecasts

Turning next to the inflation forecasts, the top row of Panel B in Table 8 shows
that the pooled average squared-error losses of current-year (h = 0) Spring and Fall
WEO inflation forecasts are significantly smaller than those of the CE forecasts with
p-values of 0.00 and 0.01, respectively. Similar conclusions hold when we test the
null of equal predictive accuracy for the individual-year or GFC time clusters (rows
three through six). Interestingly, while the country cluster tests (rows seven through
nine) for the current-year WEO Spring inflation forecasts continue to be significantly
more accurate than their CE counterparts at the 10% level or below, current-year
Fall forecasts fail to reject the null of equal predictive accuracy. Overall, though,
our tests suggest a strong rejection of the null of equal predictive accuracy of the
WEO and CE current-year inflation forecasts both across time and across economic
groups against the alternative that the WEO forecasts are more accurate. The Sup
test rejects the null that current-year Fall WEO forecasts for all countries are worse
than the corresponding CE forecasts, showing the existence of at least one country
for which the WEO forecasts are significantly more accurate than the CE forecasts.
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For the next-year forecasts, i.e., at forecast horizons exceeding a year, the t-
statistic for the pooled average or time clusters as well as the randomization p-value
based on one-year clusters reject the null of equal predictive accuracy at either the
5% level (h = 1, S) or at the 10% level (h = 1, F ). The t-statistic or randomization
p-value based on country group clusters, as well as their decorrelated counterparts,
fail to reject the null of equal predictive accuracy. The Sup test fails to reject the null
that WEO forecasts is worse than CE forecasts for all country series, as well as the
reverse hypothesis.

Comparisons of the average predictive accuracy of the WEO and autoregressive
forecasts of inflation unequivocally lead to strong rejections of the null of equal pre-
dictive accuracy. The null is strongly rejected for the pooled average (top row) with
p-values below one percent for both sets of next-year forecasts. Similar conclusions are
obtained from the time-series cluster and regional cluster tests. Only the t-statistic
based on country-group clusters and the decorrelated test statistics fail to reject the
null of equal predictive accuracy. As shown in the MC simulation section, these tests
tend to have weaker power than the other tests. Overall, this evidence suggests that
there are both time periods and regions for which the WEO inflation forecasts are
significantly more accurate than the autoregressive forecasts of inflation. The sup test
strongly rejects rejects the null that the next-year WEO forecasts are worse than the
autoregressive forecasts for all countries. Conversely, this test fails to reject the null
that the WEO forecasts are better than the autoregressive forecasts for all countries.

To examine in more detail the reasons for these aggregate test results, Panel B
in Table 9 reports results for the individual country clusters. We find that current-
year WEO forecasts are significantly more accurate than the CE forecasts only for
the group of Latin America and Caribbean, Comonwealth of Independent States
and DMS countries. This finding is consistent with the notion that the IMF pos-
sesses special expertise when it comes to predicting inflation rates in less developed
economies. Compared to the autoregressive inflation forecasts, we see large and sig-
nificant improvements in the WEO one-year forecasts across most clusters included
in our analysis, with the only exception of emerging Europe and Latin America and
Carribean economies.

Figure 4 plots the single-period cross-sectional test statistics that compare the
predictive accuracy of the WEO and CE inflation forecasts. Each point on the graphs
is computed for the corresponding year in the sample. The values shown in Figure 4 is
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the t-statistics defined in equation (10) in Qu et al. (2021). Positive values indicates
WEO forecasts have lower average loss than consensus economics forecasts. The
dashed lines are 5% thresholds of the test statistics. Ignoring multiple test concerns,
we find that the null of equal predictive accuracy is rejected for two years in our
sample at the two longest horizons (h = 1, F and h = 1, F ) and for five or six years
in our sample at the two shortest (current-year) horizons (h = 0, S and h = 0, F ).
In contrast, the CE inflation forecasts are not significantly more accurate than the
WEO forecasts in any given year.

5.4 Comparisons Across Forecast Horizons

Because we observe WEO forecasts of the same outcome (real GDP growth or inflation
for country i in year t) reported at four different horizons, we can measure whether
the accuracy of the forecasts improves as the time of the outcome draws closer and
the forecast horizon shrinks. We would expect predictive accuracy to improve as
the forecast horizon is reduced and more information about the outcome becomes
available. Ordering the WEO forecasts from the longest (h = 1, S) to the shortest
(h = 0, F ) horizon, this means that we would expect

Hhorizon
0 : E[e2

h=0,F ] ≤ E[e2
h=0,S] ≤ E[e2

h=1,F ] ≤ E[e2
h=1,S]. (26)

To test if this holds, following Patton and Timmermann (2011) we consider the fol-
lowing four squared error loss differences:

∆Li,t+h(h = 1, S; h = 1, F ) = e2
i,t+1,S − e2

i,t+1,F

∆Li,t+h(h = 1, F ; h = 0, S) = e2
i,t+1,F − e2

i,t+0,S,

∆Li,t+h(h = 0, S; h = 0, F ) = e2
i,t+0,S − e2

i,t+0,F ,

∆Li,t+h(h = 1, S; h = 0, F ) = e2
i,t+1,S − e2

i,t+0,F (27)

The last difference in (27) is used to measure whether, on average, the WEO current-
year Fall forecasts (h = 0, F ) are more accurate than the Spring forecasts for the same
outcome computed one year previously (h = 1, S) and, thus accumulates any gains
in accuracy over the three preceding intervals. Generally, we would expect current-
year forecasts to be more accurate than next-year forecasts and a failure to reject the
null of equal predictive accuracy against the alternative E[e2

h=0,F ] < E[e2
h=1,S] would
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suggest that the IMF does not learn any new forecast-relevant information during
the 18 months leading up to and including most of the current year whose outcome
is being predicted.

Identifying the points in time at which forecast-improving information arrives is
economically important but also inherently difficult as such information often is not
directly observed. Our tests can help address this issue as they directly reflect changes
in the accuracy of forecasts of the same outcome variable computed at different points
as the “event date” draws closer.

Table 10 shows test results comparing the predictive accuracy of the WEO fore-
casts at the four different horizons. Positive values of the test statistics (small p-
values) indicate that the forecast computed at the shorter horizon is more accurate
than the forecasts computed at the longer horizon.

5.4.1 GDP Growth Forecasts

We start again with the forecasts of real GDP growth (Panel A) and first compare the
accuracy for the next-year spring and fall WEO forecasts (h = 1, S versus h = 1, F )
shown in column 1. Regardless of whether we use the pooled average (top row),
single-year time-series cluster or group cluster test statistics, we find no evidence of
a statistically significant improvement in the accuracy of the Spring versus Fall one-
year-ahead WEO forecasts in these comparisons. Interestingly, however, the time-
series cluster test that focuses on the performance prior to, during and after the
Global Financial Crisis strongly (line 6) rejects the null that the WEO one-year-ahead
Spring and Fall GDP growth forecasts are equally accurate against the alternative
that the Fall forecasts are more accurate. This suggests that the IMF did improve on
the accuracy of their one-year-ahead inflation forecasts between the spring and fall
WEO issues either before, during or after the Global Financial Crisis.

The pooled average and region-cluster tests both reject the null of no improvement
in predictive accuracy when moving from the prior-year Fall WEO to the current-
year Spring WEO forecasts (h = 1, F vs h = 0, S in column 2), with the group-cluster
tests indicating particularly strong rejections. Interestingly, the tests based on the
individual-year time clusters do not reject the null in this case, suggesting that the
rejection is driven by differences in the average predictive accuracy of the two sets of
forecasts within one or more economic (country) groups. The Sup test strongly rejects
the null that shorter-horizon forecasts are less accurate than longer-horizon forecasts
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for all country series. Conversely, this test fails to reject the null that shorter-horizon
forecasts are more accurate than the longer-horizon forecasts.

Comparing the average predictive accuracy of the current-year WEO forecasts
produced in the spring and fall (h = 0, S versus h = 0, F ), all test statistics strongly
reject the null, producing p-values below 0.05 except for a single case (country group
clusters) whose p-value is 0.10. This is unsurprising since a considerable amount of
information relevant for forecasting current-year GDP growth gets released between
April and October of the current year, the two dates at which these WEO forecasts
are reported. All tests also strongly reject the null of no improvement between the
points of the longest (h = 1, S) and shortest (h = 0, F ) forecast horizons. This shows
that, on a cumulative basis, the predictive accuracy of the WEO forecasts improves
both in specific years, and for some economic groups.

Table 11 presents results broken down by individual economic clusters. There is
strong evidence that the accuracy of the GDP growth forecasts improves across all
individual horizons for the Advanced Economies, Emerging and Developing Europe,
Developing Asia, and Latin America and the Caribbean. Conversely, we mainly see
significant improvements in predictive accuracy on a cumulative basis for the MENAP,
CIS and SSA economies.

5.4.2 Inflation Forecasts

Turning to the predictive accuracy of the inflation forecasts (Table 10, panel B),
the pooled average and time- and regional cluster t-tests computed for the next-year
Spring and Fall forecasts all generate p-values below 0.05. Forecasts of next-year
inflation thus become significantly more accurate between the points where the prior-
year Spring and Fall WEOs are computed. We also see see large improvements
in the comparisons of the WEO next-year fall and current-year spring forecasts of
inflation (second column) and when comparing current-year spring and fall inflation
forecasts (third column). Unsurprisingly, this evidence of significant improvements
in the accuracy of the inflation forecasts at each step of the forecast revision process
translates into mostly significant rejections of the null of equal predictive accuracy
for the one-year-ahead spring forecast (h = 1, S) and the current-year fall forecasts
(h = 0, F ). The group cluster tests based on the decorrelated data also lead to a
rejection of the null of equal predictive accuracy in the comparisons of h = 1, F vs
h = 0, S and h = 0, S vis h = 0, F .
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The results disaggregated by regional cluster (Panel B in Table 11) show evidence
of broad-based and consistent improvements in the accuracy of the WEO inflation
forecasts as the forecast horizon is reduced both across time and across different
groups of economies, with the weakest evidence again materializing for the comparison
of the two longest horizons, i.e., h = 1, S versus h = 1, F .

Figure 5 shows plots the value of our single cross-sectional test for equal predictive
accuracy of long and short WEO forecasts in a given year. The values shown in
Figure 5 is the t-statistics defined in equation (10) in Qu et al. (2021). Positive
values indicates shorter horizon forecasts have lower average loss than longer-horizon
forecasts. The dashed lines are 5% thresholds of the test statistics. For the h = 1, F

versus h = 1, S comparison, the cross-sectional test statistic is positive for almost all
years in our sample and statistically significant in six years. Interestingly, this test is
significantly negative test in 2009. Though rare, this can happen when a sharp shock
leads to a reversal in the trends assumed by the forecast computed at the shorter
horizon. For all other horizon comparisons we find that the single cross-section test
statistics tend to be positive and highly significant in most years, consistent with
improvements to predictive accuracy as the forecast horizon is shrunk and the event
window is shortened. The Sup test strongly rejects the null that shorter-horizon
forecasts are less accurate than longer-horizon forecaster for all countries except for
h = 1, S versus h = 1, F . Conversely, the Sup test does not reject the reverse
null hypothesis that shorter-horizon forecasts are more accurate than longer-horizon
forecasts for all countries.

We conclude from these results that improvements in the accuracy of the WEO
inflation forecasts as the target date draws closer are more widespread across time,
regions and forecast horizons than the improvements observed for the WEO forecasts
of real GDP growth. The strong improvements in predictive accuracy observed in
the next-year Fall versus Spring forecasts suggest that forecast-relevant information
arrives further back in time for the inflation process than for GDP growth and that
the IMF incorporates this information to improve their forecasts.

6 Conclusion

This paper develops new methods for testing the null of equal predictive accuracy
of pairs of forecasts in the context of panel data in which we observe time series of
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forecasts for outcomes of multiple units. Such data structures allow us to compare
the (relative) performance of alternative forecasts in a way that exploits both the
time series and cross-sectional dimensions.

Our paper undertakes an extensive set of Monte Carlo simulations from which we
conclude the following. First, our time-block t-test and permutation tests have the
right size across a wide variety of data generating processes displaying features such as
serial correlation, spatial correlation, and factor structure in clusters or in the full set
of forecast errors. The grouped t-test and permutation test also work well in settings
with serial correlation in forecast errors, though tend to become oversized in the
presence of strong cross-sectional correlation in forecast errors. For this latter case,
we propose simple decorrelated group and permultation tests which are properly sized.
Among the tests of Akgun et al. (2023), we find that serial correlation in forecast
errors can lead to serious size distortions. Unsurprisingly, their simplest tests that
ignore cross-sectional correlation in loss differentials tend to be strongly oversized
when such dependencies exist. However, their more sophisticated tests that account
for cross-sectional dependencies in loss differentials (S3 and C3) perform much better
with reduced size distortions. Overall, the Monte Carlo simulations suggest that our
time-block t-test and permutation tests provide robust inference for testing the null
of equal predictive accuracy in a variety of scenarios that allow for autocorrelation
and cross-sectional dependencies in forecast errors.

We illustrate our tests in an empirical analysis that compares the accuracy of the
World Economic Outlook forecasts reported by the IMF to forecasts from a private
organization (Consensus Economics) as well as forecasts generated by a simple autore-
gressive model. Our new tests identify important differences in predictive accuracy
and have the ability to pinpoint for which groups of countries or which periods in
time one forecast is more accurate than other forecasts.
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Appendix: proof of Theorems 3 and 5

Proof of Theorem 3. Let b = (b1, ..., bK)′ ∈ RK . For ξ = (ξ1, ..., ξK)′ ∈ {−1, 1}K ,
define m(b, ξ) =

∣∣∣∑K
j=1 ξjbj

∣∣∣. For any integer j ∈ {1, ..., 2K}, define m(j)(b) to be the
j-th largest number (counting repeated values) in {m(b, ξ)}ξ∈{−1,1}K , i.e., m(1)(b) ≤
m(2)(b) ≤ · · · ≤ m(2K)(b). Define k∗ =

⌈
2K(1 − α)

⌉
, where ⌈t⌉ denotes the smallest

integer no smaller than t.
We observe that 2−K ∑

ξ1,...,ξK∈{−1,1} 1
{∣∣∣∑K

j=1 ξjbj

∣∣∣ >
∣∣∣∑K

j=1 bj

∣∣∣} > α if and only∑
ξ1,...,ξK∈{−1,1} 1

{∣∣∣∑K
j=1 ξjbj

∣∣∣ ≤
∣∣∣∑K

j=1 bj

∣∣∣} < 2K(1 − α), which means that
∣∣∣∑K

j=1 bj

∣∣∣ <

m(k∗)(b).
Define the function h : RK 7→ R by h(b) = ∑K

j=1 bj − m(k∗)(b). Therefore, p̂R > α

if and only if h(R(n)) > 0. By Assumption 1 and the null hypothesis, R(n)
d→ R ∼

N(0, Ω).
Let B = {r ∈ RK : h(r) > 0}. Notice that P (R ∈ ∂B) = 0 since R ∼ N(0, Ω),

where ∂B denotes the boundary of B in the usual topology on RK . By Theorem 1.3.4
of van der Vaart and Wellner (1996),

P (h(R(n)) > 0) → P (h(R) > 0). (28)

Let ξ ⊙ R denote the entrywise multiplication, i.e., ξ ⊙ R = (ξ1R1, ..., ξKRK)′. We
observe that m(k∗)(R) = m(k∗)(ξ ⊙ R); {m(R, z)}z∈{−1,1}K and {m(ξ ⊙ R, z)}z∈{−1,1}K

are the same numbers in a different order so the ranked version is exactly the same.
Notice that

∑
ξ=(ξ1,...,ξn)∈{−1,1}K

1{h(ξ ⊙ R) > 0} =
∑

ξ∈{−1,1}K

1


K∑

j=1
ξjRj − m(k∗)(ξ ⊙ R) > 0


=

∑
ξ∈{−1,1}K

1


K∑

j=1
ξjRj − m(k∗)(R) > 0

 .

By definition, ∑
ξ∈{−1,1}K 1

{∑K
j=1 ξjRj > m(k∗)(R)

}
≤ 2K − k∗. We notice that

m(R, ξ) =
∣∣∣∑K

j=1 ξjbj

∣∣∣ =
∣∣∣∑j: ξj=1 bj − ∑

l: ξl=−1 bl

∣∣∣. Therefore, for a generic R,
{m(R, ξ)}ξ∈{−1,1}K have repeated numbers and each distinct number is repeated ex-
actly twice.
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It follows that ∑
ξ∈{−1,1}K 1

{∑K
j=1 ξjRj > m(k∗)(R)

}
≥ 2K − (k∗ + 2). Therefore,

−2 ≤
∑

ξ∈{−1,1}K

1


K∑

j=1
ξjRj > m(k∗)(R)

 − (2K − k∗) ≤ 0.

Since ξ ⊙ R and R have the same distribution (due to the diagonality of Ω), we
have P (h(ξ ⊙ R) > 0) = P (h(R) > 0) for any ξ. Taking expectations on the above
display, we obtain −2 ≤ 2K · P (h(R) > 0) − (2K − k∗) ≤ 0, which means that
−21−K ≤ P (h(R) > 0) − (1 − 2−Kk∗) ≤ 0 and thus

∣∣∣P (h(R) > 0) − (1 − 2−Kk∗)
∣∣∣ ≤ 21−K . (29)

By (28) and (29), we have that lim supn→∞

∣∣∣P (h(R(n)) > 0) − (1 − 2−Kk∗)
∣∣∣ ≤

21−K . Since k∗ =
⌈
2K(1 − α)

⌉
, we have that 2K(1 − α) ≤ k∗ ≤ 2K(1 − α) + 1,

which means that |1 − 2−Kk∗ − α| ≤ 2−K . Hence,

lim sup
n→∞

∣∣∣P (h(R(n)) > 0) − α
∣∣∣ ≤ 21−K + 2−K = (3/2) × 2−K .

The proof is complete.

Proof of Theorem 5. The argument is analogous to the proof of Theorem 3.
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Table 1: Size of tests under DGP 1.1

K = 5 K = 10 K = 5 K = 10
T N = 50 N = 100 N = 50 N = 100 N = 50 N = 100 N = 50 N = 100

Panel A: Time-block t-test Panel B: Time-block permutation test
50 0.049 0.05 0.056 0.058 0.068 0.063 0.052 0.062
100 0.056 0.065 0.052 0.065 0.07 0.085 0.055 0.061
500 0.052 0.053 0.062 0.056 0.06 0.068 0.061 0.054
1000 0.047 0.04 0.048 0.05 0.069 0.062 0.048 0.048

Panel C: Group t-test Panel D: Group permutation test
50 0.053 0.049 0.056 0.05 0.055 0.062 0.057 0.053
100 0.057 0.063 0.049 0.049 0.06 0.07 0.048 0.05
500 0.055 0.056 0.042 0.058 0.065 0.07 0.042 0.06
1000 0.036 0.054 0.05 0.042 0.045 0.067 0.051 0.045

Panel E: Decorrelated group t-test Panel F: Decorrelated group permutation test
50 0.05 0.051 0.056 0.042 0.057 0.062 0.053 0.043
100 0.056 0.056 0.051 0.054 0.06 0.07 0.053 0.058
500 0.052 0.057 0.045 0.059 0.066 0.069 0.047 0.063
1000 0.043 0.052 0.054 0.046 0.049 0.074 0.057 0.049

N = 50 N = 100
Panel G: Single cross-section test

1 0.050 0.057

N = 50 N = 100 N = 50 N = 100
Panel H: S1 Panel I: S3

50 0.088 0.108 0.098 0.116
100 0.1 0.094 0.104 0.102
500 0.065 0.081 0.071 0.08
1000 0.07 0.061 0.068 0.061

K = 5 K = 10 K = 5 K = 10
T N = 50 N = 100 N = 50 N = 100 N = 50 N = 100 N = 50 N = 100

Panel J: C1 Panel K: C3
50 0.151 0.177 0.216 0.228 0.257 0.305 0.549 0.568
100 0.148 0.154 0.213 0.189 0.203 0.193 0.372 0.349
500 0.101 0.094 0.124 0.123 0.112 0.111 0.178 0.167
1000 0.097 0.075 0.086 0.089 0.102 0.08 0.108 0.119

The size of tests is estimated with p-value rejection threshold, α = 0.05.
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Table 2: Size of tests under DGP 1.2

K = 5 K = 10 K = 5 K = 10
T N = 50 N = 100 N = 50 N = 100 N = 50 N = 100 N = 50 N = 100

Panel A: Time-block t-test Panel B: Time-block permutation test
50 0.055 0.071 0.106 0.118 0.084 0.079 0.109 0.12
100 0.056 0.045 0.082 0.068 0.066 0.063 0.083 0.068
500 0.061 0.042 0.051 0.045 0.067 0.063 0.056 0.046
1000 0.056 0.034 0.056 0.055 0.064 0.056 0.06 0.058

Panel C: Group t-test Panel D: Group permutation test
50 0.043 0.056 0.049 0.047 0.052 0.066 0.051 0.049
100 0.05 0.052 0.058 0.048 0.068 0.062 0.058 0.051
500 0.042 0.04 0.061 0.045 0.06 0.051 0.055 0.048
1000 0.06 0.048 0.045 0.048 0.069 0.071 0.044 0.046

Panel E: Decorrelated group t-test Panel F: Decorrelated group permutation test
50 0.046 0.055 0.056 0.048 0.064 0.068 0.056 0.049
100 0.051 0.052 0.053 0.049 0.065 0.055 0.055 0.051
500 0.041 0.04 0.06 0.047 0.061 0.049 0.06 0.051
1000 0.06 0.046 0.039 0.048 0.068 0.062 0.043 0.047

N = 50 N = 100
Panel G: Single cross-section test

1 0.066 0.048

N = 50 N = 100 N = 50 N = 100
Panel H: S1 Panel I: S3

50 0.237 0.27 0.254 0.276
100 0.244 0.235 0.259 0.239
500 0.171 0.145 0.14 0.15
1000 0.114 0.124 0.136 0.131

K = 5 K = 10 K = 5 K = 10
T N = 50 N = 100 N = 50 N = 100 N = 50 N = 100 N = 50 N = 100

Panel J: C1 Panel K: C3
50 0.592 0.598 0.801 0.822 0.714 0.721 0.961 0.968
100 0.56 0.545 0.773 0.789 0.627 0.64 0.883 0.897
500 0.289 0.283 0.446 0.476 0.315 0.308 0.546 0.549
1000 0.243 0.25 0.334 0.329 0.263 0.259 0.381 0.369

The size of tests is estimated with p-value rejection threshold, α = 0.05.
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Table 3: Size of tests under DGP 2.1

K = 5 K = 10 K = 5 K = 10
T N = 50 N = 100 N = 50 N = 100 N = 50 N = 100 N = 50 N = 100

Panel A: Time-block t-test Panel B: Time-block permutation test
50 0.049 0.054 0.064 0.052 0.072 0.068 0.061 0.055
100 0.049 0.047 0.048 0.052 0.062 0.062 0.048 0.057
500 0.044 0.047 0.055 0.052 0.057 0.058 0.053 0.056
1000 0.048 0.052 0.048 0.053 0.054 0.066 0.049 0.055

Panel C: Group t-test Panel D: Group permutation test
50 0.057 0.049 0.043 0.041 0.069 0.072 0.047 0.045
100 0.055 0.045 0.047 0.055 0.067 0.053 0.046 0.053
500 0.055 0.044 0.049 0.043 0.074 0.05 0.05 0.045
1000 0.047 0.058 0.049 0.034 0.06 0.065 0.047 0.034

Panel E: Decorrelated group t-test Panel F: Decorrelated group permutation test
50 0.062 0.051 0.06 0.042 0.066 0.066 0.059 0.042
100 0.059 0.047 0.045 0.056 0.069 0.055 0.046 0.055
500 0.057 0.043 0.05 0.044 0.078 0.051 0.051 0.045
1000 0.046 0.052 0.049 0.037 0.063 0.066 0.049 0.036

Panel G: S1 Panel H: S3
50 0.491 0.74 0.346 0.638 0.115 0.1 0.105 0.105
100 0.494 0.734 0.329 0.611 0.095 0.099 0.089 0.088
500 0.426 0.728 0.325 0.582 0.078 0.07 0.071 0.075
1000 0.415 0.697 0.315 0.601 0.06 0.062 0.068 0.062

Panel I: C1 Panel J: C3
50 0.926 0.997 0.948 1 0.249 0.234 0.514 0.537
100 0.911 0.995 0.924 1 0.173 0.204 0.331 0.334
500 0.895 0.995 0.9 1 0.084 0.105 0.161 0.146
1000 0.876 0.996 0.888 1 0.089 0.079 0.114 0.104

The size of tests is estimated with p-value rejection threshold, α = 0.05.
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Table 4: Size of tests under DGP 2.2

K = 5 K = 10 K = 5 K = 10
T N = 50 N = 100 N = 50 N = 100 N = 50 N = 100 N = 50 N = 100

Panel A: Time-block t-test Panel B: Time-block permutation test
50 0.044 0.051 0.048 0.044 0.056 0.074 0.054 0.057
100 0.049 0.051 0.055 0.048 0.058 0.074 0.061 0.054
500 0.042 0.052 0.057 0.033 0.063 0.071 0.054 0.04
1000 0.039 0.037 0.054 0.046 0.058 0.056 0.058 0.046

Panel C: Group t-test Panel D: Group permutation test
50 0.143 0.163 0.271 0.29 0.172 0.185 0.266 0.288
100 0.151 0.161 0.286 0.298 0.177 0.178 0.292 0.298
500 0.163 0.168 0.276 0.292 0.173 0.176 0.28 0.286
1000 0.156 0.178 0.285 0.288 0.169 0.189 0.283 0.29

Panel E: Decorrelated group t-test Panel F: Decorrelated group permutation test
50 0.052 0.06 0.053 0.048 0.065 0.062 0.049 0.047
100 0.041 0.048 0.059 0.064 0.061 0.068 0.06 0.064
500 0.052 0.046 0.042 0.049 0.061 0.061 0.05 0.054
1000 0.057 0.058 0.042 0.04 0.071 0.071 0.041 0.039

Panel G: S1 Panel H: S3
50 0.693 0.854 0.661 0.847 0.1 0.103 0.095 0.101
100 0.698 0.841 0.649 0.828 0.079 0.11 0.094 0.104
500 0.672 0.848 0.639 0.84 0.075 0.073 0.071 0.06
1000 0.673 0.845 0.66 0.812 0.07 0.079 0.069 0.065

Panel I: C1 Panel J: C3
50 0.968 0.999 0.984 1 0.228 0.239 0.505 0.502
100 0.963 0.999 0.989 1 0.178 0.188 0.324 0.337
500 0.959 0.998 0.979 1 0.091 0.1 0.135 0.14
1000 0.953 1 0.96 1 0.098 0.072 0.127 0.102

The size of tests is estimated with p-value rejection threshold, α = 0.05.
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Table 5: Size of tests under DGP 2.3

K = 5 K = 10 K = 5 K = 10
T N = 50 N = 100 N = 50 N = 100 N = 50 N = 100 N = 50 N = 100

Panel A: Time-block t-test Panel B: Time-block permutation test
50 0.055 0.045 0.065 0.057 0.063 0.062 0.068 0.052
100 0.051 0.054 0.068 0.056 0.062 0.065 0.069 0.051
500 0.046 0.055 0.064 0.05 0.065 0.068 0.066 0.048
1000 0.042 0.053 0.048 0.048 0.055 0.064 0.05 0.053

Panel C: Group t-test Panel D: Group permutation test
50 0.048 0.042 0.055 0.047 0.06 0.06 0.054 0.043
100 0.045 0.052 0.067 0.046 0.061 0.065 0.07 0.048
500 0.037 0.046 0.067 0.052 0.05 0.054 0.071 0.052
1000 0.055 0.054 0.054 0.045 0.079 0.066 0.05 0.046

Panel E: Decorrelated group t-test Panel F: Decorrelated group permutation test
50 0.049 0.049 0.046 0.043 0.063 0.067 0.05 0.044
100 0.046 0.054 0.065 0.046 0.063 0.068 0.066 0.052
500 0.039 0.051 0.067 0.051 0.057 0.058 0.073 0.052
1000 0.052 0.05 0.05 0.053 0.073 0.069 0.054 0.055

Panel G: Single cross-section test
1 0.040 0.049 0.052 0.042

Panel H: S1 Panel I: S3
50 0.104 0.104 0.101 0.084 0.107 0.109 0.099 0.098
100 0.095 0.108 0.106 0.089 0.103 0.111 0.114 0.1
500 0.061 0.07 0.089 0.052 0.053 0.072 0.095 0.06
1000 0.056 0.065 0.072 0.059 0.057 0.068 0.072 0.059

Panel J: C1 Panel K: C3
50 0.158 0.156 0.232 0.195 0.264 0.258 0.509 0.52
100 0.163 0.154 0.194 0.184 0.208 0.198 0.342 0.336
500 0.09 0.098 0.085 0.105 0.105 0.109 0.129 0.148
1000 0.057 0.073 0.099 0.086 0.071 0.08 0.121 0.107

The size of tests is estimated with p-value rejection threshold, α = 0.05.
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Table 6: Size of tests under DGP 3

K = 5 K = 10 K = 5 K = 10
T N = 10 N = 20 N = 30 N = 50 N = 100 N = 10 N = 20 N = 30 N = 50 N = 100 N = 10 N = 20 N = 30 N = 50 N = 100 N = 10 N = 20 N = 30 N = 50 N = 100

Panel A: Time-block t-test Panel B: Time-block permutation test
50 0.042 0.053 0.036 0.056 0.042 0.042 0.042 0.045 0.038 0.046 0.054 0.062 0.052 0.069 0.057 0.046 0.043 0.046 0.039 0.04
100 0.048 0.055 0.045 0.045 0.055 0.059 0.046 0.043 0.044 0.056 0.067 0.07 0.064 0.058 0.072 0.058 0.048 0.04 0.045 0.061
500 0.049 0.054 0.045 0.056 0.053 0.05 0.048 0.056 0.048 0.056 0.06 0.061 0.057 0.061 0.075 0.049 0.049 0.049 0.049 0.056
1000 0.041 0.037 0.045 0.046 0.054 0.042 0.041 0.055 0.041 0.053 0.049 0.049 0.059 0.071 0.069 0.043 0.041 0.058 0.041 0.054

Panel C: Group t-test Panel D: Group permutation test
50 0.067 0.084 0.073 0.07 0.045 0.111 0.077 0.074 0.065 0.061 0.076 0.092 0.08 0.079 0.068 0.107 0.074 0.074 0.068 0.059
100 0.086 0.076 0.062 0.077 0.065 0.143 0.09 0.067 0.075 0.083 0.102 0.097 0.08 0.096 0.088 0.141 0.094 0.063 0.076 0.086
500 0.082 0.074 0.072 0.076 0.071 0.124 0.081 0.095 0.072 0.077 0.108 0.087 0.094 0.084 0.082 0.126 0.084 0.097 0.076 0.08
1000 0.068 0.072 0.073 0.072 0.061 0.109 0.072 0.092 0.073 0.076 0.083 0.093 0.094 0.09 0.068 0.108 0.081 0.093 0.073 0.076

Panel E: Decorrelated group t-test Panel F: Decorrelated group permutation test
50 0.041 0.059 0.052 0.051 0.034 0.047 0.049 0.055 0.053 0.028 0.053 0.069 0.066 0.061 0.05 0.048 0.049 0.054 0.058 0.029
100 0.054 0.048 0.044 0.059 0.056 0.066 0.055 0.043 0.047 0.055 0.058 0.071 0.059 0.07 0.074 0.065 0.056 0.044 0.054 0.058
500 0.052 0.051 0.054 0.057 0.049 0.05 0.061 0.067 0.049 0.056 0.067 0.06 0.068 0.064 0.063 0.055 0.061 0.064 0.047 0.058
1000 0.037 0.048 0.059 0.052 0.039 0.041 0.043 0.057 0.039 0.053 0.054 0.069 0.066 0.064 0.052 0.044 0.045 0.054 0.046 0.051

T N = 10 N = 20 N = 30 N = 50 N = 100 N = 10 N = 20 N = 30 N = 50 N = 100
Panel G: S1 Panel H: S3

50 0.121 0.112 0.097 0.104 0.114 0.052 0.064 0.057 0.063 0.05
100 0.144 0.124 0.102 0.096 0.129 0.078 0.062 0.045 0.056 0.063
500 0.119 0.101 0.119 0.1 0.119 0.05 0.055 0.063 0.059 0.055
1000 0.117 0.11 0.11 0.096 0.119 0.045 0.05 0.056 0.047 0.06

K = 5 K = 10 K = 5 K = 10
T N = 10 N = 20 N = 30 N = 50 N = 100 N = 10 N = 20 N = 30 N = 50 N = 100 N = 10 N = 20 N = 30 N = 50 N = 100 N = 10 N = 20 N = 30 N = 50 N = 100

Panel I: C1 Panel J: C3
50 0.106 0.11 0.111 0.127 0.13 0.085 0.132 0.13 0.133 0.165 0.102 0.123 0.135 0.129 0.12 0.295 0.263 0.295 0.274 0.266
100 0.119 0.12 0.117 0.112 0.143 0.077 0.127 0.129 0.128 0.182 0.086 0.077 0.085 0.089 0.082 0.136 0.152 0.141 0.152 0.155
500 0.101 0.101 0.091 0.105 0.139 0.051 0.109 0.114 0.132 0.165 0.059 0.057 0.051 0.065 0.065 0.080 0.08 0.071 0.077 0.094
1000 0.117 0.089 0.106 0.1 0.118 0.053 0.1 0.105 0.128 0.15 0.064 0.046 0.048 0.047 0.044 0.071 0.065 0.057 0.062 0.06

The size of tests is estimated with p-value rejection threshold, α = 0.05.
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Table 7: Size of tests under DGP 4

K = 5 K = 10 K = 5 K = 10
T N = 10 N = 20 N = 30 N = 50 N = 100 N = 10 N = 20 N = 30 N = 50 N = 100 N = 10 N = 20 N = 30 N = 50 N = 100 N = 10 N = 20 N = 30 N = 50 N = 100

Panel A: Time-block t-test Panel B: Time-block permutation test
50 0.052 0.066 0.044 0.048 0.044 0.045 0.058 0.043 0.049 0.05 0.065 0.076 0.055 0.061 0.053 0.05 0.061 0.046 0.053 0.048
100 0.058 0.043 0.044 0.043 0.053 0.049 0.048 0.046 0.036 0.054 0.073 0.064 0.065 0.059 0.069 0.051 0.049 0.049 0.037 0.055
500 0.051 0.049 0.053 0.049 0.055 0.063 0.055 0.057 0.043 0.05 0.073 0.059 0.061 0.058 0.073 0.067 0.055 0.058 0.048 0.053
1000 0.053 0.048 0.05 0.049 0.06 0.062 0.048 0.054 0.049 0.047 0.055 0.064 0.063 0.062 0.077 0.062 0.052 0.059 0.048 0.046

Panel C: Group t-test Panel D: Group permutation test
50 0.54 0.637 0.678 0.732 0.794 0.646 0.704 0.719 0.777 0.822 0.554 0.652 0.681 0.747 0.808 0.636 0.703 0.72 0.776 0.817
100 0.544 0.617 0.683 0.758 0.788 0.644 0.689 0.733 0.787 0.814 0.544 0.616 0.676 0.752 0.795 0.648 0.69 0.732 0.789 0.817
500 0.541 0.61 0.678 0.765 0.803 0.622 0.672 0.712 0.791 0.82 0.544 0.622 0.676 0.775 0.802 0.626 0.672 0.716 0.793 0.82
1000 0.526 0.64 0.67 0.741 0.805 0.651 0.699 0.737 0.771 0.828 0.543 0.641 0.682 0.739 0.798 0.648 0.701 0.734 0.777 0.828

Panel E: Decorrelated group t-test Panel F: Decorrelated group permutation test
50 0.048 0.048 0.054 0.06 0.05 0.046 0.05 0.047 0.058 0.058 0.063 0.064 0.071 0.073 0.064 0.049 0.052 0.05 0.059 0.062
100 0.033 0.04 0.046 0.045 0.052 0.048 0.041 0.043 0.043 0.058 0.05 0.053 0.061 0.064 0.064 0.051 0.047 0.043 0.043 0.056
500 0.043 0.055 0.05 0.058 0.051 0.044 0.045 0.047 0.069 0.052 0.055 0.067 0.062 0.063 0.056 0.043 0.05 0.046 0.069 0.054
1000 0.051 0.037 0.054 0.053 0.046 0.055 0.034 0.049 0.044 0.043 0.066 0.043 0.072 0.053 0.052 0.059 0.033 0.049 0.046 0.047

T N = 10 N = 20 N = 30 N = 50 N = 100 N = 10 N = 20 N = 30 N = 50 N = 100
Panel G: S1 Panel H: S3

50 0.466 0.589 0.653 0.728 0.801 0.07 0.069 0.059 0.061 0.068
100 0.47 0.583 0.659 0.742 0.791 0.066 0.046 0.039 0.057 0.06
500 0.45 0.569 0.636 0.744 0.794 0.065 0.057 0.049 0.045 0.058
1000 0.464 0.594 0.648 0.713 0.81 0.054 0.049 0.058 0.046 0.049

K = 5 K = 10 K = 5 K = 10
T N = 10 N = 20 N = 30 N = 50 N = 100 N = 10 N = 20 N = 30 N = 50 N = 100 N = 10 N = 20 N = 30 N = 50 N = 100 N = 10 N = 20 N = 30 N = 50 N = 100

Panel I: C1 Panel J: C3
50 0.282 0.409 0.481 0.6 0.712 0.168 0.322 0.399 0.519 0.656 0.122 0.126 0.129 0.141 0.117 0.262 0.275 0.266 0.293 0.274
100 0.262 0.401 0.512 0.614 0.681 0.155 0.303 0.411 0.526 0.614 0.101 0.082 0.091 0.073 0.095 0.149 0.153 0.161 0.144 0.156
500 0.252 0.376 0.475 0.606 0.706 0.156 0.273 0.4 0.525 0.651 0.056 0.06 0.053 0.065 0.048 0.067 0.074 0.068 0.089 0.08
1000 0.249 0.418 0.506 0.582 0.722 0.148 0.297 0.421 0.507 0.665 0.054 0.062 0.067 0.059 0.054 0.067 0.068 0.069 0.072 0.057

The size of tests is estimated with p-value rejection threshold, α = 0.05.
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Table 8: Tests of Equal Predictive Accuracy

Panel A: GDP Growth
CE AR

h=1, S h=1, F h=0, S h=0, F h=1, S h=1, F
t-stat pooled average 0.98 0.49 0.93 0.00 1.45 2.45
p-value (0.33) (0.62) (0.35) (1.00) (0.15) (0.01)
t-stat time clusters 0.70 0.50 1.00 0.00 1.40 2.11
p-value (0.49) (0.62) (0.33) (1.00) (0.18) (0.05)
Randomization p-value, 1-year clusters (0.50) (0.71) (0.34) (1.00) (0.20) (0.01)
Randomization p-value, GFC clusters (0.25) (0.50) (0.25) (0.75) (0.00) (0.00)
t-stat group clusters 1.14 0.57 1.64 0.26 2.37 2.65
p-value (0.32) (0.60) (0.18) (0.81) (0.06) (0.04)
Randomization p-value group clusters (0.31) (0.63) (0.12) (0.81) (0.00) (0.00)
p-value decorrelated group clusters (0.84) (0.54) (0.48) (0.88) (0.16) (0.04)
Randomization p-value decorrelated group clusters (0.87) (0.44) (0.50) (0.81) (0.19) (0.05)
Sup-test, null: WEO is worse than benchmarks (0.40) (0.26) (0.10) (0.01) (0.00) (0.00)
Sup-test, null: WEO is better than benchmarks (0.47) (0.83) (0.15) (0.21) (0.09) (0.64)

Panel B: Inflation
t-stat pooled average 2.08 1.83 3.66 2.79 6.56 6.63
p-value (0.04) (0.07) (0.00) (0.01) (0.00) (0.00)
t-stat time clusters 2.21 1.83 3.69 3.19 8.16 8.24
p-value (0.04) (0.08) (0.00) (0.00) (0.00) (0.00)
Randomization p-value, 1-year clusters (0.03) (0.07) (0.00) (0.00) (0.00) (0.00)
Randomization p-value, GFC clusters (0.50) (0.00) (0.00) (0.00) (0.00) (0.00)
t-stat group clusters 1.05 0.90 2.28 1.40 1.98 1.98
p-value (0.35) (0.42) (0.08) (0.23) (0.10) (0.10)
Randomization p-value group clusters (0.31) (0.56) (0.00) (0.25) (0.03) (0.03)
p-value decorrelated group cluster (0.70) (0.66) (0.32) (0.18) (0.47) (0.44)
Randomization p-value decorrelated group clusters (0.88) (0.69) (0.31) (0.19) (0.47) (0.40)
Sup-test, null: WEO is worse than benchmarks (0.32) (0.52) (0.09) (0.00) (0.00) (0.00)
Sup-test, null: WEO is better than benchmarks (0.40) (0.13) (0.69) (0.08) (0.23) (0.97)

Panel A uses real GDP growth forecasts, while Panel B uses inflation data. Positive values of the t-stats indicate
that the WEO forecasts are more accurate than the counterparts, while negative values suggest the reverse. All
p-values in the empirical exercise are based on two-sided tests (with the exception of Sup tests whose null hypotheses
are one-sided), and are reported in brackets. In each panel, the first row reports the t-stat for the null of equal
predictive accuracy for the pooled average, averaging both cross-sectionally and across time. The second row
reports the associated p-value for this test. Rows three through five report the outcomes of tests of equal predictive
accuracy during each year in our sample using either 26 (h = 1) or 27 (h = 0) time clusters. Row six uses three
time clusters centered around the time of the Global Financial Crisis (2007-2009), namely 1995-2006, 2007-2009,
and 2010-2019. These tests are all based on cross-sectional average forecasting performance. Rows three and four
use the Ibragimov-Muller (2010) cluster test, while rows five and six are based on the randomization test of Canay,
Romano and Shaikh (2017). Similarly, Rows seven through nine report the outcomes of tests of equal predictive
accuracy for clusters of countries with similar characteristics and thus average both across time and across the
countries within each cluster. Rows seven and eight use the Ibragimov-Muller (2010) cluster test, while row nine
uses the randomization test of Canay, Romano and Shaikh (2017). Rows ten through eleven of each panel reports
similar tests statistics for clusters of countries as in rows eight through nine, while decorrelating country-cluster wise
average loss differentials. Row twelve and thirteen respectively reports p-values of the null that all WEO forecasts
are no better than benchmarks for all country series and its reverse null hypothesis.
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Table 9: Tests of Equal Predictive Accuracy Across Economic Groupings

Panel A: GDP Growth
WEO vs. CE

ae eeur lac cis dms
h=1, S 0.80 0.21 1.82 -0.49 -0.87
h=1, F 1.17 0.10 0.76 -0.99 -0.50
h=0, S 1.70 -0.78 1.83 0.47 -0.04
h=0, F 0.34 -0.92 -0.14 0.17 0.10
WEO vs. AR

ae eeur dasia lac menap cis ssa
h=1, S 1.62 2.64 0.36 0.15 0.70 1.43 1.00
h=1, F 1.73 3.27 1.45 2.25 1.13 1.91 1.19

Panel B: Inflation
WEO vs. CE

ae eeur lac cis dms
h=1, S 0.06 0.45 -2.21 2.00 0.62
h=1, F -0.48 1.94 -1.47 2.26 0.22
h=0, S -0.10 -0.51 1.70 3.50 2.56
h=0, F -1.13 -1.38 3.26 2.86 2.63
WEO vs. AR

ae eeur dasia lac cis ms
h=1, S 6.49 4..65 3.60 3.50 4.06 3.66
h=1, F 7.90 4.66 3.63 3.50 4.06 2.71

The table reports the outcome of pooled-average tests of equal squared
error predictive accuracy comparing the IMF World Economic Out-
look (WEO) forecasts to Consensus Economics (CE, first four rows)
and autoregressive (AR, rows five and six) forecasts within each coun-
try group. Positive values of the t-tests indicate that the WEO fore-
casts are more accurate than the CE or AR forecasts, while nega-
tive values suggest the reverse. In each panel, each row reports a
t-statistic for the null of equal predictive accuracy for the pooled
average within economic groupings, averaging both cross-sectionally
and across time. ‘ae’ refers to advanced economies, ‘eeur’ is emerging
and developing Europe, ‘lac’ is Latin America and Caribbean, ‘cis’ is
Commonwealth of Independent States, ’menap’ is Middle East, North
Africa, Afghanistan, and Pakistan, ‘dasia’ is emerging and developing
Asia, and ’ssa’ is Sub-Sahara Africa. Finally, ‘dms’ combines dasia,
menap, ssa while ‘ms’ refers to menap and ssa combined.
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Table 10: Tests of Equal Predictive Accuracy Across Different Forecast Horizons

Panel A: GDP Growth
h = 1,S vs h = 1,F vs h = 0,S vs h = 1,S vs
h = 1,F h = 0,S h = 0,F h = 0,F

t-stat pooled average 0.56 1.88 2.17 5.92
p-value (0.58) (0.06) (0.03) (0.00)
t-stat time clusters 0.58 1.41 2.28 5.28
p-value (0.57) (0.17) (0.03) (0.00)
Randomization p-value, 1-year clusters (0.63) (0.18) (0.00) (0.00)
Randomization p-value, GFC cluster (0.00) (0.00) (0.00) (0.00)
t-stat group clusters −0.03 2.69 2.16 2.87
p-value (0.98) (0.05) (0.10) (0.05)
Randomization p-value group clusters (1.00) (0.00) (0.00) (0.00)
p-value decorrelated group cluster (0.12) (0.04) (0.03) (0.01)
Randomization p-value decorrelated group clusters (0.06) (0.00) (0.00) (0.00)
Sup-test, null: short-horizon forecasts are worse (0.01) (0.03) (0.01) (0.00)
Sup-test, null: long-horizon forecasts are worse (1.00) (1.00) (1.00) (1.00)

Panel B: Inflation
t-stat pool 2.92 5.41 6.41 6.64
p-value (0.00) (0.00) (0.00) (0.00)
t-stat time cluster 2.68 6.15 7.17 7.45
p-value (0.01) (0.00) (0.00) (0.00)
Randomization p-value, 1-year cluster (0.00) (0.00) (0.00) (0.00)
Randomization p-value, GFC cluster (0.20) (0.07) (0.03) (0.07)
t-stat region cluster 2.75 3.26 2.30 2.96
p-value (0.05) (0.03) (0.08) (0.04)
Randomization p-value region cluster (0.00) (0.00) (0.06) (0.00)
p-value decorrelated group cluster (0.32) (0.04) (0.01) (0.27)
Randomization p-value decorrelated group clusters (0.25) (0.06) (0.00) (0.12)
Sup-test, null: short-horizon forecasts are worse (0.12) (0.00) (0.00) (0.00)
Sup-test, null: long-horizon forecasts are worse (0.35) (1.00) (1.00) (1.00)

Positive values of the t-stats indicate that the shorter-horizon forecasts are more accurate than longer-horizon forecasts,
while negative values suggest the reverse. All p-values in the empirical exercise are based on two-sided tests (with the
exception of Sup tests whose null hypotheses are one-sided), and are reported in brackets. In each panel, the first row
reports the t-stat for the null of equal predictive accuracy for the pooled average, averaging both cross-sectionally and
across time. The second row reports the associated p-value for this test. Rows three through five report the outcomes
of tests of equal predictive accuracy during each year in our sample using either 26 (h = 1) or 27 (h = 0) time clusters.
Row six uses three time clusters centered around the time of the Global Financial Crisis (2007-2009), namely 1995-
2006, 2007-2009, and 2010-2019. These tests are all based on cross-sectional average forecasting performance. Rows
three and four use the Ibragimov-Muller (2010) cluster test, while rows five and six are based on the randomization
test of Canay, Romano and Shaikh (2017). Similarly, Rows seven through nine report the outcomes of tests of equal
predictive accuracy for clusters of countries with similar characteristics and thus average both across time and across the
countries within each cluster. Rows seven and eight use the Ibragimov-Muller (2010) cluster test, while row nine uses
the randomization test of Canay, Romano and Shaikh (2017). Rows ten through eleven of each panel reports similar
tests statistics for clusters of countries as in rows eight through nine, while decorrelating country-cluster wise average
loss differentials. Row twelve and thirteen respectively reports p-values of the null that shorter-horizon forecasts are no
better than longer-horizon for all country series and its reverse null hypothesis.
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Table 11: Tests of Equal Predictive Accuracy Across Different Forecast Horizons:
Results by economic groupings

Panel A: GDP Growth
ae eeur dasia lac menap cis ssa

h=1,S vs h=1,F 1.86 2.30 2.39 4.08 0.41 -0.90 1.09
h=1,F vs h=0,S 2.36 2.24 3.43 3.59 0.38 1.42 1.54
h=0,S vs h=0,F 5.49 2.02 5.61 8.49 1.35 1.87 4.16
h=1,S vs h=0,F 2.68 2.44 4.51 5.10 2.87 2.42 3.02

Panel B: Inflation
ae eeur dasia lac cis ms

h=1,S vs h=1,F 2.56 1.55 -0.30 3.07 1.01 2.52
h=1,F vs h=0,S 4.86 4.80 3.25 4.26 3.86 5.11
h=0,S vs h=0,F 4.95 2.07 4.08 5.34 5.38 5.52
h=1,S vs h=0,F 4.87 3.39 5.01 6.28 4.19 5.81

The table reports the outcome of pooled-average tests of equal squared error
predictive accuracy comparing WEO forecasts of different horizons within
each country group. Positive values of the t-tests indicate that the shorter-
horizon forecasts are more accurate than the longer-horizon forecasts, while
negative values suggest the reverse. In each panel, each row reports a t-
statistic for the null of equal predictive accuracy for the pooled average
within economic groupings, averaging both cross-sectionally and across time.
The definition of country clusters are identical to the table notes of Table 9.

48



Figure 1: Power curve: DGP 1 (α = 0.05)

(a) DGP 1.1

(b) DGP 1.2
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Figure 2: Power curve: DGP 2 (α = 0.05)

(a) DGP 2.1

(b) DGP 2.2
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Figure 3: Forecast Horizon Used in the WEO Forecasts.
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Figure 4: Single period cross-sectional comparison of WEO inflation forecasts against
Consensus Economists
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Figure 5: Single period cross-sectional comparison of WEO inflation forecasts of
different horizons
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