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Abstract

Empirical studies using survey data on expectations have frequently observed that

forecasts are biased and have concluded that agents are not rational. We establish

that existing rationality tests are not robust to even small deviations from symmetric

loss and hence have little ability to tell whether the forecaster is irrational or the loss

function is asymmetric. We quantify the exact trade-off between forecast inefficiency

and asymmetric loss leading to identical outcomes of standard rationality tests and

explore new and more general methods for testing forecast rationality jointly with flex-

ible families of loss functions that embed quadratic loss as a special case. An empirical

application to survey data on forecasts of nominal output growth demonstrates the

empirical significance of our results and finds that rejections of rationality may largely

have been driven by the assumption of symmetric loss.
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1 Introduction

Expectations play a key role in economic analysis, affecting the decisions of households, firms

and policy makers. This in turn has important consequences for macroeconomic dynamics

as emphasized for instance by Friedman (1968) and Lucas (1973). How agents form expec-

tations and, in particular, whether they are rational and efficiently incorporate all available

information into their forecasts is therefore a question of fundamental economic importance.

Ultimately this question can best be resolved through empirical analysis of expectations

data. It is therefore not surprising that a large literature has been devoted to empirically

testing forecast rationality based on survey data such as the Livingston data or the Survey

of Professional Forecasters.1 Summarizing this literature, Conlisk (1996, page 672) con-

cluded that “Survey data on expectations of inflation and other variables commonly reject

the unbiasedness and efficiency prediction of rational expectations.”

The vast majority of empirical studies have tested forecast rationality in conjunction with

an assumption of mean squared error (MSE) loss. This symmetric loss function has largely

been maintained out of convenience: under MSE loss rationality implies that the observed

forecast errors should have zero mean and be uncorrelated with all variables in the current

information set. Yet, a reading of the literature reveals little discussion of why loss should

be symmetric in the forecast error. One would, if anything, typically expect asymmetric loss

as a reflection of the primitive economic conditions of the problem such as, e.g., asymmetric

stockout and inventory holding costs or as a reflection of differences in the penalty associated

with overshooting or falling short of a target in the case of policy makers. Similarly, Weber

(1994) presents evidence supporting an asymmetric loss interpretation of judgments and

decisions in psychological experiments with uncertain outcomes. A final possibility is related

to strategic behavior arising in situations where the forecaster’s remuneration depends on

factors other than the mean squared forecast error, c.f. Scharfstein and Stein (1990), Truman

(1994) and Ehrbeck and Waldmann (1996). Common features of the models used by these

authors is that forecasters differ by their ability to forecast, reflected by differences in the

1See, e.g., Bonham and Cohen (1995), Fama (1975), Keane and Runkle (1990), Mishkin (1981) and

Zarnowitz (1985). For a survey of research on expectations data, see Pesaran and Weale (2005).
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precision of their private signals, and that their main goal is to influence clients’ assessment

of their ability. Such objectives are common to business analysts or analysts employed by

financial services firms such as investment banks, whose fees are directly related to their

clients’ assessment of analysts’ forecasting ability. The main finding of these models is that

the forecasts need not reflect analysts’ private information in an unbiased manner.

Asymmetries are potentially important since relaxing the symmetry assumption is known

to profoundly change the properties of optimal forecasts as demonstrated early on by Varian

(1974), Waud (1976) and Zellner (1986) and more recently by Christoffersen and Diebold

(1997) and Patton and Timmermann (2002). Indeed, many studies on forecast rationality

testing are aware of the limitations of symmetric loss and indicate that rejections of ratio-

nality may be driven by asymmetries. For example, Keane and Runkle (1990, page 719)

write “If forecasters have differential costs of over- and underprediction, it could be rational

for them to produce biased forecasts. If we were to find that forecasts are biased, it could still

be claimed that forecasters were rational if it could be shown that they had such differential

costs.” Unfortunately, however, little is known about the determinants and magnitude of the

problem–how much accounting for asymmetries really matters in practice.

In this paper we examine the theoretical and practical importance of the joint nature

of tests for forecast rationality. Since Mincer and Zarnowitz (1969) it has been standard

practice to regress the realized value of the target variable on an intercept and the forecast

and undertake a joint test that the coefficients on these terms are equal to zero and unity,

respectively. We show that the coefficients in standard forecast efficiency tests are biased

if the loss function is not symmetric and evaluate this bias analytically for an extension of

the usually applied loss functions. Under asymmetric loss, standard rationality tests thus

do not control size and may lead to false rejections of rationality. Conversely, even large

inefficiencies in forecasters’ use of information may not be detectable by standard tests when

the true loss is asymmetric.

To demonstrate the empirical relevance of these points, we revisit the Survey of Profes-

sional Forecasters (SPF) data on US output growth and examine whether the apparently

high rejection rate for rationality found in this data set can be explained by asymmetric loss.
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We find strong evidence of bias in the forecast errors of many individual survey participants.

In fact, close to 30% of the individual predictions lead to rejections of the joint hypothesis

of rationality and symmetric loss at the 5% critical level. Allowing for asymmetric loss, the

rejection rate is very close to 5% which is consistent with rationality. Output forecasts thus

tend to be consistent with rationality under asymmetric loss though not under symmetric

loss. Furthermore, our estimates of the direction of asymmetries in loss overwhelmingly

suggest that the cost of overpredicting exceeds the cost of underpredicting output growth.

Importantly, we also find that only a modest degree of asymmetry is required for the survey

expectations to be consistent with rationality. This lends economic credence to our claim

that asymmetric loss can explain the biases observed in the survey data. We temper the

discussion of the empirical results by noting that the power of empirical tests of forecast

rationality under asymmetric loss is likely to be quite weak for the typical sample sizes

available when analyzing individual survey participants’ predictions.

The plan of the paper is as follows. Section 2 reviews the empirical evidence against

symmetric loss and rationality in forecasts of output growth from the Survey of Professional

Forecasters. Section 3 adopts a flexible family of loss functions to examine standard econo-

metric tests for forecast rationality based on quadratic loss and shows how they can lead to

biased estimates and wrong inference when loss is genuinely asymmetric. Construction of

rationality tests under asymmetric loss is undertaken in Section 4, while Section 5 presents

empirical results and Section 6 concludes. Technical proofs and details of the data set are

provided in appendices at the end of the paper.

2 Bias in Forecasts of Output Growth

Our paper studies forecasts of US nominal output growth–a series in which virtually all

macroeconomic forecasters should have some interest. Forecasts of output growth have

been the subject of many previous studies. Brown and Maital (1981) studied average GNP

forecasts and rejected unbiasedness and efficiency in six-month predictions of growth in GNP

measured in current prices. Zarnowitz (1985) found only weak evidence against efficiency

for the average forecast, but stronger evidence against efficiency for individual forecasters.
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Batchelor and Dua (1991) found little evidence that forecast errors were correlated with their

own past values. In contrast, Davies and Lahiri (1995) conducted a panel analysis and found

evidence that informational efficiency was rejected for up to half of the survey participants.

2.1 Data

The main data used in this paper is from the Survey of Professional Forecasters (SPF) which

has become a primary source for studying macroeconomic forecasts.2 Survey participants

provide point forecasts of these variables in quarterly surveys. Surveys such as the SPF do

not specify the objective of the forecasting exercise. This leaves open the question what the

objective of the forecaster is. It is by no means clear that the forecaster simply minimizes

a quadratic loss function and reports the conditional mean. For example, in a study of

predictions of interest rates, Leitch and Tanner (1991) found that commercial forecasts

performed very poorly according to an MSE criterion but did very well according to a sign

prediction criterion linked more closely to profits from simple trading strategies based on

these forecasts. Clearly, these forecasters did not use a quadratic loss function.

Survey participants are anonymous; their identity is only known to the data collectors

and not made publicly available. It is plausible to expect that participants report the same

forecasts that they use either for themselves or with their clients. Forecasts should therefore

closely reflect the underlying loss function. Strategic behavior may also play a role and could

induce bias as we briefly discuss below.

The SPF data set is an unbalanced panel. Although the sample begins in 1968, no fore-

caster participated throughout the entire sample. Each quarter some forecasters leave the

sample and new ones are included. We therefore have very few observations on most individ-

ual forecasters. We deal with this problem by requiring each forecaster to have participated

for a minimum of 20 quarters. Imposing this requirement leaves us with 108 individual

forecast series. The data appendix provides more details of the construction of the data.

Figure 1 shows a histogram of the average forecast errors across the 108 forecasters in

2For an academic bibliography, see the extensive list of references to papers that have used this data source

maintained by the Federal Reserve Bank of Philadelphia at http://www.phil.frb.org/econ/spf/spfbib.html.
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the data set. The average forecast error, defined as the difference between the realized and

predicted value, has a positive mean (0.60% annualized). Out of 108 sets of forecast errors,

90 had a positive mean, suggesting systematic underpredictions of output growth.

2.2 Forecast Unbiasedness Tests under Symmetric Loss

Under symmetry and quadratic loss–often referred to as mean squared error (MSE) loss–

forecast rationality has traditionally been studied by testing two conditions: (1) that the

forecast under consideration is unbiased, and (2) that it is efficient with respect to the

information set available to the forecaster at the time the forecast was made.

Tests of forecast unbiasedness typically use the Mincer-Zarnowitz (1969) regression:

yt+1 = βc + βft+1 + ut+1, (1)

where yt+1 is the value at time t + 1 of the target variable (US nominal output growth in

our data), ft+1 its one-step-ahead forecast (produced at time t) and ut+1 an error satisfying

E[ut+1] = 0. Under the null hypothesis of zero bias we should have βc = 0 and β = 1. Given

that the forecasts ft+1 typically depend on estimates of the forecasting model, we will need

to take into account the sampling error caused by this estimation (see, e.g., West (1996),

West and McCracken (1998), McCracken (2000), Corradi and Swanson (2002, 2005a,b)).

Appendix A provides details of the type of forecasting schemes that can be handled by our

approach–the commonly used rolling window methods–and also lists a set of technical

conditions assumed to be satisfied by the predicted variable (the ‘target’) and the variables

serving as inputs in the prediction models.

Table 1 shows the outcome of tests for bias in the forecast errors based on GMM esti-

mation of (1). Under quadratic loss, using revised data for the actual values the null of no

bias is rejected at the 1% critical level for 11 participants and gets rejected in 29 cases at the

5% level.3 If MSE loss is accepted, this strongly questions rationality for a large proportion

of the survey participants. On the other hand, if the forecasters incur different losses from

over- and underprediction, it would be rational for them to produce biased forecasts.
3These numbers are a little higher than those reported by Zarnowitz (1985). This is likely to reflect our

longer sample and our requirement of at least 20 observations which gives more power to the test.
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3 The Impact of Asymmetric Loss on Standard Ratio-

nality Tests

To study the behavior of standard tests of forecast rationality when the forecaster’s loss

function allows for asymmetries we require a setup that nests MSE loss as a special case

and–in view of the small survey samples typically available–allows for asymmetries in a

highly parsimonious way. To this end we follow Elliott, Komunjer and Timmermann (2005)

and assume that the loss function only depends on the forecast error, et+1 = yt+1−ft+1, and

belongs to the following two parameter family

Lp(et+1;α) ≡ [α+ (1− 2α)1I(et+1 < 0)] |et+1|p , (2)

with a positive exponent p and an asymmetry parameter α, 0 < α < 1.4

An attractive feature of the function in (2) is that it generalizes losses commonly used in

the rationality testing literature. When p = 2 and α = 1/2, loss is quadratic and (2) reduces

to MSE loss. More generally, when p = 2 and 0 < α < 1, the family of losses L2 is piecewise

quadratic and we call it ‘Quad-Quad’. Similarly, when p = 1 and 0 < α < 1 we get the

piecewise linear family of losses L1, known as ‘Lin-Lin’, a special case of which is the absolute

deviation or mean absolute error (MAE) loss, obtained when p = 1 and α = 1/2. As αmoves

away from 1/2 in either direction the loss function becomes increasingly asymmetric.

Other asymmetric loss functions–most notably the linex loss function suggested by Var-

ian (1974) and Zellner (1986)–could be used, but the ones in common use either do not nest

MSE loss or do so at a boundary point of the parameter space which complicates hypothesis

testing.

4The function 1I is the indicator function, i.e. for any event A we have 1I(A) = 1 if A true, and 1I(A) = 0

otherwise.

6



3.1 Misspecification Bias

Suppose that the exponent p = 2 in equation (2), so that the forecaster’s loss function is

piecewise quadratic or ‘Quad-Quad’,

L2(et+1;α) = [α+ (1− 2α)1I(et+1 < 0)]e2t+1. (3)

L2 is parametrized by a single shape or asymmetry parameter, α, whose true value, α0,

may be known or unknown to the forecast evaluator. This loss function offers an ideal

framework to discuss how standard tests of rationality–derived under MSE loss (α0 = 1/2)–

are affected if the true loss function is ‘Quad-Quad’ with α0 6= 1/2.5

As previously discussed, forecast errors should be unpredictable under MSE loss so it is

common to test forecast rationality by means of the efficiency regression

et+1 = β0vt + ut+1, (4)

where et+1 is the time t+1 forecast error, vt is a d×1 vector of variables (including a constant)

that are known to the forecaster at time t, and ut+1 is an error. Under standard stationarity

assumptions, and assuming that a sample of forecasts running from t = τ to t = T + τ −1 is

available, the regression (4) tests the orthogonality condition E[vtut+1] = 0, obtained under

the assumption that the forecaster’s loss is quadratic. If, in reality, the true loss function

is ‘Quad-Quad’, the correct moment condition is E[vtut+1] = (1− 2α0)E[vt|et+1|]. In other

words, by misspecifying the forecaster’s loss, we omit the variable (1 − 2α0)|et+1| from the

linear regression (4) and introduce correlation between the error term and the vector of ex-

planatory variables. Hence, the standard OLS estimator β̂ ≡ [
PT+τ−1

t=τ vtv
0
t]
−1[
PT+τ−1

t=τ vtet+1]

will be biased away from β by a quantity which we derive in Proposition 1:

Proposition 1 Under assumptions (A1)-(A4) given in Appendix A and under ‘Quad-Quad’

loss L2, the standard OLS estimator, β̂, in the efficiency regression (4) has a bias that equals

plim β̂ − β = (1− 2α0)Σ−1V hV , (5)

where ΣV ≡ E[vtv
0
t] and hV ≡ E[vt|et+1|].

5The difference between the objective function in West and McCracken (1998) and our case is that they

assume twice differentiability of the objective, which we do not have here because of the indicator function.
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In other words, the misspecification bias depends on: (i) the extent of the departure from

symmetry in the loss function L2, quantified by (1 − 2α0); (ii) the covariance vector hV of

the instruments used in the test, vt, with the absolute value of the forecast error, |et+1|; and

(iii) the covariance matrix of the instruments, ΣV .

Some positive implications can be drawn from Proposition 1, improving our understand-

ing of standard efficiency tests when the forecaster’s loss is asymmetric (α0 6= 1/2) :

• In the usual implementation of efficiency regressions such as the one in (4), a constant

is included in vt and we can write vt = (1, ṽ0t)
0. The first element of the covariance

vector hV then equals E[|et+1|]. Thus, when α0 6= 1/2, there will always be a potential

for bias in at least the constant term, unless the absolute forecast error is zero in

expectation. This can only occur in the highly unlikely situation where the forecasts

are perfect and the forecast errors are zero with probability one, so standard tests of

forecast rationality will in general be biased under asymmetric loss.

• Moreover, whenever the matrix ΣV is nonsingular, the bias that arises through the

constant term will extend directly to biases in the other coefficients for each regressor

whose mean is nonzero. This follows from the interaction of Σ−1V and the first term

of hV . Hence, even when regressors have no additional information for improving the

forecasts, they may still have nonzero coefficients when the loss function is misspecified,

giving rise to false rejections. Of course, one can prevent such a bias from spilling over

from the constant to the non-constant regressors by simply de-meaning ṽt. If E[ṽt] = 0,

there will always be a bias in the first term of β̂ unless E[|et+1|] = 0 and/or α0 = 1/2.

This bias, however, will not affect the other coefficients of the OLS estimator.

• The bias of β̂ decreases with the variability of the regressors. In other words, if the

covariance matrix ΣV is sufficiently large, it can ‘drown out’ the bias.

• In practice, we can easily evaluate the relative biases for each coefficient in the efficiency

regression (4) by simply computing the term Σ−1V hV . For any degree of asymmetry,

the latter can be consistently estimated by regressing the absolute forecast errors on

vt. Such regressions should accompany results that assume quadratic loss, especially
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when there are rejections. They allow us to understand how sensitive the results are

to misspecifications of the loss function, at least of the form examined here.

3.2 Power of Efficiency Tests

Misspecification of the loss function not only affects the bias of the standard OLS estima-

tor β̂ in (4) but also its asymptotic distribution. Hence, rationality tests implemented by

traditional MSE regression based on the null hypothesis β = 0 might well lead to incorrect

inference. Proposition 2 allows us to study the magnitude of this problem:

Proposition 2 Under Assumptions (A1)-(A5) listed in Appendix A and under ‘Quad-Quad’

loss L2, the asymptotic distribution of β̂ in the efficiency regression (4) is

√
T (β̂ − β∗)

d→ N (0,Ω∗V ), (6)

where β∗ ≡ β + (1− 2α0)Σ−1V hV and the expression for Ω∗V and its consistent estimator Ω̂V

are provided in Appendix A. For local deviations from symmetric loss (α0 = 1/2) given by

α0 =
1
2
(1− aT−1/2), and local deviations from rationality (β = 0) given by β = bT−1/2, with

a and b fixed, the Wald test statistic based on the efficiency regression (4) is asymptotically

distributed as Tβ̂
0
Ω̂−1V β̂

d→ χ2d(m), a non-central chi-square with d degrees of freedom and

non-centrality parameter m given by

m = a2ϕV + b0Ω∗V
−1b+ 2ab0kV , (7)

where the d-vector kV and the scalar ϕV are defined in Appendix A.

Local (asymptotic) power of the Wald test for rationality (β = 0) is driven entirely by

the noncentrality parameter m; hence, it suffices to consider this parameter to study the

local power of the standard rationality tests in the directions of nonzero a and b.

What Proposition 2 shows is: (i) that for a wide range of combinations of the asymmetry

parameter α0 6= 1/2 and the regression coefficient β 6= 0 the noncentrality parameter m will

be equal to zero: in such cases, efficiency tests will fail to reject the null hypothesis of forecast

rationality even for large degrees of inefficiency; conversely, (ii) whenever a combination of
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β = 0 and α0 6= 1/2 leads to a strictly positive m, the efficiency test will tend to reject the

null; in other words, false rejections of rationality are possible when the forecaster genuinely

uses information efficiently (β = 0) provided loss is asymmetric (α0 6= 1/2). More specifically,

• Non-zero values of a and b have very different economic interpretations: b 6= 0 implies

that the forecasting model is misspecified, while a 6= 0 reflects asymmetric loss. Only

the former can be interpreted as forecast inefficiency or irrationality. Yet, for given

values of ϕV , Ω
∗
V and kV we can construct pairs of values (a, b) that lead to identical

power (same m). Standard efficiency tests based on (4) can therefore not tell whether

a rejection is due to irrationality or asymmetric loss: they lack robustness with respect

to the shape of the loss function.

• A large value of m can arise even when the forecaster is fully rational (b = 0) provided

that |a| is large.6 Spurious rejections of the rationality hypothesis follow whenever the

absolute value of the forecast error is correlated with vt and the standard error of β̂ is

not too large.

• Conversely, suppose that the test does not reject, which would happen at the right

size provided m = 0. This does not imply that the forecast is rational (b = 0) because

we can construct pairs of non-zero values (a, b) such that m = 0. This will happen

when the misspecification in the forecasts cancels out against the asymmetry in the

loss function. The test will not have any power to identify this problem.

To demonstrate the importance of these points, Figure 2A plots iso-m or, equivalently,

iso-power curves for different values of a and b, assuming a test size of 5% and vt = 1.7

Under MSE loss and informational efficiency a = b = 0. Positive values of a correspond

6When a 6= 0, the constant term in (4) is particularly likely to lead to a rejection even when the forecasts

are truly rational. This bias will be larger the less of the variation in the outcome variable is explained (since

E[|et+1|] is increasing in the variation of the forecast error).
7For this case ΣV = 1 and hV is a scalar that can be estimated by ĥV = T−1

Pt=T+τ
t=τ |et+1|. Hence,

k̂V = ĥV /σ̂
2
u and ϕ̂V = ĥ2V /σ̂

2
u (with σ̂2u being the variance of the residuals of the regression) are consistent

estimators of kV and ϕV , respectively. Values for σ̂u and ĥV were chosen to match the survey data in the

empirical section.
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to α0 < 1/2, while negative values of a represent α0 > 1/2. For any value of m we can

solve the quadratic relationship (7) to obtain a trade-off between a and b. When m = 0 (the

thick line in the center), the test rejects with power equal to size and the trade-off between

a and b is simply b = −aĥV . The two m = 0.65 lines represent power of 10%, the m = 1.96

lines give 50% power, while the m = 3.24 lines furthest towards the corners of the figure

represent power of 90%.8 The lines slope downward since a larger value of a corresponds to

a smaller value of α0 and a stronger tendency to underpredict which cancels out against a

larger negative bias in b.

Pairs of values (a, b) on the m = 0 line are such that biases in the forecasts (b 6= 0)

exactly cancel out against asymmetry in loss (a 6= 0) in such a way that the standard test

cannot detect the bias (in the sense that power of those tests equals their size) even though

forecasters are irrational. For nonzero values for m, we see the converse. The point where

these contours cross the b = 0 boundary (in the centre of the graphs) gives the asymmetry

parameter that–if true for the forecaster–would result in rejections with greater frequency

than size even though the forecaster is rational for that asymmetric loss function.9

Economic interpretation of these results is facilitated by plotting the power contours in

(α, β)-space, where the latter is reported in standard error units of the efficiency regression

(4). For this plot–shown in Figure 2B–the iso-power lines become upward-sloping as larger

values of α lower the loss-induced bias and hence cancel out against larger inefficiency biases,

β. The figure shows that biases as large as 3.5 standard error units away from zero will be

virtually undetectable provided the loss function is sufficiently asymmetric. Conversely,

moving vertically along the β = 0 ‘rationality line’, we find that strongly asymmetric loss

can lead to a 90% chance of falsely rejecting the null of rationality.

8The range of values for a in the figure (-10, 10) ensures that α0 ∈ (0, 1) when T = 100. This range

becomes more narrow (wider) for smaller (larger) sample sizes.
9Only if ĥV = 0 would asymmetric loss not cause problems to the standard test. In this case the absolute

value of the forecast error is not correlated with the instrument, vt, there is no omitted variable bias and

the iso-power curves would be vertical lines, so size would only be controlled when b = 0.
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4 Rationality Tests under Asymmetric Loss

The lack of robustness of standard rationality tests to asymmetries suggests that a new set

of tests is required. In this section we describe two such approaches. The first approach

is applicable when the shape and parameters of the loss function are known. This set-

up does not pose any new problems and least-squares estimation still applies, albeit on a

transformation of the original forecast error. The second case arises when the parameters of

the loss function are unknown and have to be estimated as part of the test. This framework

requires different estimation methods which we describe below.

4.1 Known Loss

Under a loss function L, characterized by some shape parameter η, the sequence of forecasts

is said to be optimal under loss L if at any point in time, t, the forecast ft+1 minimizes

E[L(et+1; η)|It]–the expected value of L conditional on the information set available to the

forecaster, It. This implies that, at any point in time, the optimal forecast error et+1 satis-

fies the first order condition E[L0e(et+1; η)|It] = 0, where L0e denotes the derivative of L with

respect to the error et+1. When both L and η are known we can simply transform the ob-

served forecast error et+1 and test the orthogonality conditions by means of the ‘generalized’

efficiency regression

L0e(et+1; η) = β0vt + ut+1, (8)

where the error term ut+1 satisfies E[vtut+1] = 0. Under standard regularity conditions,

the linear regression parameter β can be consistently estimated by using the ordinary least

squares (OLS) estimator β̃ ≡ [
PT+τ−1

t=τ vtv
0
t]
−1[
PT+τ−1

t=τ vtL
0
e(et+1; η)]. As for the standard

quadratic case in (4), forecast rationality under L is equivalent to having β = 0. Hence,

under general loss a test for rationality can be performed by: (i) first transforming the

observed forecast error et+1 into L0e(et+1; η), then (ii) regressing the latter on vt by means of

the regression (8) and finally (iii) testing the null hypothesis that all regression coefficients

are zero, i.e. β = 0.

To demonstrate this type of test, suppose that it is known that the forecaster has a
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‘Quad-Quad’ loss function with known asymmetry parameter α0 6= 1/2. For this case the

generalized efficiency regression takes the simple form

et+1 − (1− 2α0)|et+1| = β0vt + ut+1. (9)

When α0 equals one half, the previous regression collapses to the one traditionally used in

tests for strong rationality (4). Assuming that the forecaster’s loss is quadratic, (α0 = 1/2),

amounts to omitting the term (1− 2α0)|et+1| from the regression (9). Whenever α0 6= 1/2,

the estimates of the slope coefficient β in the resulting efficiency regression (4) are biased.

This finding is as we would expect from the standard omitted variable bias result with the

difference that we now have constructed the omitted regressor.

4.2 Unknown Loss Parameters

For many applications both L and η are unknown to the forecast evaluator. One way

to proceed in this case is to relax the assumption that the true loss is known by assum-

ing that L belongs to some flexible and known family of loss functions but with unknown

shape parameter, η. Forecast rationality tests merely verify whether, under the loss L, the

forecasts are optimal with respect to a set of variables vt, known to the forecaster. They

can therefore be viewed as tests of moment conditions, which arise from first order con-

ditions of the forecaster’s optimization problem. Traditional rationality tests, such as the

one proposed by Mincer and Zarnowitz (1969), adopt a regression based approach to test-

ing these orthogonality conditions. A natural alternative is to use a Generalized Method

of Moments (GMM) framework as in Hansen (1982). The benefits of the latter are eas-

ily illustrated in the ‘Quad-Quad’ case. If the asymmetry parameter, α0, is unknown it is

impossible to compute the term (1−2α0)|et+1| and hence not feasible to estimate the regres-

sion coefficient β in (9). However, it is still possible to test whether the moment conditions

E{vt[(α0−1(et+1 < 0))|et+1|−β0vt]} = 0 associated with the first order condition of forecast

optimality under ‘Quad-Quad’ loss in (3) hold, with β = 0 and α0 left unspecified.

The statistic suggested by Elliott, Komunjer and Timmermann (2005) for testing the
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null hypothesis that the forecasts are rational takes the form of a test for overidentification:

J ≡ 1

T
{
T+τ−1P
t=τ

vt[α̂− 1I(et+1 < 0)]|et+1|}0Ŝ−1{
T+τ−1P
t=τ

vt[α̂− 1I(et+1 < 0)]|et+1|}. (10)

Here Ŝ is a consistent estimator of S ≡ E{vtv0t[1I(et+1 < 0)− α0]
2|et+1|2}, and α̂ is a linear

Instrumental Variable (IV) estimator of α0,

α̂ ≡
[
T+τ−1P
t=τ

vt|et+1|]0Ŝ−1[
T+τ−1P
t=τ

vt1I(et+1 < 0)|et+1|]

[
T+τ−1P
t=τ

vt|et+1|]0Ŝ−1[
T+τ−1P
t=τ

vt|et+1|]
. (11)

In other words, the GMM overidentification test (J-test) is a consistent test of the null

hypothesis that the forecasts are rational (β = 0) even if the true value of the asymmetry

parameter α0 is unknown, and the forecast errors depend on previously estimated parameters,

c.f. West (1996), West and McCracken (1998), McCracken (2000), Corradi and Swanson

(2002, 2005a,b). The test is asymptotically distributed as a χ2d−1 random variable and rejects

for large values. Effectively, we exploit the first order conditions under forecast rationality,

E{vt[α0 − 1I(et+1 < 0)]|et+1|} = 0, with α0 left unspecified. As a by-product, an estimate of

the asymmetry parameter α̂ is generated from equation (11).

Intuitively, the power of our test arises from the existence of overidentifying restrictions.

In practice, for each element of vt we could obtain an estimate for the asymmetry parameter,

α0, that would ‘rationalize’ the observed sequence of forecasts. However, when the number of

instruments, d, is greater than one, our method tests that the implied asymmetry parameter

is the same for each moment condition. If no common value for α0 satisfies all of the moment

conditions, the test statistic J in (10) becomes large. This explains why the test still has

power against the alternative that the forecasts were not constructed rationally and why

it is not possible to justify arbitrary degrees of inefficiency in the forecasts by means of

asymmetric loss: if the forecasts did not efficiently use the information in vt, then α̂ would

be very different for each of the moment conditions and the test would reject.

Although this approach does not impose a fixed value of α0, it maintains that the loss

function belongs to the family (2) with exponent p = 2 and the test (10) provides a joint

test of rationality and this assumption. The advantage of this approach is that it loses little
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power since only one parameter has to be estimated. It is possible to take an even less

restrictive approach and estimate the moment conditions non-parametrically. However, this

is unlikely to be a useful strategy in view of the short survey data samples typically available.

5 Empirical Results

To see how asymmetric loss affects the empirical results from Section 2, derived under MSE

loss, we proceed to test rationality of the output forecasts under ‘Quad-Quad’ loss. We

present results using seven different sets of instruments, vt, based on a constant, lagged

forecast errors, lagged outcomes, lagged forecasts and lagged absolute forecast errors. The

lagged value is subtracted from the forecasts and past realizations to avoid that the instru-

ment is overly persistent−too strong persistency could lead to difficulties in the ability of the

asymptotic theory to approximate the finite sample behavior of the tests. Our instruments

are similar to those adopted in the literature to test for rationality under MSE loss (see, e.g.,

Keane and Runkle (1990), Brown and Maital (1981) and Zarnowitz (1985)) and have power

to detect predictability in forecast errors such as serial correlation.

Before presenting the results it is worth asking whether asymmetries matter for macro-

economic surveys. The main business outlook questionnaire supplied to forecasters in the

Survey of Professional Forecasters requests that each forecaster fill in a forecast of the vari-

ables without specifying the exact objective of the prediction. It is not clear, for example, if

the forecaster provides the mean of the distribution, in which case his/her forecast is unbi-

ased, or the median or mode of the distribution, which result in biased forecast errors. This

opens up the possibility that individual forecasters use different objectives in calculating

their predictions.

5.1 Rationality Tests and Estimates of Loss Parameters

Table 2 shows the outcomes of two separate tests for rationality when we use the real-time

value of the outcome variable. The first test is for the joint hypothesis of rationality and

symmetric loss (α0 = 1/2). The second test is for rationality but allows for asymmetry
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within the context of the more general family of ‘Quad-Quad’ loss functions. The null of

symmetric loss and rationality gets rejected at the 1% level for between 11 and 41 of the

forecasters. Across instruments we observe between 19 and 56 rejections at the 5% level

and between 28 and 70 rejections at the 10% level. The results are very different when we

no longer impose symmetry on the loss function. For this case the number of rejections is

zero for four of the seven instruments, and it is close to the 5% and 10% nominal values for

most instruments except for perhaps the constant and change in the forecast (instruments

number five). For example, with instrument=2 or instrument=3, we find 7/108 and 5/108

or 6.5% and 4.6% of all cases reject at the 5% significance level whereas 13 and 12 of 108

cases, corresponding to 12.0% and 11.1%, respectively, reject at the 10% significance level.

When the fully revised value is used for the target variable the results are quite similar,

although the number of rejections tends to increase a bit under the null of symmetric loss.

When loss is allowed to be symmetric, the strongest evidence against the null of rationality

comes from the instrument set that uses a constant and the change in the forecast.

Standard tests of forecast rationality thus have reasonable power in the direction of

detecting asymmetry in the loss function. In fact, rejections of the joint hypothesis of

rationality and symmetry appear mostly to be driven by the symmetry assumption. Our

rejection frequencies under asymmetric loss are close to the size of the test and hence suggest

little evidence against the joint null of asymmetric loss and efficient forecasts.

So far we have not discussed the α-estimates although clearly there is considerable eco-

nomic information in these values which should reflect the shape of the forecasters’ loss

function. Figure 3 shows a histogram of the 108 α-estimates computed using (11) for vt = 1.

The evidence is clearly indicative of asymmetric loss. Importantly, the α−estimates sug-

gested by our data do not appear to be ‘extreme’ and are clustered with most values in

the range between 0.3 and 0.5. A value of α equal to 0.40 corresponds to putting one and

a half times as large a weight on negative forecast errors as on positive ones. We might

have found α-values much closer to zero in which case the degree of asymmetry required to

explain biases in the forecasts would have to be implausibly large. Hence only a relatively

modest degree of asymmetry in the loss function is required to overturn rejections of the null
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hypothesis.

5.2 Nominal versus Real output

So far we analyzed the data on nominal output growth, but it is of separate interest to

consider real output forecasts. To this end tables 4 and 5 show results for real output based

on real-time and fully-revised data. The results show that there is still strong evidence

against forecast rationality and symmetric loss independent of the type of instrument used.

For example, the rejection rates at the 5% level are mostly between three and four times as

high as expected under the null. Conversely, the evidence against rationality is far weaker

once we allow for asymmetric loss, particularly when the fully revised data is used for the

target variable. These results suggest that forecasts of both the real part and the inflation

component of output growth matter in explaining the earlier findings for nominal output

growth.

5.3 Bias and Type of Forecaster

The SPF data does not identify the affiliation of the forecaster. It is natural, however, to

expect the extent of loss asymmetry to be different for forecasters associated with academia,

banking and industry. It seems more plausible that academics have less of a reason to produce

biased forecasts than, say, industry economists whose forecasts are produced for a specific

firm or industry and thus–at least in theory–should put more weight on positive forecast

errors if, e.g., inventory costs exceed stockout costs. It is more difficult to conjecture the

size and direction of the bias for the banking forecasters. If these were produced for clients

that were fully hedged with regard to unanticipated shocks to economic growth, one would

expect α-estimates closer to one-half. However, if bank losses arising from over-predictions

of economic growth exceed those from underpredictions, again we would expect more α-

estimates below one-half than above it.

To consider this issue, we used data from the Livingston survey which lists the forecaster’s

affiliation. Unfortunately this data set tends to be much shorter as forecasts are only gener-

ated every six months. We therefore only required a minimum of 10 observations. This leaves
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us with 12 industry, six academic and 15 forecasters from the banking sector–admittedly a

very small sample.

The α-estimates for these forecasters are shown in Figure 4. Academic forecasters tend

to produce α-estimates closer to one-half than the forecasters from industry and banking.

The spread in α−estimates is 0.086, 0.132 and 0.162 across the academic, industry and

banking forecasters. The joint null of rationality and α0 = 1/2 is not rejected for any of

the academic forecasters, while this hypothesis is rejected at the 10% level for one of the

industry forecasters and for six of the banking forecasters. While this evidence is by no

means conclusive given the very small sample available here, it is indicative that differential

costs associated with positive and negative forecast errors play a role in explaining forecast

biases.

6 Conclusion

Empirical studies frequently find that forecasts from survey data are biased. Does this mean

that forecasters genuinely use information inefficiently and hence are irrational or simply that

they have asymmetric loss? We have shown in this paper that standard forecast efficiency

tests often cannot distinguish between these two possible explanations. The importance

of this point–which many previous papers have expressed concern about–was validated

empirically as we found that rejections of rationality may largely have been driven by the

assumption of symmetric loss. Conversely, we should not necessarily conclude from the failure

to reject the null when we allow for asymmetric loss that forecasters are rational in view

of the limited ability of rationality tests to identify inefficient use of information in survey

samples on individual forecasters as small as those used here. It is clear from our results,

however, that many empirical findings that rejected forecast rationality could be revisited

using the generalized Mincer-Zarnowitz test proposed here that allows for asymmetric loss

in a parsimonious manner.

Overall, our results suggest that the assumption of symmetric, quadratic loss in standard

tests of forecast rationality is a key limitation to such tests. Our empirical findings raise the

question whether the degree of asymmetry in the loss function required for forecasts to be
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efficient is excessive given what is known about the forecasting situation. There is, of course,

a precursor for this type of question. In finance, the equity premium puzzle consists of the

finding that the value of the risk aversion parameter required for historical stock returns to

be consistent with a representative investor model appears to be implausibly high, c.f. Mehra

and Prescott (1985). In our context, the empirical findings suggest that often only a modest

degree of asymmetry is required to overturn rejections of rationality and symmetric loss.

The results therefore point towards the need for collecting data on the costs associated with

forecast errors of different signs and magnitude in order to better understand the forecasters’

objectives.
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Data Appendix

Our empirical application uses the annualized growth in quarterly seasonally adjusted

nominal US GDP in billions of dollars before 1992 and nominal GNP after 1992, as well as

the corresponding real GDP. The growth rate is calculated as the difference in natural logs

times four hundred. Data for the actual values and for instruments come from the real-time

data sets available at the Federal Reserve Bank of Philadelphia website. The second revision

is used as real-time data, whereas the latest available revision, as of February 2005, is used

as fully revised data. Only the second revision is used to construct the instruments, so that

both, the lagged forecast errors and the lagged values of output growth, are based on the

historical vintages available in real time.

Data on the forecasts come from the Survey of Professional Forecasters, also maintained

by the Federal Reserve of Philadelphia (data labels: NOUTPUT and ROUTPUT). The sur-

vey provides the quarter, the identification number of the forecaster, the most recent value

known to the forecaster (preceding), the value (most of the times forecasted) for the current

quarter (current) and then forecasts for the next four quarters. We use the values corre-

sponding to the current quarter and the first forecast to calculate the one-step-ahead growth

rate (as before, the annualized quarter-to-quarter growth rate is calculated as the difference

in natural logs times four hundred). The data corresponding to nominal output runs from

the fourth quarter of 1968 to the third quarter of 2004, whereas the one corresponding to

real output runs from the third quarter of 1981 to the third quarter of 2004.

Some forecasters reported missing values while others decided to leave for a while, but

then return and continue to produce forecasts. To deal with these problems we followed two

steps. First, we only kept forecasters with at least 20 non-zero forecasts. This resulted in

108 forecasters for nominal output and 48 for real output (out of a total of 512 forecasters

in each case). Second, for the instruments we used the latest available forecast error as the

lagged forecast error when needed.

The Livingston data uses the difference in the logs of the six-month forecast (two quarters

ahead) over the forecast of the current quarter (times two hundred) and starts in the second

semester of 1992 which is the time when current quarter figures start to get included. Data
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runs through the first semester of 2004. This data contains information on the affiliation of

the forecasters. Most affiliations have very few observations, so only those corresponding to

Industry, Academic and Banking were considered. Individuals with implausibly large forecast

errors (greater than 5 percentage points over a six-month period) and too few observations

(less than ten) were excluded from the analysis. This leaves us with six Academic forecasters,

15 Banking forecasters and 12 Industry forecasters.

Appendix A

This appendix describes the forecasting setup, lists the assumptions used to establish

Propositions 1 and 2 and defines the terms referred to in the latter. We use the following

notations: if v is a real d-vector, v = (v1, . . . , vd)0, then |v| denotes the standard L2-norm of

v, i.e. |v|2 = v0v =
Pd

i=1 v
2
i . If M is a real d× d-matrix, M = (mij)16i,j6d, then |M | denotes

the L∞-norm of M , i.e. |M | = max16i,j6d |mij|.

Forecasting scheme:

As a preamble to our proofs, it is worth pointing out that the estimation uncertainty of the

observed forecasts, which we hereafter denote f̂t+1, gives rise to complications when testing

rationality. The models used by the forecasters to produce {f̂t+1}T+τ−1t=τ are typically unknown

to the econometrician or forecast user. Indeed, there are a number of different forecasting

methods which can be used by the forecasters at the time they make their forecasts, most

of which involve estimating (or calibrating) some forecasting model.

n+1=T+ττ+2 . . .    t    . . . τ

1
ˆ
+τf

τ+1

2
ˆ
+τf

n

τ+Tf̂

time

1+τy 2+τy τ+Ty

forecasts of Yt+1

realizations of Yt+1

forecasters’ 
information

τΩ 1+Ωτ 1−+Ω τT

. . .  . . . 

. . .    . . . 

tf̂

ty
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In addition to different models employed, forecasts may also differ according to the fore-

casting scheme used to produce them. For example, a fixed forecasting scheme constructs

the in-sample forecasting model only once, then uses it to produce all the forecasts for the

out-of-sample period. A rolling window forecasting scheme re-estimates the parameters of

the forecasting model at each out-of-sample point t by using k most recent observations (k

fixed). In contrast, a recursive scheme assumes that k increases together with t.

In what follows, we assume that all the observed forecasts–from some date τ to τ + T

as depicted in the figure above–are made by using a rolling forecasting scheme so that the

observed forecasts f̂t+1 are of the form f̂(wt, ..., wt−k). (We need this condition in order

to preserve the mixing property of the sequence {wt} which we assume in our assumption

(A4).) Note that the use of recursive scheme is not permitted in our setup as it would

violate the condition that the forecasts depend only on some finite number of lagged wt’s.

On the other hand, the use of fixed scheme is not permitted since in that case, the forecast

estimation uncertainty would not ‘wash out’ out-of-sample. (This is what our assumption

(A5)(ii) requires.)

Throughout the proofs we assume that the forecasters’ objective is to solve the problem

min
{ft+1}

E[α|et+1|p1I(et+1 ≥ 0) + (1− α)|et+1|p1I(et+1 < 0)], (12)

and thus define a sequence of optimal forecasts {f∗t+1}T+τ−1t=τ and corresponding forecast errors

{e∗t+1}T+τ−1t=τ . It is important to note that {f∗t+1}T+τ−1t=τ which minimizes the above expectation

is unobservable in practice. Instead we assume the econometrician observes {f̂t+1}T+τ−1t=τ thus

taking into account that the observed sequence of forecasts embodies a certain number of

estimated parameters of the forecasting model.

Assumptions:

(A1) β ∈ B where the parameter space B ⊆ Rd and B is compact. Moreover β∗ ∈ B̊;

(A2) the forecasts of yt+1 are constant measurable functions of some finite number k of lags

of the h-vector wt, i.e. f̂t+1 = f̂(wt, ..., wt−k) and f∗t+1 = f∗(wt, ..., wt−k), where the functions

f̂ and f∗ are unknown, and f̂t+1 = f∗t+1 + op(1);

(A3) the d-vector vt is a sub-vector of the h-vector wt (d 6 h) with the first component 1,
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i.e. wt = (v
0
t, z

0
t)
0, and E[vtv

0
t] is positive definite;

(A4) {(yt, w0t)} is strictly stationary and α-mixing sequence with mixing coefficient α of size

−r/(r − 2), r > 2, and there exist some CY > 0, CV > 0, ĈW > 0, C∗W > 0 and δ > 0

such that E[|yt+1|2r+δ] 6 CY < ∞, E[|vt|2r+δ] 6 CV < ∞, E[|f̂(wt)
2r+δ|] 6 ĈW < ∞ and

E[|f∗(wt)
2r+δ|] 6 C∗W <∞;

(A5) for some small ε > 0: (i) τ 1−2ε/T → ∞ and (ii) supτ6t<T+τ |t1/2−ε(f̂t+1 − f∗t+1)|
p→ 0,

as τ →∞ and T →∞.

Definitions:

β∗ ≡ β + (1− 2α0)Σ−1V hV ,

Ω∗V ≡ Σ−1V ∆V (β
∗)Σ−1V ,

∆V (β
∗) ≡ E[u2t+1vtv

0
t] + 2(1− 2α0)E[ut+1|e∗t+1|vtv0t] + (1− 2α0)2E[e∗2t+1vtv0t],

∆̂V (β̂) ≡ T−1
PT+τ−1

t=τ (êt+1 − β̂
0
vt)

2vtv
0
t with ∆̂V (β̂)

p→ ∆V (β
∗),

Ω̂V ≡ Σ̂−1V ∆̂V (β̂)Σ̂
−1
V with Ω̂V

p→ Ω∗V ,

kV ≡ ΣV∆V (β
∗)−1hV and ϕV ≡ h0V∆V (β

∗)−1hV .

Appendix B

Proof of Proposition 1. In the first part of this proof we show that β̂
p→ β∗, where

β∗ ≡ (E[vtv
0
t])
−1E[vte

∗
t+1]. We then use this convergence result in the second part of the

proof to derive the expression for the misspecification bias of β̂. Recall from Section 4 that

the standard OLS estimator is β̂ = [
PT+τ−1

t=τ vtv
0
t]
−1[
PT+τ−1

t=τ vtêt+1]. In order to show that

β̂
p→ β∗, it suffices to show that the following conditions hold:

(i) β∗ is the unique minimum onB (compact in Rd) of the quadratic form S0(β) with S0(β) ≡

E[(e∗t+1− β0vt)
2]; (ii) T−1

PT+τ−1
t=τ vtv

0
t

p→ E[vtv
0
t]; (iii) T

−1PT+τ−1
t=τ vtêt+1

p→ E[vte
∗
t+1]. From

the positive definiteness of E[vtv0t] (A3) and the continuity of the inverse function (away from

zero), it then follows that β̂
p→ β∗.
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We start by showing (i): note that S0(β) = E[(e∗t+1)
2] − 2β0E[vte∗t+1] + β0E[vtv

0
t]β, so

S0(β) admits a unique minimum at β∗ if the matrix E[vtv
0
t] is positive definite, which is

satisfied by assumption (A3). This verifies the uniqueness condition (i).

In order to show (ii) and (iii), we use a law of large numbers (LLN) for strictly stationary

and α-mixing sequences (e.g., Corollary 3.48 in White, 2001). By assumptions (A2) and

(A3) we know that f̂t+1 and vt are constant measurable functions of wt which by (A4) is

a strictly stationary; hence, {(êt+1v0t, vec(vtv0t)0)0}T+τ−1t=τ , where êt+1 = yt+1 − f̂t+1, is strictly

stationary. Moreover, by (A4) the sequence {(yt, w0t)}T+τ−1t=τ is α-mixing sequence with mixing

coefficient α of size −r/(r − 2), r > 2; hence by Theorem 3.49 in White (2001, p 50) we

know that {(êt+1v0t, vec(vtv0t)0)0}T+τ−1t=τ is also α-mixing with mixing coefficient α of the same

size −r/(r − 2), r > 2. Note that by letting r̄ = r/2 this last property implies that

{(êt+1v0t, vec(vtv0t)0)0}T+τ−1t=τ is α-mixing with mixing coefficient α of size −r̄/(r̄ − 1), r̄ > 1,

which is the dependence assumption of Corollary 3.48 in White, 2001. We now need to check

that additional moment conditions on êt+1vt and vtv0t hold. For δ > 0 we have r+ δ > 2 and

r̄ + δ/2 = r/2 + δ/2 > 1 so by Cauchy-Schwarz inequality and assumption (A4) (because

2(r̄ + δ/2) = r + δ < 2r + δ)

E[|vtv0t|r̄+δ/2] 6 E[|vt|r+δ] 6 max{1, E[|vt|2r+δ]} 6 max{1, CV } <∞.

Applying the results from Corollary 3.48 in White (2001) to the sequence {vec(vtv0t)0}T+τ−1t=τ ,

we conclude that T−1
PT+τ−1

t=τ vtv
0
t converges in probability to its expected value E[vtv

0
t],

which shows that (ii) holds.

Similarly,

E[|vtêt+1|r̄+δ/2] 6 (E[|vt|r+δ])1/2(E[|êt+1|r+δ])1/2.

Hence there exists some nr,δ ∈ R+∗ , nr,δ <∞, such that

E[|vtêt+1|r̄+δ/2] 6 max{1, C1/2
V }[nr,δ(E[|yt+1|r+δ] +E[|f̂t+1|r+δ])]1/2

6 max{1, C1/2
V }n1/2r,δ [max{1, CY }+max{1, ĈW}]1/2

< ∞,

where we have used (A2) and (A4). Hence, our previous argument applies to the sequence

{êt+1v0t}T+τ−1t=τ as well, and we conclude that T−1
PT+τ−1

t=τ vtêt+1 converges in probability to
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its expected value E[vtêt+1]. Note, however, that this does not ensure that (iii) holds, as we

moreover need to show that substituting e∗t+1 for êt+1 does not affect the result, i.e. that

E[vtêt+1] = E[vte
∗
t+1] + o(1). For this, note that

|E[vt(êt+1 − e∗t+1)]| = |E[vt(f∗t+1 − f̂t+1)]| 6 E[|vt(f∗t+1 − f̂t+1)|]

6 (E[|vt|2])1/2(E[|f∗t+1 − f̂t+1|2])1/2

6 max{1, C1/2
V }(E[|f∗t+1 − f̂t+1|2])1/2,

where the last inequality uses E[|vt|2] 6 max{1, E[|vt|2r+δ]} 6 max{1, CV }. Since by (A2)

we know that f∗t+1 − f̂t+1 = op(1), for all t, we get E[vtêt+1] = E[vte
∗
t+1] + o(1). Combined

with our previous result this shows that (iii) holds. Hence, we conclude that β̂
p→ β∗.

We now use this convergence result to derive the bias in β̂. We know from Section 4 that

the parameter β in the generalized regression (9) satisfies the set of identifying constraints

E{vt[2(α0 − 1I(e∗t+1 < 0))|e∗t+1|− β0vt]} = 0,

so that 2E[(α0−1I(e∗t+1 < 0))vt|e∗t+1|] = E[vtv
0
t]β. Using that 21I(e

∗
t+1 < 0)|e∗t+1|= |e∗t+1|−e∗t+1,

this last equality can be written E[vte
∗
t+1] − E[(1 − 2α0)vt|e∗t+1|] = E[vtv

0
t]β, so by positive

definiteness of E[vtv0t] (A2) we have β = (E[vtv
0
t])
−1{E[vte∗t+1]−E[(1−2α0)vt|e∗t+1|]}. In other

words, β = β∗− (1− 2α0)(E[vtv0t])−1(E[vt|e∗t+1|]). This shows that β̂
p→ β +(1− 2α0)Σ−1V hV

with ΣV ≡ E[vtv
0
t] and hV ≡ E[vt|e∗t+1|], which completes the proof of Proposition 1.10

Proof of Proposition 2. We now show that T 1/2(β̂−β∗) is asymptotically normal by

expanding the first order condition for β̂ around β∗:

[
T+τ−1P
t=τ

vt(êt+1 − β̂
0
vt)] = 0 = [

T+τ−1P
t=τ

vt(êt+1 − β∗0vt)]− (
T+τ−1P
t=τ

vtv
0
t)(β̂ − β∗). (13)

The idea then is to use (i) T−1/2[
PT+τ−1

t=τ vt(êt+1−β∗0vt)] = T−1/2[
PT+τ−1

t=τ vt(e
∗
t+1−β∗0vt)]+

op(1), together with (ii) T−1/2
PT

t=1 vt(e
∗
t+1 − β∗0vt)

d→ N (0,∆V (β
∗)), where ∆V (β

∗) ≡

E[(e∗t+1 − β∗0vt)
2vtv

0
t], to show by Slutsky’s theorem that

T−1/2
T+τ−1P
t=τ

vt(êt+1 − β∗0vt)]
d→ N (0,∆V (β

∗)). (14)

10Moreover, these results ensure that ĥV − hV
p→ 0 and Σ̂V − ΣV

p→ 0 where ĥV ≡ T−1
PT+τ−1

t=τ vt|êt+1|
and Σ̂V ≡ T−1

PT+τ−1
t=τ vtv

0
t, which makes the estimation of the bias components straightforward.
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The remainder of the asymptotic normality proof is then similar to the standard case: the

positive definiteness of Σ−1V , and the consistency of Σ̂V = T−1
PT+τ−1

t=τ vtv
0
t, Σ̂V

p→ ΣV , ensure

that the expansion (13) is equivalent to T 1/2(β̂ − β∗) = Σ̂−1V T−1/2
PT+τ−1

t=τ vt(êt+1 − β∗0vt).

We then use the limit result in (14) and Slutsky’s theorem to show that

T 1/2(β̂ − β∗)
d→ N (0,Ω∗V ),

with Ω∗V ≡ Σ−1V ∆V (β
∗)Σ−1V which is what Equation (6) in Proposition 2 states.

Hence, we need to show that conditions (i) and (ii) hold: For (i) it is sufficient to show

that T−1/2
PT+τ−1

t=τ vtêt+1 − T−1/2
PT+τ−1

t=τ vte
∗
t+1

p→ 0. We have

T−1/2|
T+τ−1P
t=τ

vt(êt+1 − e∗t+1)| = T−1/2|
T+τ−1P
t=τ

t−1/2+εvtt
1/2−ε(f̂t+1 − f∗t+1)|

6 sup
τ6t6T+τ−1

|t1/2−ε(f̂t+1 − f∗t+1)|T−1/2
T+τ−1P
t=τ

|vt|t−1/2+ε.

Note that (A4) implies E[|vt|] <∞, so that, for any given ν > 0, by (A5)(i) and Chebyshev’s

inequality we have

P (T−1/2
T+τ−1P
t=τ

|vt|t−1/2+ε > ν) 6 E(|vt|)
ν

T−1/2
T+τ−1P
t=τ

t−1/2+ε

6 E(|vt|)
ν

(
T

τ 1−2ε
)1/2 → 0

as τ →∞ and T →∞. Together with (A5)(ii) this last property implies that T−1/2|
PT+τ−1

t=τ

vtêt+1 −
PT+τ−1

t=τ vte
∗
t+1|

p→ 0, so (i) holds.

We now show that (ii) holds as well, i.e. that T−1/2
PT

t=1 vt(e
∗
t+1−β∗0vt)

d→ N (0,∆V (β
∗))

with ∆V (β
∗) ≡ E[(e∗t+1 − β∗0vt)

2vtv
0
t]. For that, we use a central limit theorem (CLT) for

stationary and α-mixing sequences (e.g. Theorem 5.20 in White, 2001): first, note that, by

definition of β∗, E[vt(e∗t+1 − β∗0vt)] = 0. For r > 2, the Cauchy-Schwartz inequality and

assumption (A4) imply that

E[|vt(e∗t+1 − β∗0vt)|r] 6 (E[|vt|2r])1/2(E[(e∗t+1 − β∗0vt)
2r])1/2

6 (E[|vt|2r])1/2(E[nr(|e∗t+1|2r + |β∗|2r|vt|2r)])1/2

6 (E[|vt|2r])1/2max{1, n1/2r (E[|e∗t+1|2r] + |β∗|2rE[|vt|2r])1/2},
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where nr ∈ R+∗ is a constant, nr <∞, such that E[(e∗t+1−β∗0vt)2r] 6 E[nr(|e∗t+1|2r+|β∗0vt|2r)].

Knowing that E[|e∗t+1|2r] = E[(yt+1 − f∗t+1)
2r] 6 nr(E[|yt+1|2r] + E[|f∗t+1|2r]), that for δ > 0,

E[|yt+1|2r] 6 max{1, E[|yt+1|2r+δ} 6 max{1, CY } and, similarly E[|f∗t+1|2r] 6 max{1, C∗W})
and E[|vt|2r] 6 max{1, CV }, we get

E[|vt(e∗t+1 − β∗0vt)|r]

6 max{1, C1/2
V }max{1, n1/2r [nr(max{1, CY }+max{1, C∗W}) + |β∗|2rmax{1, CV }]1/2}

<∞,

by assumptions (A1) (β∗ is an element of a compact set) and (A4). Assumption (A3)

moreover ensures that the matrix ∆V (β
∗) is positive definite, so that the CLT implies

T−1/2
PT

t=1 vt(e
∗
t+1 − β∗0vt)

d→ N (0,∆V (β
∗)). This shows that (ii) holds. Hence we are

done with establishing the limit result in Equation (6) .

We now need to show that moreover the asymptotic covariance matrixΩ∗V = Σ−1V ∆V (β
∗)Σ−1V

can be consistently estimated by Ω̂V ≡ Σ̂−1V ∆̂V (β̂)Σ̂
−1
V where ∆̂V (β̂) ≡ T−1

PT+τ−1
t=τ (êt+1 −

β̂
0
vt)

2vtv
0
t and Σ̂V = T−1

PT+τ−1
t=τ vtv

0
t. Note that the consistency of Σ̂V for ΣV = E[vtv

0
t]

has been shown in the proof of Proposition 1. It therefore remains to be shown that

∆̂V (β̂)
p→ ∆V (β

∗). This, combined with the fact that Σ−1V is positive definite, will guar-

antee the consistency of Ω̂V for Ω∗V . Now, note that

∆V (β
∗) = E[(e∗t+1 − β∗0vt)

2vtv
0
t]

= E[ε2t+1vtv
0
t],

where εt+1 ≡ ut+1 + (1 − 2α0)|e∗t+1| and ut+1 is the error term in the generalized efficiency

regression (9). Hence,

∆V (β
∗) = E[u2t+1vtv

0
t] + 2(1− 2α0)E[ut+1|e∗t+1|vtv0t] + (1− 2α0)2E[|e∗t+1|2vtv0t].

In order to show that ∆V (β
∗) can be consistently estimated by ∆̂V (β̂) we show (i) that

∆̂V (β̂)− T−1
PT+τ−1

t=τ (e∗t+1 − β∗0vt)
2vtv

0
t

p→ 0 and (ii) that T−1
PT+τ−1

t=τ (e∗t+1 − β∗0vt)
2vtv

0
t

p→
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∆V (β
∗). For (i) note that

|∆̂V (β̂)− T−1
T+τ−1P
t=τ

(e∗t+1 − β∗0vt)
2vtv

0
t|

= |T−1
T+τ−1P
t=τ

[(êt+1 − β̂
0
vt)

2 − (e∗t+1 − β∗0vt)
2]vtv

0
t|

6 T−1
T+τ−1P
t=τ

|t1/2−ε[f∗t+1 − f̂t+1 − (β̂ − β∗)0vt]t
−1/2+ε[êt+1 − β̂

0
vt + e∗t+1 − β∗0vt]vtv

0
t|

6 {T−1/2 sup
τ6t6T+τ−1

|t1/2−ε(f∗t+1 − f̂t+1)|+ T−1/2 sup
τ6t6T+τ−1

|(β̂ − β∗)0vt|}×

T−1/2
T+τ−1P
t=τ

|[êt+1 − β̂
0
vt + e∗t+1 − β∗0vt]vtv

0
t|t−1/2+ε.

Using the same reasoning as above, we can show that T−1/2
PT+τ−1

t=τ |[êt+1 − β̂
0
vt + e∗t+1 −

β∗0vt]vtv
0
t|t−1/2+ε

p→ 0. Together with (A5)(ii) and the consistency of β̂, β̂
p→ β∗, shown

in Proposition 1, this implies that ∆̂V (β̂) − T−1
PT+τ−1

t=τ (e∗t+1 − β∗0vt)
2vtv

0
t

p→ 0. For (ii)

note that the sequence {(e∗t+1 − β∗0vt)
2vtv

0
t}T+τ−1t=τ is α-mixing with mixing coefficient α of

size −r̄/(r̄ − 1), r̄ > 1 (e.g. Theorem 3.49 in White, 2001). Moreover, by Cauchy-Schwarz

inequality and from we have, for δ > 0,

E[(e∗t+1 − β∗0vt)
2r̄+δ/2|vtv0t|r̄+δ/4] 6 (E[(e∗t+1 − β∗0vt)

2r+δ])1/2(E[|vtv0t|r+δ/2])1/2

6 (E[nr+δ/2(|e∗t+1|2r+δ + |β∗|2r+δ|vt|2r+δ)])1/2(E[|vt|2r+δ])1/2

6 max{1, n1/2r+δ/2(E[|e
∗
t+1|2r+δ] + |β∗|2r+δE[|vt|2r+δ])1/2}C

1/2
V

6 max{1, n1/2r+δ/2[nr+δ/2(CY + C∗W ) + |β∗|2r+δCV ]
1/2}C1/2

V

< ∞,

where as previously, nr+δ/2 ∈ R+∗ is a constant, nr+δ/2 <∞, such that E[(e∗t+1−β∗0vt)2r+δ] 6
E[nr(|e∗t+1|2r+δ+ |β∗0vt|2r+δ)], and where the last inequality uses (A1) and (A4). We can now

apply the LLN (e.g., Corollary 3.48 in White, 2001) to the sequence {(e∗t+1−β∗0vt)2vtv0t}T+τ−1t=τ

to show that T−1
PT+τ−1

t=τ (e∗t+1 − β∗0vt)
2vtv

0
t

p→ ∆V (β
∗). Combining (i) and (ii) then yields

the result, i.e.

∆̂V (β̂) = T−1
T+τ−1P
t=τ

(êt+1 − β̂
0
vt)

2vtv
0
t

p→ ∆V (β
∗),

and we are done establishing that Ω̂V ≡ Σ̂−1V ∆̂V (β̂)Σ̂
−1
V is a consistent estimator of the

asymptotic covariance matrix of the standard OLS estimator β̂, i.e. Σ̂−1V ∆̂V (β̂)Σ̂
−1
V = Ω̂V

p→
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Ω∗V = Σ−1V ∆V (β
∗)Σ−1V .

To prove the last part of the proposition, let β = bT−1/2 and 1− 2α0 = aT−1/2 where a

and b are fixed. We can write

Tβ̂
0
Ω̂−1V β̂ = T 1/2(β̂ − β∗)0Ω̂−1V T 1/2(β̂ − β∗)

+T 1/2β∗0Ω̂−1V T 1/2β∗

+2T 1/2β∗0Ω̂−1V T 1/2(β̂ − β∗).

It follows from the first part of the proposition that the first term is asymptotically χ2d

distributed. For the second term, recall from Proposition 1 that β∗ = β + (1− 2α0)Σ−1V hV

so T 1/2β∗ = (b+aΣ−1V hV ) and, moreover, Ω̂V
p→ Ω∗V = Σ−1V ∆V (β

∗)Σ−1V with Ω∗V nonsingular.

We then have Tβ∗0Ω̂−1V β∗
p→ m with

m = (b+ aΣ−1V hV )
0(Σ−1V ∆V (β

∗)Σ−1V )
−1(b+ aΣ−1V hV )

= b0ΣV∆V (β
∗)−1ΣV b+ 2ab

0ΣV∆V (β
∗)−1hV + a2h0V∆V (β

∗)−1hV

= b0Ω∗−1V b+ 2ab0kV + a2ϕV ,

where we have let kV be a vector kV ≡ ΣV∆V (β
∗)−1hV and the scalar ϕV equals ϕV ≡

h0V∆V (β
∗)−1hV . For the third term, application of the first part of Proposition 2, consistency

of Ω̂V and Slutsky’s theorem gives, Ω̂
−1/2
V T 1/2(β̂−β∗) d→ N (0, I). Hence, Tβ∗0Ω̂−1V (β̂−β∗)

d→

N (0, s) where

s = (b+ aΣ−1V hV )
0Ω∗−1V (b+ aΣ−1V hV )

= m.

Therefore, T β̂
0
Ω̂−1V β̂

d→ χ2d +m+N (0,m), which completes the proof of Proposition 2.
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Figure 1

Histogram of mean forecast errors
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Figure 2A: Combination of asymmetry (a) and bias parameter (b) leading
to identical power of rationality test

Figure 2B: Combination of asymmetry (alpha) and bias parameter (beta in
s.e. units) leading to identical power of rationality test

Power Contours

0.0

0.2

0.4

0.6

0.8

1.0

-3
.6

-2
.9

-2
.1

-1
.4

-0
.7 0.
0

0.
7

1.
4

2.
1

2.
9

3.
6

Beta in s.e. units

A
lp

ha

5% 10% 50% 90%Power:

Iso-m (equi-power) lines

-10
-8
-6
-4
-2
0
2
4
6
8
10

-0
.1
0

-0
.0
9

-0
.0
8

-0
.0
7

-0
.0
6

-0
.0
5

-0
.0
4

-0
.0
3

-0
.0
2

-0
.0
1

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
10

b

a

5% 10% 50% 90%Power:



Figure 3

Histogram of alpha-estimates
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Figure 4

Histogram of alpha-estimates by afiliation
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Table 1: Tests for bias under MSE loss: Nominal output

P-value Actual values
are real-time

Actual values
are fully revised

<1% 4 11
<5% 10 29

<10% 19 36
Note: this table reports the number of forecasters (out of a total of 108) for whom the null
of unbiasedness and symmetric loss (α = 0.5) could be rejected at the specified critical
values.

Table 2: J-tests of rationality and symmetry of the loss function (quad-quad), actual
values are real-time: Nominal output

Rationality and
α = 0.5

Rationality and
α unconstrained

Range <1% <5% <10% <1% <5% <10%
Inst=1 24 30 36 2 14 21
Inst=2 25 38 46 0 7 13
Inst=3 11 19 28 0 5 12
Inst=4 13 24 30 0 3 7
Inst=5 22 36 47 3 14 28
Inst=6 24 35 44 0 6 16
Inst=7 41 56 70 1 9 17

Note: this table reports the number of forecasters (out of a total of 108) for whom the null
of rationality and symmetry (α = 0.5) and rationality alone (α unconstrained) could be
rejected at the specified critical values. The instruments are as follows: Inst = 1: constant
plus lagged errors; Inst = 2: constant plus lagged errors (two lags); Inst = 3: constant plus
absolute lagged errors; Inst = 4: constant plus lagged change in actual values; Inst = 5:
constant plus change in forecasts (forecast – y(t-1)); Inst = 6: constant plus lagged errors,
and lagged change in actual values; Inst = 7: constant plus lagged errors, lagged change
in actual values, and change in forecasts.

Table 3: J-tests of rationality and symmetry of the loss function (quad-quad), actual
values are fully revised: Nominal output

Rationality and
α = 0.5

Rationality and
α unconstrained

Range <1% <5% <10% <1% <5% <10%
Inst=1 22 36 42 1 8 12
Inst=2 23 42 50 0 6 18
Inst=3 23 32 42 1 5 17
Inst=4 18 33 46 0 5 9
Inst=5 25 42 50 3 13 23
Inst=6 29 40 50 0 4 13
Inst=7 46 59 68 3 8 20

Note: see table 2.



Table 4: J-tests of rationality and symmetry of the loss function (quad-quad), actual
values are real-time: Real output

Rationality and
α = 0.5

Rationality and
α unconstrained

Range <1% <5% <10% <1% <5% <10%
Inst=1 17 22 26 1 9 20
Inst=2 17 21 24 0 2 7
Inst=3 9 13 16 0 2 4
Inst=4 10 15 19 0 2 4
Inst=5 13 14 27 2 10 12
Inst=6 16 19 23 1 3 9
Inst=7 27 30 31 1 6 15

Note: this table reports the number of forecasters (out of a total of 48) for whom the null
of rationality and symmetry (α = 0.5) and rationality alone (α unconstrained) could be
rejected at the specified critical values.

Table 5: J-tests of rationality and symmetry of the loss function (quad-quad), actual
values are fully revised: Real output

Rationality and
α = 0.5

Rationality and
α unconstrained

Range <1% <5% <10% <1% <5% <10%
Inst=1 17 24 28 1 4 10
Inst=2 21 26 28 0 1 7
Inst=3 16 21 28 2 3 6
Inst=4 17 21 25 0 1 3
Inst=5 15 23 28 0 6 11
Inst=6 19 28 32 0 2 6
Inst=7 25 29 34 0 4 7

Note: see table 2.




