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1. Introduction

Variable selection procedures are in widespread use throughout economics, being

employed for many applications such as selecting which variables to include in a

predictive regression (Pesaran and Timmermann 2000; Jochmann et al. 2010), choice

of lag length in autoregressive models (Marcellino et al. 2006), selecting variables in a

Vector Autoregressive model (Korobilis 2013), or determining the number of factors

(Bai and Ng 2002). Much of the literature on variable selection assumes that the

underlying data generating process is stable and uses this assumption to establish

properties of the selected model such as asymptotic consistency, see, e.g., Leeb and

Pötscher (2005). Far less is known about model selection in the type of unstable

environment found empirically to characterize many economic time series Stock and

Watson (1996); Pesaran and Timmermann (2002); Rossi (2013).1

Ignoring model instability could adversely affect variable selection with conse-

quences in areas such as economic forecasting. For example, previously strong pre-

dictor variables may no longer have predictive power over outcomes or, conversely,

new predictors may gain strength following a structural break. Failing to account for

either of these scenarios could reduce forecasting performance.

To address these issues requires having a procedure that locates breaks and per-

forms regime-specific variable selection between breaks. However, conducting variable

selection in the presence of breaks quickly leads to the dimension of the model space

becoming very large. Estimating breaks in regression models involves a complex

search across possible breakpoint locations (Bai and Perron 1998), and introducing

variable selection compounds the complexity.

This paper develops a new Bayesian panel regression approach that jointly esti-

mates an unknown number of structural breaks and performs regime-specific variable

1See also Andrews (1993), Bai and Perron (1998), Chib (1998), Primiceri (2005), Elliott and
Müller (2006), Pesaran et al. (2006), Koop and Potter (2007), and Giordani and Kohn (2012).
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selection.2 Our approach accounts for model uncertainty. This is important because

uncertainty about which variables have explanatory power at a given point in time

tends to be greater, the more often a process is affected by breaks and, thus, the fewer

time-series observations are available for variable selection and parameter estimation.

We provide theoretical results on the frequentist properties of posteriors of

Bayesian panel break models for a large class of priors and specifications. We show

that with high probability, the posterior concentrates on a small neighborhood of the

true parameter and characterize the rate at which this neighborhood shrinks. Our

results are different from typical Bayesian analysis in that we do not assume that the

likelihood is correctly specified. Although we adopt a Gaussian likelihood, our theo-

retical results only require mild moment conditions on the errors which are allowed

to have weak cross-sectional and serial dependence. However, when the likelihood is

misspecified, we recommend that frequentist methods be used for inference.3

Our theoretical analysis also does not impose restrictions on the growth rate of n

(the cross-sectional dimension) and T (the time-series dimension). The main theoret-

ical result (Theorem 1) does not require restrictions on the duration of the regimes or

the magnitude of any breaks. The relative size of n and T and lengths of the regimes

directly enter the conclusions of the theoretical results and thus have implications for

the rate of convergence.4 We show that in the classical setup, the rate of convergence

for detecting the break dates matches the optimal rate up to a logarithm factor.

2Papers that estimate breaks in panels includes Bai et al. (1998), Bai (2010), Baltagi et al. (2016),
and Smith and Timmermann (2017b) (see also Smith and Timmermann (2017a)).

3When the likelihood is misspecified, Bayesian credible sets based on the posterior are not valid
confidence sets in the frequentist sense and fail to have the right coverage, see, e.g., Royall and
Tsou (2003); Kleijn and Van der Vaart (2012); Müller (2013); Bissiri et al. (2016). For this rea-
son, the literature (e.g., Müller (2013)) has recommended that frequentist methods be used unless
misspecification of the likelihood can definitely be ruled out.

4In empirical applications, a pre-filtering step can be used to deal with cross-sectional depen-
dencies in the data. This introduces additional parameter estimation error and can lead to a non-
vanishing bias which could be important in applications with relatively short panels. For further
discussion of biases in dynamic panel models see, e.g., Nickell (1981); Anderson and Hsiao (1982);
Arellano and Bond (1991); Ahn and Schmidt (1995); Phillips and Moon (1999); Hahn and Kuer-
steiner (2002); Alvarez and Arellano (2003); Gouriéroux et al. (2010); Han et al. (2014); Dhaene and
Jochmans (2015); Liu et al. (2017).
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When conditions ensuring consistent identification of the break dates hold, the

estimation error for each regime depends on its duration. For long regimes, we can

expect the rate
√

(nT )−1 log(nT ) for the time-specific slope and variance parameters.

For regimes that last for only one period, we can still obtain a rate of convergence of√
n−1 log(nT ). We expect average estimation errors to be small in long regimes and

larger in short-lived regimes.

We next develop a framework that preserves conjugacy and demonstrate how to

estimate the resulting model using a four-step procedure. First, we estimate the pa-

rameters conditional on the existing estimates of the breakpoint vector and selected

variables. Second, conditional on the existing parameter and breakpoint estimates,

variable selection is performed within each regime. Third, conditional on the param-

eter estimates and selected variables, the existing breakpoint estimates are perturbed

to help them converge to the true break dates. The fourth step jointly estimates the

number and timing of breakpoints and performs regime-specific variable selection.

Our approach employs the reversible jump Markov chain Monte Carlo algorithm of

Green (1995). We specify conjugate priors on the regression parameters which enables

them to be integrated out of the posterior, enhancing the mixing and considerably

reducing the computational burden. Computational efficiency is crucial due to the

high-dimensional nature of our search problem.

The usefulness of our methodology is demonstrated on a simulated data set in

which, by construction, we know the underlying break dates and the informative

variables in each regime. We show how regime-specific variable selection is successfully

implemented in the presence of breaks. We also illustrate our method in an empirical

application in the field of corporate finance that provides new insights into which

variables can help explain variation in the leverage ratio of corporations.

Our paper is related to a number of previous studies. Bai (2010) considers common

breaks in the mean and variance of panel models while Baltagi et al. (2016) study

the effect of common breaks on frequentist estimation and inference in heterogeneous
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panel regression models. Smith and Timmermann (2017b) introduce the idea of

using a reversible jump Markov chain Monte Carlo estimation approach to panel

models with common break dates but heterogeneous slope coefficients and apply

this approach to forecasting inflation in the European Union. They do not consider

variable selection, nor perform any theoretical analysis of the asymptotic properties

of the Bayesian panel estimator.5

The remainder of the paper is set out as follows. Section 2 conducts our theoretical

analysis. Section 3 lays out the methodology, model and prior distributions, while

Section 4 details model estimation and variable selection. Sections 5 and 6 cover the

simulation study and the empirical application, and Section 7 concludes. Technical

proofs and additional material are covered in supplemental material appendices.

2. Breaks in Bayesian Panel Models: A Theoretical Framework

This section provides theoretical results on the frequentist properties of a broad class

of Bayesian panel break estimators. Our main theoretical results hold in finite samples

and thus no assumptions are imposed on the relative size of the cross-sectional and

time-series dimensions (n and T ).

We introduce the following notations that will be used in the rest of the paper.

For a vector x = (x1, ..., xp)
′ and r ≥ 1, we define ‖x‖r= (

∑p
j=1|xj|r)1/r. We use ◦

to denote the Hadamard product (entry-wise product) and ⊗ to denote Kronecker

product. Indicator functions are denoted by 1{·}. ‖·‖F denotes the Frobenius norm.

5Papers that provide test statistics or estimation approaches to identify breaks for multivariate
time series or panels include Bai et al. (1998), Qu and Perron (2007), Bai and Carrion-I-Silvestre
(2009), Kim (2011), and Baltagi et al. (2017).
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2.1. Setup and notations

Consider the panel regression model

yit = X ′itβt + εit for 1 ≤ i ≤ n, 1 ≤ t ≤ T, (1)

where Xit ∈ Rr. εit is uncorrelated with Xit and satisfies Eεit = 0 and Eε2
it = σ2

t .

We assume that the model parameters {(βt, σt)}Tt=1 exhibit structural breaks. We

capture such breaks through mappings t 7→ βt and t 7→ σt which are piecewise constant

functions in Rr and R, respectively and parameterize these functions as follows. Let

θ ∈ RdΘ with dΘ = r(K + 1) + 2K + 1 denote the parameter vector

θ = (α1, α2, ..., αK+1, ω1, ω2, ..., ωK+1, λ1, λ2, ..., λK),

where α1, ..., αK+1 ∈ Rr denote the values for βt in the K+1 regimes, ω1, ..., ωK+1 > 0

denote the standard deviations of the residuals in the K + 1 regimes and λ1, ..., λK ∈

[0, 1] denote the break dates as a fraction of T :

βt(θ) =
K+1∑
j=1

αj1{λj−1T < t ≤ λjT} and σt(θ) =
K+1∑
j=1

ωj1{λj−1T < t ≤ λjT},

where λ0 = 0 and λK+1 = 1. The log-likelihood takes the following form:

`n(Z, θ) = −nT
2

log(2π)− n
T∑
t=1

log σt(θ)−
n∑
i=1

T∑
t=1

(yit −X ′itβt(θ))
2

2σ2
t (θ)

, (2)

where Z denotes the observed data {(yit, Xit)}1≤i≤n, 1≤t≤T . The likelihood then takes

the form p(Z | θ) = exp(`n(Z, θ)). We do not impose any distributional assumption

on the error terms although we adopt a Gaussian likelihood specification in equa-

tion (2). In Assumption 2 that follows, we only impose mild conditions on moments

and weak dependence for the errors. Our theoretical results show that the proposed
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Bayesian method retains certain frequentist properties even if the likelihood model is

misspecified. This differs from the usual Bayesian setup that assumes correct speci-

fication of the likelihood. To properly describe the prior and posterior, we introduce

the parameter space Θ, which is assumed to be a compact subset of RdΘ . The true

value of the parameter θ is denoted by θ∗. The prior, denoted by Π, is a non-random

probability measure on Θ. Our theory allows for a large class of priors and we do

not assume that the prior probability measure Π admits a density. We follow the

standard framework of analyzing frequentist properties of Bayesian procedures and

consider a general prior which is only assumed to be a probability distribution; see,

e.g., Ghosal et al. (2000); Shen and Wasserman (2001); Ghosal and van der Vaart

(2007); Lian (2010).

Combining the likelihood and the prior, we obtain the posterior as a random

probability measure on the parameter space Θ. For any subset A ⊂ Θ, we define

Π(A | Z) =

∫
A
p(Z | θ)dΠ(θ)∫

Θ
p(Z | θ)dΠ(θ)

.

If Π has a density dΠ(θ) = π(θ)dθ, the posterior also has a density dΠ(θ | Z) =

C× p(Z | θ)π(θ)dθ, where C = 1/
∫

Θ
p(Z | θ)π(θ)dθ so the posterior integrates to one.

2.2. Theoretical results

We next establish theoretical properties for the posterior Π(· | Z). Our analysis is

quite different from the Bernstein-von-Mises results for regular models in which the

likelihood is smooth in its parameters. First, we do not assume that the likelihood

is correctly specified, whereas the Bernstein-von-Mises results, which state that the

posterior distribution is close to the asymptotics of the maximum likelihood estimator

(see, e.g., Theorem 10.1 of Van der Vaart (2000)), require correct specification of

the likelihood. Since the functional form of the likelihood in equation (2) can be

misspecified, the information equalities used in proving Bernstein-von-Mises results
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might not hold. Second, the likelihood model we consider is not smooth in θ since

breaks lead to a non-differentiable likelihood. Conventional methods for analyzing

regular likelihoods therefore do not apply.

Our general results do not impose restrictions on the break size and the length of

the shortest regime. Thus, we should not expect a standard asymptotic distribution

even for frequentist estimators and so we focus on the concentration properties of the

posterior. As a random probability measure on Θ, Π(· | Z) has mass equal to one on

the entire Θ. We show that with probability close to one, this random probability

measure assigns almost all mass on a shrinking neighborhood of θ∗ and characterize

the size of this neighborhood. First, we introduce some regularity conditions.

Assumption 1. Let Θ be a compact set with K be-

ing fixed. There exists a constant M0 > 0 such that{
θ : max

{
1
T

∑T
t=1 (σt(θ)− σt(θ∗))2 , 1

T

∑T
t=1‖βt(θ)− βt(θ∗)‖2

2

}
≤M0

}
⊂ Θ. More-

over, there exists a constant M1 > 0 such that σt(θ) ≥ M1 for any θ ∈ Θ and

1 ≤ t ≤ T .

Assumption 1 states that Θ is compact and contains a neighborhood of θ∗. The

assumption of a compact parameter space is routinely imposed in the frequentist

analysis of parametric models and allows us to derive a uniform law of large num-

bers. Here, Assumption 1 serves a similar role in bounding the empirical process

for Kullback-Leibler divergence. Before introducing our moment conditions on the

residuals, recall the strong mixing coefficient: for s ≥ 1,

αmixing(s) = sup

{
|P (A

⋂
B)− P (A)P (B)|: A ∈ σ ({(εiτ , Xiτ )}τ≤j, 1≤i≤n) ,

B ∈ σ ({(εiτ , Xiτ )}τ≥j+s, 1≤i≤n) and j ∈ N
}
,

where σ(·) denotes the σ-algebra generated by random variables.

Assumption 2. There exist constants M2,M3 > 0 and M4,M5 > 2 such that M3 ≥
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M4(M4+2)/(M4−2), αmixing(t) ≤M2t
−M3 for all t ≥ 1, E|n−1/2

∑n
i=1(ε2

it−Eε2
it)|M4≤

M5 and E‖n−1/2
∑n

i=1Xitεit‖M4
2 ≤M5.

Assumption 2 imposes very mild conditions on the moments and weak depen-

dence of the error terms in both the cross-sectional and time-series dimensions. The

assumption also allows for misspecification of the likelihood. Although the likelihood

specification in equation (2) is borrowed from the setting of independent Gaussian

εit, we require neither normality, nor independence of the residuals which are allowed

to have fatter tails than normal distributions and can have weak dependence.

Moreover, we allow for lagged dependent variables. As long as EXitεit = 0, we

should expect n−1/2
∑n

i=1Xitεit = OP (1) under weak cross-sectional dependence.6

The following result provides a simple sufficient condition for the moment bounds in

Assumption 2 in a setup with weak factors.

Lemma 1. Suppose that Xit = Φ′ift + vit and εit = φ′ift + uit. Assume that ft ∈ Rdf

satisfies E‖ft‖C1
2 ≤ C2 and {(Φi, φi)}ni=1 is non-random with max1≤i≤n‖Φi‖F≤ C3,

max1≤i≤n‖φi‖2≤ C3, ‖n−1/2
∑n

i=1 φiφ
′
i‖F≤ C3 and ‖n−1/2

∑n
i=1 φi ⊗ Φi‖2≤ C3 for

some constants C1, C2, C3 > 0. Moreover, assume that {(vit, uit)}ni=1 is independent

across i with Euit = 0, Evit = 0, Evituit = 0 and satisfies that E|uit|2C4≤ C5,

E‖vit‖2C4
2 ≤ C5 and E‖vituit‖C4

2 ≤ C5. Assume that C1 ≥ 2C4 > 1. Then there exists a

constant C6 > 0 depending only on C1, ..., C5 such that E|n−1/2
∑n

i=1(ε2
it − Eε2

it)|C4≤

C6 and E‖n−1/2
∑n

i=1 Xitεit‖C4
2 ≤ C6.

Lemma 1 assumes the weak factor setup considered by Kleibergen (2009) and

Onatski (2012) among others.7 We next impose a regularity condition for identifica-

tion which says that, even in the absence of breaks in the volatility of the residuals,

changes in the slope coefficients can be identified through the likelihood.

6In this case, unit root processes for the dependent variable are ruled out since n−1/2
∑n
i=1Xitεit

is required to have bounded moments.
7Identification assumptions similar to Assumption 3 are routinely imposed in the literature; see,

for example, Assumption A2 of Bai and Perron (1998) and Assumption A1 of Oka and Perron (2018).
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Assumption 3. For θ ∈ Θ, define δt = δt(θ) = βt(θ) − βt(θ∗). Assume that with

probability at least 1− γn,

M6 ≤ inf
θ∈Θ

1
nT

∑n
i=1

∑T
t=1(X ′itδt)

2

T−1
∑T

t=1‖δt‖2
2

≤ sup
θ∈Θ

1
nT

∑n
i=1

∑T
t=1(X ′itδt)

2

T−1
∑T

t=1‖δt‖2
2

≤M7,

where M6,M7 > 0 are constants and γn = o(1).

Finally, we introduce a regularity condition which requires that the prior should

allocate non-trivial mass on neighborhoods of the true parameter. Intuitively, if the

prior puts zero weights around the true parameter, the posterior cannot concentrate

on the true parameter even in large samples:

Assumption 4. There exist constants M8,M9,M10 > 0 such that for any x ∈ (0,M8),

Π
({
θ ∈ Θ : max

{
1
T

∑T
t=1 (σt(θ)− σt(θ∗))2 , 1

T

∑T
t=1‖βt(θ)− βt(θ∗)‖2

2

}
≤ x

})
≥

M9x
M10.

Assumption 4 is satisfied by many priors and is also imposed by Lian (2010).

A sufficient condition for Assumption 4 is that in a neighborhood of θ∗, Π admits a

density that is bounded away from zero. If the prior of (α1, ..., αK+1) given (λ1, ..., λK)

has density bounded away from zero, then Assumption 4 holds.

We can now establish the first theoretical result which is a finite-sample bound

that characterizes the concentration properties of the posterior in estimating the entire

paths of the slope coefficients {βt}Tt=1 and the volatility {σt}Tt=1:

Theorem 1. Let Assumptions 1, 2, 3 and 4 hold. Then for any c ∈ (0, 1), there

exists a constant Dc > 0 such that with probability at least 1− c− γn,

Π (Bc
n | Z) ≥ 1−Dc (nT )−M10/2 ,

where Bc
n = Θ\Bn and

Bn =

{
θ ∈ Θ : max

{
1

T

T∑
t=1

(σt(θ)− σt(θ∗))2 ,
1

T

T∑
t=1

‖βt(θ)− βt(θ∗)‖2
2

}
≥ M̃

log(nT )

nT

}
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and M̃ > 0 are constants depending only on K,Θ,M0,M1, ...,M10.

Theorem 1 says that, with high probability, the posterior allocates almost all mass

on the set Bc
n. Essentially, the average squared estimation error converges to zero at

rate (nT )−1 log(nT ). The rate of convergence is optimal up to the logarithm factor.

Even for panel models with constant slope coefficient and errors that are i.i.d across

time and units, the pooled estimator converges at the rate 1/(nT ). The logarithm

factor is present in many frequentist studies of Bayesian procedures, e.g., van der

Vaart and van Zanten (2008); Lian (2010); Rousseau (2010); Giné and Nickl (2011).

Theorem 1 holds regardless of the relative magnitude of n and T . In practice,

this means that the average (across t) estimation error decays to zero if at least one

of n and T tends to infinity. In this sense, Theorem 1 states that information from

both dimensions of the panel data helps in identifying the model parameter that can

potentially have finitely many breaks.

Theorem 1 establishes the near-optimal rate without any assumption regarding

the duration of regimes or the break size. This is different from usual analyses of fre-

quentist procedures which typically establish the asymptotic properties of estimators

for the slope coefficients under the assumption that regime durations are large enough

to consistently identify the break date; see e.g., Bai and Perron (1998); Baltagi et al.

(2016); Cheng et al. (2016). Many frequentist methods have been proposed for infer-

ence of break dates; these methods typically have a requirement on the break size,

such as Bai and Perron (1998); Qu and Perron (2007); Bai (2010); Oka and Perron

(2018). Instead, we study estimation of the time trajectories t 7→ βt and t 7→ σt and

derive the rate of convergence without knowledge of regime lengths or magnitude of

the breaks.

We note that Theorem 1 is a statement on estimating the vectors β∗ =

(β1(θ∗)
′, ..., βT (θ∗)

′)′ ∈ RrT and σ∗ = (σ1(θ∗)
′, ..., σT (θ∗)

′)′ ∈ RT in terms of the

Euclidean norm, rather than the sup norm. Therefore, the result does not imply

that, for any t, the posterior would concentrate on the set {θ : ‖βt(θ) − βt((θ∗)‖≤
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C(nT )−1 log(nT )} for some constant C > 0. To derive properties for the slope and

variance parameters for a specific value of t, we rely on the piecewise constant property

of the path t 7→ βt (and t 7→ σt).

When the number of breaks is known or can be consistently estimated, we can

further characterize the identification of the break dates.8 In particular, we can

translate the bound on the estimation error of the trajectory of βt and σt into a bound

on the estimation error of the break dates which takes into account the length of the

regimes and the size of the breaks. To this end, let λ(θ) = (λ1, ..., λK) denote the

break dates (as fractions of T ). Let θ∗ = (α∗,1, ..., α∗,K+1, ω∗,1, ..., ω∗,K+1, λ∗,1, ..., λ∗,K)

denote the components of the true parameter value θ∗. We have a general result on

piecewise constant functions:

Theorem 2. Let G = min1≤j≤K+1|λ∗,j − λ∗,j−1|. For any θ ∈ Θ, we then have

T−1

T∑
t=1

‖βt(θ)−βt(θ∗)‖2
2≥ min

1≤j≤K+1
‖α∗,j−α∗,j−1‖2

2×min {0.16G, 0.28 ‖λ(θ)− λ(θ∗)‖∞}

and

T−1

T∑
t=1

‖σt(θ)−σt(θ∗)‖2
2≥ min

1≤j≤K+1
‖ω∗,j−ω∗,j−1‖2

2×min {0.16G, 0.28 ‖λ(θ)− λ(θ∗)‖∞} .

Using Theorem 2, we next characterize the rate of convergence for the breaks.

Corollary 1. Suppose the assumptions of Theorem 1 hold. Assume that γn → 0

and the number of breaks is equal to K. Let ∆λ = min1≤k≤K+1|λk − λk−1|, ∆α =

min1≤j≤K+1‖α∗,j − α∗,j−1‖2
2 and ∆σ = min1≤j≤K+1‖ω∗,j − ω∗,j−1‖2

2. We have

8The literature on estimation of structural break models focuses on the situation with a known
number of breaks; see Bai and Perron (1998); Qu and Perron (2007); Baltagi et al. (2016) among
others. Determining the number of breaks is typically done by sequentially testing for the num-
ber of breaks or by applying information criteria. The consistency of these procedures is usually
proved under strong assumptions, such as large break sizes with long regimes. Within the Bayesian
framework, how to test the number of breaks is still largely unknown.
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1. If 0.16nT∆α∆λ ≥ M̃ log(nT ), then

Π

({
θ ∈ Θ : ‖λ(θ∗)− λ(θ)‖∞ < M̃

log(nT )

0.28∆αnT

}
| Z
)

= 1− oP (1),

where M̃ is the constant in Theorem 1.

2. If 0.16nT∆σ∆λ ≥ M̃ log(nT ), then

Π

({
θ ∈ Θ : ‖λ(θ∗)− λ(θ)‖∞ < M̃

log(nT )

0.28∆σnT

}
| Z
)

= 1− oP (1).

Corollary 1 characterizes how the rate of convergence for estimating λ(θ∗) depends

on the duration of regimes (∆λ) and the break size (∆α and ∆σ). For long regimes and

large break sizes, the rate of convergence for λ(θ∗) is (nT )−1 log(nT ) which is again

optimal up to the logarithm factor.9 Thus, when n = 1, the rate of convergence of our

procedure is T−1 log T . Having multiple time series makes the rate of convergence

faster. This is particularly valuable when regimes can be short. Since the break

dates can only take integer values, the shortest regime can last for only one period,

i.e., ∆λ = T−1. Consistently recovering the corresponding break date (i.e., ‖λ(θ∗) −

λ(θ)‖∞< T−1) requires that max{∆α,∆σ} > M̃(0.16n)−1 log(nT ). This highlights

the benefit of having panel data since M̃(0.16n)−1 log(nT ) decreases in n.

Corollary 1 highlights both the mechanisms and tradeoffs for identifying the break

dates. First, the length of the regimes and the break size complement each other in

detecting break dates. When the minimum length of each regime is large, i.e., ∆λ

is bounded away from zero, the break size does not need to be very large for consis-

tently estimating λ(θ∗); we only need ∆α or ∆σ to be larger than O ((nT )−1 log(nT )).

Corollary 1 also allows the length of the shortest regime to be small. Consistency is

achievable for λ(θ∗) whenever the product of the shortest regime duration and the

smallest break size is larger than O ((nT )−1 log(nT )).

9For a single time series, Bai and Perron (1998) obtain the rate of convergence T−1.
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Second, our setup uses both the slope coefficients and volatility parameters to

detect break locations. This is an attractive feature since we do not need explicit

knowledge of which channel will have more identification power and so could improve

the empirical appeal of our procedure.

Corollary 1 provides a sufficient condition for consistent identification of the break

locations. Since {λj(θ)}j only takes values on a grid with increments equal to 1/T ,

exact recovery of the break locations occurs whenever estimation errors of λ(θ) is

smaller than 1/(3T ). For the same reason, ∆λ ≥ 1/T . This yields the next result:

Corollary 2. Let Q = {θ ∈ Θ : ‖λ(θ) − λ(θ∗)‖∞= 0}. Suppose the assumptions

of Theorem 1 hold. Assume that γn → 0 and the number of breaks is equal to K. If

max{∆σ,∆α} ≥ 11M̃ log(nT )/n, then Πn(Q | Z) = 1− oP (1).

Corollary 2 provides sufficient conditions for consistently recovering break loca-

tions, which in turn has direct implications for the estimation error each time period.

Since the estimation error is constant within each regime, the average estimation error

in Theorem 1 can be written as a weighted sum of K different estimation errors:

Corollary 3. Suppose the assumptions of Theorem 1 hold. Assume that γn → 0

and the number of breaks is equal to K. Also assume that max{∆σ,∆α} ≥

11M̃ log(nT )/n. Then Πn(
⋂

1≤j≤K Gn,j | Z) = 1− oP (1), where

Gn,j =

{
θ ∈ Θ : max

λj−1T<t≤λjT
max {|σt(θ)− σt(θ∗)| , ‖βt(θ)− βt(θ∗)‖2} ≤

M̄ log(nT )

nT (λj − λj−1)

}

and M̄ > 0 is a constant.

Corollary 3 states that when sufficient conditions for consistent identification of

the break dates are imposed, the estimation error in each regime depends on the

duration of that regime. For long regimes (λj − λj−1 is bounded away from zero),

we can expect the rate
√

(nT )−1 log(nT ) for the slope and variance parameters. For

regimes that last for only one period (i.e., λj − λj−1 = 1/T ), we can still obtain a

13



rate of convergence of
√
n−1 log(nT ). In this sense, loosely speaking, we would expect

average estimation errors to be small in long regimes and larger in short-lived regimes.

2.3. Effect of Prefiltering the Data

When there is strong cross-sectional or serial dependence in the error terms, Assump-

tion 2 could be violated. In these situations, it can be beneficial to prefilter the data

such that the weak dependence assumption in the errors approximately holds. A con-

cern that arises with prefiltered data is whether estimation errors in the prefiltering

stage poses a problem for the previous theoretical results.

Example 1 (Common Time Trend). Suppose we observe data {(ỹit, X̃it)}1≤i≤n, 1≤t≤T

from the following model: ỹit = X̃ ′itβt + εit, where εit = µt + uit. In this case, we

do not, in general, have weak cross-sectional dependence because at each time t, all

the cross-sectional units are partly driven by µt. An obvious fix would be to remove

the common time trend µt by subtracting µ̂t = n−1
∑n

j=1 ỹjt to get ŷit = ỹit − µ̂t.

After some algebra, we can show that ŷit = X̂ ′itβt + uit − et, where X̂it = X̃it − µ̄X,t,

et = n−1
∑n

j=1 ujt and µ̄X,t = n−1
∑n

j=1 X̃jt. In this case, although we estimate the

model in (1), the prefiltered data is {(ŷit, X̂it)}1≤i≤n, 1≤t≤T . Hence, we will compute

the log-likelihood in equation (2) using the prefiltered data.

Example 2 (Factor structure). Suppose we observe data {(y̌it, X̌it)}1≤i≤n, 1≤t≤T from

the following model: y̌it = X̌ ′itβt + εit, where the error term is given by εit = φ′ift +uit

and ft and φi are unobserved factors and factor loadings, respectively.

When n−1
∑n

i=1 φiφ
′
i and T−1

∑T
t=1 ftf

′
t have eigenvalues bounded away from zero,

we have a strong factor structure and might want to prefilter the data using principal

component analysis (Bai 2003, 2009) or common correlated effects (Pesaran 2006).

To formally study the problem of prefiltering the data, consider again the model

in equation (1), where the unobserved variables Z = {(yit, Xit)}1≤i≤n, 1≤t≤T sat-

isfy Assumptions 2 and 3. However, suppose we use the prefiltered data Ẑ =
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{(ŷit, X̂it)}1≤i≤n, 1≤t≤T . The log-likelihood for the prefiltered data is given by

`n(Ẑ, θ) = −nT
2

log(2π)− n
T∑
t=1

log σt(θ)−
n∑
i=1

T∑
t=1

(
ŷit − X̂ ′itβt(θ)

)2

2σ2
t (θ)

.

Let p(Ẑ | θ) = exp(`n(Ẑ, θ)). We compute the posterior using the prefiltered data

Π(A | Ẑ) =

∫
A
p(Ẑ | θ)dΠ(θ)∫

Θ
p(Ẑ | θ)dΠ(θ)

for A ⊆ Θ.

The theoretical properties of Π(· | Ẑ), the posterior computed using prefiltered

data can be analyzed in two ways. First, we can apply our previous results by

showing that the prefiltered data satisfies the weak dependence condition in Assump-

tion 2. Consider Example 1 with non-random regressors. In this case, X̂it = Xit

and ŷit = X ′itβt + εit, where εit = uit − et. Notice that n−1/2
∑n

i=1(ε2
it − Eε2

it) =

n−1/2
∑n

i=1(u2
it−Eu2

it)+(
√
ne2

t−
√
nEe2

t )−2etn
−1/2

∑n
i=1 uit+2Eetn

−1/2
∑n

i=1 uit and

n−1/2
∑n

i=1Xitεit = n−1/2
∑n

i=1Xituit−(
√
net)n

−1
∑n

i=1Xit. Suppose uit is i.i.d across

i and independent across t and Euit = 0 with uit being sub-Gaussian. Also assume

that n−1
∑n

i=1‖Xt‖2
2 is bounded. Then Hoeffding’s inequality and Bernstein’s inequal-

ity imply that all the moments of
√
net, n

−1/2
∑n

i=1 uit and ‖n−1/2
∑n

i=1Xituit‖2 are

bounded. Since we also have serial independence of uit, Assumption 2 is satisfied and

Theorem 1 and Corollary 1 still hold if we replace Π(· | Z) with Π(· | Ẑ).

Second, we can explicitly incorporate the estimation error in Ẑ in the proof. We

resort to this method when formally verifying Assumption 2 for Ẑ is difficult. How-

ever, when Assumption 2 does not hold, the rate of convergence might be worse than

(nT )−1 log(nT ) (the claim in Theorem 1). This is not surprising since strong de-

pendence in the (prefiltered) data is expected to distort the likelihood by causing a

problem for the law of large numbers and the central limit theorem. In these cases,

frequentist estimators are typically easier to analyze; nonetheless, we provide a the-

oretical result for Π(· | Ẑ). We first describe the quality of Ẑ as an estimate for
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Z.

Assumption 5. With probability at least 1− ψn, supθ∈Θ|`n(Ẑ, θ)− `n(Z, θ)|/(nT ) ≤

ρn, where ψn, ρn > 0 are sequences of positive numbers.

Assumption 5 is a high-level condition for the estimation error in Ẑ. It is flex-

ible enough to allow for a general theoretical framework. A case-by-case analysis

exploiting the dependence structure and the prefiltering algorithm is needed to verify

Assumption 5.10 The following result states the concentration properties of Π(· | Ẑ).

Theorem 3. Let Assumptions 1, 2, 3, 4 and 5 hold. Then for any c ∈ (0, 1),

there exists a constant Dc > 0 such that with probability at least 1 − c − γn − ψn,

Π
(
Bn | Ẑ

)
≥ 1−Dc (nT )−M10/2, where Bc

n = Θ\Bn and

Bn =

{
θ ∈ Θ : max

{
1

T

T∑
t=1

(σt(θ)− σt(θ∗))2 ,
1

T

T∑
t=1

‖βt(θ)− βt(θ∗)‖2
2

}

≥ M̃1
log(nT )

nT
+ M̃2ρn

}
,

and M̃1, M̃2 > 0 are constants depending only on K,Θ,M0,M1, ...,M10.

Theorem 3 generalizes Theorem 1 to prefiltered data. If the data satisfy Assump-

tion 2 without prefiltering, then ρn = ψn = 0 and Theorem 3 becomes Theorem

1. By Theorem 3, the quality of the prefiltering stage in general affects the rate of

concentration of the posterior.

Instead of using the density of the prefiltered data in (2), in some cases we can

work with the density for the prefiltered data.11 Consider Example 1 with non-random

regressors and assume that uit is independent across i and t and uit ∼ N(0, σ2
t (θ∗)).

It is not difficult to see that Eε2
it = (1−n−1)σ2

t and Eεitεjt = −σ2
t /n for i 6= j. Let Σn

be the n× n matrix with 1− n−1 on the diagonal and −n−1 on the off diagonal. Let

10Notice that biases can arise in dynamic panel models, especially with short T . This issue has
been discussed in the studies listed in footnote 4.

11We thank a referee for bringing up this point.
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ŷt = (ŷ1t, ..., ŷnt)
′ ∈ Rn and X̂t = (X̂1t, ..., X̂nt)

′ ∈ Rn×r. Then the density of (ŷt, X̂t)

is −1
2

log[det(σ2
t (θ)Σn)]− 1

2
(ŷt − X̂tβt(θ))

′(σ2
t (θ)Σn)−1(ŷt − X̂tβt(θ)). Since (ŷt, X̂t) is

independent across t, we have

`n(Ẑ, θ) = −1

2

T∑
t=1

log[det(σ2
t (θ)Σn)]− 1

2

T∑
t=1

(ŷt − X̂tβt(θ))
′(σ2

t (θ)Σn)−1(ŷt − X̂tβt(θ)).

Since the likelihood for the prefiltered data is exact in this case, prefiltering will not

introduce any distortions. More generally, if one is willing to explicitly model the

dependence structure in the data, one can modify the likelihood for the data and,

under the assumption that the model is correctly specified, a separate prefiltering

step is not necesssary.

2.4. Bayesian Inference under Misspecification

A growing literature in statistics shows that under a misspecified likelihood, Bayesian

credible sets are not asymptotically valid frequentist confidence sets; see, e.g., Royall

and Tsou (2003); Kleijn and Van der Vaart (2012); Müller (2013); Bissiri et al. (2016).

For example, assuming i.i.d. Gaussian errors across i and t within regimes is likely to

lead to a misspecified likelihood. This means that the frequentist validity of Bayesian

credible sets is questionable regardless of any prefiltering .

To demonstrate that the frequentist validity of Bayesian inference can be invali-

dated by even very small forms of misspecification of the likelihood, consider panel

data from a location model with no breaks: yit = µ∗+εit, where εit = uit+(nT )−1/2ψv,

uit and v are i.i.d. N(0, 1), and ψ is a nonrandom constant which captures the degree

of cross-sectional dependence. Suppose the likelihood is based on an i.i.d. N(µ, 1)

distribution, so ψ becomes a gauge for the level of misspecification. For any nonzero

ψ, the Bayesian credible sets do not provide correct frequentist inference. To see

this, consider the log-likelihood `n(µ) = −nT
2

log(2π)− 1
2

∑n
i=1

∑T
t=1 (yit − µ)2. Under
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regularity conditions, we can apply Theorem 2.1 of Kleijn and Van der Vaart (2012)

to obtain

sup
x∈R

∣∣∣Πn((−∞, x])− Φ
(√

nT (x− µ∗) + ∆n

)∣∣∣ = oP (1), (3)

where Φ(·) is the cdf of N(0, 1), Πn(·) is the posterior and ∆n =

(nT )−1/2
∑n

i=1

∑T
t=1 uit + ψv. For α ∈ (0, 1), let Bn,1−α = [µ∗ − ∆n/

√
nT −

z1−α/2/
√
nT , µ∗ − ∆n/

√
nT + z1−α/2/

√
nT ], where z1−α/2 = Φ−1(1 − α/2). By (3),

we notice that Πn(Bn,1−α) = 1 − α + oP (1). Hence, Bn,1−α is a Bayesian cred-

ible set. However, it is easy to see that P (µ∗ ∈ Bn,1−α) = P (|∆n|≤ z1−α/2) =

2Φ(z1−α/2/
√

1 + ψ2) − 1. Clearly, for any ψ 6= 0, limn→∞ P (µ∗ ∈ Bn,1−α) < 1 − α.

Therefore, even when the misspecification for the error term is only of the order

O((nT )−1/2), Bayesian inference based on the i.i.d N(0, 1) model would be invalid in

the frequentist sense.

Next, we show that it is impossible in practice to clearly detect such misspecifi-

cation even when µ∗ is known to be zero.

Lemma 2. Let {uit}1≤i≤n, 1≤t≤T be i.i.d N(0, 1) random variables and let v be another

N(0, 1) variable that is independent of uit. Suppose we observe {wit}1≤i≤n, 1≤t≤T where

wit = uit + (nT )−1/2ψv, and ψ ∈ R is a constant. Consider the problem of testing

H0 : ψ = 0 versus H1 : ψ = c0, where c0 > 0 is a constant. Then for any α ∈ (0, 1),

the power of the likelihood ratio test of nominal size α is

1− F1

(
χ2

1,1−α

1 + c2
0

)
,

where F1(·) denotes the cdf of the χ2
1 distribution and χ2

1,1−α = F−1
1 (1− α).

Lemma 2 is a statement about the likelihood-ratio test of a point null hypothesis

and a point alternative hypothesis. By the Neyman-Pearson lemma, the likelihood-

ratio test is the uniformly most powerful test. Since Lemma 2 holds for any sample

size, as n, T tend to infinity at any rate, no test can guarantee that in testing H0

versus H1 both the Type I and Type II errors will go to zero.
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Hence, in practice, one should not expect to reliably detect tiny misspecification

(of the order O(1/
√
nT )). However, by the previous analysis, the frequentist validity

of Bayesian credible sets is sensitive to such small misspecification. Since barely

detectable misspecification can invalidate Bayesian inference (in a frequentist sense),

we do not think Bayesian methods should be used for inference in applied research

regardless of prefiltering.

Of course, prefiltering introduces additional misspecification for the likelihood

model due to its own estimation error and thus has an effect on the frequentist prop-

erties of Bayesian credible sets. Theoretical results might be obtained for a specific

prefiltering procedure, assuming that the likelihood model without prefiltering can be

correctly specified. However, in practice the likelihood model is likely to be misspec-

ified from the beginning which causes problems for Bayesian methods as an inference

tool even under very small misspecification. We therefore think it is more appropri-

ate to use frequentist inference procedures, which is the general recommendation for

Bayesian methods; see Remark 4 of Müller (2013).

3. A Bayesian Panel Break Model

We next develop a linear panel regression model with pooled parameters that is a

special case of the class of models analyzed above. We first introduce the panel

regression model, then present the priors and the resulting posterior distribution.

Next, we show how to jointly estimate an unknown number of structural breaks and

perform variable selection within regimes. For generality, we assume that the model

is fitted to prefiltered data so that the dependent variable for the ith cross-sectional

unit at time t, ŷit, is regressed on a set of r independent variables, X̂it.
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3.1. A panel model with pooled parameters

Our panel model for the kth regime takes the following form:

ŷit = X̂ ′itβk + ε̂it, i = 1, . . . , n, t = Λk−1 + 1, . . . ,Λk (4)

in which Xit is an (r× 1) vector of the r covariates for the ith series at time t and βk

is an (r×1) vector containing the pooled regression coefficients on the r covariates for

the kth regime. We collect the list of K breakpoints into a vector, Λ = (Λ1, . . . ,ΛK).

To induce the variable selection properties of the posterior, we rewrite βt (and σt)

to be the product of an indicator and the magnitude of these quantities; this way,

the prior on the indicator provides a shrinkage property. The frequentist tradition of

model selection often involves thresholding slope coefficients that are not significantly

different from zero and inference will be asymptotically valid as long as r/(nT )→ 0

(Cattaneo et al. 2018a,b).

Let β denote the (r × (K+1)) matrix of coefficients on each of the covariates

in each of the regimes. Assume the error terms are independently and identically

Normally distributed ε̂it ∼ N (0, σ2
k) for t = Λk−1 + 1, . . .Λk. Hence, the coefficients

β and error-term variances σ2 = (σ2
1, . . . , σ

2
K+1) are allowed to shift to new values

following each break. Finally, let θ = (β, σ2) and lk = Λk−Λk−1 denote the duration

of the kth regime which consists of the observations (Λk−1 + 1, . . . ,Λk), while l =

(l1, . . . , lK+1) denotes a vector of regime durations.

The likelihood for our model is12

p(ŷ | X̂, θ,Λ) =
K+1∏
k=1

Λk∏
t=Λk−1+1

p(ŷt | X̂t, θt)

=
K+1∏
k=1

(2πσ2
k)
−lkn/2 exp

− 1

2σ2
k

K+1∑
k=1

Λk∑
t=Λk−1+1

(ŷt − X̂ ′tβk)′(ŷt − X̂ ′tβk)

 , (5)

12Recall that variables with a hat superscript have been prefiltered.
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in which ŷt denotes the (n× 1) vector of observations on the dependent variable for

the cross-sectional units i = 1, . . . , n at time t, X̂t is the (r×n) matrix of observations

on the r covariates for the cross-sectional units i = 1, . . . , n at time t, θt = (βt, σ
2
t )

denotes the parameter vector at time t, ŷ denotes the (n×T ) matrix of observations

on the dependent variable, and X̂ denotes the (r × n × T ) three-dimensional array

of observations on the r covariates.

The aim is to estimate the number of breakpoints K, their locations Λ =

(Λ1, . . . ,ΛK) and the parameter vector θ in each regime.

3.2. Prior Distributions

We place a Poisson prior over the regime durations

p(lk | ζk) =
ζ lkk e

−ζk

lk!
, k = 1, . . . , K + 1, (6)

where ζk has a conjugate Gamma prior

p(ζk) =
dc

Γ(c)
λc−1
k e−dλk , k = 1, . . . , K + 1, (7)

and c and d are the hyperparameters of ζ = (ζ1, . . . , ζK+1). The Poisson intensity

parameter ζk captures the expected duration of regime k and thus the probability of

a break to the parameters in the kth regime. Marginalising ζ leaves the prior on the

breakpoints

p(Λ) =
K+1∏
k=1

p(lk | ζk)p(ζk) =
K+1∏
k=1

1

lk!

Γ(c+ lk)

(d+ 1)c+lk
dc

Γ(c)
. (8)

To perform regime-specific variable selection, we introduce an indicator vector for

the kth regime ιk. Each element of this vector can take a value of either zero or one

and therefore assigns positive prior mass at zero for the corresponding coefficients βk.
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The indicator vector is specified as a binomial distribution with hyperparameter ξk

p(ιk | ξk) =

(
r

mk

)
ξmk
k (1− ξk)r−mk ,

mk =
r∑

κ=1

ικ,k, k = 1, . . . , K + 1. (9)

The hyperparameter ξk represents the average probability across the r regressors that

each of the regressors should be selected in the kth regime.

We assume that ξk follows a conjugate Beta distribution

p(ξk) = ξe−1
k (1− ξk)f−1 Γ(e+ f)

Γ(e)Γ(f)
, k = 1, . . . , K + 1. (10)

Noting that the binomial coefficient for the kth regime is equal to r! (mk! (r−mk)! )−1

and multiplying and dividing by Γ(e + f + r)(Γ(e + mk)Γ(f + r − mk))
−1, we can

marginalise ξk and discard it, leaving

p(ι) =
K+1∏
k=1

(
r!

mk! (r −mk)!

Γ(e+ f)

Γ(e)Γ(f)

Γ(e+mk)Γ(f + r −mk)

Γ(e+ f + r)

)
. (11)

We set e = f = 1 and thus assign equal probability to including or omitting each

regressor in every regime. However, if the user wanted to supply prior information,

the values of e and f can simply be adjusted such that the probability of including a

variable is equal to e/(e+ f). 13

To stay as close to conventional practice as possible, we specify an inverse gamma

prior over the regime-specific variances

p(σ2) =
K+1∏
k=1

ba

Γ(a)
σ2−(a+1)

k exp

(
− b

σ2
k

)
, (12)

13For a more detailed discussion of prior choices for variable selection see Giannone et al. (2017).

22



and a Normal prior on the slope coefficients conditional on the variances

p(β | σ2) =
K+1∏
k=1

2π−r/2(σ2
k)
−r/2 | Vβ |−1/2 exp

(
− 1

2σ2
k

β′kV
−1
β βk

)
,

Vβ = Irσ
2
β. (13)

3.3. Posterior Distribution

To reduce the computational burden, which can be critical when using large panels,

we integrate out the parameters from the posterior distribution, obtaining14

p(ŷ | X̂,Λ) =
K+1∏
k=1

(2π)−lkn/2
ba

Γ(a)

Γ(ãk)

b̃ãkk
|Σk|1/2| Vβ |−1/2 (14)

where, for k = 1, . . . , K + 1

Σ−1
k = V −1

β +

Λk∑
t=Λk−1+1

X̂tX̂
′
t,

µk = Σk

 Λk∑
t=Λk−1+1

X̂ ′tŷt

 ,

ãk = a+ (lkn)/2,

b̃k =
1

2

2b+

Λk∑
t=Λk−1+1

ŷ′tŷt − µ′kΣ−1
k µk

 .

(15)

3.4. Modeling Cross-sectional Dependencies

One way to account for (strong) cross-sectional correlations in panel regressions is by

modeling this through a set of unobserved common factors ft which affect both the

14The values of X that correspond to omitted variables are set equal to zero in equation (15).
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residuals and the regressors and use the common correlated effects (CCE) approach of

Pesaran (2006) to prefilter the data using cross-sectional averages of the independent

and dependent variables as proxies for any unobserved common factors. This is the

approach we propose to take here. In particular, we modify equation (4) as follows:

yit = X ′itβk + εit, i = 1, . . . , n, t = Λk−1 + 1, . . . ,Λk

εit = φift + νit (16)

in which νit are idiosyncratic errors and φi are factor loadings. We assume νit are

independent of Xit, but ft and Xit may be correlated

Xit = Φ′ift + vit. (17)

The existence of unobserved common factors ft and their possible correlation

with Xit may render OLS estimation of (16) inconsistent. These correlations can

be removed by transforming the data with cross-sectional averages of the dependent

variable and the regressors.15

Combining (16) and (17), we have

ψit =

 yit

Xit

 = C ′ikft + uit, k = 1, . . . , K + 1, t = Λk−1 + 1, . . . ,Λk (18)

in which

Cik = (φi,Φ
′
i)

 1 0

βk Ir


15Because vit is i.i.d., it may be possible to apply the grouped fixed effects approach of Bonhomme

and Manresa (2015), but finding breaks in the time series rather than cross-sectional dimension.
However, the computational burden of an iterative method in which each iteration implements a
k-mean clustering could be high. Moreover, there is no guarantee of global convergence under this
algorithm. We think this is one of the situations where MCMC algorithms might deliver a more
stable numerical performance.

24



and

uit =

 νit + βkvit

vit


where Cik also shifts following a break. Letting β = (β1, . . . , βT ), Yi = (yi1, . . . , yiT )′,

Xi = (xi1, . . . , xiT )′, and εi = (εi1, . . . , εiT )′, we can write (16) in matrix form as

Yi = X ′iβ + εi. (19)

Let ψ̄t = 1
n

n∑
i=1

ψit, which assumes equal cross-sectional weights, such that

ψ̄t = C̄ ′kft + ūt, k = 1, . . . , K + 1, t = Λk−1 + 1, . . . ,Λk.

Let ψ̄ = (ψ̄1, . . . , ψ̄T ) and define the orthogonal projection matrix Mψ = IT −

ψ̄(ψ̄′ψ̄)−1ψ̄′ such that premultiplying the regression model in (19) by Mψ obtains

Ŷi = X̂ ′iβ + ε̂i, (20)

in which ε̂i = MψFφi +Mψνi, Ŷi = MψYi, X̂i = MψXi, and F = (f1, . . . , fT ).

Because of the time variation in βt, the first component of ψ̄t is related to a mixture

of βt and ft; hence only the remaining components of ψ̄t provide useful information on

ft. For this reason, the above prefiltering procedure only works provided that E(Φi)

has full rank and m ≤ κ.16

4. Estimation

This section provides details of the four steps in our algorithm for variable selection,

breakpoint detection and parameter estimation.

Step 1: Estimating the parameter vector. We sample βk and σ2
k for the K+1

16We are grateful to a referee for pointing this out.
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regimes from their full conditionals

σ2
k | Λ ∼ IG(ãk, b̃k), k = 1, . . . , K + 1,

βk | Λ, σ2
k ∼MVN(µk,Σkσ

2
k), k = 1, . . . , K + 1, (21)

in which µ,Σ, ã, and b̃ are computed using (15).

Step 2 : Performing regime-specific variable selection. Conditional on the

estimated breakpoints and parameters, ιk is updated for regimes k = 1, . . . , K + 1.

Specifically, we sample with equal probability a value of zero or one for each of the

κ = 1, . . . , r covariates in the kth regime to obtain the proposal indicator vector ι∗k.

Using ι∗k, we compute Σ∗k, µ
∗
k, and b̃∗k from (15), while m∗k is computed from (9). Using

(11) and (14), the proposed ι∗k is accepted with probability min(1, α), where

α =
b̃ãkk
b̃ãkk∗

| Σ∗k |1/2

| Σk |1/2
mk! (r −mk)!

m∗k! (r −m∗k)!
Γ(e+m∗k)Γ(f + r −m∗k)
Γ(e+mk)Γ(f + r −mk)

.

Here q(ιk, ι
∗
k) denotes the proposal density of ι∗k given the existing indicator vector ιk.

If the proposal is accepted, then ι∗k, m
∗
k, Σ∗k µ

∗
k and b̃∗k are substituted for ιk, mk, Σk,

µk, and b̃k. We repeat the procedure for each of the K + 1 regimes in turn.

Step 3: Estimating the breakpoint locations. The birth and death moves de-

tailed below enable the introduction or removal of breaks and so a simple perturbation

to the existing breakpoint locations is all we need to help them converge to their true

values. This perturbation is provided through a random-walk Metropolis-Hastings

step. Each breakpoint Λk for k = 1, . . . , K is perturbed by u sampled uniformly from

the interval [−s, s] to give the new break date Λk∗ = Λk+u. The proposed breakpoint

vector Λ∗ is the same as Λ, but Λk∗ has been substituted for Λk. The proposed regime

durations are computed as lk∗ = Λk∗ − Λk−1 and lk∗+1 = Λk+1 − Λk∗ . Using (15), we

compute Σ−1
k∗ , Σ−1

k∗+1, µk∗ , µk∗+1, ãk∗ , ãk∗+1, b̃k∗ , and b̃k∗+1. The proposal is accepted
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with probability min(1, α) where

α =
|Σk∗|1/2

|Σk|1/2
|Σk∗+1|1/2

|Σk+1|1/2
Γ(ãk∗)

b̃ãk∗k∗

b̃ãkk
Γ(ãk)

Γ(ãk∗+1)

b̃
ãk∗+1

k∗+1

b̃
ãk+1

k+1

Γ(ãk+1)

Γ(lk∗ + c)

Γ(lk + c)

Γ(lk∗+1 + c)

Γ(lk+1 + c)

lk!

lk∗ !

lk+1!

lk∗+1!
.

If the proposal is accepted, we substitute Λk∗ , lk∗ , lk∗+1, ãk∗ , ãk∗+1, b̃k∗ , b̃k∗+1, µk∗ ,

µk∗+1, Σ−1
k∗ , and Σ−1

k∗+1 for Λk, lk, lk+1, ãk, ãk+1, b̃k, b̃k+1, µk, µk+1, Σ−1
k , and Σ−1

k+1.

Step 4: Estimating the number of breakpoints. The sampler begins at

a sensible number of breakpoints. On every iteration of the Markov chain Monte

Carlo run with equal probability the sampler attempts to either add (birth move)

or remove (death move) one breakpoint. The proposed move is accepted with the

probability that ensures detailed balance is maintained across the entire parameter

space including the number of breakpoints and selected variables. If the move is

accepted, the corresponding breakpoint, indicator and parameter vectors are updated;

otherwise they are discarded and the algorithm continues.

Birth move. Each iteration either a birth or death move is entered with equal

probability.17 A birth move proposes to introduce one new breakpoint denoted Λk∗

and hence increase K to K + 1. We draw Λk∗ uniformly from the time series Λk∗ ∼

U [1, T ] and if Λk∗ ∈ Λ the proposal is rejected. If Λk∗ /∈ Λ then Λk∗ is added to Λ to

construct the proposed breakpoint vector Λ∗. The durations of the proposed regimes

are lk∗ = Λk∗ − Λkc−1 and lk∗+1 = Λkc − Λk∗ , respectively.

We next propose a value of zero or one for each of the κ = 1, . . . , r covariates in

the two new regimes to construct the new indicator vectors ιk∗ and ιk∗+1. Using ιk∗

and ιk∗+1 where appropriate, we calculate Σ−1
k∗ , Σ−1

k∗+1, µk∗ , µk∗+1, ãk∗ , ãk∗+1, b̃k∗ , and

b̃k∗+1 from (15), while mk∗ and mk∗+1 are computed from (9). Since the parameter

vector θ has been marginalised from the posterior it does not need to be proposed.

17If K = T − 1, any proposed birth move is immediately rejected and likewise for the proposal of
a death move if K = 0.
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The proposed birth move is accepted with probability equal to min(1, α), where

α =
Γ(ãk∗)

b̃ãk∗k∗

ba

Γ(a)

Γ(ãk∗+1)

b̃
ãk∗+1

k∗+1

|Σk∗ |1/2|Σk∗+1|1/2

|Σkc |1/2| Vβ |1/2
b̃ãkckc

Γ(ãkc)

Γ(e+ f)

Γ(e)Γ(f)

× r! Γ(e+mk∗)Γ(f + r −mk∗)

mk∗ ! (r −mk∗)! Γ(e+ f + r)

T2r

K + 1

Γ(e+mk∗+1)Γ(f + r −mk∗+1)

Γ(e+mkc)Γ(f + r −mkc)

× mkc ! (r −mkc)!

mk∗+1! (r −mk∗+1)!

Γ(lk∗ + c)

(d+ 1)c
dc

Γ(c)

lkc !

lk∗ ! lk∗+1!

Γ(lk∗+1 + c)

Γ(lkc + c)
.

If the move is accepted, Λ is replaced by Λ∗ and l, m, ι, Σ−1, µ, ã, and b̃ are updated

by substituting their values for the new regimes k∗ and k∗ + 1 for their values in the

existing regime kc. If the move is rejected, the proposals are discarded.

Death move. If a death move is entered, an attempt is made to reduce K to

K − 1 by removing an existing breakpoint Λkc which is sampled uniformly from the

existing breakpoint vector Λkc ∼ U [Λ1,ΛK ]. Removing Λkc from Λ constructs the

proposed breakpoint vector Λ∗. This move attempts to merge two existing shorter

regimes kc and kc + 1 separated by Λkc into one new longer regime k∗, and thus

lk∗ = lkc + lkc+1.

Next, the regime-specific indicator vector for the new regime ιk∗ must be proposed.

Specifically, each of the κ = 1, . . . , r indicators for the r covariates in the newly

proposed regime k∗ are sampled with equal probability as either zero or one. Using

ιk∗ , we compute Σ−1
k∗ , µk∗ , ãk∗ and b̃k∗ from (15), and mk∗ from (9).

The death move is accepted with probability min(1, α), where

α =
Γ(ãk∗)

b̃ãk∗k∗

b̃ãkckc

Γ(ãkc)

|Σk∗ |1/2| Vβ |1/2

|Σkc|1/2|Σkc+1|1/2
b̃
ãkc+1

kc+1

Γ(ãkc+1)

Γ(a)

ba
lkc !

lk∗ !

Γ(lk∗ + c)

Γ(lkc + c)

(d+ 1)c

Γ(lkc+1 + c)

× lkc+1!
Γ(c)

dc
K

T

1

2r
mkc ! (r −mkc)!

mk∗ ! (r −mk∗)!

Γ(e)Γ(f)

Γ(e+ f)

Γ(e+mk∗)Γ(f + r −mk∗)

Γ(e+mkc)Γ(f + r −mkc)

× mkc+1 ! (r −mkc+1)! Γ(e+ f + r)

r! Γ(e+mkc+1)Γ(f + r −mkc+1)
.

If the move is rejected, the proposals are discarded; otherwise Λ is replaced by Λ∗,

while the values of l, ι, m, Σ−1, µ, ã, and b̃ for the newly proposed regime k∗ are
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substituted for the corresponding values in the existing regimes kc and kc + 1.

5. Simulation Study

We next conduct a simulation study to demonstrate the importance of the increased

power derived from the cross-section when performing variable selection in a panel

with pooled parameters and breaks. First, we show how, in the absence of cross-

sectional dependencies, the ability of the algorithm to converge to the true underlying

data generating process (DGP) increases with the size of the cross-section. We then

study the robustness of the method to (i) increasing the number of regressors; (ii)

including fat tailed errors; (iii) adding dynamic effects (lagged dependent variables);

(iv) allowing for cross-sectional dependencies with and without persistent factors; and

(v) changing the volatility of the residual in the regression model.

5.1. Performance of Algorithm in the Baseline Scenario

We first explore the ability of our algorithm to converge to the true underlying DGP

in which the coefficients of a subset of r = 8 covariates change across regimes as

displayed in Table 1. Specifically, four panels with T = 100 and n increasing in size

from 1 through 25, 50, and 100 are considered for the regression

yit = X ′itβk + εit, t = Λk−1 + 1, . . . ,Λk, k = 1, . . . , K + 1, i = 1, . . . , n.

(22)

The first of the covariates is a unit vector so β1,k is an estimate of the intercept

term in the kth regime. The remaining seven covariates are drawn from the process

Xit ∼ N(0, 1) for i = 1, 2, . . . , n and t = 1, 2, . . . , T .

The intercept and regression coefficients break at t = 40 and t = 65: β1:r,t = 1 for

t ≤ 40, β1:r,t = 1.25 for 40 < t ≤ 65, and β1:r,t = 1.5 for 65 < t ≤ 100. The error is
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assumed to be cross-sectionally independent and normally distributed εit ∼ N(0, σ2)

for i = 1, 2, . . . , n and t = 1, 2, . . . , T , where σ breaks at t = 50: σt = 1 for t ≤ 50,

and σt = 1.5 for 50 < t ≤ 100. Within regimes in which the covariates have no

explanatory power, that is, when the corresponding value of the indicator vector ιk

is equal to zero, the product of the indicator and coefficient will equal zero.

The prior hyperparameter values of a and b are set equal to 2 and 1.25, respectively.

Moreover, we set c = 2, and compute d = 0.08 such that the prior expected value of

ζ in each regime is equal to the mean of the simulated regime durations, 25.18

We begin the algorithm at one breakpoint at time t = 5 with every element of

the indicator vector set equal to zero in both regimes. When n = 1, a time series

version of our algorithm is only able to find two of the three break points at t = 40

and t = 50 as displayed in Figure 1a, both of which are estimated with considerable

uncertainty. Figure 1b displays how as the size of the cross-section increases to 5 the

algorithm detects the third break at t = 65. Figures 1c and 1d show how increasing

the cross-section further to 25 and 100 gradually removes the uncertainty surrounding

the estimated break dates.

Table 1 displays the posterior estimates of the indicator vector and the sum of the

absolute estimation error of the indicator variable across the 8 regressors within each

of the four regimes as the cross-section increases. When n = 1 the sum of the absolute

estimation error of the indicator variable across the regressors in regimes 1, 2, 3, and

4, respectively, are 0.61, 1.72, 1.32, and 1.07. The total sum across the four regimes

is therefore 4.72.19 As the cross-section increases to 25 and 100, respectively, the

sum of the absolute estimation error of the indicator variable across the four regimes

gradually reduces to 2.04 and 0.06. The increased power derived from the expanding

size of the cross-section enables more accurate variable selection.

18Both samplers were run for 2,500 iterations beyond a burn-in period of 5,000 iterations and were
thinned at an interval of 2. Computation was fast with both algorithms taking less than one minute
to run on a Windows XP based laptop with an Intel core i5 processor.

19Note the wrong inclusion of x2 in the second regime and of x5 in the fourth regime, and the
wrong exclusion of x7 in the third regime.
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Table 2 displays simulated values and posterior estimates obtained from the mod-

els that perform variable selection with and without breaks when n = 100. Variable

selection procedures that ignore breaks are susceptible to omitting covariates that are

only informative for short periods (x8) and likewise including (for the entire sample)

covariates that are active for only a short period (x7). The variable selection pro-

cedure that ignores breaks defines β7 as being active for the full sample and β8 as

never being active. The regime-specific variable selection approach, however, has the

flexibility to deactivate β7 and activate β8 in only the second regime as required by

the underlying DGP.

5.2. Extensions

Increasing the number of regressors. One might expect that as (K + 1)r grows

large relative to nT , the ability of our methodology to converge to the true DGP

will break down. We explore this through a simulation exercise in which n is fixed

at 20, T is fixed at 100, the number of breaks K is fixed at 3 with break dates at

t = 40, t = 50 and t = 65, and r increases from 5 to 250. Table 3 displays the mean

absolute estimation error computed across the r estimated indicator values and their

true values MAEιk = 1
r

r∑
κ=1

| ι̂κ,k − ικ,k | as r increases from 5 to 250.

For relatively small numbers of covariates (r = 5 and r = 12), the posterior

estimates of the indicator variables on the covariates are very accurate with mean

absolute errors less than 0.05. Increasing the number of covariates to 25 induces a

high dimensional search, with 225 ≈ 33.5 million combinatorial possibilities ignoring

the presence of breaks which exacerbates the search problem even further. The benefit

of the Bayesian stochastic search algorithm is displayed here with the MAE of the

indicator vector being less than 0.1 in all four regimes. Increasing the number of

covariates further, however, leads to the method breaking down as the nT data set

is not large enough relative to r(K + 1) to infer the correct values of ιk in the kth
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regime. Mean absolute errors increase to 0.3 when r = 50 and as high as 0.491 when

r = 250.

Fat-tailed errors. In many economic applications, errors have heavy tails. We

therefore pursue a simulation exercise in which the true DGP is identical to the one

detailed in Section 5.1, except the errors are now assumed to follow a Student t-

distribution with 6 degrees of freedom. We standardise the errors so they have a

standard deviation which is the same as in the baseline scenario. Our methodology

precisely estimates all three breaks.

Dynamic models. Panel models that include lagged dependent variables as

regressors may compromise inference, see Bai (2009), Chudik and Pesaran (2015),

Moon and Weidner (2015), and Moon and Weidner (2017).20 However, for a model

with pooled parameters like the one presented here, Everaert and Groote (2016) report

that biases are likely to be modest for time series of at least moderate dimension. In

any event, most of any induced bias will apply to the autoregressive coefficient.

To evaluate whether including an autoregressive term reduces the ability of our

method to correctly identify the breakpoints, we conduct a simulation study in which

the true DGP now includes a lagged dependent variable as a regressor which is active

in each of the four regimes

yit = X ′itβk + εit, t = Λk−1, . . . ,Λk, k = 1, . . . , K + 1, i = 1, . . . , n.

where the final element of Xit now equals yit−1 and its coefficient equals 0.9. The

setup is otherwise unchanged from the baseline scenario.

The method performs strongly, precisely estimating the three breaks at their true

dates (not shown). The breakpoint estimates are unaffected by further including a

second and third lagged dependent variable. In our pooled parameter framework,

including autoregressive terms as regressors in the model does not appear to hinder

20Hansen (2003) develops a generalised reduced rank regression framework to allow for breaks in
a cointegrating Vector Autoregression.
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our ability to accurately estimate breaks.

Common correlated effects. We next introduce correlated effects into the

simulated panel data set and explore the ability of our algorithm to converge to the

true underlying data generating process with and without prefiltering the data as

described in Section 3.4.

The data generating process for series i = 1, . . . , n is assumed to take the form

yit = X ′itβk + εit, t = Λk−1 + 1, . . . ,Λk, k = 1, . . . , K + 1,

εit = φ1ift + uit,

in which φ1i ∼ iid N(1, 0.1) and the idiosyncratic errors are generated as uit ∼

iid N(0, σ2
t ). The first of the covariates is a unit vector so that β1,k is an estimate of

the intercept term in the kth regime. In contrast with Section 5.1, the common factor

ft now presides in both the error-term εit and the covariate Xit as Xit = φ2ift + νit,

where φ2i ∼ iid N(0.5, 0.1) and νit ∼ iid N(0, 0.75). We generate the factor ft as

ft = 0.5ft−1 + νft, where νft ∼ iid N(0, 0.75).

We run our regime-specific variable selection procedure with and without pre-

filtering the data with cross-sectional averages. The time-series dimension is T = 100

and the cross-sectional dimension is n = 200. We display in Figure 2 the results

of our algorithm with (bottom panel) and without (top panel) prefiltering. When

prefiltering the data, we detect the three breaks with 100% certainty. Without pre-

filtering, however, the performance of the algorithm is poor. The three true breaks

are correctly identified but at the expense of spuriously detecting an additional three

breaks, showing the importance of prefiltering the data.

Moderate cross-sectional dependencies. We next consider the performance

of our methodology to detect breaks when mild or moderate cross-sectional depen-

dencies remain. The DGP is the same as described in Section 5.1 except the error

terms are now drawn from a multivariate Normal distribution with cross-sectional

correlations εt ∼ MVN(0, Sσ2
t ), where σt = 1 for t = 1, . . . , 50 and σt = 1.5 there-
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after. All elements on the main diagonal of the covariance matrix S equal 1, and all

off diagonals equal ρ.

For mild correlations (ρ ≤ 0.20), the ability of the method to detect the correct

breaks is unaffected. Increasing ρ beyond 0.2, the correct breaks are still identified,

but additional spurious breaks are also detected. The higher the value of ρ, the higher

the number of spurious breaks detected.

Highly persistent factors. Baltagi et al. (2016) report that the increased power

to detect breaks obtained from the cross-section is lost once the factors become highly

persistent. We therefore perform a simulation in which the persistence of the common

factor is increased from 0.5 to 0.7 and 0.9, respectively. When the persistence of the

factor is increased from 0.5 to 0.7 increasing the cross-sectional dimension to 100 still

improves the precision of the breakpoint estimation but to a lesser degree than before.

Once the persistence is increased to 0.9, however, the breakpoints are estimated no

more precisely when the cross-sectional dimension is increased to 100.

Volatility and variable selection. We finally investigate whether the procedure

that ignores breaks can activate (deactivate) regressors that are only informative

(noninformative) in regimes that exhibit high volatility even though such regimes are

longer relative to the analysis carried out in Section 5.1. We explore this issue with

a simulation that has high volatility in some regimes but not in others. Specifically,

the DGP now sets σt = 5 in regimes 3 and 4. We only consider an intercept and two

(instead of seven) regressors. The results (available in the supplementary material)

show that the procedure that ignores breaks is unable to activate regressor 2 which

only becomes informative in the fourth regime which has high volatility. Similarly, it

is unable to deactivate regressor 3 which is only deactivated in the fourth regime. The

procedure that allows for breaks, however, is able to estimate the correct breakpoints

and select the informative and noninformative variables within regimes even if they

are characterised by high volatility.
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6. Empirical Application

A large literature in corporate finance explores firms’ choice of capital structure,

i.e., their decisions on how much debt and equity to issue to finance operations.

Many studies consider how firms should exploit their debt structure to optimally

trade off bankruptcy costs against tax savings on interest payments as more debt is

issued and firms become more levered. In a comprehensive study, Frank and Goyal

(2009) attempt to uncover which of the many variables that have been proposed to

explain firms’ capital structure are actually informative. They consider 25 covariates

and report that six core variables account for 27% of the variation in leverage; the

remaining 19 covariates only explain an additional 2% of the variation.

We next revisit the study of Frank and Goyal (2009), but performing variable

selection on the covariates and allowing for structural breaks. This may reveal that

some of the six core covariates are actually superfluous. Alternatively, covariates that

are informative only during short regimes may be incorrectly omitted altogether while

covariates that lose explanatory power during short regimes will fail to be omitted.

We focus on 22 of the covariates with complete data records and investigate whether

any of the core (other) covariates are omitted (included) in some regimes.

6.1. Data

We generalize the regression of Frank and Goyal (2009) to allow for an unknown

number of structural breaks K occurring at unknown times and perform variable

selection within each regime k = 1, . . . , K + 1

LVit = αk +X ′it−1βk + εit, t = Λk−1 + 1, . . . ,Λk, εit ∼ N(0, σ2
k) (23)
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LVit is the market-based leverage ratio measure - total debt to market assets (TDM)

- for firm i at time t and Xit−1 contains for firm i at time t the 22 covariates listed in

Table A.4 in the supplementary Appendix.21 We drop the first 8 years of data due

to missing observations and all remaining firms that have 40 observations or fewer on

the dependent variable. This leaves an unbalanced panel consisting of n=175 firms

and T=46 annual observations of data from 1958 through 2003.

6.2. Cross-sectional and serial dependencies

We first explore the ability of our pre-filtering procedure to remove cross-sectional

dependencies in the data. We also consider what proportion of cross-sectional depen-

dencies are driven by co-movements between firms belonging to the same industry.

Finally, we test for serial dependence.

We prefilter the data using cross-sectional averages of the dependent and all in-

dependent variables as proxies for any unobserved common factors as described in

Section 3.4. Without prefiltering, the CD statistic of Pesaran (2004) is 90.02. At the

5% level, we therefore conclusively reject the null of no cross-sectional dependencies.

After prefiltering, the CD statistic is reduced to 1.46 and so we are unable to reject

the null on the prefiltered data. This demonstrates that prefiltering has successfully

removed most of the cross-sectional dependencies in the data.

We further test for serial dependence in the data using the Durbin-Watson statis-

tic. For each series in the cross-section we use the residuals to compute a Durbin-

Watson statistic. The mean of the DW statistics across all n series is 1.501 with a

spread between 0.588 and 2.444. Although some series may experience negative serial

correlation, on average, positive serial correlation is more common. For models with

an intercept and 20 regressors and for a time-series dimension of 40 (we have 22 re-

gressors and on average 41 observations on the dependent variable), Savin and White

21A detailed description of the dataset is provided in Appendix B of Frank and Goyal (2009).
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(1977) report lower and upper Durbin Watson critical values of 0.338 and 2.838, re-

spectively. All series have DW statistics that lie between these bounds and thus the

test is inconclusive. The estimated autocorrelations are also small for the majority of

series and so we conclude that serial dependence in the data is unlikely to affect in a

major way our inference concerning the presence of breaks in the panel model.

Priors. Our empirical application sets d = 1 and c = 10, thus assuming that a

break is expected to occur every ten years for the models that allow for breaks. We

set the hyperparameters e = 1 and f = 1 which implies that the prior mean of ξk

for regimes k = 1, . . . , K + 1 is 0.5 so each variable is equally likely to be selected

or omitted. We set a = 2 and b = 0.23 to give a prior expected error-term variance

equal to 0.23, which is the variance of the dependent variable across the entire data

set. Finally, we set the prior standard deviation of β, σβ, equal to 0.5.

6.3. Results

We find evidence of three breaks occurring at 1962, 1973, and 1999 when estimating

the regime-specific variable selection model. The combination of annual data and

increased power obtained from the cross-sectional dimension of n = 175 results in

highly concentrated posterior estimates of the break dates as displayed in Figure 3

(top window). The break in 1962 corresponds to the increase in corporate leverage

(Graham et al. 2015). Leverage jumped from 16% in the early 1960s to 27% in 1972.

The break at 1973 corresponds to this peak value after which corporate leverage fell

relatively quickly before rising slowly again. Finally, the break in 1999 is capturing

the fall from 28% in 1997 to 23% in 2003.

Figure 3 (bottom window) shows that the first short regime (1958-1962), has

only four core predictors with more than equal probability of being active, with the

market-to-book ratio being the strongest (see Table 4). On the other hand, some of

the other factors such as uniqueness of product are active in the first regime with
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a posterior probability estimate of 0.818 (not shown). A similar scenario occurs in

the final regime (2000-2003) in which Tangibility and Inflation are deactivated but

SGA is activated. Accounting for breaks may thus result in short regimes in which

(i) strong factors are omitted and (ii) weak factors are included. The insight of Frank

and Goyal (2009) that of 25 potential predictors only six core predictors are required

to explain almost all the variation in leverage therefore appears to be an overestimate

which results from ignoring structural breaks. Ignoring breaks also results in some

other predictors being overlooked when they are active only for short regimes.

7. Conclusion

This article develops a new Bayesian approach for jointly estimating an unknown

number of structural breaks and performing regime-specific variable selection in a

panel regression framework with pooled coefficients and common breaks.

Our procedure for variable selection in the presence of breaks is likely to prove

useful in many empirical applications such as forecasting where the relevance of indi-

vidual predictors undergoes change. In such settings, it can be important to eliminate

predictors that are no longer relevant and, conversely, introduce new variables that,

at least for a period of time, possess predictive power over the outcome.
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Table 1: Variable selection as the cross-section increases

Regressor Regime Regime

1 2 3 4 1 2 3 4

True values n=1

1 1 1 1 1 1 1 1 1
2 0 0 1 1 0.17 0.99 0.99 1
3 0 1 1 1 0.08 0.99 0.99 1
4 0 1 1 0 0.12 1 1 0.13
5 0 1 1 0 0.16 1 1 0.88
6 1 1 1 1 1 0.99 0.99 1
7 1 0 1 1 1 0.15 0.15 1
8 0 1 0 0 0.08 0.44 0.44 0.06

r∑
κ=1

| ικ,k − ι̂κ,k | 0.61 1.72 1.32 1.07

n=25 n=100

1 1 1 1 1 1 1 1 1
2 0.05 0.02 1 1 0.02 0 1 1
3 0.02 1 1 1 0.01 1 1 1
4 0.01 1 1 0.09 0 1 1 0
5 0.08 1 1 0.02 0 1 1 0
6 1 1 1 0.41 1 1 1 1
7 1 0.14 0.98 1 1 0.01 1 1
8 0.01 0.07 0 0.06 0.02 1 0 0

r∑
κ=1

| ικ,k − ι̂κ,k | 0.17 1.09 0.02 0.76 0.05 0.01 0 0

Table 1: Variable selection as the cross-section increases. This table displays the
simulated values of the indicator vector on the 8 covariates across regimes and the corresponding
posterior estimates as the size of the cross-section increases. We also display the sum of the
absolute estimation error of the indicator vector across the 8 covariates within each regime. The
estimates are derived using the hyperparameter values and simulated data detailed in Section
5.1.
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Table 2: Posterior estimates of variables

Regime Time β1 β2 β3 β4 β5 β6 β7 β8 σ

Indicator (ικ,k)

Variable selection without breaks
1 0 < t ≤ 100 1 1 1 1 1 1 1 0

Parameters (ικ,k × βκ,k)
Simulated values

1 t ≤ 40 1 0 0 0 0 1 1 0 1
2 40 < t ≤ 50 1.25 0 1.25 1.25 1.25 1.25 0 1.25 1
3 50 < t ≤ 65 1.25 1.25 1.25 1.25 1.25 1.25 1.25 0 1.5
4 65 < t 1.5 1.5 1.5 0 0 1.5 1.5 0 1.5

Variable selection without breaks

1 0 < t ≤ 100 1.32 0.75 1.35 0.82 0.84 1.22 1.10 0 1.28

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0) (0.05)

Regime-specific Variable Selection

1 t ≤ 40 1.02 -0.00 -0.00 0 0 1.00 0.98 -0.00 0.99
(0.02) (0.03) (0.00) (0) (0) (0.02) (0.02) (0.02) (0.02)

2 40 < t ≤ 50 1.27 0 1.22 1.21 1.31 1.31 -0.00 1.28 1.00
(0.03) (0) (0.03) (0.03) (0.03) (0.03) (0.01) (0.02) (0.04)

3 50 < t ≤ 65 1.31 1.22 1.23 1.23 1.28 1.26 1.29 0 1.45
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0) (0.08)

4 65 < t 1.56 1.51 1.50 0 0 1.48 1.49 0 1.45

(0.02) (0.02) (0.02) (0) (0) (0.03) (0.02) (0.00) (0.05)

Table 2: Posterior estimates of variables. This table displays the posterior estimates of
the regression coefficients and the indicator variable on the 8 covariates across the 4 regimes
obtained from the variable selection procedure with and without breaks. The estimates are
derived using the hyperparameter values detailed in Section 5.1.

Table 3: Variable selection as the number of regressors increases

r Regime

1 2 3 4

5 0.038 0.039 0.049 0.030
12 0.044 0.038 0.047 0.036
25 0.094 0.098 0.092 0.085
50 0.302 0.297 0.263 0.350
125 0.349 0.462 0.420 0.466
250 0.399 0.484 0.491 0.478

Table 3: Variable selection as the number of regressors increases. This table displays
in regime k the mean absolute error MAEιk of the posterior estimates of the inclusion indicator
variable relative to the true simulated value across all r covariates when n, T and K are fixed at
20, 100 and 3, respectively. The MAEιk is therefore bounded between 0 and 1 with 0 reflecting
perfect estimation of the r indicator variables in the kth regime and 1 reflecting the worst
possible estimation.
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Table 4: Parameter estimates for core regressors

Predictor Selected Variables Slope Coefficient (ικ,k × βκ,k)

Regime Average Regime

1 2 3 4 1 2 3 4

Profitability 0.457 0.998 0.997 0.953 0.851 -0.005 -0.633 -1.016 -0.502

(0.498) (0.044) (0.049) (0.109) (0.175) (0.031) (0.046) (0.042) (0.151)

Total assets 0.225 0.024 0.989 0.951 0.547 0.012 0.001 0.011 0.023

(0.311) (0.161) (0.101) (0.170) (0.186) (0.017) (0.008) (0.005) (0.007)

Market-to-book 0.878 0.996 0.986 0.954 0.954 0.033 0.009 0.024 0.050

(0.327) (0.059) (0.119) (0.209) (0.179) (0.039) (0.015) (0.007) (0.010)

Industry Leverage 0.705 0.998 0.996 0.965 0.916 0.040 0.356 0.412 0.492

(0.424) (0.038) (0.066) (0.183) (0.178) (0.057) (0.019) (0.022) (0.060)

Tangible assets 0.546 0.998 0.981 0.262 0.697 0.012 0.193 0.165 0.007

(0.497) (0.042) (0.137) (0.496) (0.293) (0.027) (0.011) (0.014) (0.033)

Inflation 0.506 0.697 0.833 0.172 0.552 0.002 0.084 0.022 0.019

(0.499) (0.458) (0.471) (0.459) (0.472) (0.044) (0.102) (0.076) (0.129)

Break dates 1962, 1973, 1999

Table 4: Parameter estimates for core regressors. This table reports estimates of the
slope coefficients multiplied by their corresponding indicator variables (ικ,k × βκ,k) on the six
core regressors identified by Frank and Goyal (2009) and their standard deviations (reported
in brackets below) when estimating the model that performs regime-specific variable selection
using the full sample. We also report the posterior modes of the estimated break dates and the
posterior means of the indicator variables in each regime and the average across regimes.
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(d) n=100

Figure 1: This figure displays the posterior probabilities of the estimated break dates as the size of
the cross-section increases from 1 (top left) to 100 (bottom right) using the hyperparameters and
simulated data detailed in Section 5.1.
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(b) Prefiltering

Figure 2: This figure displays the posterior probabilities of the estimated break dates when the
cross-sectional dimension is n = 200 using the hyperparameters and the simulated data detailed in
Section 5.2 with (bottom panel) and without (top panel) prefiltering the data with cross-sectional
averages.
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Figure 3: The top panel of this Figure plots the posterior probabilities of the breaks dates estimated
from the model that allows for regime-specific variable selection. The bottom panel graphs the total
number of predictors that explain variation in the leverage ratio through the sample. Specifically,
the green line graphs the total number of core predictors, the red line graphs the total number of
other predictors, and the black line graphs their sum.
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