
Monotonicity in Asset Returns: New Tests with Applications to

the Term Structure, the CAPM and Portfolio Sorts�

Andrew J. Patton

University of Oxford

Allan Timmermann

University of California San Diego

30 April 2009

Abstract

Many theories in �nance imply monotonic patterns in expected returns and other �nancial

variables: The liquidity preference hypothesis predicts higher expected returns for bonds with

longer times to maturity; the CAPM implies higher expected returns for stocks with higher

betas; and standard asset pricing models imply that the pricing kernel is declining in market

returns. The full set of implications of monotonicity is generally not exploited in empirical

work, however. This paper proposes new and simple ways to test for monotonicity in �nancial

variables and compares the proposed tests with extant alternatives such as t-tests, Bonferroni

bounds and multivariate inequality tests through empirical applications and simulations.
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1 Introduction

Finance contains many examples of theories which imply that expected returns should be monoton-

ically decreasing or monotonically increasing in securities�risk or liquidity characteristics. For ex-

ample, under the liquidity preference hypothesis, expected returns on treasury securities should

increase monotonically with their time to maturity; the CAPM implies a monotonically increasing

pattern in the expected return of stocks ranked by their market betas. Another fundamental impli-

cation of �nance theory is that the pricing kernel should be monotonically decreasing in investors�

ranking of future states as measured, e.g., by market returns.

The full set of implications of such monotonic patterns is generally not explored, however,

in empirical analysis. For example, when testing the CAPM, it is conventional practice to form

portfolios of stocks ranked by their beta estimates. A t-test may then be used to consider the mean

return di¤erential between the portfolios with the highest and lowest betas. Yet comparing only

the average returns on the top and bottom portfolios does not provide a su¢ cient way to test for

a monotonic relation between expected returns and betas. As an illustration, Figure 1 presents

average monthly returns on stocks sorted into deciles according to their estimated betas. The mean

return on the high-beta stocks exceeds that of the low-beta stocks, but a t�test on the top-minus-

bottom return di¤erential comes out insigni�cant. A test that only considers the return di¤erence

between the top and bottom ranked securities does not utilize the observation from Figure 1 that

none of the declining segments�which go against the CAPM�appears to be particularly large, so

the question arises whether the CAPM is in fact refuted by this evidence.

As a second illustration, Figure 2 shows the term premia on T-bills with a maturity between 2

and 11 months. Clearly the overall pattern in the term premium is increasing, and this is con�rmed

by a t�test on the mean di¤erential between the 11- and 2-month bills which comes out signi�cant.

However, there are also segments where the term premium appears to be negative�particularly

between the 9 and 10-month bills�so the question here is whether there are su¢ ciently many,

and su¢ ciently large, negative segments to imply a rejection of the liquidity preference hypothesis.

Only a test that simultaneously considers the mean returns across all maturities can answer this.

This paper proposes new ways to test for monotonicity in the expected returns of securities

sorted by characteristics which theory predicts should earn a systematic premium. Our tests are

nonparametric and easy to implement via bootstrap methods. Thus they do not require specifying
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the functional form (e.g. linearity) relating the sorting variables to expected returns. This is

important because for many economic models the underlying hypothesis is only that expected

returns should rise or decline monotonically in one or more security characteristics that proxy for

risk exposures or liquidity.

In common with a conventional one-sided t�test, our monotonic relation (MR) test holds that

expected returns are identical or weakly declining under the null, while under the alternative we

maintain a monotonically increasing relation. (Testing for a monotonic decreasing relation can

of course be accomplished by simply re-ordering the assets.) Thus a rejection of the null of no

relationship in favor of the hypothesized relationship (i.e. a �nding of �statistical signi�cance�)

represents a strong empirical endorsement of the theory. We also develop separate tests based on

the sum of �up�and �down�moves. These combine information on both the number and magnitude

of deviations from a �at pattern and so can help determine the direction of deviations in support

of or against the theory.

The converse approach of maintaining a monotonically increasing relation under the null versus

no such relationship under the alternative has been developed by Wolak (1987, 1989) and was also

adopted by Fama (1984) in the context of a Bonferroni bound test to summarize the outcome

of several t�tests. Depending on the research question and the economic framework, one may

prefer to entertain the presence of a monotonic relationship under the null or under the alternative

hypothesis. Richardson et al. (1992), for example, used the Wolak test to see if there was evidence

against an upward-sloping term structure of interest rates, as predicted by the liquidity preference

hypothesis.

Since the MR and Wolak tests use di¤erent ways to test the theory, outcomes from such tests are

not directly comparable. One drawback of entertaining the hypothesized monotonic relationship

under the null is that a con�rmation of a theory from a failure to reject the null may simply be due

to limited power for the test (due to a short time series of data, or due to noisy data, for example).

This turns out to be empirically important as the Wolak test sometimes fails to reject the null in

cases where the t-test and the MR test are able to di¤erentiate between theories that �nd support

in the data and those that do not. Conversely, in cases where the MR test has weak power, it may

fail to reject the null�and thus fail to support the theory�even for expected return patterns that

appear to be monotonic.

Empirically, our tests reveal many interesting �ndings. For the CAPM example shown in Figure
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1, the MR test strongly rejects the null in favor of a monotonically increasing relationship between

portfolio betas and expected returns. Consistent with this, the Bonferroni bound and Wolak tests

fail to reject the null that expected returns increase in betas. Turning to the term structure example

in Figure 2, the MR, Bonferroni and Wolak tests all fail to �nd evidence in support of the liquidity

preference hypothesis as the term premia do not appear to be monotonically increasing in the

maturity. Moreover, when applied to a range of portfolio sorts considered in the empirical �nance

literature, we �nd many examples where the di¤erence in average returns between the top and

bottom portfolios is highly signi�cant, but the pattern in average returns across multiple portfolios

is non-monotonic. This holds, for example, for decile portfolios sorted on short-term reversal,

momentum or �rm size.

Our tests are not restricted to monotonic patterns in the expected returns on securities sorted on

one or more variables and can be generalized to test for monotonic patterns in risk-adjusted returns

or in the factor loadings emerging from asset pricing models. They can also be adopted to test

for piece-wise monotonic patterns, as in the case of the U-shaped relationship between fee waivers

and mutual fund performance reported by Christo¤ersen (2001) or the U-shaped pricing kernels

considered by Bakshi et al. (2009). Finally, using methods for converting conditional moments into

unconditional ones along the lines of Boudoukh et al. (1999), we show that the approach can be

used to conduct conditional tests of monotonicity.

The outline of the paper is as follows. Section 2 describes our new approach to testing for

monotonic patterns in expected returns on securities ranked by one or more variables and compares

it with extant methods. Section 3 uses the various methodologies to analyze a range of return series

from the empirical �nance literature. Section 4 uses Monte Carlo simulations to shed light on the

behavior of the tests under a set of controlled experiments. Finally, Section 5 concludes.

2 Testing Monotonicity

This section �rst provides some examples from �nance to motivate monotonicity tests. We next

introduce the monotonic relationship test and compare it with extant alternatives such as a student

t�test based on top-minus-bottom return di¤erentials, the multivariate inequality test proposed

by Wolak (1989) and the Bonferroni bound.
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2.1 Monotonicity Tests in Finance

One of the most basic implications of �nancial theory is that the pricing kernel should be monoton-

ically decreasing in investors�ordering of future states (Shive and Shumway (2009)). In empirical

work, this implication is typically tested by studying pricing kernels as a function of market returns.

Using options data, Jackwerth (2000) �nds that this prediction is supported by the data prior to

the October 1987 crash, where risk aversion functions were monotonically declining. However, it

appears to no longer hold in post-crash data. Rosenberg and Engle (2002) also �nd evidence of

a region with increasing marginal utility for small positive returns. These papers do not formally

test monotonicity of the pricing kernel, however.

The practice of looking for monotonic patterns in expected returns on portfolios of stocks sorted

by observables such as �rm size or book-to-market ratio can be motivated by the fact that, although

such variables are clearly not risk factors themselves, they may serve as proxies for unobserved risk

exposures. For example, Berk, Green and Naik (1999) develop a model of �rms�optimal investment

choices where expected returns depend on a single risk factor. Estimating the true betas with regard

to this risk factor requires knowing the covariance of each investment project in addition to the

entire stock of ongoing projects�a task that is likely to prove infeasible. However, expected returns

can be re-written in terms of observable variables such as the book-to-market ratio and size which

become su¢ cient statistics for the risk of existing assets. Hence expected returns on portfolios

of stocks sorted on these variables should be monotonically increasing in book-to-market value

and monotonically decreasing in size. Similar conclusions are drawn from the asset pricing model

developed by Carlson et al. (2004).

As a second illustration, in a model of momentum e¤ects where growth rate risk rises with

growth rates and has a positive price, Johnson (2002) shows that expected returns should be

monotonically increasing in securities�past returns and uses decile portfolios to study this impli-

cation.

If factor loadings on risk factors are either observed or possible to estimate without much error,

then tests based on the linear asset pricing model may be preferable on e¢ ciency grounds. However,

in situations where the nature (functional form) of the relationship between expected returns and

some observable variable used to rank or sort is unknown, the linear regression approach may be

subject to misspeci�cation biases. Hence there is inherently a trade-o¤ between the e¢ ciency of
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regression models that assume linearity, but make use of the full data, versus tests based on portfolio

sorts that do not rely on this assumption. Tests of monotonicity between expected portfolio returns

and observable stock characteristics such as book-to-market value or size o¤er a fairly robust way to

test asset pricing models, although they should be viewed as joint tests of the hypothesis that the

sorting variable proxies for exposure to the unobserved risk factor and the validity of the underlying

asset pricing model.

2.2 Monotonicity and Inequality Tests

The problem of testing for the presence or absence of a monotonic pattern in expected returns can

be transformed into tests of inequality restrictions on estimated parameters. Consider a simple

example where decile portfolios have been formed by sorting stocks based on their past estimated

market betas. Letting r1;t; ::::; r10;t be the associated returns on the decile portfolios listed in

ascending order, the CAPM implies that the expected returns on these portfolios are increasing:

E [r10;t] > E [r9;t] > � � � > E [r1;t] : (1)

If we de�ne �i � E [ri;t]� E [ri�1;t] ; for i = 2; :::; 10; this implication can be re-written as

�i > 0 for i = 2; :::; 10: (2)

Alternatively, consider a test of the liquidity premium hypothesis (LPH), as in Richardson, et al.

(1992) and Boudoukh, et al. (1999). If we de�ne the term premium as E
h
r
(� i)
t � r(1)t

i
; where r(� i)t

is the one-period return on a bond with maturity � i; the simplest form of the LPH implies

E
h
r
(� i)
t � r(1)t

i
> E

h
r
(�j)
t � r(1)t

i
for all � i � � j : (3)

That is, term premia are increasing with maturity. If we de�ne�i � E
h
r
(� i)
t � r(1)t

i
�E

h
r
(� i�1)
t � r(1)t

i
,

then this prediction can be re-written as

�i > 0 for i = 2; :::; N: (4)

We next propose a new and simple non-parametric approach that tests directly for the presence

of a monotonic relation between expected returns and the underlying sorting variable(s) but does

not otherwise require that this relationship be speci�ed or known. This can be a great advantage

in situations where standard distributions are unreliable guides for the test statistics, di¢ cult to
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compute, or simply unknown (Ang and Chen (2007)). E¤ectively our test allows us to examine

whether there can exist a monotonic mapping from an observable characteristic used to sort stocks

or bonds and their expected returns.

2.3 Testing for a Monotonic Relationship: A New Approach

Suppose we are considering the ranking of expected returns on N+1 securities. We take the number

of portfolios, N + 1, as given and then show how a test can be conducted that accounts for the

relationship between the complete set of portfolios (not just the top and bottom) and their expected

returns. Denoting the expected returns by � = (�0; �1; :::; �N )
0, and de�ning the associated return

di¤erentials as �i = �i � �i�1, we can use the link between monotonicity and inequality tests

discussed above to consider tests on the parameter � � [�1; :::;�N ]0.

The approach proposed in this paper speci�es a �at or weakly decreasing pattern under the

null hypothesis, and a strictly increasing pattern under the alternative, without requiring any

maintained assumptions on �:1

H0 : � � 0 (5)

vs. H1 : � > 0:

Under this approach, the test is designed so that the alternative hypothesis is the one that the

researcher hopes to prove, and in such cases it is sometimes called the �research hypothesis�, see,

e.g., Casella and Berger (1990). A theoretical prediction of a monotonic relationship is therefore

only con�rmed if there is su¢ cient evidence in the data to support it. This is parallel to the

standard empirical practice of testing the signi�cance of the coe¢ cient of a variable hypothesized

to have a non-zero e¤ect in a regression.

The null and alternative hypotheses in (5) can be re-written as:

H0 : � � 0 (6)

H1 : min
i=1;::;N

�i > 0:

To see this, note that if the smallest value of �i > 0, then we must have that �i > 0 for all

i = 1; :::; N: This motivates the following choice of test statistic:

JT = min
i=1;::;N

�̂i; (7)

1Equalities and inequalities are interpreted as applying element-by-element for vectors.
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where �̂i is based on the sample analogs �̂i = �̂i � �̂i�1; �̂i � 1
T

PT
t=1 rit and fritgTt=1 is the time

series of returns on the ith security.

In Section 2.5 we discuss how we obtain appropriate critical values for this test statistic using a

bootstrap procedure. We shall refer to the tests associated with hypotheses such as those in (6) as

Monotonic Relationship (MR) tests. Testing that expected returns are monotonically decreasing

can be done simply by reordering the assets.

Note that in (7) we consider all �adjacent�pairs of security returns, while we could also consider

all possible pairwise comparisons, E [ri;t] � E [rj;t] for all i > j: The latter approach increases the

number of parameter constraints, and the size of the vector �, from N to N (N + 1) =2. The

adjacent pairs are su¢ cient for monotonicity to hold, but it is possible that considering all possible

comparisons leads to empirical gains. We compare the adjacent pairs test to the �all pairs�test in

our empirical analysis and Monte Carlo simulations. With the parameter � suitably modi�ed, the

theory presented below holds in both cases.

2.3.1 Diagnostic Tests for Monotonicity

The proposed MR test for monotonicity is useful for detecting the presence or absence of a

monotonic relationship between expected returns and some economic variable. However researchers

may also be interested in other aspects of this relationship, and so we propose two statistics that

provide further information. Suppose the MR test fails to reject the null in favor of a monotonically

increasing relationship, yet visual inspection suggests that the relationship is �mostly�increasing.

A useful test, then, would be one that determines whether the negatively-sloped parts of the pat-

tern are signi�cantly di¤erent from zero, which may help explain why the MR test does not reject

the null. To that end, consider the following null and alternative:

H0 : � = 0

vs. H�
1 :

NX
i=1

j�ij1 f�i < 0g ;

where the indicator 1 f�i < 0g is one if �i < 0, and otherwise is zero. Here the null is a �at

pattern (no relationship) and the alternative is that at least some parts of the pattern are strictly

negative. By summing over all negative deviations, this statistic accounts for both the frequency
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and magnitude of deviations from a �at pattern. The natural test statistic is:

J�T =
NX
i=1

����̂i���1n�̂i < 0o : (8)

As for the MR test, this �Down� test statistic does not have a standard limiting distribution

under the null hypothesis, but critical values can again be obtained using a bootstrap approach, as

described in Section 2.5.

The corresponding version of the test for cumulative evidence of an increasing pattern is:

H0 : � = 0

vs. H+
1 :

NX
i=1

j�ij1 f�i > 0g ;

suggesting the �Up�test statistic

J+T =

NX
i=1

����̂i���1n�̂i > 0o : (9)

Combining the results of the �Down� and �Up� tests in (8) and (9) leads to four possible

outcomes: (i) neither �Up�, nor �Down� test rejects, in which case we have no evidence of any

relationship between expected returns and the sorting variable, suggesting a �at pattern; (ii) �Up�

test rejects, but �Down�test fails to reject, in which case we have evidence consistent with a weakly

increasing relationship; (iii) �Down�test rejects, but �Up�test fails to reject, in which case we have

evidence consistent with a weakly decreasing relationship; (iv) �Up�and �Down�test both reject, in

which case we have evidence of a non-monotonic relationship with up and down segments that are

both signi�cant.

When used in conjunction with the MR test, the �Down� and �Up� tests can be helpful in

diagnosing the reasons for a rejection of�or a failure to reject�the underlying theory. In addition,

these tests may be more powerful for some patterns of deviations from the hypothesized theory

that lead to weak power for the MR test, e.g., many small deviations. The �Down�and �Up�tests

should not be viewed as formal tests of monotonicity, however, and we recommend that they be

used as diagnostic tests in conjunction with the MR test.

2.4 Extant Tests and the Choice of Null and Alternative Hypotheses

The MR test is closely related to earlier work on multivariate inequality tests by Bartholomew

(1961), Kudo (1963), Perlman (1969), Gourieroux, et al. (1982) and Wolak (1987, 1989). Wolak
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(1989) proposed a test that entertains (weak) monotonicity under the null hypothesis, and speci�es

the alternative as non-monotonic:

H0 : � � 0 (10)

vs. H1 : � unrestricted.

Here the theoretical prediction of monotonicity is contained in the null hypothesis and is only

rejected if the data contain su¢ cient evidence against it. The test statistic in this approach is

based on a comparison of an unconstrained estimate of � with an estimate obtained by imposing

weak monotonicity. Wolak (1987, 1989) shows that these test statistics have a distribution under

the null that is a weighted sum of chi-squared variables,
PN
i=1 !(N; i)�

2(i), where !(N; i) are the

weights and �2(i) is a chi-squared variable with i degrees of freedom. Critical values are generally

not known in closed form, but a set of approximate values can be calculated through Monte Carlo

simulation. This procedure is computationally intensive and di¢ cult to implement in the presence of

large numbers of inequalities. As a result, the test has only found limited use in �nance. Richardson

et al. (1992) applied the method in Wolak (1989) to test for monotonicity of the term premium,

and in our empirical work below we present the results of Wolak�s test for comparison.

It is worth noting an important di¤erence between the MR approach in equation (6) and that of

Wolak (1989) in equation (10). In Wolak�s framework, the null hypothesis is that there is a weakly

monotonic relationship between expected returns and the sorting variable, while the alternative

hypothesis contains the case of no such monotonic relationship. Depending on the research question

and the economic framework, one may prefer to entertain the presence of a monotonic relationship

under the null or under the alternative. One potential drawback of entertaining the hypothesized

monotonic relationship under the null is that limited power (due to a short time series of data, or

due to noisy data) will make it di¢ cult to reject the null hypothesis and thus di¢ cult to have much

con�dence in a con�rmation of a theory from a failure to reject the null.2 The MR approach, on

the other hand, contains the monotonic relationship under the alternative, and thus a rejection of

the null of no relationship in favor of the hypothesized relationship represents a strong empirical

endorsement of the theory. Conversely, in cases where the MR test has weak power, it may fail

to reject the null and so incorrectly fail to support the theory entertained under the alternative

2Furthermore, the null equation (10) includes the case of no relationship (when � = 0) and so a failure to reject

the null could actually be the result of the absence of a relationship between expected returns and the sorting variable.
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hypothesis. In such cases the �Up� and �Down� tests come in conveniently as they can help to

diagnose if the problem is indeed lack of power.

Since the setup of the null and alternative hypothesis under the MR test in equation (5) is the

mirror image of that under the Wolak test in (10), one cannot draw universally valid conclusions

about which approach is �best�. Rather, which test to use depends on the research question at hand.

The MR test is more appropriate to use when the relevant question is �Does the data support the

theory?�Conversely, the Wolak setup is more appropriate for a researcher interested in �nding out

if there is signi�cant evidence in the data against some theory. In cases where this distinction is not

clear, one could even consider inspecting both types of tests. There is strong support for the theory

if the MR test rejects while the Wolak test fails to reject. Conversely, if the Wolak test rejects while

the MR test fails to reject, this constitutes strong evidence against theory. Cases where both tests

fail to reject constitute weak con�rmation of the theory and could be due to the MR test having

weak power. Finally, if both tests reject, they disagree about the evidence. We should note that

we do not �nd a single case with this latter outcome in any of our empirical tests.

The MR test has greater apparent similarity to the setup of the multivariate one-sided tests

considered by Bartholomew (1961), Kudo (1963), Perlman (1969), Gourieroux, et al. (1982) and

labeled �EI�in Wolak (1989):

H0 : � = 0

vs. H1 : � � 0, (11)

with at least one inequality strict, under the maintained hypothesis Hm :� � 0: The test statistic

in this approach is based purely on an estimate of� obtained by imposing the maintained assump-

tion.3 The main drawback of this framework, if one wishes to test for a monotonic relationship,

is that if the true relationship is non-monotonic, then the behavior of the test is unknown, as the

maintained hypothesis is then violated. In a Monte Carlo study of this test (available upon request)

we found that it performed well when the maintained hypothesis was satis�ed. However when this

hypothesis is violated the �nite-sample size of the test tends to be very high, likely due to the fact

3Kudo characterized the weights analytically in cases with up to four constraints under the assumption that the

covariance matrix of the parameter estimator is known; Gourieroux et al. (1982) proposed simulation methods to

compute critical values when the covariance matrix is unknown; and Kodde and Palm (1986) derived lower and upper

bounds on the critical values for the test which avoids the need for simulations.
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that this test is not designed to work when the maintained hypothesis of weak monotonicity is

violated. This leads the test to overreject and so we do not consider this test further here.

Lastly, a naïve approach to testing the hypotheses in equation (10) would be to conduct a set

of pair-wise t�tests to see if �i is positive for each i = 1; ::; N . Unfortunately, it is not clear how to

summarize information from these N tests into a single number since the test statistics are likely

to be correlated and their joint distribution is unknown. To deal with this problem, Fama (1984)

proposed using a Bonferroni bound. This method analyzes whether the smallest t-statistic on �̂i;

i = 1; ::; N , falls below the lower-tail critical value obtained by using a bound on the probability

of a Type I error. The technique is simple to implement but tends to be a conservative test of the

null hypothesis. This is con�rmed in a Monte Carlo study reported in Section 4.

2.5 A Bootstrap Approach to the MR Test

Under standard conditions, provided in detail in the appendix, the estimated parameter �̂ =
h
�̂1; :::; �̂N

i0
will asymptotically follow a normal distribution, i.e., in large samples (T !1),

p
T

�h
�̂1; :::; �̂N

i0
� [�1; :::;�N ]0

�
a� N(0;
): (12)

Using this result would require knowledge, or estimation, of the full set of N(N +1)=2 parameters

of the covariance matrix for the sample moments, 
. These parameters in�uence the distribution

of the test statistic even though we are not otherwise interested in them. Unfortunately, when

the set of assets involved in the test grows large, the number of covariance parameters increases

signi�cantly and it can be di¢ cult to estimate these parameters with much precision.

As shown in (7), we are interested in studying the minimum value of a multivariate vector

of estimated parameters that is asymptotically normally distributed. Unfortunately, there are no

tabulated critical values for such minimum values�precisely because these would depend on the

entire covariance matrix, 
. Furthermore, the asymptotic distribution may not provide reliable

guidance to the �nite sample behavior of the resulting tests.

To deal with the problem of not knowing the parameters of the covariance matrix or the critical

values of the test statistic, we follow recent studies on �nancial time series such as Sullivan, et al.

(1999) and Kosowski et al. (2006) and use a bootstrap methodology. As pointed out by White

(2000), a major advantage of this approach is that it does not require estimating 
 directly. To

see how the approach works in practice, let frit; t = 1; :::; T ; i = 0; 1; :::; Ng be the original set of
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returns data recorded for N + 1 assets over T time periods. We �rst use the stationary bootstrap

of Politis and Romano (1994) to randomly draw (with replacement) a new sample of returns

f~r(b)i�(t); �(1); :::; �(T ); i = 0; 1; :::; Ng, where �(t) is the new time index which is a random draw from

the original set f1; ::; Tg. This randomized time index, �(t), is common across portfolios in order

to preserve any cross-sectional dependencies in returns. Finally, b is an indicator for the bootstrap

number which runs from b = 1 to B. The number of bootstrap replications, B, is chosen to be

su¢ ciently large that the results do not depend on Monte Carlo errors. Time-series dependencies

in returns are accounted for by drawing returns data in blocks whose starting point and length are

both random. Following Politis and Romano (1994), the block length is drawn from a geometric

distribution, with a parameter that controls the average length of each block.

To implement the MR test, we need to obtain the bootstrap distribution of the parameter

estimate �̂ under the null hypothesis. The null in equation (6) is composite, and so following

White (2000), we choose the point in the null space least favorable to the alternative, namely

� = 0:4 The null is imposed by subtracting the estimated parameter �̂ from the parameter

estimate obtained on the bootstrapped return series, �̂(b): We then count the number of times

where a pattern at least as unfavorable (i.e. yielding at least as large a value of JT ) against the

null as that observed in the real data emerges. When divided by the total number of bootstraps,

B, this gives the p-value for the test and allows us to conduct inference:5

J
(b)
T = min

i=1;::;N

�
�̂
(b)
i � �̂i

�
, b = 1; 2; :::; B: (13)

p̂ =
1

B

BX
b=1

1
n
J
(b)
T > JT

o
When the bootstrap p-value is less than 0.05, we conclude that we have signi�cant evidence against

the null in favor of a monotonic increasing relationship. We implement a �studentized�version of

this bootstrap, as advocated by Hansen (2005) and Romano and Wolf (2005). This eliminates the

impact of cross-sectional heteroskedasticity in the portfolio returns, a feature that is prominent for

some securities and may lead to gains in power.

Theorem 1, given in the Appendix, provides a formal justi�cation for the application of the

4Analogously, in a simple one-sided test of a single parameter, H0 : � � 0 vs. H1 : � > 0; the point least favorable

to the alternative under the null is zero.
5Matlab code to implement the tests proposed in this paper is available from

http://www.economics.ox.ac.uk/members/andrew.patton/code.html.
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bootstrap to our problem. In words, under a standard set of moment and mixing conditions

on returns, the appropriately scaled vector of mean returns converges to a multivariate normal

distribution. Moreover, inference about the minimum of a draw from this distribution can be

conducted by means of the stationary bootstrap provided that the average block length grows with

the sample size but at a slower rate.

2.6 Two-way Sorts

Expected returns on �nancial securities are commonly modeled as depending on multiple risk or

liquidity factors. In this section we show that the MR test is easily generalized to cover tests of

monotonicity of expected returns based on two-way sorts.

Suppose that the outcome of the two-way sort is reported in an (N + 1) � (N + 1) table with

sorts according to one variable ordered across rows and sorts by the other variable listed down the

columns. We are interested in testing the hypothesis that expected returns decrease along both

the columns and rows. The proposition of no systematic relationship�which we seek to reject�is

entertained under the null. To formalize the test, let the expected value of the return on the row

i, column j security be denoted �ij :

H0 : �i;j � �i�1;j ; �i;j � �i;j�1 for all i; j: (14)

The alternative hypothesis is that expected returns increase in both the row and column index:

H1 : �i;j > �i�1;j ; �i;j > �i;j�1 for all i; j: (15)

De�ning row �rij = �i;j � �i�1;j and column �cij = �i;j � �i;j�1 di¤erentials in expected returns,

we can restate these hypotheses as

H0 : �rij � 0;�cij � 0, for all i; j

vs. H1 : �rij > 0 and �
c
ij > 0, for all i; j; (16)

or, equivalently,

H1 : min
i;j=1;::;N

f�rij ;�cijg > 0: (17)

In parallel with the test for the one-way sort in (7), this gives rise to a test statistic

JT = min
i;j=1;::;N

f�̂rij ; �̂cijg: (18)
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The alternative hypothesis gives rise to 2N(N � 1) non-redundant inequalities. For a 5 � 5

sort, this means 40 inequalities are implied by the theory of a monotonic relationship in expected

returns along both row and column dimensions, whereas for a 10 � 10 sort 180 inequalities are

implied. This shows both how potentially complicated and how rich the full set of relations implied

by monotonicity can be when applied to returns sorted by two variables. If all pairs of returns are

compared (not just the adjacent ones), we get (12N(N + 1))2 �N2 inequalities, which for a 5 � 5

table yields 200 inequalities and for a 10� 10 table yields 2,925 inequalities.6

2.7 Monotonic Patterns in Risk-Adjusted Returns or Factor Loadings

The MR methodology can be extended to test for monotonic patterns in parameters other than the

unconditional mean. For example, in a performance persistence study one might be interested in

testing that risk-adjusted returns, obtained via a maintained asset pricing model, are monotonically

increasing (or decreasing) in past performance. Alternatively, a corporate �nance model may

imply that the sensitivity of returns (or sales, or free cash �ow) to a credit constraint factor is

monotonically decreasing in �rm size. These examples, and our original speci�cation above, are

nested in the more general framework with K risk factors, Ft = (F1t; :::; FKt)0:

rit = �0iFt + eit, i = 0; 1; :::; N (19)

�i � [�1i; :::; �Ki]
0 ;

with the associated hypotheses on the jth parameter in the above regression:

H0 : �jN � �jN�1 � ::: � �j0 , (20)

vs. H1 : �jN > �jN�1 > ::: > �j0 (1 � j � K):

Our framework in the previous sections corresponds to regressing each portfolio return onto a

constant and so emerges when K = 1 and F1t = 1 for all t. A test for monotonic risk-adjusted

returns could be conducted by regressing returns onto a constant and a set of risk factors (for

example, the Fama-French three-factor model) and then testing that the intercept (the �alpha�)

from that regression is monotonically increasing. A test for monotonically increasing or decreasing

6These results are easily generalized to cases where the number of rows and columns di¤ers. For an N �K table,

there will be 2NK�K�N inequalities to test. Our results also generalize to sorts on three or more variables. For a

D-dimensional sort, with N securities in each direction, the total number of inequalities amounts to DND�1 (N � 1).
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factor sensitivity can be obtained by regressing returns on a constant and the factor of interest,

and possibly other �control�factors, and then testing that the coe¢ cient on the factor of interest

is monotonically increasing or decreasing.

In this general case, the bootstrap test is obtained by estimating the regression on the boot-

strapped data:

~r
(b)
i�(t) = �

(b)0
i F

(b)
i�(t) + e

(b)
i�(t), i = 0; 1; :::; N: (21)

Note that the explanatory variables in this regression are also shu ed using the same time index

as the returns. For each bootstrap sample an estimate of the coe¢ cient vector is obtained. The

null hypothesis is imposed by subtracting the corresponding estimate from the original data. From

the re-centered bootstrapped estimates, �̂
(b)
i ��̂i, the test statistic for the bootstrap sample can be

computed:

J
(b)
j;T � min

i=1;:::;N

h�
�̂
(b)

j;i � �̂j;i
�
�
�
�̂
(b)

j;i�1 � �̂j;i�1
�i

(22)

By generating a large number of bootstrap samples the empirical distribution of J (b)j;T can be used

to compute an estimate of the p-value for the null hypothesis, as in the simpler case presented in

Section 2.5. The theorem in the Appendix is for this more general regression case, and is based on

the work of White (2000) and Politis and Romano (1994).

2.8 Conditional Tests

Asset pricing models often take the form of conditional moment restrictions and so it is of interest

to see how our tests can be generalized to this setting. Following Boudoukh et al. (1999), such a

generalization is easily achieved by using the methods for converting conditional moment restrictions

into unconditional moment restrictions commonly used in empirical �nance.

To see how this works, let zt be some instrument used to convert an unconditional moment

condition into a conditional one. This instrument could take the form of an indicator variable

that captures speci�c periods of interest corresponding to some condition being satis�ed (e.g., the

economy being in a recession) but could take other forms as well. The �rst step of a conditional

version of our test would consist of pre-multiplying the set of returns, rit, by zt. In a second step,

the test is conducted on the unconditional moments of the modi�ed data ~rit = rit � zt along the

lines proposed above.

15



This type of test is relevant in a variety of settings. For example, Lettau and Ludvigson

(2001) argue that value stocks are riskier than growth stocks because their returns are more highly

correlated with consumption growth when risk aversion (proxied by their �cay� variable) is low.

Similarly, Zhang (2005) argues that risk increases monotonically with book-to-market, but only in

bad states. Using proxies for risk aversion or bad states, one could thus use the properly modi�ed

MR test to carry out conditional tests on the slope coe¢ cients capturing risk exposure.

3 Empirical Results

Having introduced the various tests in the previous section, we next revisit a range of examples from

the �nance literature. We compare the outcome of tests based on our new monotonic relationship

(MR) test or the �Up� and �Down� tests to a standard t�test, the Wolak (1989) test and the

Bonferroni bound.

We �rst consider empirical tests of the CAPM. An investor believing in this model would hold

strong priors that expected stock returns and subsequent estimates of betas should be uniformly

increasing in past estimates of betas, and so the CAPM is well suited to illustrate our methodology.

We next consider the liquidity preference hypothesis, which conjectures that expected returns on

treasury securities rise monotonically with the time to maturity. Finally, we extend our analysis to

a range of portfolio sorts previously considered in the empirical �nance literature. In all cases we

use 1000 bootstrap replications for the bootstrap tests and we choose the average block length to be

ten months, which seems appropriate for returns data that display limited time-series dependencies

at the monthly horizon. Finally, we use 1000 Monte Carlo simulations to obtain the weight vector,

! (N; i) ; used to compute critical values in Wolak�s (1989) test.

3.1 Portfolio Sorts on CAPM Beta: Expected Returns

We now present the results of tests for a relationship between ex-ante estimates of CAPM beta

and subsequent returns, using the same data as in Ang, Chen and Xing (2006), which runs from

July 1963 to December 2001.7 At the beginning of each month stocks are sorted into deciles on

the basis of their beta estimated using one year of daily data, value-weighted portfolios are formed,

and returns on these portfolios in the subsequent month is recorded. If the CAPM holds, we would

7We thank the authors for providing us with this data.

16



expect to see a monotonically increasing pattern in average returns going from the low-beta to the

high-beta portfolio.

A plot of the average returns on these portfolios is presented in Figure 1, and the results of

tests for a relationship between historical beta and subsequent returns are presented in Table 1.

Although the high-beta portfolio has a larger mean return than the low-beta portfolio, the spread is

not signi�cant and generates a t-statistic of only 0.34. The MR test, on the other hand, does reject

the null of no relationship between past beta and expected returns in favor of a strictly increasing

relationship, with a p-value of 0.04.

One possible reason for the ability of our test to detect a uniform relationship between beta and

expected returns is that it considers all portfolio returns jointly. Another reason stems from the

rising pattern in the standard deviation of beta decile portfolio returns: low beta portfolios have

much lower standard deviation than high beta portfolios. By using the �studentized�version of our

MR test statistic we are able to more e¢ ciently estimate the pattern in these expected portfolio

returns in a way that accounts for cross-sectional heteroskedasticity. Interestingly, neither the �Up�

or �Down�test rejects the null individually, suggesting that in this case, the MR test�which looks

at the largest deviation�has higher power than tests that consider the sum of signed deviations.

TheWolak and Bonferroni tests do not reject the null of a weakly increasing relationship between

betas and expected returns and so are consistent with the conclusion from our MR test.

3.2 Portfolio Sorts on CAPM Beta: Post-ranked Betas

As an illustration of the methods in Section 2.7, we next examine whether the post-ranked betas

of portfolios ranked by their ex-ante beta estimates from the previous section are monotonically

increasing across portfolios. Failure of this property would suggest that past beta estimates have

little predictive content over future betas, perhaps due to instability, thus making them inadequate

for the purpose of testing the CAPM. For this reason it is common to check monotonicity of the

post-ranked betas, see, e.g. Fama and French (1992).

As above, at the beginning of each month stocks are sorted into deciles on the basis of their beta

calculated using one year of daily data, value-weighted portfolios are formed, and returns on these

portfolios in the subsequent month is recorded. If betas are stable over time and estimated without

too much error, we would expect to see a monotonically increasing pattern in post-ranked betas. We

compute the post-ranked betas using the realized monthly returns on the decile portfolios ranked
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by ex-ante betas. Speci�cally, denoting the return on the ith (ex-ante sorted) decile portfolio as rit;

we estimate the following regressions:

rit = �i + �irmt + eit, i = 1; 2; ::; 10

and, using the theory discussed in Section 2.7, test the hypothesis

H0 : �10 � �9 � � � � � �1

vs. H1 : �10 > �9 > � � � > �1:

Panel C of Table 1 presents the results. As might be expected, the post-ranked beta estimates

vary substantially from a value of 0.60 for the stocks with the lowest historical beta estimates to

a value of 1.54 for the stocks with the highest historical beta estimates. This di¤erence in betas

is large and signi�cant with a p-value of 0.00. Moreover, the MR test in panel D con�rms that

the pattern is indeed monotonically increasing across the portfolios: the null of no relationship is

strongly rejected in favor of a monotonically increasing relationship, with a p-value of 0.003.

3.3 Testing Monotonicity of the Term Premium

In a series of papers, Fama (1984), McCulloch (1987) and Richardson et al. (1992) explored the

implication of the liquidity preference hypothesis that expected returns on treasury securities should

be higher, the longer their time to maturity. As is clear from equation (3), this �ts directly with

our framework.

To test this theory, Fama (1984) used a Bonferroni bound based on individual t�tests applied to

term premia on T-bills with a maturity up to 12 months. He found evidence against monotonicity

of the term premium as 9-month bills earned a higher premium than bills with longer maturity,

particularly as compared with 10-month bills. McCulloch (1987) argued that this �nding was

explained by the unusual behavior of the bid-ask spread of 9-month bills during 1964-72. Subse-

quently, Richardson et al. (1992) analyzed monotonicity in the term structure using the Wolak

test applied to bills with a maturity ranging from 2 to 11 months. For the period 1964-1990, they

found that the Wolak test strongly rejects the null of a monotonically increasing pattern. However,

this rejection appeared to be con�ned to the 1964-72 period as monotonicity was not rejected in

subsamples covering the period 1973-1990.
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We revisit the liquidity preference hypothesis by inspecting term premia on T-bills over the

period 1964-2001, the longest available sample from the CRSP monthly treasuries �les. Like

Richardson et al. (1992), we restrict our analysis to maturities between 2 and 11 months. Ta-

ble 2 presents the results. Panel A shows the average term premia as a function of maturity. Over

the full sample the spread in term premia between 11- and 2-month bills is 0.05% per month or

0.6% per annum. Panel B shows that the associated t�statistic equals 2.42 and hence is statisti-

cally signi�cant. Turning to the tests for monotonicity, both the Wolak and Bonferroni tests reject

the null of an increasing term structure, while the MR test fails to �nd evidence in favor of a

monotonically increasing term structure. These results are all consistent with the presence of some

declining segments in the term structure. Figure 2 shows that, consistent with the earlier studies,

the culprit appears to be the high term premium on 9-month bills.

When conducted separately on the subsample 1964-72, very similar conclusions emerge. In

this subsample, a monotonically rising term structure is clearly rejected by both the Wolak and

Bonferroni tests and the MR test also �nds no evidence to support uniformly increasing term

premia. In sharp contrast, for the period 1973-2001, the Bonferroni and Wolak tests both fail to

reject the null of an increasing term premium. The inability of the MR test to reject the null

against an increasing term premium may simply re�ect low power of this test in this example.

In support of this interpretation, notice that the �Up�test �nds signi�cant evidence of segments

with a strictly increasing term premium, while conversely the �Down�test fails to �nd signi�cant

evidence of decreasing segments.

3.4 One-way Portfolio sorts: Further Evidence

It is common practice to inspect mean return patterns based on portfolios sorted on �rm or security

characteristics. For many sorts, the implications of theory are not as clear-cut as in the case of

the CAPM and so should be viewed as joint tests that the sorting variable proxies for exposure to

some unobserved risk factor and the validity of the underlying asset pricing model.

To illustrate how our approach can be used in this context, we consider returns on a range

of portfolios sorted on �rm characteristics such as market equity (size), book-to-market ratio,

cash�ow-price ratio, earnings-price ratio and the dividend yield or past returns over the previous

month (short-term reversal) 12 months (momentum) or 60 months (long-term reversal). Data on

value-weighted portfolio returns are obtained from Ken French�s web site at Dartmouth College
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and comprise stocks listed on NYSE, AMEX and NASDAQ. The �ndings on cross-sectional return

patterns in portfolios sorted on various �rm characteristics reported by Fama and French (1992)

were based on data starting in July 1963 and we keep this date as our starting point. However, we

also consider the earliest starting point for each series which is 1926 or 1927 except for the portfolios

sorted on long-term reversal which begin in 1931 and the portfolios sorted on the earnings-price or

cash�ow-price ratios which begin in 1951. In all cases the data ends in December 2006. We focus

our discussion on the more recent sample 1963-2006.

Panel A of Table 3 reports estimates of expected returns for the decile portfolios sorted on

the eight variables listed in the columns. We preserve the order of the portfolios reported by Ken

French. This means that we are interested in testing an increasing relationship between portfolio

rank and expected returns for the portfolios sorted on book-to-market, cash�ow-price, earnings-

price, dividend yield and momentum. Conversely we are interested in testing for a decreasing

relationship for the portfolios sorted on size, short-term reversal and long-term reversal.

For the portfolios sorted on the book-to-market, cash �ow-price or earnings-price ratios or

long term reversal there are either no reversals of the monotonic pattern, or few and smaller ones

compared with those observed for the other sorts. There are larger reversals in average returns

for the size-sorted portfolios (three reversals of up to �ve basis points per month) as well as for

the portfolios sorted on dividend yield (�ve reversals of up to nine basis points), momentum (a

10 basis point decrease) and short-term reversal (an increase of 14 basis points). Hence, for some

portfolio sorts a monotonic pattern is observed in average returns while for other portfolio sorts non-

monotonic patterns of varying degrees arise. Moreover, there are large di¤erences in the magnitude

of the top-bottom spreads which range from a minimum of seven basis points per month for the

portfolios sorted on the dividend yield to nearly 150 basis points for the portfolios sorted on

momentum. A key question is clearly how strong the deviations from a monotonic pattern must

be in order for us to reject the null hypothesis and establish monotonicity in expected returns.

To answer this question, Panel B presents test results for the eight portfolio sorts. The �rst row

reports the t-statistic for testing the signi�cance of the di¤erence in expected returns between the

top and bottom portfolios. These range from 0.30 (for portfolios sorted on the dividend yield) to 5.7

in the case of the momentum-sorted portfolios. The associated p�values show that the portfolios

sorted on the dividend yield fail to produce a statistically signi�cant top-bottom spread. Moreover,

the spread in average returns on the size-sorted portfolios is borderline insigni�cant with a p-value
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of 0.06. The remaining portfolios generate signi�cant spreads.

To see if the mean return patterns are consistent with monotonicity in expected returns, the

third row in panel B reports the bootstrapped p-values associated with the MR test. This test

fails to �nd a monotonic relationship between expected returns and portfolios ranked by short term

reversal (p-value of 0.26), momentum (p-value of 0.29), size (p-value of 0.27) or the dividend yield

(p-value of 0.34). Only for the portfolios sorted on long term reversal and the book-to-market, cash

�ow-price and earnings-price ratios do we continue to �nd strong evidence of a monotonic pattern

in expected returns. The fourth row in panel B shows that the MR tests based on comparing only

the adjacent portfolios versus comparing all possible pairs always lead to the same conclusions.

The MR test, of course, accounts for the e¤ects of random sampling variation. This has impor-

tant implications. For example, for the portfolios sorted on the earnings-price ratio where three

reversals appear in the ordering of average returns, the test still rejects very strongly because these

reversals are small in magnitude (less than two basis point per decile portfolio) relative to the sam-

pling variability of the average returns. In contrast, the relationship between expected returns and

the dividend yield or momentum are insigni�cant. This is to be expected given the large reversals

in the mean return patterns observed for the portfolios sorted on this variable.

For all eight portfolio sorts, Wolak�s (1989) test fails to reject the null of a (weakly) monotonic

relationship. Moreover, this conclusion is supported by the multivariate inequality test based on

the Bonferroni bound which always equals one. Even the conventional t-test found no evidence of

a monotonic pattern for the portfolios sorted on the dividend yield and so this evidence illustrates

the di¢ culty that may arise in interpreting the Wolak and Bonferroni test: Failure to �nd evidence

against a weakly monotonic pattern in the sorted portfolio returns may simply re�ect weak power.

Similar results are obtained in the longer samples listed in Panels C and D, although the MR test

now also �nds evidence in support of monotonicity for the portfolios sorted on size, momentum and

short-term reversal, but now fails to reject the null for the portfolios sorted on long-term reversal.

As before, in each case the Bonferroni and Wolak tests fail to reject the null.

3.5 Two-way Portfolio Sorts

As an illustration of how our methodology can be extended, we next consider two-way sorts that

combine portfolios sorted on �rm size with portfolios sorted on either the book-to-market ratio or

momentum. In both cases we study 5� 5 portfolio sorts. Results, reported in Table 4, are for the
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period from July 1963 to December 2006. Inspecting the mean returns, there is some evidence of

a non-monotonic pattern across size-sorted portfolios for the quintiles with a low book-to-market

ratio tracking growth stocks (panel A) or stocks with poor past performance (panel B).

Because the two-way sorts involve a large number of inequalities, it is useful to decompose

the overall (joint) test into a series of conditional tests that help identify the economic source of

the results. Table 4 therefore uses the MR test to examine patterns in expected returns keeping

one sorting variable (e.g., size) constant while varying another (e.g., the book-to-market ratio) or

vice versa. For example, the penultimate row in each panel presents the p-values from the tests

for a monotonic relationship between the portfolio sorting variable in the row (size) and expected

returns, conditional on keeping the column portfolio �xed. Hence the p-value of a test for the size

e¤ect, conditional on being in the top book-to-market quintile (value stocks) is 0.031, while it is

0.687 for the bottom book-to-market portfolio (growth stocks). The �nal row in each panel presents

the p-value from a joint test for a monotonic relationship between the sorting variable in the row

(size), computed across all column portfolios. Similarly, the penultimate column presents results

from tests for a monotonic relationship between the portfolio sorting variable in the columns and

expected returns, conditional on the row portfolio, representing �rm size.

The results in Table 4 shed new light on the earlier �ndings. For example, panel A reveals

that the value e¤ect is quite strong among all size portfolios (with p-values ranging from 0.004

to 0.057). Hence the statistical evidence appears to support the conclusion in Fama and French

(2006) that there is a value e¤ect even among large stocks, although the spread in the top-minus-

bottom portfolios�average returns is much wider for the smallest stocks than for the largest stocks.

Conversely, the size e¤ect is only signi�cant among value �rms; for the other book-to-market sorted

portfolios the size e¤ect is non-monotonic. Overall, the joint test fails to �nd evidence in support

of a size and book-to-market e¤ect.

Both the Wolak and Bonferroni tests failed to reject the null of monotonic patterns in both the

size and book-to-market dimensions, with p�values close to one. Again this highlights the di¤erent

conclusions that can emerge depending on whether monotonicity is entertained under the null or

alternative hypothesis.

The results for the size and momentum two-way sorts provide strong support for a momentum

e¤ect among the four quintiles with the smallest stocks, but fails to �nd a momentum e¤ect for

the largest stocks, for which the MR test records a p�value of 0.552. Similarly, there is evidence
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of a size e¤ect only for the three portfolios with the strongest past performance, but not among

the two loser portfolios. Hence, it is not surprising that the tests for separate size and momentum

e¤ects both fail to reject, as does the overall joint test (p�value of 0.545).

Consistent with the results from the MR test, the Wolak test rejected the null that expected

returns follow a monotonic pattern in both size and momentum. In contrast, the more conservative

Bonferroni test failed to reject the null hypothesis of weak monotonicity.

To summarize, two-way sorts can be used to diagnose why empirical evidence may fail to

support a hypothesized pattern in expected returns. Here our �ndings suggest that the size e¤ect

in expected returns is absent from growth �rms and among loser stocks. They also suggest that

momentum e¤ects are strong for small and medium-sized �rms but not among the largest quintile

of stocks.

4 Performance of the Tests: A Simulation Study

The hypothesis tests proposed here are non-standard. Moreover, unlike the standard t�test for

equal expected returns, there are no optimality results or closed-form distributions against which

test statistics such as those in equations (7) or (18) can be compared and from which critical

values can be computed. Since we are e¤ectively in uncharted territory, we next undertake a series

of Monte Carlo simulation experiments that o¤er insights into the �nite-sample behavior of the

proposed tests.

4.1 Monte Carlo Setup

The �rst set of scenarios covers situations where the hypothesized theory is valid and there is a

monotonic relationship between portfolio rank and the portfolios�true expected returns. We would

like the MR tests to reject the null of no systematic relationship in this situation (while the Wolak

and Bonferroni tests should not reject) and the more often they reject, the more powerful they are.

Experiment I assumes monotonically increasing expected returns with identically sized incre-

ments between adjacent decile portfolios. Experiment II lets the expected return increase by 80% of

the total from portfolio 1 through portfolio 5, and then increase by the remaining 20% of the total

across the remaining 5 portfolios. Experiment III assumes a single large increase in the expected

return from decile 1 to decile two, equal to 50% of the total increase, and then spreads the remain-
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ing 50% of the increase across the 9 remaining portfolios. These three patterns are illustrated in

the �rst column of Figure 3 and all have in common that the theory of a monotonic relation holds.

The second set of scenarios covers situations where the theory fails to hold and there is in fact

a non-monotonic relationship between portfolio ranks and expected returns, so the MR test should

not reject, while the Wolak and Bonferroni tests should reject.

Experiments IV-VIII all break the monotonic pattern in expected returns in some way: Ex-

periment IV assumes an increasing but non-monotonic pattern with declines in expected returns

for every second decile. Experiment V assumes a rising, then declining pattern in the expected

return for a net gain in the expected return from the �rst to the tenth portfolio. The next two

experiments assume a pattern where expected returns �rst rise and then decline so the expected

return of the �rst and tenth deciles are identical, with the pattern being symmetric for Experiment

VI, and being smoothly increasing then �at and �nally sharply decreasing for Experiment VII.

Finally, Experiment VIII assumes a mostly �at, jagged pattern in expected returns.

Each pattern is multiplied by a step size which varies from a single basis point per month to

two, �ve and ten basis point di¤erentials in the expected returns.

To ensure that our experiments are computationally feasible and involve both a su¢ ciently

large number of Monte Carlo draws of the original returns and a su¢ cient number of bootstrap

iterations for each of these draws, we focus on a one-dimensional monotonic pattern with N = 10

assets. We present results based on two sets of assumptions: The �rst is based on a Normality

assumption, while the second set of results are based on more realistic data, where we use the

bootstrap to reshu e the true returns on the size-sorted decile portfolios and use these as our

Monte Carlo simulation data. We draw 2500 bootstrap samples of the original returns. As in our

empirical work, for each simulated data set we then employ B = 1000 replications of the stationary

bootstrap of Politis and Romano (1994) and use 1000 Monte Carlo simulations to get the weights

required for Wolak�s (1989) test.
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4.2 Analytical results under Normality

In order to obtain simple analytical results, we �rst make the assumption that the estimated

di¤erences in portfolio returns are independently and normally distributed:

��̂i s N

�
��i;

1

T
�2i

�
, for i = 2; :::; N (23)

Corr
�
��̂i;��̂j

�
= 0 for all i 6= j: (24)

This setup allows us to present formulas for the power of the tests and establish intuition for which

results to expect. Under the assumptions in equations (23) and (24), we can derive the power of the

t-test analytically. First, note that the t-test is based on the di¤erence between the mean returns

of the N th and the �rst portfolios, which is given by

�̂N � �̂1 =
NX
i=2

��̂i s N

 
NX
i=2

��i;
1

T

NX
i=2

�2i

!
:

Assuming that the variances are known, the t-statistic will thus be

tstat �
p
T (�̂N � �̂1)qPN

i=2 �
2
i

s N

0@pT �N � �1qPN
i=2 �

2
i

; 1

1A : (25)

Under the null we have �N = �1 and so the t-statistic has the usual N (0; 1) distribution. Under

the alternative hypothesis that �N > �1 the t-statistic will, as usual, diverge as T !1: For �nite

T; the probability of rejecting the null hypothesis using a one-sided test with a 5% critical value is

then

Pr [tstat > 1:645] = �

0@pT �N � �1qPN
i=2 �

2
i

� 1:645

1A ; (26)

where � (�) is the cdf of a standard Normal distribution. Given a sample size, T , the vector of dif-

ferences in expected returns �� � [��2; :::;��N ]0 and the vector of associated standard deviations

� � [�2; :::; �N ]0 we can directly compute the power of the t-test.

For the MR test, the power is obtained as follows. Recall our test statistic:

JT � min
i=2;:::;N

��̂i:

To obtain the distribution of this statistic under the null, we use 100,000 simulated draws to

compute critical values, denoted J�T (�) : The power of our test is then simply

Pr [JT (��;�) > J
�
T (�)] :
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We compute this power using 1000 simulated draws and set T = 966; which is the number of

monthly returns on the �size�portfolios in the long sample in Table 3.

Results for this benchmark case are presented in the �rst column of Table 5 labeled �normal

simulation�. For experiments I, II and III the power of the t-test converges to one as the step

size grows from 1 to 10 basis points. The probability of rejecting the null also approaches one for

experiment IV, which assumes a non-monotonic but increasing pattern of expected returns.

The MR test has somewhat lower power than the t-test for the three experiments in which both

tests should reject the null (experiments I, II and III). Compensating for the reduction in power,

we observe that the probability that the bootstrap rejects the null in experiments IV�VIII�which

would constitute a Type I error as these experiments do not have a monotonic pattern�goes to

zero as the step size grows and never much exceeds the nominal size of the test. Thus the MR

test is very unlikely to falsely reject the null hypothesis. In contrast, the t-test frequently rejects

the null under experiments IV and V when the step size is comparable to that observed for the

majority of portfolio sorts in the empirical analysis, i.e. 5-10 basis points. Of course, the t-test is

not �wrong�; however it has a limited scope since it only compares the top and bottom portfolios

and thus fails to detect non-monotonic patterns in the full portfolio sorts.

4.3 Bootstrap simulation results

The second set of columns in Table 5 present the results from the simulation based on bootstrap

draws of monthly returns on the size sorted decile portfolios, so again T = 966. Broadly stated,

the results from the t-test and MR test from these simulations are comparable to those obtained

under the Normality assumption described previously. We also present the �Up�and �Down�tests

presented in Section 2.3.1 along with the Wolak (1989) test and the Bonferroni bound test. Recall

that Wolak�s test and the Bonferroni-based test have a weakly monotonic relationship under the

null hypothesis, and a non-monotonic relationship under the alternative. Thus, in contrast with

the MR tests, these tests should not reject the null for returns generated under experiments I-III,

while they should reject the null hypothesis under experiments IV-VIII.

The �rst panel, with step size set to zero, shows that the t; Bonferroni, Wolak, Up, Down,

MR and MRall tests have roughly the correct size when there is genuinely no relationship between

expected returns and portfolio rank, although most of the tests slightly over-reject the null hypoth-

esis. This is not an unusual �nding and mirrors those in simulation studies of the �nite-sample size
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of asset pricing tests, see e.g. Campbell, Lo and MacKinlay (1997), section 5.4.

Under experiment I, the t-test rejects slightly more frequently than the MR test. When the

expected return di¤erential increases by a single basis point per month for each decile portfolio,

approximately 11-13% of the simulations correctly reject and this increases to around 20% under

the two basis point di¤erential. Under the �ve basis point return di¤erential�which from Table

3 appears to be empirically relevant for many of the portfolio sorts�the rejection rate is close to

50%. Finally, under the largest step size with a 10 basis point return di¤erential per portfolio,

the rejection rate is above 80%. The Wolak and Bonferroni tests should not reject the null under

experiment I and this is indeed what we �nd.

In experiments II and III, the expected return pattern is monotonic but non-linear, and both

the t and MR tests should again reject the null hypothesis. The t-test is of course una¤ected by

the presence of a kink in the expected returns, as it only re�ects the di¤erence in expected returns

between portfolio 1 and portfolio 10. Since the MR test focuses on the minimum di¤erencemini��i

(when looking for an increasing pattern) it is the smallest step size that a¤ects power, and thus we

expect the MR test to have lower power to detect patterns like Experiments II and II than those

like Experiment I. This is indeed what we �nd. For a step size equal to 5 basis points, for example,

the power of the MR test is 30% in experiments II and III, compared with 47% in experiment I.

The column in Table 4 labeled �MRall�shows the result of using all possible pair-wise inequalities

in the test. For a one-way sort withN = 10, this entails comparing 45 rather than 9 pairs of portfolio

returns. There appears to be a small gain in power from including the full set of inequalities,

although this may in part re�ect that this approach leads to a slightly oversized test.

Turning to the second set of experiments involving a non-monotonic relationship between ex-

pected returns and portfolio ranks, the MR tests very rarely reject, whereas the standard t�test

does so frequently. For example, the t�test rejects 77% of the time in experiment IV with the

largest step size. These are cases where we do not want a test to reject if the theory implies a

monotonic relationship between portfolio rank and expected returns. For these experiments we ex-

pect Wolak�s test and the Bonferroni bound test to reject the null hypothesis of a weakly monotonic

relationship: for step sizes less than 5 basis points neither of these tests exhibit much power, but

for step sizes of 5 and particularly 10 basis points these two tests do detect the non-monotonic

relationship, with Wolak�s test in most cases having considerably better power than the Bonferroni

bound test. Comparing experiments VI and VII, we see that the power of both the Wolak and
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Bonferroni bound test is much greater in the presence of a single large deviation from the null

compared with many small deviations that add up to the same �total�deviation.

Because the tests consider di¤erent hypotheses, their size and power are not directly comparable:

The t-test only compares the top and bottom portfolio; the MR test considers all portfolios and

continues to have equality of means as the null and inequality as the alternative; �nally, the Wolak

and Bonferroni bound tests have weak inequality of expected returns under the null. Due to these

di¤erences, the tests embed di¤erent trade-o¤s in terms of size and power. While the t-test is

powerful when expected returns are genuinely monotonically rising, this test cannot establish a

uniformly monotonic pattern in expected returns across all portfolios and, as shown in experiments

IV-VIII, if used for this purpose can yield misleading conclusions. The Wolak test is not subject

to this criticism. However, when this test fails to reject, as the empirical results and simulations

clearly illustrate, this could simply be due to the test having weak power. Finally, the MR test has

weak power for small steps in the direction hypothesized by the theory but appears to have good

power for step sizes that match much of the empirical data considered earlier. Moreover, this test

does not reject the null when the evidence contradicts the theory as in experiments IV-VIII.8

5 Conclusion

Empirical research in �nance often seeks to address whether there is a systematic relationship be-

tween an asset�s expected return and some measure of the asset�s risk or liquidity characteristics. In

this paper we propose a test that reveals whether a null hypothesis of no systematic relationship can

be rejected in favor of a monotonic relationship predicted by economic theory. The test summarizes

in a single number whether the relationship is monotonic or not. Moreover, it is non-parametric

and does not require making any assumptions about the functional form of the relationship be-

tween the variables used to sort securities and the corresponding expected returns. This is a big

advantage since monotonicity in expected returns on securities sorted by some variable is preserved

under very general conditions, including non-linear mappings between sorting variables and risk

factor loadings. Perhaps most importantly, our test is extremely easy to use.

8 In unreported simulation results, we imposed identical pairwise correlations across the test statistics and investi-

gated how the results change when the correlation increased from 0 to 0.5 and 0.9. We found that the power of the

MR, Wolak and Bonferroni tests declines, the higher the correlation. The bootstrapped results in Table 5 re�ect the

empirical correlations in the data, which range from -0.28 to 0.32 and equal 0.10 on average.
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We see two principal uses for the new test. First, it can be used as a descriptive statistic

for monotonicity in the expected returns of individual securities or portfolios of securities ranked

according to one or more sorting variables. Besides providing a single summary statistic for

monotonicity, our approach allows researchers to decompose the results to better diagnose the

source of a rejection of (or failure to reject) the theory being tested. In general, it is good practice

to consider the complete cross-sectional pattern in expected returns on securities sorted by liquidity

or risk characteristics and our test makes it easy to do this.

Second, if theoretical considerations suggest a monotonic relationship between the sorting vari-

able and expected returns, then the approach can be used to formally test asset pricing implications

such as in the liquidity preference and CAPM examples covered here or in tests of whether the pric-

ing kernel decreases monotonically in market returns. Moreover, when a model implies a particular

ranking in the loadings of individual stocks on observed risk or liquidity factors, the monotonicity

test can be conducted on the estimated asset betas. Lack of monotonicity in such cases may imply

that the conjectured theoretical model is not an adequate description of the data.

Appendix: Theorem 1

Since the theorem below applies not just to sample means or di¤erences in sample means, but

also to slope coe¢ cients, we use the general notation � as the coe¢ cient of interest. The case of

sample means is a special case of the result below, setting Fit = 1 for all i; t; i.e., regressing each of

the asset returns simply on a constant. In the theorem we also consider the slightly more general

case, relative to the discussion in Section 2.7, that the regressors in each equation can di¤er, so we

index the regressors by both i and t rather than just t: This generalization may be of use in cases

where di¤erent control variables are needed for di¤erent assets, for example.

Theorem 1 Consider a set of regressions, with potentially di¤erent regressors in each regression:

rit = �
0
iFit + eit; i = 0; 1; :::; N ; t = 1; 2; :::; T;

and de�ne:

ht �
h
vech

�
F0tF

0
0t

�0
; :::; vech

�
FNtF

0
Nt

�0
; r0tF

0
0t; :::; rNtF

0
Nt

i0
where �vech� is the half-vec operator, see Hamilton (1994) for example. Assume that (i) ht is

a strictly stationary process, (ii) E
h
jhktj6+"

i
< 1 for some " > 0 for all k; where hkt is the
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kth element of ht; (iii) fhtg is �-mixing of size -3(6+")/"; and (iv) E [FitF0it] is invertible for

all i = 0; 1; ::; N . Let �̂i denote the usual OLS estimator of �i: Let �j �
�
�j0; :::; �jN

�
and

�̂j �
h
�̂j0; :::; �̂jN

i
be the vector of the jth regression coe¢ cient in each of the N + 1 regressions.

Then as T !1

p
T
�
�̂j � �j

�
) N (0;
j)

and min
i=1;:::;N

p
T
n�
�̂j;i � �̂j;i�1

�
�
�
�j;i � �j;i�1

�o
) Wj � min

i=1;::;N
fZi � Zi�1g

where [Z0; :::; ZN ]
0 s N (0;
j), and ) denotes convergence in distribution. Further, if aT is the

length of the average block in the stationary bootstrap, and aT ! 1 and aT =T ! 0 as T ! 1;

then

sup
z

���P � h�̂�j � �̂j � zi� P h�̂j � �j � zi��� p�! 0, as T !1

and sup
z

����P � � min
i=1;:::;N

p
T
n�
�̂
�
j;i � �̂

�
j;i�1

�
�
�
�̂j;i � �̂j;i�1

�o
� z
�
�

P

�
min

i=1;:::;N

p
T
n�
�̂j;i � �̂j;i�1

�
�
�
�j;i � �j;i�1

�o
� z
����� p�! 0, as T !1

where jj � jj represents a norm on RN+1; p�! denotes convergence in probability, and P � is the

probability measure induced by the bootstrap conditional on the original data, so �̂
�
j;i refers to the

bootstrapped OLS estimate of the jth variable and the ith asset.

Proof of Proposition 1. The �rst part of Theorem 1, on the asymptotic Normality of

the (N + 1) � 1 vector of jth coe¢ cients in each regression, follows from Theorem 4 in Politis

Romano (1994) under the stated conditions. As shown in Proposition 2.2 in White (2000), since

the minimum of a vector of (di¤erences in) parameters is a continuous function of the elements of

the vector, by the continuous mapping theorem we have that

min
i=1;:::;N

p
T
n�
�̂j;i � �̂j;i�1

�
�
�
�j;i � �j;i�1

�o
) Wj � min

i=1;:::;N
fZi � Zi�1g ;

where [Z0; :::; ZN ]
0 s N (0;
j). The �nal part of Theorem 1, which justi�es use of the bootstrap,

follows from Corollary 2.6 in White (2000), noting that we do not need any further assumptions

than stated in the theorem due to the fact that there are no estimated parameters here.

The �Up� and �Down� tests can be justi�ed using the same reasoning as for the directional

accuracy test in Section 4 of White (2000) .
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Table 1: Test statistics for portfolios sorted by historical beta

This table presents results of tests for a monotonic relationship between estimates of CAPM
beta and subsequent returns, using the same data as in Ang, Chen and Xing (2006), which runs
from July 1963 to December 2001. At the beginning of each month stocks are sorted into deciles
on the basis of their ex-ante beta estimates calculated using one year of daily data, value-weighted
portfolios are formed, and returns on these portfolios in the subsequent month are recorded. Panel A
presents the average returns on each of these portfolios in percent per month along with the monthly
standard deviation of portfolio returns. Panel B presents various tests of the monotonicity of average
returns across portfolios: Column 1 reports the spread in the estimated expected return between
the top and bottom ranked portfolio; column 2 reports the t-statistic for this spread (using Newey-
West heteroskedasticity and autocorrelation consistent standard errors), while column 3 shows the
associated p-value. Columns 4 and 5 present the p-values from the monotonic relationship (MR)
test applied to the decile portfolios, based either on the minimal set of portfolio comparisons, or
on all possible comparisons (MRall). Columns 6 and 7 show p-values associated with the �Up�
and �Down�tests that consider signed deviations from a �at pattern. Columns 8 and 9 report the
p-values from tests based on Wolak�s (1989) test and a Bonferroni bound. Panel C (next page)
shows post-ranked beta estimates for the decile portfolios ranked by ex-ante betas. Finally, panel
D presents a t-test for the top-minus-bottom di¤erence in post-ranked betas and p-values from the
MR and MRall tests applied to the post-ranked beta estimates.

Panel A: Average returns on CAPM beta decile portfolios

Past beta

Low 2 3 4 5 6 7 8 9 High

Mean 0.414 0.502 0.488 0.537 0.539 0.520 0.486 0.576 0.511 0.510
Std dev 3.534 3.746 3.828 4.024 4.307 4.230 4.417 4.942 5.807 7.506

Panel B: Tests of monotonicity for returns on CAPM beta decile portfolios

top minus t-test MR MRall Up Down Wolak Bonf.
bottom t-stat p-val p-val p-val p-val p-val p-val p-val

0.096 0.339 0.367 0.039 0.040 0.648 0.920 0.958 1.000
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Table 1: Test statistics for portfolios sorted by historical beta

See description on the previous page.

Panel C: Post-ranked betas on CAPM beta decile portfolios

Past beta

Low 2 3 4 5 6 7 8 9 High

0.600 0.659 0.702 0.774 0.856 0.850 0.904 1.013 1.194 1.539

Panel D: Tests of monotonicity for post-ranked beta estimates

top minus t-test MR MRall

bottom t-stat p-val p-val p-val

0.938 9.486 0.000 0.003 0.003
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Table 2: Test statistics for term premia

This table presents results of tests for a monotonic relationship between term premia on US
Treasury bills (relative to the one-month Treasury bill) and the time to maturity, using data from the
CRSP monthly treasuries �les, over the period January 1964 to December 2001. Panel A reports the
average term premia in percent per month for the full sample (1964�2001) and for two sub-samples
(1964�1972 and 1973�2001). Panel B reports various tests of the monotonicity of average term
premia as a function of time to maturity: the �rst column presents the average di¤erence between
the longest and the shortest term premia, and the second and third columns present the t-statistic
(using Newey-West heteroskedasticity and autocorrelation consistent standard errors) and p-value
corresponding to this di¤erence. In the fourth and �fth columns we present the p-values from the
MR test, based either on the minimal set of portfolio comparisons, or on all possible comparisons.
In the sixth and seventh columns we present our p-values from the tests for increasing (�Up�) and
decreasing (�Down�) segments in term premia, and in the �nal two columns we present p-values
from Wolak�s (1989) test and a Bonferroni-based test of the null of weak monotonicity against an
unconstrained alternative.

Panel A: Average term premia

Maturity (in months)

Sample 2 3 4 5 6 7 8 9 10 11

1964�2001 0.027 0.049 0.050 0.064 0.068 0.063 0.080 0.086 0.071 0.077
1964�1972 0.023 0.040 0.038 0.052 0.054 0.052 0.069 0.069 0.018 0.050
1973�2001 0.028 0.052 0.053 0.068 0.072 0.066 0.084 0.092 0.087 0.085

Panel B: Tests of monotonicity of term premia

top minus t-test MR MRall Up Down Wolak Bonf.
Sample bottom t-stat p-val p-val p-val p-val p-val p-val p-val

1964�2001 0.050 2.416 0.008 0.953 0.906 0.000 0.369 0.036 0.020
1964�1972 0.026 0.908 0.182 0.983 0.991 0.003 0.375 0.007 0.004
1973�2001 0.057 2.246 0.012 0.633 0.617 0.002 0.474 0.340 0.704
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Table 3: Estimates of expected returns for decile portfolios

This table reports mean returns (in percent per month) for stocks sorted into value-weighted
decile portfolios. The sorting variables are market equity (ME), book-to-market value (BE-ME),
cash �ow-price (CF-P), earnings-price (E-P), dividend-price (D-P), momentum (M�tum), short
term reversal (ST Rev) and long term reversal (LT Rev). All data series are taken from Ken
French�s web site at Dartmouth. Panels A and B report results for the period 1963:07 �2006:12,
while Panels C and D report results for the earliest available starting point for each series which
is 1926 or 1927 except for the portfolios sorted on long-term reversal which begin in 1931 and
the portfolios sorted on the earnings-price or cash�ow-price ratios which begin in 1951. Panels B
and D report various tests for monotonicity in the average returns on these portfolios described
in Section 2. Row 1 reports the t-statistic for this spread (using Newey-West heteroskedasticity
and autocorrelation consistent standard errors), and row 2 shows the associated p-value. Rows
3 and 4 present the p-values from the monotonic relationship (MR) test between the portfolio
sorting variables and expected returns across all decile portfolios, based either on the minimal
set of portfolio comparisons, or on all possible comparisons (MRall). Rows 5 and 6 report the p-
values from the bootstrap tests for �Up�and �Down�changes in expected returns across adjacent
portfolios. The second-last and last rows report the p-values from Wolak�s (1989) test and a test
based on Bonferroni bounds.

ME BE-ME CF-P E-P D-P M�tum ST Rev LT Rev

Panel A: Average returns, 1963-2006

Low 1.273 0.824 0.850 0.829 1.002 0.177 1.147 1.395
2 1.206 0.948 0.898 0.845 0.938 0.736 1.281 1.244
3 1.241 0.989 0.975 0.975 1.029 0.862 1.255 1.214
4 1.185 1.013 0.960 0.959 1.006 0.903 1.055 1.104
5 1.209 1.014 1.069 0.943 0.912 0.801 1.020 1.127
6 1.097 1.110 1.030 1.075 1.006 0.899 0.935 1.074
7 1.151 1.188 1.090 1.234 1.045 0.941 0.890 1.070
8 1.095 1.216 1.127 1.229 1.133 1.145 0.941 0.977
9 1.026 1.269 1.329 1.284 1.122 1.238 0.748 0.897
High 0.886 1.396 1.334 1.429 1.074 1.648 0.683 0.882
High-Low -0.387 0.572 0.485 0.600 0.072 1.472 -0.464 -0.512

Panel B: Tests of monotonicity, 1963-2006

t-statistic -1.536 2.544 2.404 2.683 0.295 5.671 -2.364 -2.205
t-test p-value 0.062 0.005 0.008 0.004 0.384 0.000 0.009 0.014
MR p-value 0.274 0.000 0.024 0.008 0.336 0.291 0.258 0.002
MRall p-value 0.237 0.000 0.012 0.021 0.256 0.242 0.170 0.002
Up p-value 0.737 0.045 0.035 0.016 0.353 0.000 0.889 0.999
Down p-value 0.051 1.000 0.994 0.985 0.651 0.954 0.015 0.114
Wolak p-value 0.736 1.000 0.990 0.991 0.810 0.873 0.860 0.998
Bonf. p-value 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 3: Estimates of expected returns for decile portfolios

See description on the previous page.

ME BE-ME CF-P E-P D-P M�tum ST Rev LT Rev

Panel C: Average returns, full sample

Low 1.520 0.872 0.863 0.852 0.924 0.338 1.493 1.504
2 1.326 0.973 0.939 0.864 0.984 0.732 1.217 1.315
3 1.298 0.977 0.986 1.010 0.934 0.741 1.168 1.286
4 1.249 0.970 1.003 1.010 1.024 0.865 1.039 1.094
5 1.211 1.054 1.116 1.020 0.902 0.869 1.064 1.164
6 1.183 1.101 1.086 1.190 0.991 0.943 1.017 1.044
7 1.148 1.115 1.189 1.265 1.086 1.032 0.972 1.072
8 1.093 1.272 1.212 1.344 1.145 1.163 0.932 1.047
9 1.040 1.306 1.397 1.403 1.109 1.268 0.828 0.922
High 0.907 1.410 1.437 1.549 1.094 1.591 0.487 0.902
High-Low -0.613 0.538 0.574 0.697 0.171 1.254 -1.007 -0.602

Panel D: Tests of monotonicity, full sample

t-statistic -2.350 2.439 3.244 3.665 0.938 5.434 -5.060 -2.486
t-test p-value 0.009 0.007 0.001 0.000 0.174 0.000 0.000 0.006
MR p-value 0.002 0.000 0.018 0.000 0.692 0.002 0.012 0.221
MRall p-value 0.002 0.000 0.012 0.000 0.492 0.002 0.016 0.158
Up p-value 0.987 0.027 0.007 0.001 0.169 0.000 0.993 0.919
Down p-value 0.024 1.000 0.994 1.000 0.606 0.998 0.003 0.020
Wolak p-value 0.985 0.999 0.995 1.000 0.530 0.999 0.995 0.880
Bonf. p-value 1.000 1.000 1.000 1.000 0.361 1.000 1.000 1.000
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Table 4: Conditional and joint monotonicity tests for double-sorted portfolios

This table shows mean returns for stock portfolios using 5 � 5 two-way sorts. The sorting
variables are market equity, which is always listed in the row, and one of either book-to-market
value or momentum. The sample period is 1963:07 to 2006:12, and all data series are taken from
Ken French�s web site at Dartmouth. Portfolios are value-weighted and mean returns are reported
in percent per month. The penultimate row in each panel presents the p-values from tests for a
monotonic relationship (MR) between the portfolio sorting variable in the row and expected returns,
conditional on being in a given column portfolio. For example, the p-value on a test for the size
e¤ect, conditional on being in the �Growth�book-to-market portfolio is 0.687, while it is 0.031 if we
condition on being in the �Value�book-to-market portfolio. The �nal row in each panel presents the
p-value from a joint test for a monotonic relationship between the portfolio sorting variable in the
row, computed across all column portfolios. The penultimate and �nal columns present p-values
from tests for a monotonic relationship between the portfolio sorting variable in the column and
expected returns, conditional on being in a given row portfolio (size). The bottom-right number in
each panel is the p-value for the joint test for a monotonic relationship in both variables.

Panel A: Market equity � Book-to-market ratio
Book-to-market ratio MR Joint MR

Growth 2 3 4 Value p-val p-val
Market equity
Small 0.711 1.297 1.337 1.546 1.660 0.023
2 0.878 1.141 1.411 1.458 1.524 0.004
3 0.889 1.205 1.210 1.334 1.506 0.057 0.000
4 0.998 0.994 1.222 1.334 1.374 0.044
Big 0.879 0.968 0.982 1.066 1.074 0.023

MR p-val 0.687 0.401 0.405 0.069 0.031
Joint MR p-val 0.342 0.083

Panel B: Market value � Momentum
Momentum MR Joint MR

Losers 2 3 4 Winners p-val p-val
Market equity
Small 0.362 1.154 1.417 1.564 1.973 0.000
2 0.423 1.034 1.257 1.499 1.777 0.000
3 0.601 0.979 1.123 1.228 1.728 0.000 0.154
4 0.597 0.992 1.026 1.238 1.583 0.008
Big 0.645 0.883 0.774 0.975 1.272 0.552

MR p-val 0.893 0.143 0.001 0.117 0.016
Joint MR p-val 0.708 0.545

38



Table 5: Monte Carlo simulation results

This table reports rejection frequencies for simulated data repeatedly drawn from the value-
weighted decile portfolios sorted on market equity, using 2500 Monte Carlo simulations and 1000
bootstraps for each simulation. The columns report the proportion of rejections from tests of
monotonicity, with nominal size of 0.05. Columns 1 and 2 report the proportion of rejections from
a t-test applied to the spread in expected returns between the top and bottom portfolios, and from
the monotonic relationship (MR) test, respectively. These results are obtained under the normality
assumption discussed in Section 4. Columns 3 to 9 show the corresponding proportions of rejections
using bootstrapped portfolio data based on the value-weighted decile portfolios sorted on market
equity. Column 3 is a standard t-test applied to the spread in expected returns between the top and
bottom portfolios. The fourth and �fth columns report the proportion of rejections using the MR
test based on the minimal set of possible inequalities (MR) or all possible inequalities implied by
monotonicity (MRall). The sixth and seventh columns report the proportion of rejections of the null
of no relationship against the alternative that the sum of positive (Up) or absolute values of negative
(Down) di¤erences in expected returns is non-zero. The last two columns (Wolak and Bonf) report
the proportion of rejections of the null of a weakly monotonic relationship using Wolak�s (1989)
test, with critical values based on 1000 simulations per replication, and a Bonferroni bound test.

�Step� refers to the step size in percent per month used in forming the spreads in expected
returns on the decile portfolios. Experiments I-III impose a monotonic relation between portfolio
rank and expected returns, while experiments IV-VIII impose a non-monotonic pattern. Figure 3
displays the shapes of the assumed patterns. The experiments are identical when the step size is
zero and so only the results for Experiment I are presented in that case.

Table 5 is on the following page.
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Table 5: Monte Carlo simulation results

See description on the previous page.

Normal simulation Bootstrap simulation
Experiment t-test MR t-test MR MRall Up Down Wolak Bonf.

Step=0
I 0.050 0.050 0.074 0.064 0.090 0.078 0.032 0.036 0.034

Step=0.01
I 0.126 0.099 0.134 0.114 0.136 0.142 0.014 0.016 0.021
II 0.126 0.096 0.134 0.100 0.150 0.135 0.017 0.021 0.023
III 0.126 0.093 0.134 0.099 0.121 0.132 0.018 0.022 0.025
IV 0.095 0.067 0.112 0.071 0.093 0.124 0.021 0.038 0.037
V 0.056 0.048 0.082 0.056 0.063 0.083 0.035 0.046 0.044
VI 0.050 0.045 0.074 0.054 0.060 0.073 0.037 0.051 0.046
VII 0.050 0.048 0.074 0.046 0.046 0.075 0.036 0.027 0.036
VIII 0.045 0.047 0.080 0.064 0.066 0.068 0.036 0.036 0.048

Step=0.02
I 0.260 0.171 0.221 0.176 0.226 0.251 0.005 0.006 0.010
II 0.260 0.156 0.221 0.150 0.194 0.233 0.007 0.012 0.018
III 0.260 0.152 0.221 0.142 0.169 0.218 0.008 0.011 0.017
IV 0.164 0.064 0.166 0.061 0.078 0.212 0.017 0.055 0.058
V 0.063 0.042 0.087 0.043 0.053 0.091 0.039 0.073 0.062
VI 0.050 0.035 0.074 0.036 0.048 0.076 0.047 0.083 0.063
VII 0.050 0.025 0.074 0.032 0.032 0.096 0.039 0.075 0.121
VIII 0.040 0.038 0.075 0.066 0.066 0.073 0.039 0.050 0.055

Step=0.05
I 0.805 0.479 0.594 0.468 0.515 0.690 0.000 0.001 0.001
II 0.805 0.382 0.594 0.302 0.322 0.647 0.000 0.002 0.006
III 0.805 0.377 0.594 0.310 0.392 0.582 0.000 0.002 0.005
IV 0.510 0.014 0.384 0.011 0.019 0.705 0.045 0.213 0.200
V 0.086 0.009 0.104 0.004 0.006 0.180 0.091 0.352 0.220
VI 0.050 0.007 0.074 0.003 0.006 0.114 0.013 0.374 0.222
VII 0.050 0.000 0.074 0.000 0.000 0.232 0.082 0.616 0.758
VIII 0.027 0.070 0.046 0.011 0.016 0.152 0.132 0.193 0.191

Step=0.10
I 1.000 0.847 0.966 0.837 0.803 0.984 0.000 0.000 0.000
II 1.000 0.681 0.966 0.571 0.596 0.979 0.000 0.001 0.002
III 1.000 0.729 0.966 0.648 0.703 0.950 0.000 0.000 0.000
IV 0.955 0.000 0.768 0.000 0.000 0.998 0.491 0.806 0.729
V 0.138 0.000 0.146 0.000 0.000 0.648 0.596 0.958 0.814
VI 0.050 0.000 0.074 0.000 0.000 0.401 0.657 0.960 0.814
VII 0.050 0.000 0.074 0.000 0.000 0.548 0.521 1.000 1.000
VIII 0.014 0.000 0.034 0.000 0.000 0.577 0.593 0.752 0.700
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Figure 1: Average monthly returns on decile portfolios formed on past 12-month CAPM beta, from
July 1963 to December 2001.
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Figure 2: Average monthly term premia for US T-bills, relative to a T-bill with one month to
maturity, over the period January 1964 to December 2001.
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Figure 3: Patterns in expected returns under the eight experiments considered in the Monte Carlo
simulations for a step size of 1 basis point.
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