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Abstract

This paper studies strategic asset allocation and consumption choice in the presence of regime switch-

ing in asset returns. We find evidence that four separate regimes - characterized as crash, slow growth,

bull and recovery states - are required to capture the joint distribution of stock and bond returns. Op-

timal asset allocations vary considerably across these states - both among bonds and stocks and among

large and small stocks - and change over time as investors revise their estimates of the underlying state

probabilities. In the crash state investors always allocate more of their portfolio to stocks the longer

their investment horizon, while the optimal allocation to stocks declines as a function of the investment

horizon in bull markets. The joint effects of learning about the underlying state probabilities and pre-

dictability of asset returns from the dividend yield give rise to a non-monotonic relationship between the

investment horizon and the demand for stocks. Consumption-to-wealth ratios are found to depend on the

underlying state and welfare costs from ignoring regime switching are substantial even after accounting

for parameter uncertainty. Out-of-sample forecasting experiments confirm the economic importance of

accounting for the presence of regimes in asset returns.
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1. Introduction

For most investors the strategic asset allocation decision−how much to invest in major asset classes such
as cash, stocks and bonds−is a key determinant of their portfolio performance. The importance of this
decision has further been highlighted by empirical findings suggesting that stock and bond returns contain

a sizeable predictable component that introduces time-variations in investment opportunities and gives rise

to a large hedging demand for multiperiod investors.1

Strategic asset allocation decisions can only be made in the context of a model for the joint distribution

of asset returns. Most studies assume that asset returns are generated by a linear process with stable

coefficients so the predictive power of state variables such as dividend yields, default and term spreads

does not vary over time. However, there is mounting empirical evidence that asset returns follow a more

complicated process with multiple “regimes”, each of which is associated with a very different distribution

of asset returns. Ang and Bekaert (2001, 2002), Ang and Chen (2002), Connolly, Stevers, and Sun (2004),

Garcia and Perron (1996), Gray (1996), Guidolin and Timmermann (2004a,b, 2005a), Perez-Quiros and

Timmermann (2000), Turner, Startz and Nelson (1989) and Whitelaw (2001) all report evidence of regimes

in stock or bond returns.

In this paper we characterize investors’ strategic asset allocation and consumption decisions under a

regime-switching model for asset returns with four states characterized as crash, slow growth, bull and

recovery states. A difference to earlier studies is that we allow the underlying states to be unobservable to

the investor who must infer the state probabilities from the sequence of returns data. Regime switching

means that all conditional moments of the asset return distribution are time-varying, so we extend the

previous literature on strategic asset allocation to cover the case where all moments may need appropriate

hedging. We find evidence that four separate regimes−characterized as crash, slow growth, bull and

recovery states−are required to capture the joint distribution of stock and bond returns. However, none
of the states can be perfectly anticipated: starting from any one of the states the investor always assigns

a positive and non-negligible probability to the possibility of transitioning to a different state. This is

particularly important for the crash state which is transitory−its average duration is only two months.
Therefore its presence in the data is important for asset allocation purposes without being inconsistent

with equilibrium arguments restricting the equity premium to be positive.

We show that the optimal asset allocation differs strongly across regimes. For instance, stocks are

attractive to short-to-medium term investors in the bull state since the probability of staying in such a

state is high. Stocks are far less attractive in the crash state even though this state is not very persistent.

Even if, as seems plausible, investors never know with certainty which regime the economy is currently in,

beliefs about state probabilities become important to the asset allocation.

Our paper is part of a growing literature that explores the asset allocation and utility cost implications

of return predictability from the perspective of a small, expected utility maximizing investor with a multi-

period horizon. In an analysis involving a single risky stock portfolio, Kandel and Stambaugh (1996) find

that predictability can be statistically small yet still have a large effect on the optimal asset allocation.

1See, e.g., Brandt, Goyal, and Santa-Clara (2002), Brennan and Xia (2002), Campbell and Viceira (1999, 2001), Chacko

and Viceira (2000), Cocco et al. (2001), Gerard and Wu (2002), Kandel and Stambaugh (1996) and Xia (2001). Campbell

and Viceira (2002) is a milestone in this area and provides a comprehensive treatment of strategic asset allocation.
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Barberis (2000) extends this result to long horizons. Campbell and Viceira (1999) derive closed-form

expressions using log-linear approximations for a consumption and portfolio choice problem with continuous

rebalancing and infinite horizon. Balduzzi and Lynch (1999) find that return predictability continues to

affect optimal asset allocations and utility costs in the presence of realistic transaction costs. Brennan,

Schwartz, and Lagnado (1997), Campbell and Viceira (2001) and Campbell, Chan and Viceira (2003) study

strategic asset allocation and document large effects of predictability on asset holdings and welfare costs.

One of the key questions addressed in the literature on optimal asset allocation is how the investment

horizon affects optimal portfolio weights. When investment opportunities remain constant over time, a

power utility investor’s horizon does not affect the optimal asset allocation, c.f. Samuelson (1969). In the

absence of predictor variables, standard models therefore imply constant portfolio weights. In contrast,

using the dividend yield as a predictor, Barberis (2000) finds that the weight on stocks should increase as

a function of the investor’s horizon

Even in the absence of predictor variables, regime switching models imply that investors’ asset allocation

varies over time as the underlying states offer different investment opportunities and investors revise their

beliefs about the state probabilities.2 Horizon effects also vary across states. Since stocks are not very

attractive in the crash state, investors with a short horizon hold very little in stocks in this state. At longer

investment horizons, there is a high chance that the economy will switch to a better state and so investors

allocate more towards stocks. In the crash state the allocation to stocks is therefore an increasing function

of the investment horizon. In the more persistent slow growth and bull states, investors with a short horizon

hold large positions in stocks. At longer horizons investment opportunities will almost certainly worsen so

investors hold less in stocks, thereby creating a downward sloping relation between stock holdings and the

investment horizon.

In addition to these horizon effects we find interesting substitution effects among small and large stocks.

As the horizon expands, the allocation to small stocks as a proportion of the total equity portfolio typically

declines, while the allocation to large stocks increases. This extends earlier findings that predictability

of returns on small and large stocks can lead to important shifts in the composition of equity portfolios.

Perez-Quiros and Timmermann (2000) use a bivariate model to capture regimes in the distribution of small

and large stocks’ returns and find that a simple stylized trading rule generates superior Sharpe ratios during

recessions although they do not consider optimal asset allocation implications of regimes. Ang and Chen

(2002) find that equity correlations that differ across high/low return states can be successfully captured

by a regime switching model. They note that small firms’ returns exhibit relatively strong asymmetries

and argue that such asymmetric correlations may be important for strategic asset allocation purposes,

although they stop short of analyzing this question.

Regime switching affects not only the optimal asset allocation but also the joint consumption and

savings decision. For instance, a perception of being in a bull market induces investors to change current

consumption since it changes both their perceived income and investment opportunities. In the crash state

with poor investment opportunities, optimal consumption is relatively insensitive to the time horizon and

uniformly below its steady-state value. Conversely, in the bull state investment opportunities are very good

and income effects lead to a higher consumption-wealth ratio.

We extend the regime switching model for asset returns to include predictability from state variables

2See Veronesi (1999) for a discussion of similar effects in a two-state asset pricing model.
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such as the dividend yield. Compared to a benchmark with constant expected returns, predictability

from the dividend yield in a linear vector autoregression (VAR) reduces risk at longer horizon and leads

to an increased demand for stocks, the longer the investment horizon. In contrast, regime switching

leads to a positive correlation between return innovations and shocks to future expected returns, thereby

increasing risk and lowering the long-term demand for stocks compared to the benchmark model with no

predictability. In the model that combines regime switching with predictability from the yield we see non-

monotonic relationships between the allocation to stocks and the investment horizon: At short horizons

the effect of regimes tends to dominate while at longer horizons the mean reverting component in returns

tracked by the yield dominates and leads to an increasing demand for stocks.

Finally, to evaluate the economic significance of our results we examine the ‘real time’ out-of-sample

performance of asset allocation rules based on both standard VARs that use the dividend yield as a predictor

variable and regime switching models for the joint dynamics of stock and bond returns. Consistent with

earlier findings in the literature (e.g., Campbell, Chan and Viceira (2003)), we find that the recursively

updated portfolio weights vary significantly over time as a result of changing investment opportunities and

that optimal asset holdings are sensitive to how predictability is modeled. When regimes are taken into

account, there is evidence that the allocation to stocks and bonds as well as the division of stock holdings

among small and large firms is quite different from that obtained under linear models of predictability in

asset returns. Furthermore, we generally find that the average realized utility is highest for models that

account for regime switching.

The two papers whose modeling approach is most closely related to ours are Ang and Bekaert (2002)

and Detemple, Garcia and Rindisbacher (2003). In an important contribution to the literature, Ang and

Bekaert (2002) use a two-state model to evaluate the claim that the home bias observed in holdings of

international assets can be explained by return correlations that increase in bear markets. Assuming

observable states, they find that optimal portfolio weights depend both on the current regime and on the

investment horizon and that the cost of ignoring regime switching is of the same order of magnitude as the

cost of ignoring foreign equities in the optimal portfolio. While our paper shares a similar regime switching

setup, we address a very different question, namely a US investor’s strategic asset allocation between

bonds, stocks and cash. We find that a four-state model is required to capture the rich dynamics of the

joint distribution of stock and bond returns. Furthermore, we model regimes as unobservable, calculate

asset allocations under optimal filtering and therefore explicitly address the effects on hedging demands

arising from investors’ recursive updating in their beliefs about the underlying state probabilities. In our

model investors therefore have to account for revisions in future beliefs when determining their current

asset allocation. In this sense our paper extends the rational learning exercise in Barberis (2000) to cover

multivariate regime switching.

Detemple, Garcia and Rindisbacher (2003) approach a wide class of portfolio choice problems in con-

tinuous time, including strategic asset allocation. Building on the widespread evidence that both interest

rates and the market price of risk(s) follow non-linear processes, they investigate the asset allocation im-

plications of non-linear predictability using simulation methods. They show that findings in the standard

VAR framework−e.g., that the equity allocation should be higher the longer the investment horizon−may
be overturned in the presence of non-linearities. They also find that adding the dividend yield as a predic-

tor to their non-linear model changes the optimal portfolio weights very little. For reasons similar to these
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authors, we resort to Monte Carlo methods to solve for the optimal asset allocation. However, we explore

the strategic asset allocation under a class of non-linear processes that is not nested in their framework,

multivariate regime switching in stock and bond returns.

The plan of the paper is as follows. Section 2 introduces the multi-state model used to capture pre-

dictability and regime switching for asset returns and reports empirical findings. Section 3 sets up the

investor’s asset allocation problem while Section 4 presents empirical asset allocation results. Section 5

extends the model to allow for predictability from the dividend yield and Section 6 studies a joint con-

sumption and asset allocation problem. Section 7 presents utility cost calculations, investigates the effect of

parameter uncertainty and examines the out-of-sample performance of alternative asset allocation schemes

based on different models for the joint distribution of asset returns. Section 8 concludes. Technical details

are provided in appendices at the end of the paper.

2. Asset Returns under Regime Switching

A number of stylized features of asset returns have emerged from the empirical finance literature. Stock and

bond returns are−to a limited extent−predictable (e.g., Campbell (1987), Fama and French (1988, 1989)
and Keim and Stambaugh (1986)), their volatility clusters over time (e.g., Bollerslev, Chou, and Kroner

(1992) and Glosten, Jagannathan, and Runkle (1993)) and correlations are not the same in bull and bear

markets (e.g., Ang and Chen (2002) and Perez-Quiros and Timmermann (2000)). At shorter horizons,

stock returns are also far from normally distributed and affected by occasional outliers. Campbell and

Ammer (1993) and Fama and French (1989) have shown that variables found to forecast stock returns also

predict bond returns.

Regime switching models can capture such properties of the return distribution. These models typically

identify bull and bear regimes with very different mean, variance and correlations across assets, c.f. Maheu

and McCurdy (2000). As the underlying state probabilities change over time this leads to time-varying

expected returns, volatility persistence and changing correlations and predictability in higher order mo-

ments such as the skew and kurtosis. This is consistent with Äıt-Sahalia and Brandt (2001) who argue that

higher order moments of stock and bond returns are time-varying although different moments are typically

predicted by different combinations of economic variables. The degree of predictability of mean returns can

also vary significantly over time in regime switching models−a feature that seems present in stock return
data, c.f. Bossaerts and Hillion (1999). Finally, regime switching models are capable of capturing even

complicated forms of heteroskedasticity, fat tails and skews in the underlying distribution of returns, c.f.

Timmermann (2000).3

To capture the possibility of regimes in the joint distribution of asset returns and predictor variables,

consider an (n+m)×1 vector of asset returns in excess of the T-bill rate, rt = (r1t, r2t, ..., rnt)0 extended by
a set of m predictor variables, zt = (z1t, ..., zmt)

0. Suppose that the mean, covariance and serial correlations

in returns are driven by a common state variable, St, that takes integer values between 1 and k:Ã
rt

zt

!
=

Ã
µst
µzst

!
+

pX
j=1

Aj,st

Ã
rt−j

zt−j

!
+

Ã
εt

εzt

!
. (1)

3Another attractive property of regime switching models comes from their interpretation as mixtures of normals. These

have been widely used to approximate densities of arbitrary form, c.f. Marron and Wand (1992).
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Here µst and µzst are intercept vectors for rt and zt in state st, {Aj,st}
p
j=1 are (n+m)×(n+m) matrices of

autoregressive coefficients in state st, and (ε
0
t ε

0
zt)
0 ∼ N(0,Ωst), where Ωst is an (n+m×n+m) covariance

matrix. When k = 1, equation (1) simplifies to a standard vector autoregression. Our model thus nests as

a special case the standard linear (single-state) model used in much of the asset allocation literature. This

model gets selected if the data only supports a single regime.

Regime switches in the state variable, St, are assumed to be governed by the transition probability

matrix, P, with elements

Pr(st = i|st−1 = j) = pji, i, j = 1, .., k. (2)

Each regime is thus the realization of a first-order Markov chain with constant transition probabilities.

Importantly, St is not observable and state probabilities must be inferred (e.g. using the Hamilton-Kim

filter) from time series data on rt and zt.

While simple, this model is quite general and allows means, variances and correlations of asset returns

to vary across states. Hence the risk-return trade-off can vary across states in a way that may have strong

asset allocation implications. For example, knowing that the current state is a persistent bull state will

make most risky assets more attractive than in a bear state.

Estimation proceeds by optimizing the likelihood function associated with (1)-(2). Since the underlying

state variable, St, is unobserved we treat it as a latent variable and use the EM algorithm to update our

parameter estimates, c.f. Hamilton (1989).

2.1. Data

Our analysis considers a US investor’s asset allocation among three major asset classes, namely stocks,

bonds and T-bills. We further divide the stock portfolio into large and small stocks in light of the empirical

evidence suggesting that these stocks have very different risk and return characteristics that vary across

different regimes, c.f. Ang and Chen (2002) and Perez-Quiros and Timmermann (2000).

Our analysis uses monthly returns on all common stocks listed on the NYSE, AMEX and NASDAQ.

The first and second size-sorted CRSP decile portfolios are used to form a portfolio of small firm stocks,

while deciles 9 and 10 are used to form a portfolio of large firm stocks. We also consider the return on

the CRSP portfolio of 10-year T-bonds. Returns are continuously compounded and inclusive of any cash

distributions. To obtain excess returns we subtract the 30-day T-bill rate from these returns. Dividend

yields are also used in the analysis and are computed as dividends on a value-weighted portfolio of stocks

over the previous twelve month period divided by the current stock price. Our sample is January 1954

- December 1999, a total of 552 observations. Consistent with the literature (e.g. Barberis (2000) and

Campbell, Chan, and Viceira (2003)) we only use data after the 1951 Treasury Accord. Data from 2000-

2003 is not used for model selection or parameter estimation in order to keep a genuine post-sample period.

All data is obtained from the Center for Research in Security Prices.

2.2. Choice of Model Specification

Guidolin and Timmermann (2005a) provide a specification analysis to determine the statistical evidence in

support of regimes in the univariate and joint distribution of stock and bond returns. Considering a range

of values for the number of states, k = 1, 2, 3, 4, 5, 6 and the lag-order p = 0, 1, 2, 3, they use information
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criteria to select a four state model. Single-state models or models with a smaller number of states get

strongly rejected using a test such as that proposed by Garcia (1998). While there is evidence of two or

three states in the separate distributions of stock and bond returns, the state variables are weakly correlated

so a larger model with four states is required to capture the joint dynamics in stock and bond returns.

Our objective here is quite different since we are less concerned with statistical evidence and more

interested in ensuring that the return distribution is correctly specified. To determine the optimal asset

allocation, an investor has to compute expected utility which requires integrating over the return distribu-

tion implied by a particular model. If this model is misspecified, suboptimal asset allocation decisions will

almost certainly follow, so it is important to make sure that the model is not misspecified.

We therefore use the predictive density specification tests proposed by Diebold et al. (1998) and

Berkowitz (2001). These tests are based on the probability integral transform or z−score. This is the
probability of observing a value smaller than or equal to the realization of returns, r̃t+1, under the null

that the model is correctly specified. Under the k-state mixture of normals, this is given by

Pr(rt+1 ≤ r̃t+1|=t) =
kX
i=1

Pr(rt+1 ≤ r̃t+1|st+1 = i,=t) Pr(st+1 = i|=t)

=
kX
i=1

Φ

⎛⎝σ−1i (r̃t+1 − µi −
pX

j=1

aj,irt+1−j)

⎞⎠Pr(st+1 = i|=t)

≡ zt+1. (3)

Here rt is the excess asset return, =t = {rτ zτ}tτ=1 is the information set at time t and Φ(·) is the
cumulative density function of a standard normal variable. If the model is correctly specified, zt+1 should

be independently and identically distributed (IID) and uniform on the interval [0, 1], c.f. Rosenblatt

(1952). Berkowitz (2001) proposes a likelihood-ratio test that inverts Φ to get a transformed z−score,
z∗t+1 = Φ

−1(zt+1). Provided that the model is correctly specified, z∗ should be IID and normally distributed

(IIN(0, 1)). We use a likelihood ratio test that focuses on a few salient moments of the return distribution.

Suppose the log-likelihood function is evaluated under the null that z∗t+1 ∼ IIN(0, 1):

LIIN(0,1) ≡ −
T

2
ln(2π)−

TX
t=1

(z∗t )
2

2
, (4)

where T is the sample size. Under the alternative of a misspecified model, the log-likelihood function

incorporates deviations from the null, z∗t+1 ∼ IIN(0, 1):

z∗t+1 = µ+

pX
j=1

lX
i=1

ρji(z
∗
t+1−i)

j + σet+1, (5)

where et+1 ∼ IIN(0, 1). The null of a correct return model implies p× l+2 restrictions – i.e., µ = ρji = 0

(j = 1, ..., p and i = 1, ..., l) and σ = 1 – in equation (5). Let L(µ̂, {ρ̂ji}
p l
j=1 i=1, σ̂) be the maximized

log-likelihood obtained from (5). To test that the forecasting model (1)-(2) is correctly specified, we use

the following test statistic

LR = −2
h
LIIN(0,1) − L(µ̂, {ρ̂ji}

p l
j=1 i=1, σ̂)

i
∼ χ2p×l+2. (6)
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In addition to the standard Jarque-Bera test that considers skew and kurtosis in the z-scores, we present

three likelihood ratio tests, namely a test of zero-mean and unit variance (p = l = 0), a test of lack of serial

correlation in the z−scores and a test that further restricts their squared values to be serially uncorrelated
in order to test for omitted volatility dynamics.

Panel A of Table 1 shows the results of these tests for the three asset classes under consideration using

a range of model specifications with up to six states. To detect the source of potential misspecifications

the tests are applied separately to each asset class. Although none of the models passes all tests, the

most parsimonious model that captures the distribution of both large stock returns and bond returns is a

four-state model with regime-dependent mean and covariance matrix. Some aspects of small firms’ return

distribution are not captured by this model, but values of most of the test statistics tend to be quite small

(albeit statistically significant). Models with fewer states or constant volatility across states produce very

large values of the Jarque-Bera test, and are hence clearly mis-specified, while models with more states

have far more parameters so we select a specification with four states. Interestingly, no VAR terms are

required. This is consistent with the common finding that asset returns are only weakly serially correlated.

2.3. Model Estimates

Since both statistical and economic criteria for model specification suggest a four state model with regime-

dependent means and variances, Figure 1 plots the state probabilities while Table 2 shows the parameter

estimates for this model. Initially, we focus on the simplest case where m = 0 so no predictor variable is

included to model the dynamics of asset returns.4

It is easy to interpret the four regimes. Regime 1 is a ‘crash’ state characterized by large, negative

mean excess returns and high volatility. It includes the two oil price shocks in the 1970s, the October 1987

crash, the early 1990s, and the ‘Asian flu’. Regime 2 is a low growth regime characterized by low volatility

and small positive mean excess returns on all assets. Regime 3 is a sustained bull state where stock prices

– especially those of the small firms– grow rapidly on average. Mean excess returns on long-term bonds

are negative in this state. States 2 and 3 identify a size effect in stock returns. In state 2 the mean return

of large stocks exceeds that of small stocks by about 7% per annum, while this gets reversed in state 3.

Regime 4 is a recovery state with strong market rallies and high volatility for small stocks and bonds.

The negative expected return in regime 1 may seem extreme and appear to be incompatible with

equilibrium arguments by which risky assets should earn a positive risk premium. This is not the case,

however, due to the transitory nature of the crash state. The probability of leaving this regime for a state

with positive expected returns exceeds 50% and on average the economy only spends two months in state

1. To see this, notice that, starting from the crash state, the conditional risk premium is given by

E[rit+1|st = 1] =
kX

j=1

E[rit+1|st+1 = j] Pr(st+1 = j|st = 1).

Using the estimated values of Pr(st+1 = j|st = 1) and E[rit+1|st+1 = j] ≡ µij reported in Table 2, we

obtain conditional risk premia of 0.32, 0.01, and 0.003 percent for small stocks, large stocks, and bonds,

4Attempts to simplify the number of parameters by imposing the restriction that mean returns are the same across the

four states or that the covariance matrices are identical in the high volatility states (states 1 and 4) were clearly rejected at

critical levels below 1 percent, c.f. Guidolin and Timmermann (2003).
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respectively.

Correlations between returns also appear to vary substantially across regimes. The estimated correlation

between large and small firms’ returns varies from a high of 0.82 in the crash state to a low of 0.50 in

the recovery state. The correlation between returns on large stocks and bonds even changes signs across

different regimes and varies from 0.37 in the recovery state to -0.40 in the crash state. Finally, the correlation

between small stock and bond returns goes from -0.26 in the crash state to 0.12 in the slow growth state.

This is consistent with the evidence of time-varying (regime-specific) correlations found in monthly equity

portfolio returns by Ang and Chen (2002). The ability of our model to identify the negative correlation

between stock and bond returns in the crash state−which the linear model is unable to do−is a sign of the
potential value of adopting a multi-state model.5

Mean returns and volatilities are larger in absolute terms in the crash and recovery regimes, so it

is perhaps unsurprising that the persistence of the states also varies considerably. The crash state has

low persistence and on average only two months are spent in this regime. Interestingly, the transition

probability matrix has a very particular form. Exits from the crash state are almost always to the recovery

state and occur with close to 50 percent chance suggesting that, during volatile markets, months with

large, negative mean returns cluster with months that have high positive returns. The slow growth state

is far more persistent with an average duration of seven months while the bull state is the most persistent

state with an average duration of eight months. Finally, the recovery state is again not very persistent and

the market is expected to stay just over three months in this state. The steady state probabilities are 9%

(state 1), 40% (state 2), 28% (state 3) and 23% (state 4). Hence, although the crash state is clearly not

visited as often as the other states, it by no means only picks up extremely rare events.

It is interesting to relate these states to the underlying business cycle. Correlations between smoothed

state probabilities and NBER recession dates are 0.32 (state 1), -0.13 (state 2), -0.21 (state 3), and 0.18

(state 4). Notice that since the state probabilities sum to one, by construction if some correlations are

positive, others must be negative. This suggests that indeed, the high-volatility states - states 1 and 4 -

occur around official recession periods.6

3. The Investor’s Asset Allocation Problem

We next study the asset allocation implications of regime dynamics in the joint distribution of stock and

bond returns. First consider the ‘pure’ asset allocation problem for an investor with power utility defined

over terminal wealth, Wt+T , coefficient of relative risk aversion γ > 1, and an investment horizon T :

u(Wt+T ) =
W 1−γ

t+T

1− γ
. (7)

5Recent work by Andersen, Bollerslev, Diebold, and Vega (2004) reaches the same conclusion: stock and bond returns

move together insofar as the correlation is sizeable and important, but it switches sign different regimes, and it therefore may

appear spuriously small when averaged across states.
6It may be argued that the state probabilities backed out from financial returns should lead economic recession months.

Indeed, the correlation between the state 1 probability lagged 6 months and the NBER recession indicator rises to 0.40.
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The investor is assumed to maximize expected utility by choosing at time t a portfolio allocation to large

stocks, small stocks and bonds, ωT
t ≡ (ωlt(T ) ωst (T ) ωbt(T ))0, while 1−(ωT

t )
0ι3 is invested in riskless T-bills.7

For simplicity we assume the investor has unit initial wealth. Portfolio weights are adjusted every ϕ = T
B

months at B equally spaced points t, t+ T
B , t+2

T
B , ..., t+(B− 1)

T
B .When B = 1, ϕ = T and the investor

simply implements a buy-and-hold strategy.

Let ωb (b = 0, 1, ..., B−1) be the portfolio weights on the risky assets at these rebalancing times. Then
1− ωb

0ι3 is the weight on T-bills at time t+ bTB and

u(WB) =
W 1−γ

t+T

1− γ
=

W 1−γ
B

1− γ
.

With regular rebalancing the investor’s optimization problem is

max
{ωj}B−1j=0

Et

"
W 1−γ

B

1− γ

#
s.t. Wb+1 =Wb

n
(1− ω0bι3) exp

³
ϕrf

´
+ ω0b exp

³
Rb+1 + ϕrfι3

´o
(8)

Rb+1 ≡ rtb+1 + rtb+2 + ...+ rtb+1 , b = 0, 1, ..., B − 1.

The equation for the wealth evolution is exact when asset returns are continuously compounded and

excess returns are computed as the difference between asset returns and the risk-free rate.8 Incorporating

investors’ use of predictor variables zb, at the decision times b = 0, 1, ..., B−1, we get the following derived
utility of wealth

J(Wb, rb, zb,θb,πb, tb) ≡ max
{ωj}B−1j=b

Etb

"
W 1−γ

B

1− γ

#
. (9)

Here θb =

µn
µi,µzi,Ω

∗
i,b, {A∗j,i,b}

p
j=1

ok
i=1

,Pb

¶
collects the parameters of the regime switching model and

πb is the (column) vector of probabilities for each of the k possible states conditional on information at

time tb. Consistent with common practice (e.g. Äıt-Sahalia and Brandt (2001), Brennan, Schwartz, and

Lagnado (1997), and Brennan and Xia (2002)), we rule out short-selling. Let ej be a 3× 1 vector of zeros
with a 1 in the jth place and ι3 be a 3 × 1 vector of ones. No short sales then means that e0jωb ∈ [0, 1]
(j = 1, 2, 3) and ω0bι3 ≤ 1.9 We also ignore capital gains taxes and other frictions.10

7Following standard practice we consider a partial equilibrium framework which takes the asset return process as exogeneous

(c.f. Ang and Bekaert (2001)) and assume that the risk-free rate is constant and equal to the average 1-month T-bill yield

over the sample period (5.3% per year). In the following, unless necessary, we do not explicitly indicate the investment horizon

when referring to the vector of portfolio weights ωT
t .

8This is the same equation as in Ang and Bekaert (2001) and Barberis (2000).
9Short-selling constraints only have a marginal impact on our results as they are not binding except at the very short

investment horizons. This finding is similar to results in Detemple, Garcia, and Rindisbacher (2003). The intuition is that

nonlinear processes may imply long-run (ergodic) densities of the data that are far less ‘extreme’ (in terms of portfolio weights)

than those obtained by iterating over long horizons the typical linear-VAR type models of predictable expected returns (e.g.

Campbell and Viceira, 1999). As pointed out by Kandel and Stambaugh (1996), the portfolio can go bankrupt if it is fully

invested in an asset with a return of -100%. With zero wealth, the investor’s objective function becomes unbounded, preventing

an interior solution from existing. We use a simple rejection algorithm to ensure that wealth remains positive at all horizons

along all simulation paths. This is equivalent to truncating the joint density from which asset returns are drawn. In practice

we never found that rejections occurred on the simulated paths.
10Dammon, Spatt, and Zhang (2001) analyze the effects of capital gains taxes on optimal consumption and asset allocation
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Under power utility the Bellman equation conveniently simplifies to

J(Wb, rb, zb,θb,πb, tb) =
W 1−γ

b

1− γ
Q(rb, zb,θb,πb, tb) (γ 6= 1). (10)

Since the states are unobservable, investors’ learning is incorporated in this setup by letting them optimally

revise their beliefs about the underlying state at each point in time using the updating equation

πb+1(θ̂t) =

³
π0b(θ̂t)P̂

ϕ
t

´0
¯ η(yb+1; θ̂t)

[(π0b(θ̂t)P̂
ϕ
t )
0 ¯ η(yb+1; θ̂t))]0ιk

, (11)

where a ‘hat’ on top of a parameter indicates that it is an estimate, ¯ denotes the element-by-element

product, yb ≡ (r0b z0b)0, P̂
ϕ
t ≡

Qϕ
i=1 P̂t, and η(yb+1) is the k× 1 vector whose jth element gives the density

of observation yb+1 in the jth state at time tb+1 conditional on θ̂b:

η(yb+1; θ̂b) ≡

⎡⎢⎢⎢⎢⎣
f(yb+1|sb+1 = 1, {ytb−j}

p−1
j=0; θ̂b)

f(yb+1|sb+1 = 2, {ytb−j}
p−1
j=0; θ̂b)

...

f(yb+1|sb+1 = k, {ytb−j}
p−1
j=0; θ̂b)

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(2π)−
N
2 |Ω̂−11 |

1
2 exp

∙
-12

³
yb − µ̂1 −

Pp−1
j=0 Â1jytb−j

´0
Ω̂−11

³
yb − µ̂1 −

Pp−1
j=0 Â1jytb−j

´¸
(2π)−

N
2 |Ω̂−12 |

1
2 exp

∙
-12

³
yb − µ̂2 −

Pp−1
j=0 Â2jytb−j

´0
Ω̂−12

³
yb − µ̂2 −

Pp−1
j=0 Â2jytb−j

´¸
...

(2π)−
N
2 |Ω̂−1k |

1
2 exp

∙
-12

³
yb − µ̂k −

Pp−1
j=0 Âkjytb−j

´0
Ω̂−1k

³
yb − µ̂k −

Pp−1
j=0 Âkjytb−j

´¸

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

Our approach is consistent with the notion that investors never observe the true state. Learning effects can

be important since optimal portfolio choices depend not only on future values of asset returns and predictor

variables (rb, zb), but also on future perceptions of the likelihood of being in each of the unobservable

regimes (πtb+j), c.f. Gennotte (1986).

Since Wb is known at time tb, Q(·) simplifies to

Q(rb, zb,πb, tb) = max
ωb

Etb

"µ
Wb+1

Wb

¶1−γ
Q (rb+1, zb+1,πb+1, tb+1)

#
. (13)

In the absence of predictor variables, zt, the investor’s perception of the regime probabilities, πb, is the

only state variable and the basic recursions can be written as:

Q(πb, tb) = max
ωb

Etb

"µ
Wb+1

Wb

¶1−γ
Q (πb+1, tb+1)

#
,

πb+1(θ̂t) =
(π0b(θ̂t)P̂

ϕ
t )
0 ¯ η(rb+1; θ̂t)

[(π0b(θ̂t)P̂
ϕ
t )
0 ¯ η(rb+1; θ̂t)]0ιk

. (14)

decisions when short sales are restricted but asset returns are not predictable.
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3.1. Numerical Solutions

Various approaches have been followed in the literature on portfolio allocation under predictable returns.

Barberis (2000) employs simulation methods to study a ‘pure’ allocation problem without interim consump-

tion. Ang and Bekaert (2002) solve for the optimal asset allocation using Gaussian quadrature methods.

Campbell and Viceira (1999, 2001) and Campbell, Chan and Viceira (2003) derive approximate analytical

solutions for an infinitely lived investor. Finally, some papers have derived closed-form solutions by working

in continuous-time, e.g. Kim and Omberg (1996) for the case without interim consumption and Wachter

(2002) for the case with interim consumption and complete markets.

Ang and Bekaert (2002) were the first to study asset allocation under regime switching. They consider

pairs of international stock market portfolios under regime switching with observable states, so the state

variable simplifies to a set of dummy indicators. This setup allows them to apply quadrature methods

based on a discretization scheme. Our framework is quite different since we treat the state as unobservable

and calculate asset allocations under optimal filtering (11).11

To deal with the latent state we use Monte-Carlo methods for integral (expected utility) approximation.

For example, for a buy-and-hold investor, we follow Barberis (2000) and approximate the integral in the

expected utility functional as follows:

max
ωt

N−1
NX
n=1

⎧⎪⎨⎪⎩
h
(1−ω0tι3) exp

¡
Trf

¢
+ ω0t exp

³PT
i=1(r

f ι3 + rt+i,n)
´i1−γ

1− γ

⎫⎪⎬⎪⎭ . (15)

Here ω0t exp
³PT

i=1(r
f ι3 + rt+i,n)

´
is the portfolio return in the n-th Monte Carlo simulation. Each simu-

lated path of portfolio returns is generated using draws from the model (1)-(2) that allow regimes to shift

randomly as governed by the transition matrix, P.We use N = 30, 000 simulations. As pointed out by De-

temple, Garcia, and Rindisbacher (2003), numerical schemes based either on grid approximation of partial

differential equations or on quadrature discretization of the state space suffer from a dimensionality curse

that Monte Carlo simulation methods can help alleviate. This makes Monte Carlo methods particularly

suitable to a multivariate problems such as ours. Appendix A and B provide details on the numerical

techniques employed in the solutions.

4. Asset Allocation Results

As a benchmark we first consider the asset allocation strategy of a buy-and-hold investor who solves the

asset allocation problem once, at time t. Brennan and Xia (2002) point out that this is an interesting

special case since it corresponds to the problem solved by an investor who has set aside predetermined

savings for retirement and commits to a portfolio that maximizes the expected utility from consumption

upon retirement. At the end of the section we introduce rebalancing. Following Äıt-Sahalia and Brandt

(2001) we vary the investment horizon T between six and 120 months in increments of six months. The

coefficient of relative risk aversion is initially set at γ = 5.

11Ang and Bekaert (2001) conjecture that when regimes are unobservable, the problem becomes considerably more difficult

since - as they correctly point out - all possible sample paths must be considered.
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Figure 2 plots the optimal asset allocations each quarter at horizons T = 6, 24 and 120 months over the

period 1980-1999, when the full sample (smoothed) state probabilities in Figure 1 are employed and the

parameters are held fixed at their estimated values from Table 2.12 At intermediate and long investment

horizons, portfolio weights are reasonably stable over time as investors acknowledge that the current state

will not last indefinitely. The weight on small stocks fluctuates between zero and 50%, while the weight on

large stocks varies between zero and 70% and bond holdings change between zero and 30%. Cash holdings

average 20% for a long-term investor and fluctuate between zero and 40% over the sample.

To put the effect of regime switching on optimal asset allocations into perspective, Figure 2 also shows

asset holdings under independently and identically distributed (IID) returns where the optimal portfolio

weights are constant across investment horizons. We refer to these as the ‘myopic weights’. The optimal

weights in the myopic portfolio are only non-zero for long-term bonds (70%) and large stocks (30%) and

the myopic investor does not hold T-bills.

4.1. Optimal Asset Allocation in the Four Regimes

We found in Section 2 that the four regimes identified in the joint distribution of stock and bond returns

had economic interpretations as crash, slow growth, bull and recovery states. To better understand the role

of these economic states in asset allocation, Figure 3 shows optimal asset allocations starting from each of

the states, i.e. π = ej (j = 1, 2, 3, 4), but allowing for uncertainty about future states due to randomly

occurring regime shifts driven by (2).

State 1 is a low return state with little persistence. As the investment horizon (T ) grows, investors

can be reasonably certain of leaving this state and move to better ones. The weight on stocks is therefore

negligible for small T but increases as T grows, producing an upward-sloping curve. Although it is sensible

to avoid stocks almost completely at short horizons, the low persistence of regime 1 along with the high

probability of switching to the high mean recovery state leads to a rapid increase in the optimal allocation

to stocks as the horizon expands. Even so, the optimal allocation to stocks never exceeds 35% when starting

from the crash state. The allocation to bonds grows from zero to 30%, while the allocation to T-bills shows

the opposite pattern, starting at 100% of the portfolio and declining to 40% at the 10-year horizon.

In the slow growth state (regime 2) the small firm effect is negative and the demand for small stocks

is always zero while conversely that for large stocks is very high, starting at 100% at the shortest horizon

before declining to a level near two-thirds of the portfolio at horizons longer than six months. The remainder

of the portfolio is invested in bonds and T-bills.

The bull state is associated with a sizeable small firm effect and small stocks take up 70% of the portfolio

at short horizons before declining to 20% for horizons greater than six months. The reverse pattern is seen

for large stocks that start at 30% for short horizons and grow to a level near 50% for horizons longer than

six months. Bond and T-bill allocations are close to zero at short horizons, rising to around 10% and 15%,

respectively, at long horizons.

Finally, starting from the recovery state, 100% of the portfolio is allocated to small stocks for investors

with a short horizon. This proportion declines to 40% for horizons longer than one year, while the allocation

to large stocks and bonds rise from zero to 30% as the horizon is extended from one to 12 months. In this

12Section 7.3 presents the results of a recursive, out-of-sample asset allocation exercise.
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state practically nothing is invested in T-bills.

Overall, we find that the well-known investment advice of increased exposure to stocks the longer the

horizon is not robust to how predictability in returns is modeled and may even be more of an exception

than the rule.13 In three of four states the buy-and-hold investor is more cautious about stocks as the

investment horizon rises. Although our multivariate regime switching model is not nested in the class of

non-linear processes studied by Detemple, Garcia, and Rindisbacher (2003), our finding that the current

state variable is important to the optimal portfolio weights is similar to theirs.

4.2. Uncertainty about the initial State

Our analysis does not assume that investors always know the underlying state. This is significant since, as

shown by Veronesi (1999), uncertainty about the underlying regime is important in understanding asset

price dynamics. We next examine the asset allocation implications of uncertainty about the initial state

by considering two scenarios. The first assumes that the states have the same probability (25%) while the

second scenario assumes steady-state probabilities (9%, 40%, 28% and 23% for states 1-4). The extent to

which asset allocations depend on the underlying state beliefs is clear from Figure 4: at least for stocks

the sign of the slope of the investment demand at short horizons is opposite in the two scenarios.

These results suggest that investors’ perceptions of the current state probability is a key determinant

of the relationship between the investment horizon and the optimal asset allocation, and therefore of the

degree to which an investor can exploit predictability in asset returns. We discuss these effects in more

detail in the next section.

4.3. Effects of Risk Aversion

Up to this point we assumed a coefficient of relative risk aversion of γ = 5, but it is of interest to see

how strongly the results vary across different values of this parameter. Starting from each of the four

regimes Figure 5 therefore shows portfolio weights as a function of γ. To save space, we focus on the

combined allocation to (small and large) stocks and bonds and present plots for three investment horizons,

T = 1, 24, and 120 months. For comparison we also show results under the benchmark of no predictability.

Independently of the current state, the overall allocation to stocks declines as γ increases. Irrespective of

γ, states clearly matter most at the short and medium horizons and their presence leads to a very different

allocation from that under IID returns.

Under the IID model the bond allocation rises sharply at low levels of risk aversion and peaks at a

level close to 85% for γ just below 20. Far less is allocated to bonds under the regime switching model

irrespective of the initial state although, on a much smaller scale, a similar non-monotonic pattern is

observed. These patterns are similar to those reported by Äıt-Sahalia and Brandt (2001) who find that

the allocation to bonds is large (30%) only for T = 1 and in good states. Plausible values of γ suggest that

asset allocations under regime switching are very different from those in its absence.

13Siegel (1994) argues that long-run investors should not try to time the stock market. Our results show that both the

proportion allocated to stocks and its decomposition into small and large stocks depends on the initial state. Barberis (2000)

and Xia (2001) show that standard investment advice does not apply when parameter uncertainty is taken into account. Our

result is different since we obtain non-monotonic investment schedules without introducing parameter estimation uncertainty.
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4.4. Rebalancing

The buy-and-hold results presented thus far ignore the possibility of rebalancing. However, in the presence

of time-varying investment opportunities, investors should adjust their portfolio weights as new information

arrives. We therefore next consider the effects of periodic rebalancing on optimal asset allocations. Once

again we numerically solve the Bellman equation by discretizing the compact interval that defines the

domain of each of the state variables on G points and use backward induction methods. Suppose that

Q (πb+1, tb+1) is known at all points πb+1 = πj
b+1, j = 1, 2, ..., G

k−1. This will be true at time tB ≡ t+ T

as Q(πj
B, tB) = 1 for all values of π

j
B on the grid. Then we can solve equation (8) to obtain Q (πb, tb) by

choosing ωb to maximize

Etb

∙n
(1−ω0bι3) exp

³
ϕrf

´
+ω0b exp(Rb+1,n(sb) + ϕrf ι3)

o1−γ
Q(πj

b+1, tb+1)

¸
. (16)

The multiple integral defining the conditional expectation is again calculated by Monte Carlo methods. For

each πb = πj
b, j = 1, 2, ..., G

k−1 on the grid we draw N samples of ϕ−period excess returns {Rb+1,n(sb) ≡Pϕ
i=1 rtb+i,n(sb)}Nn=1 from the regime switching model and approximate (16) as

N−1
NX
n=1

∙n
(1− ω0bι3) exp

³
ϕrf

´
+ ω0b exp(Rb+1,n(sb) + ϕrf ι3)

o1−γ
Q(π

(j,n)
b+1 , tb+1)

¸
. (17)

Here π
(j,n)
b+1 denotes the element π

j
b+1 on the grid used to discretize the state space that−using the distance

measure
Pk−1

i=1 |π
j
b+1ei − πb+1,nei|−is closest to

πb+1,n =
(π0bP̂

ϕ
t )
0 ¯ η(rb+1,n; θ̂t)

[(π0bP̂
ϕ
t )
0 ¯ η(rb+1,n; θ̂t)]0ιk

.

Starting from tB−1, we work backwards through the B rebalancing points until ωt ≡ ω0 is obtained.

Appendix B provides further details on the iterative backward solution to the asset allocation problem.

Table 3 shows optimal portfolio weights for stocks and bonds under different values of the rebalancing

frequency, ϕ = 1, 3, 6, 12, 24 months as well as under the buy-and-hold scenario, ϕ = T . For a given

investment horizon, T, as ϕ declines investors become more responsive to the current state probabilities.

The smaller is ϕ, the shorter is the period over which the investor commits wealth to a given portfolio.

As a result, the investor puts less weight on the steady-state return distribution and increasing weight

on the current state, St. Consequently, the weight on stocks in the crash state declines as ϕ decreases

and rebalancing becomes more frequent. For instance, when T = 120 and ϕ = 1 (monthly rebalancing),

investors hold no stocks in the crash state, preferring instead to wait for an improvement in the investment

opportunity set. In contrast, when ϕ exceeds the average duration of this regime (e.g., ϕ = 12), it is

optimal to invest some money in stocks (40%), although the weight remains quite low. In states 2-4

investors increase their allocation to stocks as the time between rebalancing declines. In fact, when ϕ = 1,

the optimal weight on stocks is close to 100% in these three regimes, irrespective of the investment horizon.

Keeping the rebalancing frequency, ϕ, constant, the demand for stocks is mostly upward sloping although

increasingly flat as ϕ declines. Once again, we find that it is not generally true that investors with longer

horizons should allocate more to stocks.
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As the investment horizon grows, non-monotonic patterns are observed in the allocation to bonds

which in most cases first rises and then declines. Starting from the crash state the allocation to bonds is

generally lower, the more frequent the rebalancing (smaller ϕ) since the investor does not have to account

for unexpected shifts to a better state but can afford to wait for such a shift to occur. If rebalancing

can occur frequently, little or nothing is invested in bonds since market timing opportunities are more

significant for stocks and the remainder can be held in T-bills.

5. Asset Allocation Under Predictability from the Dividend Yield

A large literature in finance has reported evidence that variables related to the business cycle predict stock

and bond returns. One of the key instruments is the dividend yield; see, e.g., Campbell and Shiller (1988),

Fama and French (1988, 1989), Ferson and Harvey (1991), Goetzmann and Jorion (1993) and Kandel and

Stambaugh (1996). Due to its high persistence coupled with the strong negative correlation between shocks

to returns and shocks to the dividend yield, Campbell, Chan, and Viceira (2003) find that the dividend

yield generates the largest hedging demand among a wider set of predictor variables.

5.1. Allocations under a Single State Model

Asset allocation implications of linear predictability in returns from variables such as the dividend yield

have been considered by Barberis (2000), Campbell and Viceira (1999), Campbell, Chan, and Viceira

(2003), Kandel and Stambaugh (1996) and Xia (2001). It is therefore natural to compare our results to

those arising from a standard VAR(1) model comprising asset returns and the dividend yield:Ã
rt

dyt

!
=

Ã
µ

µdy

!
+A

Ã
rt−1

dyt−1

!
+

Ã
εt

εdy,t

!
. (18)

where rt ≡ (rlt r
s
t rbt )

0 and (ε0t εdy,t)
0 ∼ N(0,Ω). MLE estimates are as follows (standard errors are in

parentheses below the point estimates):

Ã
rt

dyt

!
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0021
(0.0070)

−0.0160
(0.0102)

−0.0032
(0.0036)

0.0004
(0.0003)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0466
(0.0635)

0.0370
(0.0412)

0.2299
(0.0839)

0.1261
(0.2028)

0.1236
(0.0925)

0.1244
(0.0600)

0.2624
(0.1233)

0.6641
(0.2953)

−0.0442
(0.0330)

−0.0261
(0.0214)

0.1070
(0.0436)

0.1322
(0.1054)

−0.0005
(0.0024)

−0.0005
(0.0016)

−0.0098
(0.0032)

0.9856
(0.0077)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ã

rt−1

dyt−1

!
+

Ã
εt

εdy,t

!
,

where rt ≡ [rlt rst rbt ]0. The estimated covariance matrix is:14

Ω̂∗ =

⎡⎢⎢⎢⎢⎣
0.1417∗∗∗ 0.0018 0.0002 −5.86e−05

0.7285∗∗∗ 0.2063∗∗∗ 0.0002 −7.10e−05

0.2466∗ 0.1353 0.0736∗∗∗ −7.95e−06

−0.9243∗∗∗ −0.7695∗∗∗ −0.2413 0.0056∗∗∗

⎤⎥⎥⎥⎥⎦ .
14Below diagonal coefficients are implied correlation coefficients. * denotes significance at the 10% level, ** at 5%, and ***

at 1%. As in Table 2 we report annualized volatilities on the main diagonal.
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The estimate of Â∗ suggests that a higher dividend yield forecasts higher asset returns. The dividend yield

is highly persistent - its autoregressive coefficient estimate is almost 0.99 - and shocks to the dividend yield

are highly negatively correlated with shocks to stock returns (-0.92 and -0.76 for large and small stocks,

respectively), suggesting that time-variations in the dividend yield may induce a large hedging demand

for stocks. In contrast, shocks to the dividend yield are only mildly−and insignificantly−correlated with
shocks to bond returns (-0.24).15

Figure 6 reports the allocations to stocks and bonds under the VAR(1) for a range of values of the

dividend yield. Our results are comparable to earlier findings: at most values of the dividend yield the

overall allocation to stocks is larger, the longer the investment horizon or the higher the initial value of

the dividend yield. The emergence of some slight non-monotonic investment schedules for stocks under

the VAR(1) model is not completely surprising. Authors such as Äıt-Sahalia and Brandt (2001), Brandt

(1999) and Barberis (2000) have found increasing equity demand, the longer the investment horizon when

conditioning on a value of the dividend yield close to its sample average. However, when the dividend yield

is further away from its unconditional mean, asset allocation results become more mixed and there are

cases where, at short-to-intermediate investment horizons, the equity demand is declining in the horizon.

Figure 6 also reveals some interesting substitution effects between small and large stocks. When the

dividend yield is very high or high (5.7% or 4.6%), the short-term allocation to small stocks is very large

while conversely large stocks are mostly excluded from the portfolio. As the investment horizon grows, the

allocation to small stocks declines while that of the large stocks increases by an equivalent amount. More

generally, medium-high dividend yields favor small stocks while medium-low yields increase the demand

for large stocks. The reason for this is the greater sensitivity of the small stocks’ returns to the dividend

yield (0.66) compared with the sensitivity of the large stocks (0.12).

There is very little role for bonds in the optimal asset allocation under a VAR(1) model. This holds

across all initial values of the dividend yield. The reason is seen in the plot for the allocation to T-bills.

When the dividend yield is either low or very low - so stocks are unattractive - short-term investors respond

not by holding a larger proportion of bonds, but rather by increasing their allocation to T-bills.

5.2. Regimes and Predictability from the Dividend Yield

We next investigate the effect of adding the dividend yield to our model. The resulting regime switching

VAR model nests many of the models in the existing literature and enables the correlation between the

dividend yield and asset returns to vary across different regimes. The relationship between stock returns

and the dividend yield is linear within a given regime. However, since the coefficient on the dividend

yield varies across regimes, as the regime probabilities change the model is capable of tracking a non-

linear relationship between asset returns and the yield. This is important given the evidence suggesting a

non-linear relationship between the yield and stock returns uncovered by Ang and Bekaert (2004).

15Our choice of an unrestricted VAR(1) model is consistent with Campbell, Chan, and Viceira (2003). In strategic asset

allocation problems involving investments in bonds it is important to allow for predictability from lagged bond returns to

current stock returns and the zero restrictions on the VAR(1) return coefficients are strongly rejected by a likelihood ratio

test. Following studies such as Barberis (2000) and Lynch (2001) we also considered a restricted VAR(1) model that sets the

coefficients of lagged returns equal to zero. This is equivalent to simply ‘turning off’ the first three columns of Â. Results were

qualitatively similar to those reported in Figure VI.
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Again we conducted a battery of tests to determine the best model specification. The results, shown

in Panel B of Table 1, suggest that a four-state VAR(1) model is supported by the data as this model

passes all diagnostic tests.16 Unsurprisingly, given the persistence in the dividend yield, a single lag is

required for this extended model. Regime 1 continues to be characterized by large, negative mean excess

returns. The dividend yield is relatively high in this state (4%) and volatility is also above average. In

steady state this regime occurs 15% of the time although it has an average duration of only two months.

Regime 2 remains a slow growth state with moderate volatility. This state is highly persistent, lasting on

average almost 16 months and occurring close to one-third of the time. Regime 3 continues to be a highly

persistent bull state that lasts on average almost 15 months. Finally, regime 4 is again a recovery state

with strong stock market rallies accompanied by substantial volatility. This state has an average duration

of only two months. Nevertheless, at 18%, its steady-state probability is quite high.

To study the asset allocation effects of regimes and predictability from the yield we report two exercises.

The first, presented in Figure 7, shows the optimal asset allocation as a function of the investment horizon

when the dividend yield is set at its overall sample average. Asset allocations continue to vary significantly

across the four states. Starting from state 1 the allocation to stocks (small stocks in particular) continues

to rise as a function of the horizon and peaks at close to 40% of the portfolio at the 10-year horizon. The

allocation to bonds is non-monotonic, starting from zero at the shortest horizon, rising to a level close to

90% at the six month horizon before declining to 60% at the longest horizon. T-bills form 100% of the

portfolio at the shortest 1-month horizon but then see their allocation decline sharply to zero at horizons

longer than six months.

The allocation to stocks continues to decline when the model starts from states two or four, although

it only declines to a level near 80-85% at the 10-year horizon. The allocation to bonds makes up for the

remainder and there is no demand for T-bills in these two states. In the third (bull) state the allocation

to stocks is now mildly upward sloping as a function of the horizon in contrast to what we found in the

model without the dividend yield shown in Figure 3.

Figure 8 shows the effect of changing the dividend yield using a range of values spanning its mean

value plus or minus three standard deviations. As expected, the higher the dividend yield, the larger the

allocation to stocks. This is consistent with the common finding of a positive correlation between the yield

and expected returns. The allocation to small stocks is more sensitive to the yield than that of the large

stocks. When the yield is very low, the allocation to stocks is very small and the allocation to T-bills is

large, but it declines as a function of the investment horizon. Irrespective of the presence of regimes, we

get very sensible results for the effect of changing the dividend yield on the optimal asset allocation.

We summarize these findings as follows. First, by comparing Figures 3 and 7, it is obvious that the

dividend yield continues to have an important effect on the optimal asset allocation even in the presence

of regimes. In the model extended to include the yield there is less of a role for T-bills, while conversely

long-term bonds and large stocks form a larger part of the portfolio. Furthermore, irrespective of the

presence of regimes, the higher the yield, the greater the typical allocation to stocks.

16To save space we do not report parameter estimates for the extended model, but results are available on request.
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5.3. Model Comparison

Several conclusions emerge from our analysis so far. First, in the pure regime switching model the buy-

and-hold investor’s allocation to stocks declines as a function of the investment horizon in three out of

four states (Figure 3)−and also when the initial state probabilities are set at their steady-state values−and
only increases when starting from the crash state. In the single-state VAR(1) model the allocation to

stocks is either upward-sloping or constant as a function of the investment horizon (Figure 6). Finally, the

allocation to stocks is upward sloping for four out of six configurations of initial state probabilities in the

regime switching model extended to include predictability of returns from the dividend yield (Figure 7).

To explain these findings, consider the following simple two-period example that decomposes returns

on a risky asset, rt+1, into an expected component, Et[rt+1], and an innovation, ut+1:
17

rt+1 = Et[rt+1] + ut+1, (19)

where V art(rt+1) = σ2u. At the two-period horizon, cumulated returns become

rt+1 + rt+2 = Et[rt+1] + ut+1 +Et+1[rt+2] + ut+2,

and so the variance of two-period returns is

V ar(rt+1 + rt+2) = 2σ
2
u + V ar(Et+1[rt+2]) + 2Cov(ut+1, Et+1[rt+2]).

Comparing single-period and two-period return variances, we have

V ar(rt+1 + rt+2)

2V ar(rt+1)
= 1 +

1

2

µ
R2

1−R2

¶
β, (20)

where

R2 =
V ar(Et[rt+1])

V ar(Et[rt+1]) + σ2u
,

β =
Cov(ut+1, Et+1[rt+2])

σ2u
.

Models of learning (e.g. Brennan (1998)) where investors revise upwards their expectations of future

returns following positive return shocks imply that β > 0. For instance, in our pure regime switching model

positive shocks in the future will induce belief revisions in favor of states with high expected returns. Notice

that our results under rebalancing incorporate the effects of learning , since in this case we simulate not only

returns given initial state beliefs, but also the updating of such beliefs at the rebalancing points. From (20)

this means that the variance of two-period returns exceeds twice the variance of the single-period return,

suggesting that risk grows faster than at the rate implied by the constant expected return model (β = 0).

Since the investment demand is independent of the horizon under the constant expected return model,

such learning effects tend to lead to a demand for the risky asset that declines in the investment horizon.

Conversely, models of predictable, mean-reverting returns imply β < 0. For example, a negative shock

to returns in the VAR(1) model implies a higher value of the dividend yield and hence higher expected

17We are grateful to John Campbell for suggesting this analysis.
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future returns. Hence the risk of stock returns grows at a slower rate than if expected returns were constant.

This tends to lead to an increased demand for the risky asset, the longer the horizon.

This simple analysis provides intuition for our basic findings. The analysis is of course complicated

by the fact that under regime switching both the mean and variance of returns depend on the state

probabilities. The exception to this is when the state probabilities are set at their steady-state values in

which case expected returns become independent of the investment horizon. For this scenario Figure 9

plots the volatility and Sharpe ratio implied by the models considered so far. We show results for small and

large stocks only as the effects are much smaller for bonds. The volatility and Sharpe ratio are normalized

by dividing by
√
T so the benchmark IID model corresponds to a straight line.

First consider the pure regime switching model. Starting from the steady state probabilities the mean

return is constant whereas the volatility per month increases as a function of the investment horizon. This

leads to a Sharpe ratio that declines in the investment horizon and hence to a lower allocation to risky

assets. Consistent with this, Figure 3 showed that it is only when the model starts from the crash state

that the overall allocation to stocks is increasing in the horizon−the reason being that the mean return
increases as a function of the investment horizon while the risk declines when starting from this state.

Next consider the VAR(1) model where the initial dividend yield is set at its unconditional mean. For

this model Figure 9 shows that the volatility decreases and hence the Sharpe ratio increases (relative to

the IID benchmark) as a function of the investment horizon, leading to a greater allocation to stocks the

longer the investment horizon, as we found in Figure 6.

In the four-state model extended to include the dividend yield, learning effects−which tend to lower the
allocation to stocks (β > 0)−compete with mean reversion effects, which tend to increase the allocation
to stocks (β < 0) the longer the investment horizon. Which effect dominates is an empirical issue that

also depends on the initial values assumed for the dividend yield and the state probabilities. In practice,

it seems that learning effects are stronger at short horizons, so that Sharpe ratios tend to decrease in

T . However, at horizons in excess of one or two years, learning effects become weaker as the predictive

distribution of returns converges to the steady state distribution, so mean-reversion effects captured by

linear predictability from the dividend yield eventually lead to increasing Sharpe ratios.

6. Optimal Savings and Portfolio Choices

Some papers (e.g., Brandt (1999), Campbell and Viceira (1999) and Campbell, Chan, and Viceira (2003))

have considered interim consumption and we follow this literature by letting the investor consume and

rebalance portfolio weights every ϕ months. Let ωb and Cb be the portfolio allocations and consumption

flow at the rebalancing times t+ bT−tB , b = 0, 1, ..., B − 1. Assuming the investor has additively separable
power utility, expected lifetime utility is given by

Et

"
BX
b=0

βb
C1−γt+b

1− γ

#
, (21)

where the expectation is taken conditional on information available at time t (b = 0) and the subjective

discount factor is β = (1 + ρ)−
ϕ
12 , where ρ = 0.05 is the investor’s annualized subjective rate of time
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preference.18 In the presence of consumption, the investor’s wealth follows the process

Wb+1 = (Wb − Cb)
h
(1− ω0bι3) exp

³
ϕrf

´
+ ω0b exp

³
Rb+1 + ϕrf ι3

´i
= Wbψb

h
(1−ω0bι3) exp

³
ϕrf

´
+ω0b exp

³
Rb+1 + ϕrf ι3

´i
, (22)

where ψb ≡ (Wb−Cb)/Wb is the fraction of wealth saved at time t+b and Rb+1 ≡ rtb+1+rtb+2+ ...+rtb+1 .

The dynamic program implied by (21)-(22) can be solved by choosing a sequence of portfolio allocations

and savings ratios {ωb, ψb}B−1b=0 to get the following value function:

J(Wb, rb, zb,θb,πb, tb) ≡ max
{ωj ,ψj}B−1j=b

Etb

⎡⎣ BX
j=0

βj
(1− ψb+j)

1−γW 1−γ
b+j

1− γ

⎤⎦ . (23)

The Bellman equation is

J(Wb, rb, zb,θb,πb, tb) ≡ max
ωb,ψb

(
(1− ψb)

1−γW 1−γ
b

1− γ
+ βEtb [J(Wb+1, rb+1, zb+1,θb+1,πb+1, tb+1)]

)
,

subject to the constraint in (22). Under power utility this simplifies to

J(Wb, rb, zb,θb,πb, tb) =
W 1−γ

b

1− γ
Q(rb, zb,θb,πb, tb).

When γ 6= 1 both ψb and ωb must be determined using numerical methods and ψb depends on the optimal

portfolio weights.

Assuming once again that the investor uses the optimal filtering algorithm (11) to update state proba-

bilities, π̂t, in the absence of predictor variables the problem simplifies to the basic recursions

Q (πb, tb) = max
ωb,ψb

n
(1− ψb)

1−γ + βψ1−γb

× Etb

∙³
(1− ω0bι3) exp

³
ϕrf

´
+ ω0b exp

³
Rb+1 + ϕrf ι3

´´1−γ
Q (πb+1, tb+1)

¸¾
πb+1(θ̂t) =

(π0b(θ̂t)P̂
ϕ
t )
0 ¯ η(rb+1; θ̂t)

[(π0b(θ̂t)P̂
ϕ
t )
0 ¯ η(rb+1; θ̂t)]0ιk

.

Again, we discretize the state space and solve the Bellman equation by backward induction. Appendix A

provides further details.

Figure 10 shows how the consumption-wealth ratio depends on the underlying state probabilities and

the investment horizon by plotting Ct/Wt in each of the four regimes assuming consumption only takes

place at the beginning and at the end of the investment horizon; like in Brandt (1999). For comparison

we also show the optimal value of Ct/Wt obtained under steady-state probabilities.
19 At short horizons all

consumption schedules start at roughly 50% so half of the wealth is consumed.

18This is the value employed by Brandt (1999). We considered alternative values of ρ and found that our qualitative

conclusions on the effects of regimes on consumption were intact.
19The portfolio weights from this joint consumption-asset allocation problem coincide with those reported in Section 4.1

since optimal portfolio decisions do not depend on future savings decisions (c.f. Ingersoll (1987, pp. 240-242)). Therefore, the

asset allocation results are omitted. Notice, however, that the converse result does not hold, as consumption decisions depend

on future investment opportunities.
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In the crash state, short-term investment opportunities are poor so the optimal consumption schedule

is upward sloping, albeit rather flat and uniformly below that starting from the steady-state probabilities.

Even at a 10-year horizon, no more than 55% of wealth should be consumed initially when starting from

the crash state. In contrast, investment opportunities are both good and persistent in state 3, so strong

income effects induce a rational investor to consume a higher percentage of wealth−as high as 67% for a

10-year horizon. Although investment opportunities are very good in state 4, they are also transitory and

switches to the crash state (state 1) have a high probability. Uncertainty about future states accounts for

the rather flat consumption demand schedule that initiates from this state.

Overall, these results are consistent with those reported by Brandt (1999) and Campbell and Viceira

(1999). In a two-period buy-and-hold exercise, Brandt finds that consumption choices are insensitive to the

values assumed by a range of prediction variables and do not differ systematically from their unconditional

estimates. Numerically, his estimates of the optimal consumption-wealth ratio are close to ours, the main

difference being that we find a stronger sensitivity of Ct/Wt to the horizon in state three. The likely

explanation for this is that the prediction variables used in Brandt’s study mostly pick up low-frequency

predictability patterns (e.g., the dividend yield typically changes very slowly) while our regime switching

model captures predictability at a higher frequency that affects not just the conditional mean but the entire

probability distribution of returns. Campbell and Viceira (1999) report in an infinite horizon framework

that the optimal consumption-wealth ratio mostly depends on preferences (γ and β in our set up) and is

only moderately affected by predictor variables such as the dividend yield.

To allow for a more realistic setting with interim consumption over the interval [t, T ] Table 4 presents

results for ϕ = 3, 12, and T . Once again we show separate results starting from each of the four states

and also report consumption-wealth ratios calculated under the assumption of logarithmic utility (γ = 1),

when Cb/Wb = (1 − βϕ)/(1 − βB−b+1ϕ ) and βϕ = (1 + ρ)−
ϕ
12 . Substitution and income effects cancel out

under this benchmark. Note that when T ≥ ϕ, a constant consumption rate corresponds to a value of

(T/ϕ) +1, while this rate is simply T/2 for values T < ϕ.

Under annual consumption and rebalancing (ϕ = 12) there is a clear pattern across regimes. In

good states (2-4) the consumption-to-wealth ratio is systematically higher than under the logarithmic

benchmark, while it is lower in the bad state (state 1). This reflects consumption smoothing: in good

states, higher expected portfolio returns can support a higher consumption ratio than if low future returns

are anticipated. Ct/Wt is therefore generally higher than under logarithmic utility in states 2-4 and lower

than this benchmark in state 1. Allowing for frequent rebalancing, investors reduce current consumption,

invest as much as 99% of current wealth and collect the high payoffs/consumption streams later on.

7. Economic Importance of Regimes

7.1. Utility Cost Calculations

It is natural to report a measure of the economic value of accounting for regimes in investors’ asset allocation

decisions. Following similar experiments in Ang and Bekaert (2002), Ang and Chen (2002) and Brennan

and Xia (2002), we obtain an estimate by comparing the investor’s expected utility under the regime

switching model to that assuming the investor is constrained to choose at time t an optimal savings ratio

ψIID
t and portfolio weights ωIID

t under the assumption that asset returns follow a simple IID process. In
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the latter case the portfolio choice and savings ratio are independent of the investment horizon and the

value function for the constrained investor is

JIIDt ≡ 1

1− γ
(1− ψIID

t )1−γ
BX
b=0

βbEt

h
W 1−γ

b

i
Wb = Wb−1ψ

IID
t

h
(1− (ωIID

t )0ι3) exp
³
ϕrf

´
+ω0b exp

³
Rb+1 + ϕrf ι3

´i
. (24)

The assumption of IID returns is a constrained special case of the model with regime switching, so

JIIDt ≤ J(Wt, rt, zt,πt, t),

where J(Wt, rt, zt,πt, t) is the value function for the four-state model. We compute the compensatory

premium, ηIIDt , an investor would be willing to pay to obtain the same expected utility from the constrained

and unconstrained consumption and asset allocation problems:

ηIIDt =

(
Q(rb, zb,πb, tb)

(1− ψIID
t )1−γ

PB
b=0 β

bEt [(Wb)1−γ ]

) 1
1−γ

− 1. (25)

Figure 11 plots the annualized riskless compensating rate, 100 × [
¡
1 + ηIIDt

¢ 12
T − 1], needed to make a

buy-and-hold investor indifferent between implementing portfolio strategies that exploit the presence of

regimes and using the IID portfolio when the current regime probabilities are set at their steady-state

values. The utility cost of ignoring regimes is as high as 3% at short horizons−where investors can exploit
market timing more aggressively−while, at the longest horizons, the compensating rate is around 130 basis
points per annum. This estimate is somewhat larger than the corresponding figures reported by Ang and

Bekaert (2002) (20-30 basis points in a regime switching model) but well below the numbers reported by

Brennan and Xia (2002) in a model with predictability from inflation and interest rates.

7.2. Parameter Uncertainty

The presence of four regimes complicates parameter estimation so we next consider the effect of parameter

estimation errors on our results. Since we use Monte Carlo methods to derive optimal portfolio weights,

instead of using the delta method as in Ang and Bekaert (2002) and Guidolin and Timmermann (2004b)

we exploit that, in large samples, √
T
³bθ − θ´ A→ N(0,Vθ).

This allows us to set up the following bootstrap procedure. At step, q, we draw a vector of parameters,b̂
θ
q

, from N(bθ, T−1V̂θ) where V̂θ is a consistent estimator of Vθ. Conditional on this draw,
b̂
θ
q

, we solve

(8) to obtain a new vector of portfolio weights b̂ωq
. We repeat this process Q times. Confidence intervals

for the optimal asset allocation ω̂t can then be derived from the distribution for b̂ωq
, q = 1, 2, ..., Q. This

approach is computationally intensive, as (8) must be solved numerically so we restrict the number of

bootstrap trials to Q = 1, 000. Table 5 shows the optimal asset allocation plus or minus one standard

deviation of the bootstrapped distribution. Figures in bold indicate that this band does not include the

IID asset allocation, which represents a formal test of the difference between portfolio weights with and

without regimes. Standard error bands are wide, but sufficiently narrow to confirm the validity of our
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conclusions concerning the optimal shape of equity investment schedules as a function of the investment

horizon. The allocation to stocks is upward sloping only in the crash state. In regimes 2-4, however, the

equity investment schedules are downward sloping, as their bands decline from a maximum of [0.7, 1] at

T = 1 to [0.4, 0.8] at long investment horizons.

These methods also allow us to consider the joint effect of parameter estimation uncertainty and uncer-

tainty about the underlying state on the utility cost. We do so by calculating the compensating variation

ηIID,q
t 1,000 times using parameter estimates

b̂
θ
q

drawn from their asymptotic distribution. Figure 12 shows

confidence intervals under steady state probabilities. The null hypothesis of zero welfare loss implies that

such intervals should include zero for all T s. Evidence that the lower bound of the interval is positive

suggests that ignoring regime switching in asset allocation problems leads to a significant reduction in

expected utility.

The null of no significant welfare cost from ignoring regime switching is strongly rejected. The lower

bound of the confidence band is everywhere positive and also economically significant. At longer horizons

the lower bound attains levels of 7-8%, which is a considerable fraction of wealth. Using a misspecified

model in asset allocation decisions may thus be quite costly.

7.3. Out-of-sample Performance

A legitimate concern about the results so far is that although the regime switching model leads to sensible

portfolio choice recommendations at the end of our sample, it may be difficult to use in ‘real time’ due to

parameter estimation errors which could translate into implausible time-variations in the portfolio weights.

This concern is related to the prediction model’s out-of-sample asset allocation performance, an issue that

has been addressed by authors such as Brennan, Schwartz, and Lagnado (1997), Campbell, Chan, and

Viceira (2003), Detemple, Garcia, and Rindisbacher (2003) and Xia (2001).

To get a sufficiently long sample, we first perform a ‘pseudo’ real time asset allocation exercise for

the period 1980:01-1999:12, a total of 240 months. To make the experiment feasible, we focus on the

buy-and-hold asset allocation problem at three horizons, T = 1, 12, and 120 months. We compare the

performance of a four-state regime switching model, the VAR(1) model (18), a four-state regime switching

model that includes predictability from the dividend yield, and a simple IID model with constant means

and covariance matrix. As additional benchmarks, we also report results for a minimum-variance portfolio

and a static, mean-variance tangency portfolio.20 We preclude the investor from having any benefit of

hindsight (c.f. Pesaran and Timmermann (1995)). For instance, a four-state regime switching model is

estimated for 1954:01-1979:12 and the estimates and state probabilities as of 1979:12 are used to calculate

portfolio performance for 1980:01. Next period the sample is extended to 1954:01-1980:01 and estimation

and portfolio optimization is repeated, and so forth.

Interestingly, the turnover in the equity portfolio was found to be smaller under pure regime switching

than under the VAR(1) model. Once the dividend yield is included in the regime switching model, the

volatility of the equity weights increases and becomes comparable to that under the VAR(1) benchmark.

Regime switching increases the overall demand for stocks (approximately 60%) relative to the benchmark

20Minimum-variance and tangency portfolios are calculated using sample moments for T−period returns. For T = 120 we
use overlapping returns to have enough sample observations to be able to calculate the required moments.
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VAR(1) model (40%) because the models that include the dividend yield as a predictor shift out of stocks

during parts of the 1990s. Regimes also have a strong effect on the average demand for small stocks. The

weight on these stocks is approximately 40% under regime switching, less than 25% when both regimes

and the dividend yield are included, and only 10% under the VAR(1) model.21 Bonds receive a substantial

weight under regime switching−between 35% and 60%, depending on T and irrespective of whether the

dividend yield is included as a predictor. Conversely the VAR(1) model puts a large weight on cash

investments (in excess of 50%). This suggests that the presence of regimes is important in understanding

the demand for (nominal) long-term bonds.

We next calculated realized utility under the different models, each associated with a particular portfolio

weight ω̂T
t and hence a different realized utility:

V T
t ≡

£
WT (ω̂

T
t )
¤1−γ

1− γ
=

h
(1− (ω̂T

t )
0ι3) exp

¡
Trf

¢
+ (ω̂T

t )
0 exp

³PT
j=1 rt+j + Trf ι3

´i1−γ
1− γ

.

Here γ = 5, T = 1, 12 and 120 months and {rt+τ}Tτ=1 are the realized excess asset returns between
t + 1 and t + T . The period-t weights, ω̂T

t , are computed by maximizing the objective Et[W
1−γ
T /1 − γ]

so that for each investment horizon, T , and each asset allocation model we obtain a time series {V T
τ },

τ =1980:01,...,1999:12-T of realized utilities. Panels A and B of Table 6 reports summary statistics for the

distribution of {−V T
τ } with smaller values indicating higher welfare. Following Guidolin and Timmermann

(2004a), we use a block bootstrap for the empirical distribution of −V T
τ to account for the fact that realized

utility levels are likely to be serially dependent as time-variations in the conditional distribution of asset

returns may translate into dependencies in the portfolio weights and hence in realized utilities.22

The VAR(1) model performs best over the shortest investment horizon (T = 1) although the 5% and

10% confidence intervals for the realized utility overlap under the VAR(1) and regime switching models

suggesting that their performances are statistically indistinguishable. For the longer horizons, T = 12, 120

months, the pure regime switching model produces the highest mean realized utility. At the twelve month

horizon the out-of-sample forecasting performance of this model is sufficiently good to be statistically

significant against three of the five alternative models.

7.3.1. Performance during 2000-2003

Although our pseudo out-of-sample results for the period 1980-1999 do not use any data for parameter

estimation that was unavailable at the time of the forecast, the choice of model specification could itself

have benefited from full-sample information that only became available in 1999. To address this concern

21Once the dividend yield is included as a predictor, the demand for stocks is close to zero between 1993 and 1997. This is

consistent with the real time results reported by Campbell and Viceira (1999, 2001) and Xia (2001) and is explained by the

low value of the dividend yield after 1993 (less than 2.5% vs. an unconditional sample mean of 3.4%). Äıt-Sahalia and Brandt

(2001, p. 1348) also notice that “(...) in the second half of the 1990s (...) the dividend-to-price ratio stubbornly predicted

negative returns for the stock market which never materialized.”
22The simulation procedure consists of three steps and is separately implemented for each of the horizons T = 1, 12, 120

months: 1) Generate B block boostrap resamples of the sample indices {1, 2, ...,H} where H is the length of the out-of-sample

period. The block length L is set equal to the investment horizon, T. 2) For each of the resamples calculate the summary

statistics of interest. 3) Compute bootstrap resample means of the statistics of interest. Our bootstrap implementation uses

50,000 draws.
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and to see how the various models performed during 2000-2003, we compute asset allocations and realized

utilities over this post-sample period.

Results from this experiment are reported in Panels C and D of Table 6. All models generally suggest

a more cautious asset allocation over this period, as reflected by an increase in the demand for T-bills and

bonds. At the shortest investment horizon (T = 1) the myopic IID, VAR(1) and regime switching model

extended by the dividend yield produce almost identical realized utilities. At the intermediate (T = 12)

horizon, the pure regime switching model performs somewhat worse due to its continued high investment

in stocks (70% on average) which stands in contrast to the models that include the dividend yield as a

regressor. Since the dividend yield was below its unconditional mean during this sample, both the VAR(1)

and regime switching model with the yield included lead to far smaller portions (less than 20%) invested

in stocks over this period.

Viewed over the entire out-of-sample period 1980-2003 − and hence averaging across the lengthy bull
and bear states of recent years − the four-state model continues to produce the best average realized

utility performance at the 1-month and 120-month horizons, while the VAR(1) model generates the best

out-of-sample results for the interim 12-month horizon.

8. Conclusion

This paper explored the asset allocation implications of the presence of regimes in the joint distribution

of stock and bond returns. Our model captures predictability not just in the conditional mean of returns

(which most of the existing literature has focused on) but in the full (joint) return distribution, including

the volatility, skew and degree of fat-tails. While two states were transitory (the crash and recovery state),

the slow growth and bull state are persistent with average durations of several months. This means that

the regime switching model captures both short-term and long-term variations in investment opportunities.

We found that the optimal asset allocation varies significantly across regimes as the weights on the

various asset classes strongly depend on which state the economy is perceived to be in. Asset allocations

therefore vary significantly over time even in the absence of ‘outside’ predictor variables such as the dividend

yield. Stock allocations were found to be monotonically increasing as the investment horizon gets longer in

only one of the four regimes. In the other regimes we observed a downward sloping allocation to stocks. The

common investment advice of allocating more money to stocks the longer the investment horizon should

therefore be made conditional on the underlying state. The extension of the model to a joint consumption

and asset allocation problem reveals that the effects of regime switching on consumption decisions is smaller

than those on asset allocations, but important nonetheless.

Our framework can be extended in several ways. Äıt-Sahalia and Brandt (2001) have experimented

with preferences that depart from the standard expected utility, isoelastic benchmark, e.g. calculating

optimal portfolio weights under Epstein-Wang ambiguity aversion or loss aversion preferences. Campbell

and Viceira (1999) and Campbell et al. (2001) consider Epstein-Zin preferences that disentangle the effects

of risk aversion and the elasticity of intertemporal substitution. Our paper evaluates the effects on the

optimal asset allocation of modeling asset returns as a data-driven mixture of distributions that can vary

significantly across regimes. In related research Brennan and Xia (2001) and Pástor (2000) propose a

Bayesian framework to address optimal portfolio choice when investors face model uncertainty and asset
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return distributions take the form of mixtures over a range of theoretical and data-driven models. Such

extensions are likely to deepen our understanding of the effects of multiple regimes on strategic asset

allocation and provide interesting challenges for future research. Finally, one could extend our framework

to jointly model regimes in equity and bond returns as well as in short-term interest rates which are well-

known to incorporate strong non-linearities (see e.g. Ang and Bekaert (2002), Campbell and Yogo (2003)

and Garcia et al. (2003)).

Appendix A - Backward Solution of the Joint Consumption and Asset Allocation
Problem under Regime Switching

Suppose the optimization problem has been solved backwards at the rebalancing points tB−1, ..., tb+1
so that Q(πj

b+1, tb+1) is known for all values j = 1, 2, ..., Gk−1 on the discretization grid. Monte Carlo

approximation of the expectation in the objective function

(1− ψb)
1−γ + βψ1−γb Etb

∙³
(1− ω0bι3) exp

³
ϕrf

´
+ ω0b exp

³
Rb+1 + ϕrfι3

´´1−γ
Q (πb+1, tb+1)

¸
requires drawing N random samples of asset returns {Rb+1,n(π

j
b)}Nn=1 from the (b+ 1)ϕ-step-ahead joint

density conditional on period-t parameter estimates, bθt = {µ̂t, bΩt, P̂t} assuming that, at each point, πj
b,n

is optimally updated to πb+1,n(π
j
b,n). The algorithm consists of the following steps:

1. For each possible value of the current regime, sb, simulate N ϕ−period returns in calendar time
{Rb+1,n(sb) ≡

Pϕ
j=1 rtb+j,n(sb)}Nn=1 from the regime switching model

rtb+j,n(sb) = µ̂stb+j
+ εtb+j,n, εtb+j,n ∼ N(0, Ω̂stb+j

).

At all rebalancing points this simulation allows for regime switching. For example, if we start in

regime 1, between tb and tb+1 there is a chance p̂12 ≡ e01P̂e2 of switching to regime 2, and a chance
p̂11 ≡ e01P̂e1 of staying in regime 1. At each point in time P̂t governs possible switches.

2. Combine the simulated ϕ−period returns {Rb+1,n}Nn=1 in a random sample of size N, using the

probability weights contained in the row vector πj
b,n

Rb+1,n(π
i
b,n) =

kX
j=1

(e0jπ
i
b,n)Rb+1,n(Sb = j).

3. Update the future regime probabilities perceived by the investor using the formula

πb+1,n(π
i
b,n) =

((πi
b,n)

0P̂ϕ)0 ¯ η(Rb+1,n(π
i
b,n); θ̂t)

[((πi
b,n)

0P̂ϕ)0 ¯ η(Rb+1,n(π
i
b,n); θ̂t)]

0ιk
,

where P̂ϕ ≡
Qϕ

i=1 P̂. This gives an N × k matrix {π0b+1,n(πi
b,n)}Nn=1, whose rows correspond to

simulated vectors of perceived regime probabilities at time tb+1.
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4. For all n = 1, 2, ..., N, calculate the value π̃i
b+1,n on the discretization grid (i = 1, 2, ..., G

k−1) closest

to πb+1,n(π
i
b,n) using the distance measure

Pk−1
j=1 |e0jπi

b+1 − e0jπb+1,n(π
i
b,n)|, i.e.

π̃i
b+1,n(π

i
b,n) ≡ argmin

x∈×k−1j=1 [0,1]

k−1X
j=1

|e0jx− e0jπb+1,n|.

Knowing the vector {π̃i
b+1,n(π

i
b,n)}Nn=1 we can build {Q(π

(i,n)
b+1 , tb+1)}Nn=1, where π

(i,n)
b+1 ≡ π̃i

b+1,n(π
i
b,n)

is a function of the initial vector of regime probabilities πi
b,n on the simulated path.
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5. Solve the program

max
ωb(π

j
b),ψb(π

j
b)
(1− ψb)

1−γ + βψ1−γb N−1
NX
n=1

hn
(1− ω0bι3) exp

³
ϕrf

´
+ ω0b×

× exp
³
Rb+1,n(π

j
b,n) + ϕrf ι3

´o1−γ
Q(π

(j,n)
b+1 , tb+1)

¸
,

which for large values of N provides an arbitrarily precise Monte Carlo approximation to expected

utility. The value function evaluated at the optimal portfolio weights ωb(π
j
b) and savings ratio ψb(π

j
b)

defines Q(πj
b, tb) at the jth point on the initial grid.

The algorithm is applied to all possible values πj
b on the discretization grid until all values of Q(π

j
b, tb)

are obtained for j = 1, 2, ..., Gk−1. It is then iterated backwards until tb+1 = t + ϕ. At this stage the

algorithm is applied one last time, taking Q(πj
t+ϕ, t + ϕ) as given and using the actual row vector of

smoothed regime probabilities πt. The resulting ωt, ψt are the desired optimal portfolio allocation and the

optimal savings rate, respectively, while Q(πt, t) is the optimal value function.

In the buy-and-hold case (ϕ = T − t) step 2 is replaced with a simulation routine that for each possible

future regime, sb, simulates N asset returns of length T , {RT,n(sb) ≡
PT

i=1 rt+i,n(sb)}Nn=1 from the Markov
switching model

rt+i,n(sb) = µ̂st+i + εt+i,n, εt+i,n ∼ N(0, Ω̂st+i).

In other words, a matrix of monthly returns
©
{rt+i,n(sb)}Nn=1

ªT
i=1

is first drawn and then summed into N

long-term asset returns {RT,n(sb)}Nn=1. Steps 1 and 4-6 are irrelevant in the buy-and-hold case since the
objective simplifies to

max
ωt,ψt

(1− ψt)
1−γ

1− γ
+ βψ1−γt N−1

NX
n=1

⎧⎪⎨⎪⎩
h
(1− ω0tι3) exp

¡
Trf

¢
+ ω0b exp

³
RT,n(π

j
b) + ϕrf ι3

´i1−γ
1− γ

⎫⎪⎬⎪⎭ ,

where RT,n =
P4

i=1(π
0
tei)RT,n(sb = i). This makes computations much faster in this case.

23This step may be avoided when Q(πib+1, tb+1) is constant for all values on the discretization grid. This happens when

tb+1 = T and implies that the portfolio weights determined at step b+ 1 {ωb+1(π
i
b+1)} are invariant to changes in πi

b+1. In

this case the step simplifies to

max
ωb(π

i
b
)
N−1

N

n=1

(1− ω0bι3) exp ϕrf +ω0b exp Rb+1,n(π
i
b) + ϕrfe1

1−γ
.
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Finally, extending these methods to the case with additional predictor variables is straightforward and

only implies generalizing step 1 to simulate on a suitable grid N ϕ−period returns {Rb+1,n(sb)}Nn=1 for
each possible value of the regime sb and each possible configuration of the state vector (r

0
b z

0
b)
0 :Ã

rtb+j,n(sb)

ztb+j,n(sb)

!
=

Ã
µ̂stb+j
µ̂zstb+j

!
+ Âst

Ã
rtb+j−1,n(sb)

ztb+j−1,n(sb)

!
+

Ã
εtb+j,n

εztb+j,n

!

whereRb+1,n(sb) ≡
Pϕ

j=1 rtb+j,n(sb) and (ε
0
tb+j,n

ε0ztb+j,n)
0 ∼ N(0, Ω̂stb+j,n

). Step 3 is virtually identical, the

only difference being that the updating of πi
b must now incorporate a likelihood function η(yb+1,n(π

i
b); θ̂t)

defined over yb+1,n(π
i
b) ≡ (r0b+1,n(π

i
b) z

0
b+1,n(π

i
b))

0. Step 4 must be adjusted to define distances on the

discretization grid to also account for values of yb+1,n(π
i
b) generated on each of the simulated paths.

Appendix B - Discretization and Monte Carlo Methods

This appendix addresses some of the issues arising from application of discretization and Monte Carlo

methods to multivariate Gaussian mixtures and investigates our choice of the number of grid points, G,

as well as the number of Monte Carlo simulations, N , used to approximate the integrals involved in the

computation of expected utility.

B1. Myopic Savings and Portfolio Choices

When γ = 1 and no short-sale constraints are imposed, (21)-(22) admit a closed-form solution for

savings decisions and portfolio choices.24 Under log-utility the value function can be written as

J(Wb,πb, tb) ≡ max
{ωj ,ψj}B−1j=b

Etb

"
BX
i=0

βj
¡
ln(1− ψb+i) + lnWb+i

¢#
,

while the Bellman equation and the dynamic budget constraint are

J(Wb,πb, tb) ≡ max
ωb,ψb

βb ln(1− ψb) + βb lnWb + βb+1Etb [J(Wb+1,πb+1, tb+1)] , (26)

Wb+1 = Wbψb

h
(1−ω0bι3) exp

³
ϕrf

´
+ ω0b exp

³
Rb+1 + ϕrf ι3

´i
.

Under logarithmic utility the optimal savings ratio is available in closed-form,

ψb =
β − βB−b+1

1− βB−b+1
. (27)

In each period a deterministic fraction (β − βB−b+1)/(1 − βB−b+1) is therefore saved. The first order

conditions with respect to the optimal portfolio weights are

Etb

∙
ψWb

Wb+1

³
exp

³
Rb+1 + ϕrf ι3

´
− ι3 exp

³
ϕrf

´´¸
= 0,

Etb

"
exp

¡
Rb+1 + ϕrf ι3

¢
− ι3 exp

¡
ϕrf

¢
[(1− ω0ι3) exp (ϕrf ) + ω0 exp (Rb+1 + ϕrf ι3)]

#
= 0.

The investor behaves myopically and ignores time-variation in future beliefs as well as time-variations in

the joint distribution of asset returns.

24For concreteness we focus on the case without autoregressive terms or predictor variables (As = O for all s, zt = 1).
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The numerical procedure outlined in Appendix A does not utilize the simplifications resulting from

logarithmic utility. The same backward induction techniques are applied independently of the specific

value assumed by γ. Assuming that the problem has already been solved backwards at the rebalancing

times tB−1, ..., tb+1, step 5 in Appendix A iterates over πj
b on the grid (j = 1, 2, ..., Gk−1) providing a

solution to the program

max
ωb(π

j
b),ψb(π

j
b)
β lnψbN

−1
NX
n=1

ln
h
(1− ω0bι3) exp

³
ϕrf

´
+ exp

³
ω0b(ϕr

f +Rb+1,n(π
j
b))
´i
×

×Q(π
(j,n)
b+1 , tb+1) + ln(1− ψb).

To evaluate the precision of our numerical procedure we calculate for each of the four regimes optimal

savings and asset allocation choices for investment horizons of 1 and 60 months using the Monte Carlo

approach and assuming annual rebalancing (ϕ = 12). We vary the following parameters:

1. The number of simulations N grows from 1, 000 to 50, 000 in steps of 2,000.

2. The number of points G on the discretization grid is varied in the range G = 2, 4, 5, 8, 10, 20.

We compare the optimal savings choices obtained from equation (27) to the optimal decisions calculated

numerically. Apart from the extreme case where G = 2, the number of grid points used in the solution

to the dynamic program does not seem to be crucial: Provided that the number of simulations exceeds

N = 20, 000, ψt becomes very similar to the value in (27). Results are also not overly sensitive to the

investment horizon T. We conclude that G ≥ 5 and N ≥ 20, 000 guarantee sufficient accuracy in the

calculations of optimal consumption choices. In the paper we use G = 5 and set N at 30, 000 or 50, 000.

B2. Sampling Errors in the Buy-and-Hold Portfolio Optimization.

The second experiment is similar in spirit to Barberis (2000, pp. 262-263): For each of the four regimes,

we calculate optimal asset allocation choices for investment horizons of 6 and 60 months using our Monte

Carlo approach as the number of simulations N grows from 1, 000 to 50, 000 in steps of 2,000. For each

value of N, we repeat the experiment 10 times.

The first row of plots in Figure B1 shows the overall allocation to stocks as a function of the simulation

trial (indexed by an integer between 1 and 10) for T = 6 and 60 months. For N ≤ 20, 000 sampling errors
dominate in all regimes and random variation in the optimal allocation is substantial. When 20, 000 ≤ N ≤
30, 000 the quality of the approximation depends on the current state probabilities. In particular, in the

longer-lived regimes (2 and 3) sampling errors may still be rather large, on the order of 3-4%. Only when

N ≥ 30, 000 do the Monte Carlo simulation errors become sufficiently small in the more persistent regimes.
The bottom plots in Figure B1 extend the exercise to small stocks and long-term bonds. N = 30, 000

guarantees a substantial reduction in the incidence of sampling error, while a further increase toN = 40, 000

or 50, 000 only has second-order effects.
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Table 1 

Specification Tests for Regime Switching Models 
The table reports tests for the transformed z-scores generated by the multivariate regime-switching model: 

t

p

j
jtjsst yAy

tt
εµ ∑

=
− ++=

1

**  

where yt collects returns on a portfolio of large stocks (ninth and tenth CRSP size decile portfolios), a portfolio of small stocks (first and second CRSP deciles), 
and 10-year bonds all in excess of the return on 30-day T-bills, as well as exogenous predictors (dividend yield), 

ts
µ  is the intercept vector in state st, 

tjsA  is the 

matrix of autoregressive coefficients at lag j ≥ 1 in state St and ),( ~ *
tst N Ω0ε .The unobserved state St is governed by a first-order Markov chain that can assume 

k distinct values. The sample period is 1954:01 – 1999:12. The tests are based on the principle that under the null of correct specification of the model, the 
probability integral transform of the standardized forecast errors should follow an IID uniform distribution over the interval (0,1). A further Gaussian transform 
described in Berkowitz (2001) is applied to perform LR tests of the null that the transformed z-scores are IIN(0,1) distributed. In the table, MSIAH(k,p) denotes a 
k-state multivariate regime switching (MS), with shifts in intercepts (I) and covariance matrices (H), and p autoregressive (A) lags. Skew and Kurt report the 
skewness and kurtosis of the z-scores. Jarque-Bera values provide a test of normality while the likelihood ratio (LR) values provide tests for zero correlation in 
levels and squares of the standardized residuals. 

Model Skew Kurt. 
Jarque
-Bera LR2 LR3 LR6 Skew Kurt.

Jarque
-Bera LR2 LR3 LR6 Skew Kurt.

Jarque
-Bera LR2 LR3 LR6 

 Panel A – Return Model 
 Large Caps Portfolio Small Caps Portfolio Long-Term Bonds 

MSIA(1,0) 0.051 7.593 473.65 
(0.000) 

1.846 
(0.397) 

24.222
(0.000)

30.024
(0.000) -0.385 4.978 101.72

(0.000)
1.928
(0.381) 

4.076 
(0.253)

10.044
(0.123) 0.386 4.671 76.566

(0.000)
2.278
(0.320)

7.824
(0.050)

17.004 
(0.009) 

MSIA(1,1) 0.271 8.182 601.73 
(0.000) 

0.000 
(1.000) 

1.994 
(0.574) 

8.718 
(0.190) -0.355 4.665 72.66 

(0.000)
0.000
(1.000) 

1.916 
(0.590)

6.964 
(0.324) 0.334 4.402 53.440

(0.000)
0.000
(1.000)

2.496
(0.476)

11.374 
(0.077) 

MSIA (2,0) 0.023 3.599 8.018 
(0.018) 

0.002 
(0.999) 

1.952 
(0.582) 

6.642 
(0.355) 0.600 6.690 336.93

(0.000)
0.132
(0.936) 

23.010
(0.000)

29.124
(0.000) 0.334 4.528 62.233

(0.000)
0.012
(0.994)

5.538
(0.136)

14.678 
(0.023) 

MSIH (2,0) -0.190 3.507 8.891 
(0.012) 

0.078 
(0.962) 

2.118 
(0.548) 

6.930 
(0.327) 0.050 7.606 469.64

(0.000)
37.344 
(0.000) 

19.428
(0.000)

19.214
(0.004) 0.077 3.166 1.132 

(0.568) 
0.038
(0.981)

7.400
(0.060)

13.452 
(0.037) 

MSIAH (2,1) -0.160 3.463 6.752 
(0.034) 

0.042 
(0.979) 

2.578 
(0.461) 

6.888 
(0.331) 0.043 4.197 30.018

(0.000)
0.084
(0.959) 

2.020 
(0.568)

5.496 
(0.482) 0.097 3.209 1.730 

(0.421) 
0.054
(0.973)

2.026
(0.567)

9.656 
(0.140) 

MSIA (4,0) -0.169 4.374 43.459 
(0.000) 

0.126 
(0.939) 

2.430 
(0.488) 

7.366 
(0.289) -0.107 5.597 147.37

(0.000)
0.114
(0.945) 

14.064
(0.003)

21.656
(0.001) -0.163 3.894 19.662

(0.000)
0.002
(0.999)

3.498
(0.321)

11.876 
(0.065) 

MSIH (4,0) 0.076 3.484 5.397 
(0.067) 

0.122 
(0.941) 

3.090 
(0.378) 

7.378 
(0.287) 0.086 3.987 21.028

(0.000)
0.030
(0.985) 

12.254
(0.007)

15.622
(0.016) 0.028 3.049 0.119 

(0.942) 
0.042
(0.979)

5.694
(0.127)

9.582 
(0.143) 

MSIAH (4,1) 0.152 3.922 18.239 
(0.000) 

6.154 
(0.046) 

8.062 
(0.045)

12.154
(0.057) 0.888 11.50 1460.9

(0.000)
9.444
(0.009) 

32.166
(0.000)

35.822
(0.000) 0.018 2.739 1.343 

(0.511) 
2.890
(0.236)

13.994
(0.003)

18.738 
(0.005) 

MSIH (6,0) 0.016 3.269 1.434 
(0.488) 

0.018 
(0.991) 

3.424 
(0.331) 

8.146 
(0.228) 0.053 3.558 6.283 

(0.043)
0.302
(0.860) 

7.286 
(0.063)

14.232
(0.027) 0.016 3.245 1.183 

(0.553) 
0.142
(0.932)

3.856
(0.277)

9.368 
(0.154) 
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Table 1 (continued) 

Specification Tests for Regime Switching Models 
 

 

Model Skew Kurt. 
Jarque
-Bera LR2 LR3 LR6 Skew Kurt.

Jarque
-Bera LR2 LR3 LR6 Skew Kurt.

Jarque
-Bera LR2 LR3 LR6 

 Panel B – Return and Dividend Yield Model 
 Large Caps Portfolio Small Caps Portfolio Long-Term Bonds 

MSIA(1,0) 0.051 7.593 473.65 
(0.000) 

1.846 
(0.397) 

24.22 
(0.000)

30.02 
(0.000) -0.385 4.978 101.72

(0.000)
1.928 

(0.381) 
4.076
(0.253)

10.044
(0.123) 0.386 4.671 76.57 

(0.000)
2.278
(0.320)

7.824
(0.050)

17.004 
(0.009) 

MSIA(1,1) -0.287 4.864 87.32 
(0.000) 

31.56 
(0.000) 

32.63 
(0.000)

34.05 
(0.190) 0.305 8.294 630.60

(0.000)
7.848 

(0.020) 
8.742
(0.033)

9.136 
(0.166) 0.324 4.395 52.60 

(0.000)
6.345
(0.042)

7.727
(0.052)

9.715 
(0.137) 

MSIA (2,0) -0.385 4.976 99.50 
(0.000) 

0.002 
(0.999) 

2.142 
(0.543)

8.116 
(0.230) 0.043 7.548 457.80

(0.000)
0.003 

(0.987) 
20.91
(0.000)

26.814
(0.000) 0.389 4.674 75.40 

(0.000)
0.000
(1.000)

5.568
(0.135)

14.830 
(0.022) 

MSIA (2,1) -0.229 5.247 109.09 
(0.000) 

0.022 
(0.989) 

2.274 
(0.518)

6.862 
(0.334) 0.196 8.152 553.99

(0.000)
8.434 

(0.015) 
11.598
(0.009)

17.760
(0.007) 0.259 4.283 39.70 

(0.000)
16.34
(0.000)

17.454
(0.000)

23.344 
(0.001) 

MSIAH (2,0) -0.497 5.084 115.76 
(0.000) 

0.058 
(0.971) 

2.254 
(0.521)

8.382 
(0.211) -0.124 7.065 360.01

(0.000)
0.062 

(0.969) 
23.76
(0.000)

30.330
(0.000) 0.245 3.890 22.42 

(0.000)
0.042
(0.979)

5.540
(0.136)

10.338 
(0.111) 

MSIAH (2,1) -0.098 4.797 66.49 
(0.000) 

0.090 
(0.956) 

2.280 
(0.516)

6.684 
(0.351) 0.092 8.512 618.50

(0.000)
0.054 

(0.973) 
1.908
(0.592)

6.988 
(0.322) 0.189 4.190 31.73 

(0.000)
0.052
(0.974)

1.900
(0.593)

8.258 
(0.220) 

MSIAH (3,1) -0.083 4.029 20.57 
(0.000) 

0.048 
(0.976) 

2.452 
(0.484)

5.556 
(0.475) -0.022 5.855 154.32

(0.000)
0.020 

(0.990) 
2.030
(0.566)

6.580 
(0.361) 0.026 3.630 7.56 

(0.023)
0.068
(0.967)

2.002
(0.575)

7.970 
(0.240) 

MSIAH (3,2) -0.115 3.802 11.77 
(0.003) 

0.072 
(0.965) 

3.006 
(0.391)

5.362 
(0.498) 0.034 5.101 74.580

(0.000)
0.060 

(0.970) 
2.206
(0.531)

7.241 
(0.302) -0.008 3.559 5.27 

(0.072)
0.082
(0.960)

2.234
(0.525)

7.126 
(0.309) 

MSIA (4,1) 0.172 3.445 5.897 
(0.052) 

0.030 
(0.985) 

2.158 
(0.540)

5.738 
(0.453) 0.557 6.912 308.96

(0.000)
0.058 

(0.971) 
2.566
(0.463)

5.804 
(0.446) 0.177 4.085 24.35 

(0.000)
16.73
(0.000)

17.222
(0.001)

23.306 
(0.001) 

MSIAH (4,1) -0.106 3.423 3.908 
(0.142) 

0.168 
(0.919) 

2.212 
(0.530)

5.266 
(0.510) 0.116 3.468 4.763 

(0.092)
0.014 

(0.993) 
2.192
(0.534)

5.898 
(0.435) 0.045 3.505 4.59 

(0.101)
0.008
(0.996)

1.850
(0.604)

6.816 
(0.338) 

MSIAH (4,2) 0.010 3.194 0.558 
(0.757) 

0.052 
(0.974) 

3.550 
(0.314)

6.046 
(0.418) 0.161 3.748 9.770 

(0.008)
0.312 

(0.856) 
2.792
(0.425)

5.592 
(0.470) 0.127 3.194 1.50 

(0.472)
0.818
(0.664)

3.620
(0.306)

7.882 
(0.251) 
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Table 2 

Estimates of Regime Switching Model for Stock and Bond Returns  
This table reports the estimation output for the regime switching model: 

tst t
εµr +=  

where 
ts

µ  is the intercept vector in state st and ),( ~]'  [ 321 tstttt N Ω= 0ε εεε  is the vector of return innovations. The 
unobserved state variable St is governed by a first-order Markov chain that can assume k values. The three monthly return 
series comprise a portfolio of large stocks (ninth and tenth CRSP size decile portfolios), a portfolio of small stocks (first 
and second CRSP deciles), and 10-year bonds all in excess of the return on 30-day T-bills. The sample is 1954:01 – 
1999:12. Panel A refers to the case (k = 1) and represents a single-state benchmark. The data reported on the diagonals of 
the correlation matrices are annualized volatilities. Asterisks attached to correlation coefficients refer to covariance 
estimates. For mean coefficients and transition probabilities, standard errors are reported in parenthesis. 

 Panel A – Single State Model 
 Large caps Small caps Long-term bonds 
1. Mean excess return 0.0066 (0.0018) 0.0082 (0.0026) 0.0008 (0.0009) 
2. Correlations/Volatilities    
Large caps 0.1428***   
Small caps 0.7215** 0.2129***  
Long-term bonds 0.2516 0.1196 0.0748*** 
 Panel B – Four State Model 
 Large caps Small caps Long-term bonds 
1. Mean excess return    
Regime 1 (crash) -0.0510 (0.0146) -0.0410 (0.0219) -0.0131 (0.0047) 
Regime 2 (slow growth) 0.0069 (0.0027) 0.0008 (0.0033) 0.0009 (0.0016) 
Regime 3 (bull) 0.0116 (0.0032) 0.0187 (0.0048) -0.0023 (0.0007) 
Regime 4 (recovery) 0.0519 (0.0055) 0.0478 (0.0098) 0.0136 (0.0033) 
2. Correlations/Volatilities    
Regime 1 (crash):    
Large caps 0.1625***   
Small caps 0.8233*** 0.2479***  
Long-term bonds -0.4060* -0.2590 0.0902*** 
Regime 2 (slow growth):    
Large caps 0.1118***   
Small caps 0.7655*** 0.1099***  
Long-term bonds 0.2043*** 0.1223 0.0688*** 
Regime 3 (bull):    
Large caps 0.1133***   
Small caps 0.6707*** 0.1730***  
Long-term bonds 0.1521 -0.0976 0.0261*** 
Regime 4 (recovery):    
Large caps 0.1479***   
Small caps 0.5013*** 0.2429***  
Long-term bonds 0.3692*** -0.0011 0.1000*** 
3. Transition probabilities Regime 1 Regime 2 Regime 3 Regime 4 
Regime 1 (crash) 0.4940 (0.1078) 0.0001 (0.0001) 0.02409 (0.0417) 0.4818 
Regime 2 (slow growth) 0.0483 (0.0233) 0.8529 (0.0403) 0.0307 (0.0110) 0.0682 
Regime 3 (bull) 0.0439 (0.0252) 0.0701 (0.0296) 0.8822 (0.0403) 0.0038 
Regime 4 (recovery) 0.0616 (0.0501) 0.1722 (0.0718) 0.0827 (0.0498) 0.6836 

* denotes 10% significance, ** significance at 5%, *** significance at 1%. 
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Table 3 

Effects of Rebalancing on Asset Allocation 
This table reports the optimal weight on stocks (small and large) and bonds as a function of the rebalancing frequency ϕ 
for an investor with power utility and a constant relative risk aversion coefficient of 5. Excess returns are assumed to be 
generated by the regime switching model 

tst t
εµr +=  

where 
ts

µ  is the intercept vector in state st and ),( ~]'  [ 321 tstttt N Ω= 0ε εεε  is the vector of return innovations. 

Rebalancing Frequency ϕ Investment Horizon T (in months) 
A - Optimal Allocation to Stocks 

 T=1 T=6 T=12 T=24 T=60 T=120 
 Crash regime 1 

ϕ = T (buy-and-hold) 0.00 0.24 0.34 0.48 0.58 0.60 
ϕ = 24 months --- --- --- --- 0.50 0.50 
ϕ = 12 months --- --- --- 0.37 0.39 0.40 
ϕ = 6 months --- --- 0.28 0.31 0.33 0.34 
ϕ = 3 months --- 0.00 0.00 0.00 0.00 0.00 
ϕ = 1 month 0.00 0.00 0.00 0.00 0.00 0.00 

 Slow growth regime 2 
ϕ = T (buy-and-hold) 1.00 0.68 0.65 0.65 0.65 0.64 

ϕ = 24 months --- --- --- --- 0.70 0.80 
ϕ = 12 months --- --- --- 0.72 0.82 0.93 
ϕ = 6 months --- --- 0.71 0.77 0.88 0.96 
ϕ = 3 months --- 0.92 0.85 0.89 0.95 0.99 
ϕ = 1 month 1.00 1.00 1.00 1.00 1.00 1.00 

 Bull regime 3 
ϕ = T (buy-and-hold) 1.00 0.67 0.66 0.65 0.65 0.65 

ϕ = 24 months --- --- --- --- 0.72 0.83 
ϕ = 12 months --- --- --- 0.74 0.85 0.88 
ϕ = 6 months --- --- 0.74 0.80 0.90 0.95 
ϕ = 3 months --- 0.94 0.96 0.98 1.00 1.00 
ϕ = 1 month 1.00 1.00 1.00 1.00 1.00 1.00 

 Recovery regime 4 
ϕ = T (buy-and-hold) 1.00 0.82 0.71 0.69 0.68 0.66 

ϕ = 24 months --- --- --- --- 0.71 0.74 
ϕ = 12 months --- --- --- 0.72 0.74 0.77 
ϕ = 6 months --- --- 0.75 0.79 0.82 0.85 
ϕ = 3 months --- 0.98 1.00 1.00 1.00 1.00 
ϕ = 1 month 1.00 1.00 1.00 1.00 1.00 1.00 

 Steady-state probabilities 
ϕ = T (buy-and-hold) 1.00 0.73 0.68 0.67 0.65 0.64 

ϕ = 24 months --- --- --- --- 0.71 0.77 
ϕ = 12 months --- --- --- 0.73 0.78 0.81 
ϕ = 6 months --- --- 0.78 0.81 0.84 0.83 
ϕ = 3 months --- 0.88 0.85 0.84 0.84 0.84 
ϕ = 1 month 1.00 0.98 0.98 0.98 0.98 0.98 
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Table 3 (continued) 

Effects of Rebalancing 
 
 

Rebalancing Frequency ϕ Investment Horizon T (in months) 

B - Optimal Allocation to Long-Term Bonds 
 T=1 T=6 T=12 T=24 T=60 T=120 
 Crash regime 1 

ϕ = T (buy-and-hold) 0.00 0.34 0.29 0.19 0.12 0.08 
ϕ = 24 months --- --- --- --- 0.16 0.10 
ϕ = 12 months --- --- --- 0.21 0.17 0.11 
ϕ = 6 months --- --- 0.28 0.18 0.15 0.10 
ϕ = 3 months --- 0.18 0.16 0.13 0.11 0.05 
ϕ = 1 month 0.00 0.00 0.00 0.00 0.00 0.00 

 Slow growth regime 2 
ϕ = T (buy-and-hold) 0.00 0.32 0.34 0.19 0.14 0.08 

ϕ = 24 months --- --- --- --- 0.17 0.13 
ϕ = 12 months --- --- --- 0.20 0.14 0.01 
ϕ = 6 months --- --- 0.21 0.13 0.04 0.00 
ϕ = 3 months --- 0.05 0.13 0.04 0.00 0.00 
ϕ = 1 month 0.00 0.00 0.00 0.00 0.00 0.00 

 Bull regime 3 
ϕ = T (buy-and-hold) 0.00 0.00 0.00 0.00 0.00 0.00 

ϕ = 24 months --- --- --- --- 0.05 0.00 
ϕ = 12 months --- --- --- 0.06 0.03 0.00 
ϕ = 6 months --- --- 0.07 0.02 0.00 0.00 
ϕ = 3 months --- 0.02 0.00 0.00 0.00 0.00 
ϕ = 1 month 0.00 0.00 0.00 0.00 0.00 0.00 

 Recovery regime 4 
ϕ = T (buy-and-hold) 0.00 0.17 0.12 0.10 0.08 0.08 

ϕ = 24 months --- --- --- --- 0.01 0.01 
ϕ = 12 months --- --- --- 0.00 0.00 0.00 
ϕ = 6 months --- --- 0.00 0.00 0.00 0.00 
ϕ = 3 months --- 0.00 0.00 0.00 0.00 0.00 
ϕ = 1 month 0.00 0.00 0.00 0.00 0.00 0.00 

 Steady-state probabilities 
ϕ = T (buy-and-hold) 0.00 0.03 0.04 0.05 0.07 0.06 

ϕ = 24 months --- --- --- --- 0.10 0.12 
ϕ = 12 months --- --- --- 0.08 0.12 0.14 
ϕ = 6 months --- --- 0.07 0.10 0.16 0.17 
ϕ = 3 months --- 0.06 0.15 0.12 0.11 0.10 
ϕ = 1 month 0.00 0.02 0.02 0.02 0.02 0.02 
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Table 4 

Optimal Consumption-Wealth Ratio – Effects of Rebalancing 
This table reports the optimal consumption-wealth ratio as a function of the rebalancing frequency ϕ and the investment 
horizon T for an investor with power utility, constant relative risk aversion coefficient of 5, and (annualized) subjective rate 
of time preference of 5%. Excess returns are assumed to be generated by the regime switching model: 

tst t
εµr += ,  

where 
ts

µ  is the intercept vector in state st and ),( ~]'  [ 321 tstttt N Ω= 0ε εεε  is the vector of return innovations. 

 

Rebalancing Frequency ϕ Investment Horizon T (in months) 
 T=1 T=6 T=12 T=24 T=60 T=120 
 Crash regime 1 

ϕ = T (buy-and-hold) 0.50 0.51 0.52 0.54 0.60 0.69 
ϕ = T, γ = 1 (myopic) case 0.51 0.51 0.51 0.52 0.56 0.62 

ϕ = 12 months 0.50 0.51 0.52 0.34 0.18 0.10 
ϕ = 12, γ = 1 (myopic) case 0.51 0.51 0.51 0.35 0.19 0.11 

ϕ = 3 months 0.50 0.32 0.19 0.11 0.02 0.01 
ϕ = 3, γ = 1 (myopic) case 0.50 0.34 0.20 0.12 0.05 0.03 

 Slow growth regime 2 
ϕ = T (buy-and-hold) 0.51 0.51 0.52 0.54 0.60 0.69 

ϕ = T, γ = 1 (myopic) case 0.51 0.51 0.51 0.52 0.56 0.62 
ϕ = 12 months 0.51 0.51 0.52 0.46 0.28 0.21 

ϕ = 12, γ = 1 (myopic) case 0.51 0.51 0.51 0.35 0.19 0.11 
ϕ = 3 months 0.51 0.35 0.21 0.13 0.03 0.01 

ϕ = 3, γ = 1 (myopic) case 0.50 0.34 0.20 0.12 0.05 0.03 
 Bull regime 3 

ϕ = T (buy-and-hold) 0.50 0.51 0.54 0.56 0.61 0.70 
ϕ = T, γ = 1 (myopic) case 0.51 0.51 0.51 0.52 0.56 0.62 

ϕ = 12 months 0.50 0.51 0.54 0.36 0.20 0.14 
ϕ = 12, γ = 1 (myopic) case 0.51 0.51 0.51 0.35 0.19 0.11 

ϕ = 3 months 0.50 0.33 0.20 0.11 0.02 0.01 
ϕ = 3, γ = 1 (myopic) case 0.50 0.34 0.20 0.12 0.05 0.03 

 Recovery regime 4 
ϕ = T (buy-and-hold) 0.50 0.51 0.52 0.54 0.60 0.67 

ϕ = T, γ = 1 (myopic) case 0.51 0.51 0.51 0.52 0.56 0.62 
ϕ = 12 months 0.50 0.51 0.52 0.38 0.22 0.14 

ϕ = 12, γ = 1 (myopic) case 0.51 0.51 0.51 0.35 0.19 0.11 
ϕ = 3 month 0.50 0.33 0.20 0.12 0.02 0.01 

ϕ = 3, γ = 1 (myopic) case 0.50 0.34 0.20 0.12 0.05 0.03 
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Table 5 

Effect of Parameter Estimation Uncertainty on Asset Allocation 
 

This table reports confidence bands for a buy-and-hold investor’s optimal portfolio weights at different investment 
horizons, T, assuming a constant relative risk aversion coefficient of 5. Under regime switching, portfolio returns are 
assumed to be generated by the model 

tst t
εµr +=  

where ),( ~]'  [ 321 tstttt N Ω= 0ε εεε  is the vector of return innovations. In the IID case, k = 1. Boldfaced blocks of cells 
indicate a portfolio weight confidence interval that fails to include the IID weight. 
 

  Investment Horizon T 
  T=1 T=6 T=24 T=48 T=72 T=96 T=120 
 A: Allocation to Small Stocks 

Mean + 1*SD 0.000 0.319 0.393 0.392 0.395 0.390 0.394 
Mean 0.000 0.173 0.230 0.228 0.228 0.225 0.226 Crash 

regime 1 Mean - 1*SD 0.000 0.028 0.067 0.063 0.061 0.060 0.058 
Mean + 1*SD 0.211 0.277 0.357 0.375 0.385 0.383 0.383 
Mean 0.061 0.127 0.197 0.212 0.217 0.218 0.217 

Slow growth 
regime 2 Mean - 1*SD 0.000 0.000 0.037 0.049 0.050 0.053 0.052 

Mean + 1*SD 0.915 0.530 0.432 0.410 0.404 0.403 0.401 
Mean 0.632 0.313 0.258 0.242 0.235 0.233 0.231 Bull 

regime 3 Mean - 1*SD 0.349 0.096 0.083 0.073 0.067 0.064 0.060 
Mean + 1*SD 1.000 0.607 0.457 0.424 0.417 0.410 0.411 
Mean 0.890 0.406 0.279 0.252 0.245 0.238 0.236 

Recovery 
regime 4 Mean - 1*SD 0.706 0.205 0.101 0.080 0.073 0.066 0.061 

Mean + 1*SD 1.000 0.573 0.447 0.418 0.407 0.405 0.401 
Mean 0.827 0.361 0.270 0.247 0.238 0.235 0.231 Steady-

state Mean - 1*SD 0.634 0.149 0.092 0.076 0.069 0.065 0.061 
 B: Allocation to Large Stocks 

Mean + 1*SD 0.050 0.290 0.497 0.553 0.573 0.579 0.590 
Mean 0.005 0.114 0.275 0.323 0.341 0.347 0.355 Crash 

regime 1 Mean - 1*SD 0.000 0.000 0.053 0.093 0.109 0.116 0.119 
Mean + 1*SD 1.000 0.709 0.629 0.616 0.613 0.611 0.613 
Mean 0.834 0.470 0.395 0.384 0.380 0.379 0.380 Slow growth 

regime 2 Mean - 1*SD 0.621 0.232 0.161 0.151 0.148 0.147 0.147 
Mean + 1*SD 0.630 0.703 0.632 0.620 0.616 0.619 0.616 
Mean 0.351 0.441 0.393 0.384 0.382 0.384 0.381 Bull 

regime 3 Mean - 1*SD 0.073 0.179 0.154 0.148 0.147 0.148 0.146 
Mean + 1*SD 0.275 0.500 0.570 0.591 0.592 0.603 0.604 
Mean 0.101 0.268 0.336 0.356 0.360 0.368 0.369 Recovery 

regime 4 Mean - 1*SD 0.000 0.039 0.102 0.122 0.128 0.132 0.135 
Mean + 1*SD 0.724 0.648 0.611 0.608 0.609 0.610 0.608 
Mean 0.174 0.406 0.386 0.381 0.380 0.378 0.380 Steady-

state Mean - 1*SD 0.195 0.145 0.135 0.137 0.139 0.139 0.140 
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Table 5 - continued 

  Investment Horizon T 
  T=1 T=6 T=24 T=48 T=72 T=96 T=120 
 C: Allocation to Bonds 

Mean + 1*SD 0.033 0.481 0.406 0.375 0.363 0.360 0.356 
Mean 0.000 0.264 0.221 0.200 0.190 0.190 0.186 Crash 

regime 1 Mean - 1*SD 0.000 0.047 0.036 0.024 0.018 0.019 0.015 
Mean + 1*SD 0.229 0.383 0.359 0.348 0.345 0.343 0.343 
Mean 0.084 0.206 0.191 0.183 0.180 0.179 0.178 

Slow growth 
regime 2 Mean - 1*SD 0.000 0.028 0.025 0.019 0.015 0.014 0.012 

Mean + 1*SD 0.000 0.043 0.221 0.276 0.296 0.307 0.313 
Mean 0.000 0.010 0.095 0.130 0.143 0.151 0.156 Bull 

regime 3 Mean - 1*SD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Mean + 1*SD 0.037 0.401 0.371 0.357 0.350 0.346 0.347 
Mean 0.006 0.230 0.203 0.191 0.185 0.180 0.182 

Recovery 
regime 4 Mean - 1*SD 0.000 0.059 0.036 0.024 0.021 0.014 0.017 

Mean + 1*SD 0.000 0.125 0.255 0.295 0.309 0.318 0.321 
Mean 0.000 0.043 0.117 0.143 0.152 0.158 0.161 Steady-

state Mean - 1*SD 0.000 0.000 0.000 0.000 0.000 0.000 0.001 
 D: Allocation to T-bills 

Mean + 1*SD 1.000 0.607 0.489 0.453 0.442 0.438 0.433 
Mean 0.996 0.349 0.275 0.250 0.240 0.238 0.233 Crash 

regime 1 Mean - 1*SD 0.966 0.091 0.060 0.046 0.039 0.038 0.034 
Mean + 1*SD 0.083 0.391 0.408 0.413 0.415 0.416 0.418 
Mean 0.024 0.202 0.217 0.221 0.223 0.224 0.225 

Slow growth 
regime 2 Mean - 1*SD 0.000 0.012 0.027 0.030 0.031 0.032 0.032 

Mean + 1*SD 0.000 0.392 0.435 0.431 0.430 0.424 0.423 
Mean 0.000 0.225 0.249 0.240 0.237 0.229 0.229 Bull 

regime 3 Mean - 1*SD 0.000 0.059 0.064 0.049 0.044 0.035 0.035 
Mean + 1*SD 0.000 0.222 0.356 0.385 0.396 0.401 0.402 
Mean 0.000 0.090 0.178 0.198 0.207 0.211 0.211 

Recovery 
regime 4 Mean - 1*SD 0.000 0.000 0.000 0.012 0.019 0.022 0.019 

Mean + 1*SD 0.000 0.347 0.410 0.418 0.421 0.420 0.419 
Mean 0.000 0.188 0.226 0.228 0.228 0.227 0.226 Steady-

state Mean - 1*SD 0.000 0.030 0.043 0.038 0.036 0.033 0.033 
 E: Overall Allocation to Stocks (Small and Large) 

Mean + 1*SD 0.000 0.478 0.701 0.745 0.766 0.769 0.779 
Mean 0.000 0.284 0.500 0.545 0.565 0.569 0.576 Crash 

regime 1 Mean - 1*SD 0.000 0.091 0.299 0.346 0.363 0.369 0.374 
Mean + 1*SD 1.000 0.794 0.781 0.786 0.790 0.789 0.792 
Mean 0.893 0.590 0.586 0.591 0.593 0.592 0.593 

Slow growth 
regime 2 Mean - 1*SD 0.736 0.387 0.392 0.396 0.396 0.395 0.394 

Mean + 1*SD 1.000 0.925 0.836 0.816 0.810 0.814 0.809 
Mean 1.000 0.760 0.651 0.625 0.616 0.617 0.611 

Bull 
regime 3 

Mean - 1*SD 1.000 0.595 0.468 0.434 0.423 0.418 0.412 
Mean + 1*SD 1.000 0.872 0.808 0.802 0.799 0.804 0.805 
Mean 0.994 0.676 0.614 0.607 0.603 0.604 0.604 

Recovery 
regime 4 Mean - 1*SD 0.962 0.481 0.421 0.411 0.407 0.404 0.403 

Mean + 1*SD 1.000 0.926 0.839 0.817 0.809 0.808 0.807 
Mean 1.000 0.764 0.652 0.625 0.615 0.611 0.610 Steady-

state Mean - 1*SD 1.000 0.602 0.466 0.433 0.420 0.414 0.411 



 42

 

Table 6 

Real-time Out-of-Sample Performance of Predictability Models 
This table reports out-of-sample performance measures for portfolio choices under alternative return prediction models and for three investment horizons: 1, 12, 
and 120 months. yt collects excess asset returns in the first n positions followed by m predictor variables. The three monthly return series comprise a portfolio of 
large stocks (ninth and tenth CRSP size decile portfolios), a portfolio of small stocks (first and second CRSP deciles), and 10-year bonds all in excess of the return 
on 30-day T-bills. The predictor is the dividend yield. For realized power utility (γ = 5), we report the negative of the calculated values. Investors aim at 
minimizing such values. In panels A and C, ‘c.i.’ stands for confidence interval. In panels B and D, positive differences reflect higher realized ex-post utilities for 
the MSIH(4,0) model. Panels A and B refer to the (pseudo) out-of-sample period, 1980:01-1999:12; panels C and D include the genuine out-of-sample period 
2000:01-2003:12. In the table, MSIAH(k,p) denotes a k-state multivariate regime switching (MS), with shifts in intercepts (I),  covariance matrices (H), and p 
autoregressive (A) lags. 
  
 MSIAH(4,0) VAR(1) MSIAH(4,1) IID/Myopic Min. Variance ptf. Tangency ptf. 
 T=1 T=12 T=120 T=1 T=12 T=120 T=1 T=12 T=120 T=1 T=12 T=120 T=1 T=12 T=120 T=1 T=12 T=120

 A – (Pseudo) Out-of-sample (1980:01 – 1999:12) realized power utility 
Mean 0.248 0.196 0.009 0.244 0.198 0.021 0.247 0.209 0.034 0.246 0.212 0.028 0.246 0.207 0.012 0.245 0.197 0.011 
St. deviation 0.048 0.091 0.004 0.032 0.083 0.015 0.038 0.082 0.028 0.026 0.087 0.011 0.024 0.074 0.005 0.047 0.106 0.006 
5% c.i.-lower 0.243 0.168 0.007 0.240 0.174 0.017 0.243 0.185 0.017 0.243 0.183 0.022 0.243 0.180 0.010 0.239 0.161 0.008 
5% c.i.-upper 0.255 0.225 0.011 0.248 0.223 0.025 0.252 0.233 0.051 0.249 0.241 0.034 0.249 0.231 0.015 0.251 0.231 0.014 
10% c.i.-lower 0.243 0.173 0.007 0.241 0.178 0.018 0.243 0.189 0.019 0.243 0.187 0.023 0.244 0.184 0.010 0.240 0.166 0.008 
10% c.i.-upper 0.253 0.220 0.011 0.248 0.218 0.025 0.251 0.230 0.049 0.249 0.236 0.033 0.249 0.227 0.015 0.250 0.225 0.014 

 B – 100 × Differences in out-of-sample realized power utility vs. four-state regime switching model  (1980:01 - 1999:12) 
Mean NA NA NA -0.381 0.017 1.203 -0.115 1.270 2.331 -0.104 1. 460 1.764 -0.183 0.991 0.029 -0.288 0.058 0.036 
St. deviation NA NA NA 0.930 0.602 1.408 0.438 0.511 2.435 0.326 0.353 0.077 0.393 0.402 0.028 0.423 0.057 0.033 
t-stat NA NA NA 0.410 0.116 0.854 0.262 2.489 0.957 0.319 4.115 2.306 0.466 2.479 1.049 0.681 1.023 1.070 

 C – Out-of-sample (2000:01 – 2003:12) realized power utility  
Mean 0.247 0.420 NA 0.247 0.223 NA 0.247 0.207 NA 0.250 0.208 NA 0.249 0.241 NA 0.253 0.370 NA 
St. deviation 0.046 0.236 NA 0.036 0.031 NA 0.039 0.053 NA 0.023 0.040 NA 0.018 0.034 NA 0.042 0.221 NA 
5% c.i.-lower 0.243 0.377 NA 0.240 0.209 NA 0.243 0.197 NA 0.243 0.189 NA 0.243 0.217 NA 0.239 0.298 NA 
5% c.i.-upper 0.255 0.616 NA 0.248 0.251 NA 0.252 0.220 NA 0.249 0.227 NA 0.249 0.256 NA 0.251 0.548 NA 
10% c.i.-lower 0.243 0.400 NA 0.241 0.211 NA 0.243 0.199 NA 0.243 0.192 NA 0.244 0.219 NA 0.240 0.317 NA 
10% c.i.-upper 0.253 0.602 NA 0.248 0.248 NA 0.251 0.218 NA 0.249 0.225 NA 0.249 0.252 NA 0.250 0.529 NA 

 D – 100 × Differences in out-of-sample realized power utility vs. four-state regime switching model (2000:01 - 2003:12) 
Mean NA NA NA 0.000 -0.197 NA 0.001 -0.212 NA 0.003 -0.211 NA 0.001 -0.179 NA 0.006 -0.050 NA 
St. deviation NA NA NA 0.044 0.229 NA 0.038 0.234 NA 0.038 0.210 NA 0.048 0.243 NA 0.022 0.146 NA 
t-stat NA NA NA 0.002 -0.858 NA 0.010 -0.910 NA 0.083 -1.005 NA 0.025 -0.735 NA 0.253 -0.344 NA 
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Figure 1 
Smoothed State Probabilities: Four-state model for Stock and Bond Returns 

The graphs plot the smoothed probabilities of regimes 1-4 for the multivariate Markov Switching model comprising 
returns on large and small firms and 10-year bonds all in excess of the return on 30-day T-bills. 
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Figure 2 

Optimal Portfolio Allocation for a Buy-and-Hold Investor 
This graph plots the optimal allocation to stocks, bonds, and cash shown each quarter at various investment horizons. 
The plots assume the investor has power utility and coefficient of relative risk aversion γ = 5. Allocations are shown 
both for the four-state regime switching model and for a myopic investor who ignores the presence of regimes. 
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Figure 3 

Optimal Portfolio Allocation as a Function of the Investment Horizon: Known Initial States 
This graph varies the initial state probabilities perceived by the investor and traces out the resulting asset allocation. The 
graphs show the optimal allocation to four asset classes ⎯ small and large stocks, long-term bonds, and T-bills ⎯ as a 
function of the investment horizon for a buy-and-hold investor with constant relative risk aversion γ = 5.   
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Figure 4 

Effect of Uncertain States on Asset Allocation 
This Figure considers the case with uncertainty about the current regime. The graphs show the optimal allocation to 
four asset classes ⎯ small and large caps, long-term bonds, and 1-month T-bills ⎯ as a function of the investment 
horizon for a buy-and-hold investor with constant relative risk aversion γ = 5.  
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Figure 5 

Effect of Risk Aversion on Asset Allocation 
Plots of the optimal allocation to stocks and long-term bonds at three investment horizons. The plots assume the buy-
and-hold investor has power utility and coefficient of relative risk aversion γ in the interval [1, 50]. Allocations are 
shown both for the four-state regime switching model and for a myopic investor who ignores the presence of regimes. 
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Figure 6 

Optimal Asset Allocation at Different Values of the Dividend Yield – Linear Model 
For each asset class, the graphs plot the optimal allocation as a function of the investment horizon and the dividend 
yield level for an investor with constant relative risk aversion γ = 5. Asset returns and the dividend yield follow a single-
state VAR(1) model. 
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Figure 7 

Predictability from the Dividend Yield 
The graphs plot the optimal allocation as a function of the investment horizon for an investor with constant relative 
risk aversion γ = 5 for six configurations of initial state probabilities: certainty of being in regimes 1-4, equal state 
probabilities, and ergodic state probabilities. In each graph, the dividend yield is set at its unconditional sample mean. 
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Figure 8 

Optimal Asset Allocation at Different Values of the Dividend Yield  
under Regime Switching 

These graphs plot the optimal asset allocation as a function of the investment horizon and the value of the dividend 
yield for an investor with constant relative risk aversion γ = 5. The perceived state probabilities are fixed at their 
ergodic, full-sample values.  
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Figure 9 

Volatility and Sharpe Ratios as a Function of the Investment Horizon 
These graphs plot monthly volatility and Sharpe ratios of returns on each asset class under three alternative models 
(four-state, MSIH(4,0), four-state VAR(1) model with predictability from the dividend yield, MSIAH(4,1), single-state 
model with predictability from the dividend yield, VAR(1)). State probabilities and the dividend yield are set at their 
steady-state values. Values are normalized by the square root of the horizon so the IID model corresponds to 
horizontal lines. 
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Figure 10 

Optimal Consumption-Wealth Ratio 
The graph plots the optimal consumption-wealth ratio as a function of the investment horizon for the four-state regime 
switching model assuming power utility and relative risk aversion coefficient γ = 5 and (annualized) rate of subjective 
time preference of 5%. The investor consumes only at time t and at time t + T. As a benchmark, the solid line reports 
the consumption-wealth ratio when the regime probabilities are set at their steady-state values. 
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Figure 11 

Utility Costs from Ignoring Regimes 
The graph plots the compensation (as an annualized percentage) required to persuade a buy and hold investor with 
power utility (and γ = 5) to be willing to ignore regimes in asset returns, starting from steady-state probabilities. 
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Figure 12 

90% Bootstrapped Confidence Bands for Utility Costs from Ignoring Regimes 
The graphs plot means and bootstrap confidence intervals for the compensation (as a fraction of initial wealth) required 
to persuade a buy-and-hold investor with power utility (and γ = 5) to be willing to ignore regimes in asset returns. State 
probabilities are set at their steady-state values. 
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Figure B1 

Sampling Error in Monte Carlo Approximation of Expected Utility 
These graphs plot the optimal portfolio weights for a buy and hold investor with power utility (and γ = 5) when the 
number of Monte Carlo simulations used to approximate expected utility is increased from 2,000 to 50,000, in steps of 
2,000. 
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