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Abstract

This paper proposes a new method for combining forecasts based on complete subset regres-

sions. For a given set of potential predictor variables we combine forecasts from all possible

linear regression models that keep the number of predictors fixed. We explore how the choice

of model complexity, as measured by the number of included predictor variables, can be used

to trade off the bias and variance of the forecast errors, generating a setup akin to the efficient

frontier known from modern portfolio theory. In an application to predictability of stock re-

turns, we find that combinations of subset regressions can produce more accurate forecasts than

conventional approaches based on equal-weighted forecasts (which fail to account for the dimen-

sionality of the underlying models), combinations of univariate forecasts, or forecasts generated

by methods such as bagging, ridge regression or Bayesian model averaging.
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1 Introduction

Methods for controlling estimation error in forecasting problems that involve small sample sizes

and many potential predictor variables has been the subject of much recent research.1 One lesson

learned from this literature is that a strategy of including all possible variables is too profligate;

given the relatively short data samples typically available to estimate the parameters of economic

forecasting models, it is important to limit the number of parameters that have to be estimated or

in other ways reduce the effect of parameter estimation error. This has led to the preponderance of

forecast methods such as shrinkage or ridge regression (Hoerl and Kennard (1970)), model averaging

(Bates and Granger (1969), Raftery, Madigan, and Hoeting (1997)), bagging (Breiman (1996)), and

the Lasso (Tibshirani (1996)) which accomplish this in different ways.

This paper proposes a new method for combining forecasts based on complete subset regres-

sions. For a given set of potential predictor variables we combine forecasts from all possible linear

regression models that keep the number of predictors fixed. For example, with  possible predic-

tors, there are  unique univariate models and  = !((−)!!) different −variate models
for  ≤ . We refer to the set of models corresponding to a given value of  as a complete sub-

set and propose to use equal-weighted combinations of the forecasts from all models within these

subsets indexed by . Moreover, we show that an optimal value of  can be determined from the

covariance matrix of the potential regressors and so lends itself to be selected recursively in time.

Special cases of subset regression combinations have appeared in the empirical literature. For

example, Rapach, Strauss and Zhou (2010) consider equal-weighted combinations of all possible

univariate equity premium models and find that they produce better forecasts of stock returns than

a simple no-predictability model. This corresponds to setting  = 1 in our context. Papers such as

Aiolfi and Favero (2003) consider equal-weighted combinations of forecasts of stock returns from all

possible 2 models. While not directly nested by our approach, this can nevertheless be obtained

from a combination of the individual subset regression forecasts.

From a theoretical perspective, we show that subset regression combinations are akin to a

complex version of shrinkage which, in general, does not reduce to shrinking the OLS estimates

coefficient by coefficient. Rather, the adjustment to the coefficients depends on all least squares

estimates and is a function of both , the number of variables included in the model, and , the

total number of potential predictors. Only in the special case where the covariance matrix of the

predictors is orthonormal, does subset regression reduce to ridge regression or, equivalently, to a

Bayes estimator with a specific prior distribution. For this special case we derive the exact degree

of shrinkage implied by different values of  and thus formalize how , the number of parameters

in the conditional mean equation, is equivalent to other measures of model complexity that have

previously been proposed in the literature.

We also show that the weights implied by subset regression reflects omitted variable bias in a

way that can be useful for forecasting. This holds particularly in situations with strongly positively

correlated regressors since the subset regression estimates account for the omitted predictors.

An attractive property of the proposed method is that, unlike the ridge estimator and the usual

application of Bayesian estimators, it does not impose the same amount of shrinkage on each coef-

ficient. Unlike model selection methods, it also does not assign binary zero-one weights to the OLS

1See, e.g., Stock and Watson (2006) for a review of the literature.
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coefficients. Other approaches that apply flexible weighting to individual predictors include bag-

ging which applies differential shrinkage weights to each coefficient, the adaptive Lasso (Zou (2006))

which applies variable-specific weights to the individual predictors in a data-dependent adaptive

manner, the elastic net (Zou and Hastie (2005) and Zou and Zhang (2009)) which introduces extra

parameters to control the penalty for inclusion of additional variables, and Bayesian methods such

as adaptive Monte Carlo (Lamnisos, Griffin and Steel (2012)).

To illustrate the subset regression approach empirically we consider, like many previous studies,

predictability of U.S. stock returns. In particular, following Rapach et al. (2010), we study quarterly

data on U.S. stock returns in an application that has 12 potential predictor variables and so

generates subset regressions with  = 1, 2, ...., 12 predictor variables. We find that subset regression

combinations that use  = 2 3 or 4 predictors produce the lowest out-of-sample mean squared error

(MSE) values. Moreover, these subset models generate superior predictive accuracy relative to the

equal-weighted average computed across all possible models, a benchmark that is well-known to

be difficult to beat, see Clemen (1989). We also find that the value of  in the subset regression

approach can be chosen recursively (in pseudo “real time”) in such a manner that the approach

produces forecasts with lower out-of-sample MSE-values than those produced by recursive versions

of Bayesian model averaging, ridge regression, Lasso, or Bagging.

The outline of the paper is as follows. Section 2 introduces the subset regression approach and

characterizes its theoretical properties. Section 3 presents a Monte Carlo simulation study, Section

4 conducts the empirical analysis of US stock returns, while Section 5 concludes.

2 Theoretical Results

This section presents the setup for the analysis and derives theoretical results for the proposed

complete subset regression method.

2.1 Setup

Suppose we are interested in predicting the univariate (scalar) variable +1 using a regression

model based on  predictors  ∈ R , and a history of data, {+1 }−1=0 . Let [
0
] = Σ

for all  and, without loss of generality, assume that [] = 0 for all . To focus on regressions

that include only a subset of the predictors, define  to be a  × 1 vector with slope coefficients
in the rows representing included regressors and zeros in the rows of the excluded variables. Let

0 be the pseudo true value for  i.e., the population value of the projection of  on , where

 = (1   ) is a  × 1 vector and  = (00 
0
1  

0
−1)

0 stacks the  observations into a  ×

matrix. Denote the generalized inverse of a matrix  by − Let  be a  × matrix with zeros

everywhere except for ones in the diagonal cells corresponding to included variables, zeros for the

excluded variables, so that if the [ ] element of  is one, the th regressor is included, while if

this element is zero, the th regressor is excluded. Sums over  are sums over all permutations of

.

We propose an estimation method that uses equal-weighted combinations of forecasts based on

all possible models that include a particular subset of the predictor variables. Each subset is defined

by the set of regression models that include a fixed (given) number of regressors,  ≤ . Specifically,
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we run the ‘short’ regression of  on a particular subset of the regressors, then average the results

across all  dimensional subsets of the regressors to provide an estimator, ̂, for forecasting, where

 ≤ . With  regressors in the full model and  regressors chosen for each of the short models,

there will be  = !(!( − )!) subset regressions to average over. In turn, each regressor

gets included a total of −1−1 times.
As an illustration, consider the univariate case,  = 1, which has 1 = !(1!( − 1)! = 

short regressions, each with a single variable. Here all elements of ̂ are zero except for the least

squares estimate of  on  in the 
 row. The equal-weighted combination of forecasts from the

individual models is then

̂+1 =
1



X
=1

0 ̂ (1)

Following common practice, our analysis assumes quadratic or mean square error (MSE) loss.

For any estimator, we have



∙³
+1 − ̂

´2¸
= 

∙³
+1 − 00 + (0 − ̂ )

0
´2¸

= 

∙³
+1 + (0 − ̂ )

0
´2¸

= 2

³
1 + −1−2 

h
 (̂ − 0)

00 (̂ − 0)
i´

 (2)

Here +1 is the residual from the population projection of +1 on  . We concentrate on

the last term since the first term does not depend on ̂ Hence, we are interested in examining

−2 
h
(̂ − )00 (̂ − )

i
.

2.2 Complete Subset Regressions

Subset regression coefficients can be computed as averages over least squares estimates of the

subset regressions. When the covariates are correlated, the individual regressions will be affected

by omitted variable bias. However, as we next show, the subset regression estimators are themselves

a weighted average of the full regression OLS estimator:

Theorem 1 Assume that as the sample size gets large ̂ → 0 for some 0 and 
−1 0 →

Σ  Then, for fixed , the estimator for the complete subset regression, ̂ , can be written as

̂ = Λ ̂ + (1)

where

Λ ≡ 1



X
=1

¡
0Σ

¢−
(0Σ)

A proof of this result is contained in the Appendix.

This result on the relationship between ̂ and the OLS estimator makes use of high level

assumptions that hold under very general conditions on the data; see White (2000, chapter 3) for

a set of sufficient conditions. Effectively, any assumptions on the model that result in the OLS

estimators being consistent for their population values and asymptotically normal will suffice. For
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example, the result allows {} to be dependent, mixing with a sufficiently small mixing coefficient,
and even allows [ 0

] to be heterogenous over time, in which case Σ is the average variance

covariance matrix, although, for simplicity, we assume that Σ is constant over time. Ruled out

are unit roots in the  variables, although predictor variables are routinely transformed to be

stationary in forecast experiments.

In general, Λ is not diagonal and hence the coefficients ̂ are not (approximately) simple

OLS coefficient-by-coefficient shrinkages. Rather, subset regression coefficients are functions of

all the OLS coefficients in the regression. Insight into how the method works as a shrinkage

estimator can be gained from the special case when the covariates are orthonormal.2 In this case,

̂ =  ̂ , where  = 1−(−1) is a scalar and so subset regression is numerically
equal to ridge regression.3

To see this, note that for this special case ̂ =  0 while each of the subset regression
estimates can be written ̂ = 

0 where  is a  × diagonal vector with ones (zeros) on the

diagonal for each included (excluded) regressor, and zeros off the diagonal. The complete subset

regression estimator is then given by

̂ =
1



X
=1

̂

=
1



X
=1


0

=

Ã
1



X
=1



!
̂ 

The result now follows by noting that the elements of
P

=1  are zero for the off-diagonals terms,

and equal the number of times the regressor is included in the subset regressions for the diagonal

terms. In turn the diagonal terms equal  minus the number of times a regressor is excluded,

which gives the result, noting that the solution is the same for each diagonal.

Several points follow from this result. First, the amount of shrinkage implied by  is a func-

tion of both  and  As an illustration, Figure 1 plots  as a function of  for the orthonormal

case. Higher curves represent smaller values of , where  = {10 15 20} For any value of ,
 is a linear function of  that increases to one. In fact, setting  = , corresponds to simply

running OLS with all variables included. Further, as  increases, the slope of the  line gets

reduced, so the amount of shrinkage is decreasing for any , the larger is , the total number of

potential predictors. Essentially, the smaller is  relative to , the greater the amount of shrink-

age. Effectively the Theorem relates shrinkage provided by model averaging to shrinkage on the

coefficients whereas a typical Bayesian approach would separate the two.

Second, in general Λ reduces to the ridge estimator, either approximately or exactly, only

when the regressors are uncorrelated. When this does not hold, subset regression coefficients will

2We refer to subset regressions as similar to shrinkage although for some configurations of the variance covariance

matrix of the predictors and some OLS estimates, subset regression will not actually shrink the coefficient estimates.
3Equivalently, this case corresponds to a Bayes estimator under normality with prior ( −1

2
)), ̂ = (

0 +

)
−1(0 + ), prior mean  = 0, and  = (1 − )  If the assumption on the regressors is

weakened to Σ =  , the same result holds asymptocially.
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not be simple regressor-by-regressor shrinkages of the OLS estimates, and instead depend on the

full covariance matrix of all regressors. Specifically, Λ is not diagonal and each element of ̂

is approximately a weighted sum of all of the elements in ̂  The weights depend not only on

{} but on all elements in Σ  For example, if  = 3 and  = 1, we have

Λ13 =
1

3

⎛⎜⎝ 1 Σ12
Σ11

Σ13
Σ11

Σ12
Σ22

1 Σ23
Σ22

Σ13
Σ33

Σ23
Σ33

1

⎞⎟⎠  (3)

Each row of Λ13 is the result of including a particular subset regression in the average. For example,

the first row gives the first element of ̂13 as a weighted sum of the OLS regressors ̂ . Apart

from the division by 13, the own coefficient is given a relative weight of one while the remaining

coefficients are those we expect from omitted variable bias formulas. Clearly the effect of dividing

by 13 = 3 is to shrink all coefficients, including the own coefficient, towards zero.

For   1, each regressor gets included more often in the regressions. This increases their

effect on Λ through a higher inclusion frequency, but decreases their effect through the omitted

variable bias. Since the direct effect is larger than the omitted variable bias, an increased  generally

reduces the amount of shrinkage. Of course, in the limit as  = , there is no shrinkage and the

method is identical to OLS.

While we focus on one-period forecasts in our analysis, the results readily go through for ar-

bitrary horizons provided that the direct approach to forecasting is used, i.e., current values of 

are projected on −periods lagged values of the predictors. Conversely, the iterated approach to
forecasting requires modeling a VAR comprising both  and all −variables and so is more involved.

2.3 Risk

We next examine the risk of the subset regression estimator. Forecasting is an estimation problem

and risk is the expected loss as a function of the true (but unknown) model parameters. Under

MSE loss, risk amounts to the expected loss. In common with all biased methods, for values of

0 far from zero, the risk is large and so it is appropriate not to shrink coefficients towards zero.

Shrinkage methods only add value when 0 is near zero. To capture such a situation, we assume

that 0 is local to zero. Specifically, we assume that 0 = −12 for some fixed vector 
Under general, dependent data generating processes, the risk is difficult to derive. However, if

we restrict the setup to i.i.d. data {+1 }, we get the following result:

Theorem 2 Assume that the data {+1 } are i.i.d., [(̂ − 0)
2|+1] = [̂ − 0]

2, and

−12(̂ − )→ (0Σ−1 ) Then, in large samples,

−2 
h
 (̂ − )0Σ(̂ − )

i
≈

X
=1

 + 0(Λ − )0Σ(Λ − ) (4)

where  are the eigenvalues of Λ
0
ΣΛΣ

−1
 .

The expected loss depends on many aspects of the problem. First, it is a function of the variance

covariance matrix through both Σ and Λ . Second, it depends on the dimension of the problem,
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, and of the subset regression, . Third, it is a function of the elements of  Different trade-offs

can be explored by varying these parameters. Some will be very attractive when compared to OLS,

while others might not be. As in the simple orthogonal case, the larger are the elements of , the

worse the complete subset regression methods will perform.

For different choices of { Σ  }, we can compute the expected loss frontier as a function
of  If Σ = , so the regressors are mutually orthogonal, (4) reduces to

−2 
h
(̂ − )0Σ(̂ − )

i
= 2 + (1− )

20 (5)

which depends on { 0} For fixed values of 0 and , as  increases,  gets bigger and

the increase in the first term in (5) is offset by the decrease in the second term in this equation.

The extent of this offset depends on the relative sizes of  and 0 As an illustration of this, the
left window in Figure 2 plots the value of the expected loss (5) as a function of , for  = 10 and

0 = (1 3 4). Each line corresponds to a separate value of 0 with larger intercept on the  axis,
the greater is 0 Setting  =  = 10 yields OLS loss, so all lines converge at that point. A variety

of shapes are possible. If 0 is quite small, so that the regressors are not that useful for forecasting,
then a large amount of shrinkage, and hence a small value of , works best. Conversely, if 0 is
large, bigger values of  become optimal.

In practice, different choices of  can be motivated by theoretical considerations. As always with

shrinkage estimation, the smaller  is expected to be, the more useful it is to apply strong shrinkage.

As we discuss above, the amount of shrinkage tends to be greater, the smaller one chooses . Since

{} are known and Σ can be estimated by −1 0, (4) can be used to produce curves such as
those in the left window of Figure 2 but relevant for the application at hand. One can then choose

 as the point at which expected loss is lowest given reasonable choices for . As an illustration

of this point, the right window of Figure 2 uses data from the application in the empirical section

to estimate Σ and shows expected loss curves for 0 = 1, 2, or 3. Although the expected loss

curve varies quite a bit across different values of 0, an interior optimal value−corresponding to a
minimal expected loss−around  = 2, 3, or 4 is obtained in all three cases.

2.4 Comparison with OLS and Ridge

It is informative to compare the risk for subset regressions to that of models estimated by OLS. In

some cases, this comparison can be done analytically. For example, this can be done for general 

when Σ has ones on the diagonal and  elsewhere and  = 1, corresponding to combinations of

univariate models. First, note that the risk for OLS regression is  while for this case the risk of

the subset regression method reduces to

1



¡
1 + ( − 1)2¢+ (− 1)2µ − 1



¶2
( +( − 1))  (6)

Hence, subset regressions produce lower risk than OLS for any () pair for which

1



¡
1 + ( − 1)2¢+ (− 1)2µ − 1



¶2
( +( − 1))  

For small values of  this holds for nearly all possible correlations. To illustrate this, Figure 3

plots the ratio of the subset regression MSE to the OLS MSE as a function of , the correlation
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between the predictors, and , the number of predictors included. The figure assumes that  =

100. Whenever the plotted value falls below one, the subset regression approach dominates OLS

regression in the sense that it produces lower risk. For any  ≤ 6 subset regression always (for
any  for which Σ is positive definite) has a lower risk than OLS based on the complete set of

regressors. For   6, we find that there is a small region with small values of  and  = 1 for

which the reverse is true, but otherwise subset regression continues to perform better than OLS.

The figure thus illustrates that a simple equal-weighted average of univariate forecasts can

produce better forecasts than the conventional multivariate model that includes all predictors even

in situations where the univariate models are misspecified due to omitted variable bias.

Figure 4 uses heat maps to compare the expected loss of the subset regressions to that of the

Ridge regression approach for different values of the limit of the shrinkage parameter,  . The

figure assumes that there are  = 8 predictor variables, sets  = 1, a vector of ones, and lets

Σ have ones on the diagonal and  on all off-diagonal cells. The correlation between predictor

variables, , varies along the horizontal axis, while the shrinkage parameter, , varies along the

vertical axis. We use colors to indicate the value for min(0−), with dark red

indicating that   , while, conversely, yellow and blue indicate areas where

  . Each window corresponds to a different value of . Suppose that, moving

along the vertical axis corresponding to a particular value of , there is no red color. This shows

that, for this particular value of , ridge regressions always produce a lower expected loss than

the corresponding subset regression. Conversely, if, for a given value of , the area is red for all

values of , subset regressions dominate all ridge regressions, regardless of the chosen shrinkage

parameter.

Figure 4 shows that when  = 1, ridge regressions mostly produce lower MSE-values than

subset regressions for   06. Conversely, for   085, this univariate subset regression uniformly

dominate all ridge results. If  = 2 subset regressions uniformly dominate when   06, while if

 = 4, subset regressions always dominate when   05. This means that, for  = 2 3 or 4, one

of the subset regressions will always dominate the best ridge regression as they produce the lowest

MSE loss.

2.5 Discussion

The method presented above, along with the analytical results, relies on the total number of regres-

sors, , being somewhat smaller than  , the number of observations available. This necessarily

limits the possible values for , given that for many applications, especially in macroeconomics,

 is not particularly large. Model instabilities may further exacerbate this concern since they

could limit the amount of past data available for model combination. In such situations, using

an equal-weighted average forecast can provide robust out-of-sample predictive performance and

so helps motivate our approach of not using estimated combination weights. Moreover, empirical

work has largely failed to come up with alternative weighting schemes that systematically beat

equal-weighting so we find the simplicity of this weighting scheme attractive. However, it is of in-

terest to consider extensions to very large values of  or to alternative weighting schemes so we

next discuss these issues.
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2.5.1 Computational Issues

In cases where  is very large and so  is too large to allow all models in a given subset

to be considered, one can employ fewer than all possible models in each subset. Specifically, if

 is very large, one can randomly draw a smaller number of models and average across these.

Uniform probability weighting of the models within each subset is the easiest approach and is

natural to consider here since we use equal weights in the model averaging stage. Alternatively, the

probability that a model is included could depend on the properties of that model, an approach

that will be computationally costlier since it requires evaluating the models. However, methods

exist that employ some of the model information to decide on inclusion without requiring statistics

for all models to be computed.

Sophisticated MCMC algorithms developed in the Bayesian model combination and selection

literature can be used, particularly if it is desired that model weights should reflect posteriors. A

possibility along these lines that allows  to become very large is the transdimensional Markov

chains that simultaneously cover both the parameter and model space. More generally, Reversible

Jump MCMC techniques (reviewed by Sisson, 2005) or stochastic search algorithms such as the

shotgun stochastic search algorithm of Hans et al. (2007) can be adopted.

2.5.2 Weighting Schemes

Our approach uses equal-weighted combinations of forecasts within each subset. However, alter-

native weighting schemes could be used and we will also consider approximate BMA weights that

are based on the individual models’ values of the Schwarz Information Criterion (SIC). In keeping

with the empirical evidence on optimal MSE weights, we do not attempt to use Bates and Granger

(1969) weights. The large literature on forecast combination under MSE loss also does not suggest

methods that we expect to work better than equal weights.

Outside of minimizing the risk criterion considered here, there exist other combination methods

that rely on alternative characterizations of risk. Liang et al. (2011) consider linear models with

serially independent homoskedastic normal errors and estimate combination weights through a

procedure designed to minimize the trace of the MSE of the parameter vector estimates. Note that

this objective is different from minimizing the forecast error MSE which weights the sampling error

of the parameter vector differently from that invoked by the trace.

The optimal prediction pool approach of Geweke and Amisano (2011) combines models so as

to maximize the log predictive score. This requires computing the density for each model and not

just an estimate of the conditional mean. Although this approach has many theoretically appealing

properties and does not need to assume that the true model is included in the set over which the

model search is conducted, it is unclear how well it would work in settings that combine a very

large set of models.

2.5.3 Model Instability

Economic time series often undergo change. As a consequence, the parameters of the underlying

forecast models may be subject to change and the best forecast model could also change over

time. To deal with this, Groen, Paap and Ravazzolo (2012) consider an approach that accounts
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for breaks in the individual models’ parameters as well as breaks in the error variance of the

overall combination. Similarly, Billio, Casarin, Ravazzolo and van Dijk (2012) propose a variety

of combination strategies that allow for time-varying weights, while Koop and Korobilis (2012)

consider dynamic model averaging methods. While this issue is ignored here, it can be partially

incorporated either by explicitly modeling the break process or by using ad-hoc approaches such

as rolling-window estimators.

3 Monte Carlo Simulation

To better understand how the subset combination approach works, we first consider a Monte Carlo

simulation experiment that allows us to study both the absolute forecast performance of the subset

regression approach as well as its performance relative to alternative methods.

3.1 Simulation setup

Our Monte Carlo design assumes a simple linear regression model:

+1 =

X
=1

 + +1 +1 ∼ (0 2) (7)

We assume a sample size of  = 100 observations and consider one-step-ahead forecasts of +1.

The covariance matrix of the −variables Σ = (1 ) takes the simple form

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1      

 1
. . .

...
. . .

...
. . . 1 

     1

⎞⎟⎟⎟⎟⎟⎟⎟⎠


where  ∈ {0 025 05 075 095}. Small values of  correspond to small values of the predictive
2, while the 2 increases as  is raised. Data are assumed to be i.i.d., and we include up to  = 8

predictors. Two designs are considered for the regression parameter:  = 1 and  = (1 1 1 1 0 0 0

0) In the first experiment, all predictors are relevant and matter equally; in the second experiment

only the first four predictors matter to the outcome.

3.2 Comparison with other approaches

We are interested not only in how well the subset combination approach performs in absolute

terms, but also in how it compares with other approaches. Many alternative ways to combine or

shrink forecasts from different models have been considered in the literature. Among the most

prominent ones are Bayesian model averaging (Raftery, Madigan and Hoeting, 1997), Bagging

(Breiman, 1996), ridge regression (Hoerl and Kennard, 1970), and the Lasso (Tibshirani, 1996).

Given the availability of these alternatives, it becomes important to compare the subset regression

combination approach to such methods. We briefly discuss each of the methods and explain how

we implement them.
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3.2.1 Ridge regression

The only parameter that has to be chosen under the ridge approach is  which regulates the amount

of shrinkage imposed on the regression coefficients. Given a value of , the forecasts are obtained

by

̂
+1| = 0 ̂  (8)

where

̂ = 

⎛⎝−1X
=1

(+1 − 0)
2 + 

X
=1

2

⎞⎠  (9)

Note that, by construction, as  → ∞ ̂
+1 → 1

−1
P

=2  , so the ridge forecast simply

converges to the sample mean. Following Inoue and Kilian (2008), we consider a range of shrinkage

values  ∈ {05 1 2 3 4 5 10 20 50 100 150 200}.

3.2.2 Lasso

Least absolute shrinkage and selection operator, LASSO (Tibshirani 1996), retains the features

of both model selection and ridge regression: it shrinks some coefficients and sets others to zero.

Lasso forecasts are computed as

̂+1| = 0 ̂  (10)

where

̂ = 

Ã
−1X
=1

(+1 − 0)
2

!
 (11)



X
=1

| | ≤ 

Here the parameter  controls for the amount of shrinkage. For sufficiently large values of  the

constraint is not binding and the LASSO estimator reduces to OLS. Given the absolute value

operator ||, the constraint is not linear and a closed form solution is not available. ̂ is therefore

computed following the algorithm described in section 6 of Tibshirani (1996). Because the forecasts

depend on  we consider a grid of values  ∈ {1 2 3 4 5 10 20 50 100}.

3.2.3 Elastic Net

In Tibshirami’s classical implementation Lasso has a single shrinkage parameter. In this sense our

approach is more similar to that of recent flexible generalizations such as the adaptive Lasso of Zou

(2006) or the Elastic Net of Zou and Hastie (2005) and Zou and Zhang (2009). Following authors

such as Korobilis (2013), we consider the Elastic Net which is a useful compromise between ridge

and lasso. Ridge regressions shrink the coefficients of correlated predictors towards each other.

Conversely, Lasso is indifferent to very correlated predictors and tends to simply pick one and

ignore the rest. Elastic net forecasts avoid these extreme solutions and are computed as
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̂
+1| = 0 ̂ (12)

where

̂ = 

⎛⎜⎜⎜⎜⎜⎝
−1X
=1

(+1 − 0)
2 + 

X
=1

(1− )2 + | || {z }
()

⎞⎟⎟⎟⎟⎟⎠
, the elastic net penalization, is the compromise between the ridge penalty ( = 0) and the

lasso penalty ( = 1). ̂ is computed using the coordinate descent algorithm developed in

Friedman, Hastie and Tibshirani (2009). We set  = 05, while for  we consider a grid of values

 ∈ {1 2 3 4 5 10 20 50 100}.

3.2.4 Bagging

Our implementation of Bagging is based on 1,000 bootstrapped samples of the original data

arranged in the {+1: :−1} tuple. We preserve the autocorrelation structure of the predictors
by applying the circular block bootstrap of Politis and Romano (1992) with block size chosen opti-

mally according to Politis and White (2004).4 Contemporaneous dependence across observations is

preserved by using the same blocks for all variables. For each bootstrapped sample {+1: 
:−1},

an estimate of , ̂

, is obtained and forecasts are computed as

̂+1| = (
0
 )̂


 (13)

Here  is the stochastic selection matrix whose ( ) elements equal the indicator function (|| 
) A predictor is added only if its -statistic is significant at the threshold implied by . The

larger the value of , the higher the threshold and so the more parsimonious the final model will

be. To control for this effect, we follow Inoue and Kilian and consider different values  ∈ {.3853,
.6745, 1.2816, 1.4395, 1.6449, 1.9600, 2.2414, 2.5758, 2.8070, 3.0233, 3.2905, 3.4808, 3.8906, 4.4172,

5.3267}. The final Bagging forecasts are obtained by averaging across the bootstrap draws

̂+1| =
1



X
=1

̂+1|  (14)

3.2.5 Bayesian model averaging

Bayesian Model Averaging predictions are obtained by weighting each model’s forecast by its pos-

terior probability:

̂
+1| =

2X
=1

̂( |1: ) (15)

4To ensure robustness, we also implemented the parametric bootstrap, but found that the results are not sensitive

to this choice.
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where ̂ is the posterior mean of the predictive likelihood and ( |1: ) is the posterior probability
of the th model, which follows from Bayes theorem

( |1: ) = (1: |)()P2

=1 (1: |)()
 (16)

To obtain the predictive likelihood, (+1| ), the marginal likelihood, (1: |), and the

model priors () in equations (15) and (16), we follow the specification suggested by Fernandez,

Ley and Steel (2001a,b) and Ley and Steel (2009). Let  be an indicator variable which takes

a value of one if the predictor is included in the regression and is zero otherwise. Let  be the

probability of inclusion so the prior probability of the th model is  () =  (1− )− where
 is the number of predictors in the th model. A prior for  is obtained indirectly through a

prior on the model size,  =
P

=1 . If  is kept fixed,  has a ( ) distribution with

expected value [] =  = , from which it follows that  = 5

As in Ley and Steel (2009), we also allow  to be random and follow a Beta distribution with

shape parameters 1 = 1 and 2 = . Ley and Steel (2009) show that under this specification,  will

follow a binomial-beta distribution. As in the fixed  scenario, a prior on 2 is obtained indirectly

by solving the equation for the expected model size, 2 = ( −).

The marginal and predictive likelihoods have closed form expressions only when using conju-

gate priors. We follow Fernandez, Ley and Steel (2001a), and adopt a combination of a “non-

informative” improper prior on the common intercept and scale and a -prior (Zellner, 1986) on

the regression coefficients leading to the prior density (   |) ∝ −1  (|0 2( 0)
−1)

where  are the demeaned regressors that are included in the th model. Under this specification

+1|  follows a -distribution with location parameter  =
1


P
=1  + 0( + 1).

To sum up, we need to specify a value for the prior model size, , and the -prior. In the em-

pirical exercise we set  equal to 0.1 and 1 to keep the models from including too many predictors,

something which we know is likely to hurt the performance of the return forecasts, see, e.g., Goyal

and Welch (2008). In the Monte Carlo simulations we set  to one half and one third of . We

follow Fernandez, Ley and Steel (2001a) and set  to 1 or 12. In the empirical exercise we

add  = 1 to ensure stronger shrinkage since, as  →∞, ̂ converges to the prevailing mean.

3.3 Simulation results

Table 1 shows results from the simulation experiment, using 25,000 simulations. We report per-

formance in terms of the 2−value, which is inversely related to the -value, but conveys

the same message and is slightly easier to interpret. First consider the performance of the subset

regression approach when  = 1 (left panel). Since the 2 is positive for the (infeasible) model

that uses the correct parameter values, negative 2−values show that parameter estimation error
dominates whatever evidence of predictability the model identifies. This case only occurs for the

subset regressions when  = 0 and  = 8, corresponding to the “kitchen sink” approach that in-

cludes all predictors and so does not average across multiple models. For small values of  the best

subset regressions use three or four predictors. As  increases, the number of variables included

5This approach avoids using uniform priors over the model space which can lead to undesirable properties, par-

ticularly when regressors are correlated, see George and Foster (2000).
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in the best-performing subset regressions tends to decrease and the best performance is obtained

for  = 1 or  = 2. In general, the difference between the best and worst subset combination

(usually the kitchen sink,  = 8) tends to be greater, the smaller the value of . This is likely

to reflect the greater importance of estimation error in situations where the predictive signal is

weaker, parameter estimation error matters more and affects the larger models (large ) more than

the smaller models (small ).

The ridge regression results most closely resemble those from the subset regressions. Compared

with subset regression, ridge regression performs quite well, although, consistent with Figure 4, the

best subset regression produces better performance than the best ridge regression in all cases. In

turn, the best subset and ridge regressions generally perform better than the best lasso, bagging

and BMA approaches.

Similar conclusions emerge when we set  = (1 1 1 1 0 0 0 0)0, the results for which are shown in
the right panel of Table 1. This case represents a setup with a smaller degree of predictability over

the outcome variable, and so lower 2−values are obtained. Unsurprisingly, for this case the best
subset regressions use a smaller value of  than in the previous case where all predictors had an

effect on the outcome. The subset regressions that include relatively few predictors, e.g.,  = 2, 3,

or 4, continue to perform particularly well, whereas performance clearly deteriorates for the models

that include more predictors.

3.4 Subset Combinations with Large 

Computing forecasts for all models within a given subset is not feasible when  is large. To

explore the consequence of this limitation, we next use simulations to evaluate some of the alter-

native solutions discussed in Section 2.5.1. First, we set  = 15, a number small enough that

we can use the complete subset method for all values of  ≤ 15. We report the outcome of three
alternative approaches that combine forecasts over (i) randomly selected models; models selected

by stochastic search using either (ii) a Markov chain; or (iii) the shotgun approach. The Markov

chain and shotgun approaches differ in how they explore the model space.

The simulations were implemented as follows. Let  ≤  be the number of included models,

while  ∈ (0 1) is the fraction of the  models that is combined so  = ×  . Also define ̄

and  as upper and lower bounds on  so that if ×   ̄ only ̄ models are combined while if

×  ≤ we set  =  . Our simulations set  = 025, = 100, and ̄ = 5000.

Under the random approach  models are drawn without replacement from the model space

 = [12  ], each model receiving a weight of 
−1.

The stochastic search algorithms select models according to a fitness function, () such as the

model posterior. The included models, as well as their weights, depend on the chain’s path with

models never visited receiving a zero weight, while visited models receive a weight proportional to

the number of visits divided by the length of the chain.

Specifically, the Markov chain moves from model  to the next candidate model, +1 based

on a uniform probability draw from the set of models  ⊂ , where  represents the set

of models containing at least  − 1 of the variables originally in . The transition probability of

the chain is  = 
¡
1

(+1)

()

¢
. If the candidate model offers a better fit ((+1)  ()), the

chain jumps to +1 for sure; if this condition fails, the chain may still move to (+1) since this
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prevents the chain from being trapped in local solutions. However, the worse the relative fit of the

candidate model, the lower the probability of such a move.

Under the shotgun approach, the candidate model, +1, following from an initial model  is

drawn from  with a probability proportional to its fit so that the th candidate model has prob-

ability () = () /
P


() Here the transition probability is  = 

¡
1
P


+1

()

/
P


()

¢
.

Panel A of Table 2 reports results in the form of out-of-sample 2-values. These values are very

similar across each of the columns, suggesting that very little is lost in terms of performance of the

combined forecast as a result of using only a portion of all models within a given subset.

We next increase  to 20. In this case, some of the  values are too large to allow us to

evaluate the complete subset combination and so we only present results for the three cases (i)-(iii).

Panel B in Table 2 shows that, once again, there is little to distinguish between models selected

randomly versus models selected by the Markov Chain or shotgun approaches. These findings

suggest that our subset combination approach can be implemented without much loss when  is

large.

4 Empirical Application: Stock Return Predictions

To illustrate the complete subset regression approach to forecast combination and to compare its

performance against that of alternative approaches, this section provides an empirical application

to US stock returns. This application is well suited for our analysis in part because predictability

of stock returns has been the subject of an extensive literature in finance, recently summarized by

Rapach and Zhou (2012), in part because there is a great deal of uncertainty about which, if any,

predictors help forecast stock returns. Clearly this is a case where estimation error matters a great

deal, see, e.g., the discussion in Goyal and Welch (2008).

Specifically, we investigate if there is any improvement in the subset regression forecasts that

combine -variate models for  ≥ 2 relative to using a simple equal-weighted combination of

univariate models ( = 1), as proposed in Rapach et al. (2010), or relative to other combination

schemes such as those described in the previous section.

Predictability of US stock returns by means of combinations of models based on different sets of

predictors has been considered by studies such as Avramov (2002), Cremers (2002), and Rapach et

al. (2010). For example, Avramov (2002) uses BMA on all possible combinations of models with 16

predictors to forecast monthly returns. Models with time-varying coefficients have been considered

for stock market data by Kalli and Griffin (2012) and Dangl and Halling (2012), while Pettenuzzo

and Timmermann (2011) consider forecast combination in the presence of model instability.

Diebold (2012) discusses the merits of out-of-sample versus in-sample tests of predictive ac-

curacy. Tests of in-sample performance have higher power than out-of-sample tests and so from

a purely statistical point of view have some advantages. However, in applications such as ours

where the interest lies in testing whether a method could have been used in real time to generate

forecasts that led to better economic decisions (portfolio holdings) that improved economic utility,

an out-of-sample perspective seems appropriate.
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4.1 Data

Data are taken from Goyal and Welch (2008), updated to 2010, and are recorded at the quarterly

horizon over the period 1947Q1 - 2010Q4. The list of predictors comprises 12 variables for a total

of 212 = 4096 possible models.6

The 12 variables are the Dividend Price Ratio (dp), the difference between the log of the 12-

month moving sum of dividends and the log of the S&P 500 index; Dividend Yield (dy), the

difference between the log of the 12-month moving sum of dividends and the lagged log S&P 500

index; Earnings Price Ratio (ep), the difference between the log of the 12-month moving sum of

earnings and the log S&P 500 index; Book to Market (bm), the ratio of the book value to market

value for the Dow Jones Industrial Average; Net Equity Expansion (ntis), the ratio of the 12-

month moving sum of net issues by NYSE listed stocks divided by the total end-of-year market

capitalization of NYSE stocks; Treasure Bill (tbl), the 3-Month Treasury Bill (secondary market)

rate; Long Term Rate of Returns (ltr), the long-term rate of return on US Bonds; Term Spread

(tms), the difference between the long term yield on government bonds and the Treasury Bill rate;

Default Yield Spread (dfy), the difference between yields on AAA and BAA-rated bonds; Default

Return Spread (dfr), the difference between long-term corporate bond and long-term government

bond returns; Inflation (infl), the (log) growth of the Consumer Price Index (All Urban Consumers);

and Investment to Capital Ratio (ik), the ratio of aggregate investments to aggregate capital for

the whole economy.

The equity premium, our dependent variable, is the difference between the continuously com-

pounded return on the S&P 500 index (including dividends) and the 3-month Treasury Bill rate. As

in Rapach et al. (2010) and Goyal and Welch (2008), we adopt a recursively expanding estimation

scheme. The initial estimation sample goes from 1947Q1 to 1964Q4, yielding a first forecast for

1965Q1, while the last forecast is for 2010Q4. Each quarter parameters are (re)estimated using all

available information up to that point. This pseudo out-of-sample forecasting exercise simulates

the practice of a real time forecaster. As in the theoretical analysis, forecasts are generated from

the following predictive regression

2:+1 = + (1:) + 2:+1, (17)

where 2:+1 is the equity premium variable defined above, 1: is the full regressor matrix, 2:+1

is a vector of error terms,  and  are unknown parameters estimated by OLS, and  is a diagonal

selector matrix whose unity elements determine which variables get included in the model. For

example, the “kitchen sink” model containing all predictors is obtained by setting  = 12, while

the constant ‘null’ model is obtained by setting  equal to a 12× 12 matrix of zeros. Following the
analysis in Section 2, our focus is on the combination of -variate models, more specifically

̂+1 =
1



X
=1

(̂ + 0̂)  () =  (18)

6Data are available at http://www.hec.unil.ch/agoyal/. Variable definitions and data sources are described in

more detail in Goyal and Welch (2008). To avoid multicollinearity when estimating some of the multivariate models,

we exclude the log dividend earnings ratio and the long term yield. By construction, the log dividend earnings ratio

is equal to the difference between the log dividend price ratio and the log earnings price ratio, while the long term

yield is equal to the sum of the term spread and the Treasury Bill rate.
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where (◦) is the trace operator.

4.2 Bias-variance trade-off

Figure 5 plots time-series of out-of-sample forecasts of returns for the different −variate subset
regression combinations. The forecasts display similar patterns except that as  increases, the

variance of the combined forecasts also increases. The least volatile forecasts are generated by

the constant model ( = 0), while the most volatile forecasts arise when we use the model that

contains all regressors ( =  = 12). Neither of these cases perform any forecast combination. As

we shall subsequently see, forecasts from the best -variate combinations are in turn more volatile

than those from combinations of univariate models but less volatile than those from the other -

variate combinations. The extent to which volatility of the forecast reduces or enhances forecast

performance depends, of course, on how strongly this variation is correlated with the outcome−a
point we further address below.

Figure 6 provides insight into the relation between the variance and bias of the forecasts. Along

the −axis, the upper left window lists the number of predictors included in each model, , while
the -axis lists the time-series variance associated with a given model. Thus, for example, for  = 1

the circles show the variance for each of the 12 univariate forecasting models, while for  = 2, the

circles show the forecast variance for each of the 66 bivariate models. The upper left graph shows

that the variance of the forecast is increasing in the number of variables included in the forecast

models. To see why, define  =  and 
1: = 1:, and note that

(̂+1) = (̂+  ̂) = [
0+  (

0
1:1: )

−1
0]̂ (19)

which is increasing in ̂ and in the column dimension of 
0,  0 and . Therefore, the larger the

dimensional of the pooled models, the higher the forecast variance.

The upper right window in Figure 6 shows gains from pooling the models due to the reduction

in the (squared) bias. Specifically, the combination of the three-variate models has the lowest

bias. The constant model produces the most (upward) biased forecasts. At the other end of the

spectrum, the “kitchen sink” model with all variables included generates the most biased forecasts

because of its occasional extreme negative forecasts (see Figure 5). Except for the models based

on ,  and , the individual univariate models generate a large bias.

Putting together the forecast variance and bias results, the bottom window of Figure 6 es-

tablishes a (squared) bias-variance trade-off that resembles the well-known mean-variance efficient

frontier known from modern portfolio theory in finance. Specifically, the (squared) bias is largest

for models with either very few or very many predictors, while the variance increases monotonically

in .

4.3 Performance of subset regressions

To gain insights into the forecast performance of the various models, Figure 7 plots the out-of-sample

2 (top window) and the MSE-value (bottom window) for the individual −variate forecasting
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models along with those for the subset regression combinations.7 The lower −axis shows the
number of predictors included in each model, while the upper −axis in the top window lists the
total number of −variate models, i.e., 12. For 1 ≤  ≤ 6, the −variate combinations generate
lower MSE values than the equal-weighted average forecast computed across all 4,096 models, a

benchmark frequently used in the forecast combination literature. They also perform better than

the constant equity premium model ( = 0), a benchmark considered difficult to beat in the finance

literature, see Goyal and Welch (2008).

Interestingly, the two and three-variate combinations generate out-of-sample 2−values that
are 1% higher than the univariate combination approach used by Rapach et al. (2010), while the

first six -variate combinations produce better performance than the combination of all models,

i.e., the “thick” forecast modelling approach described in Aiolfi & Favero (2003). This may not

seem like such a large difference but, as emphasized by Campbell and Thompson (2008), even small

differences in out-of-sample 2 can translate into economically large gains in investor utility.

Figure 6 showed that the forecast results do not depend simply on the number of pooled

forecasts. For example, there are 66 two-variate as well as ten-variate models, but the corresponding

equal-weighted combinations produce very different outcomes. This is not surprising given that the

worst two-variate model is better than the best ten-variate model. To control for the mere effect

of the number of models included in the combination, we also combine models that are randomly

selected across different values of . Figure 8 plots the out-of-sample MSE and 2−values as a
function of the number of models in the combined forecast. Less than 100 models, i.e. about 2%

of the total, need to be pooled in order to approximate the behavior of the forecasts obtained by

combining all models.8 This finding is not surprising given that about 60% of the models contain

five, six or seven predictors so that the combinations get dominated by forecast models with five, six

and seven variables included.9 In fact, when models are randomly selected, the probability of picking

a 6-variate model is about 0.225 against 0.002 for the univariate or eleven-variate models. Indeed

the combinations of the six-variate models has very similar performance to the total combination.

The benefit of subset combination is evident from three observations. First, the -variate subset

combinations have similar, if not better (for  =1, 2, 3, 10 and 11), performance as the single best

-variate model, the identity of which, however, is difficult to establish ex-ante. Second, for  ≤ 10
the −variate combinations produce better results than models selected by recursively applying
information criteria such as the AIC or the BIC. This happens despite the fact that these subset

combinations contain, on average, the same or a larger number of predictors.10 Third, while some

univariate models, the ones containing , , , and , produce better results than the equal-

weighted combination of all models, in contrast no single predictor model does better than the

three best-performing -variate subset combinations.

7The out-of-sample 2−value is computed as


2
= 1−



=(+1 − ̂+1| )
2

=(+1 − ̂
+1| )

2


8This finding becomes very relevant in situations where it is infeasible to estimate all 2 models, e.g., when

  20, since the number of models is exponentially related to the number of predictors.
9This fraction is given by


12

5


+

12

6


+

12

7


212

10On average, the BIC and AIC criteria select 2.73 and 4.88 predictors, respectively.
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4.4 Performance comparisons

Table 3 presents out-of-sample 2−values. First consider the univariate models shown in Panel A.
Only five of the twelve variables generate positive out-of-sample 2-values, the highest such value

being 2.28% for the investment-capital ratio. Panel B shows that all subset regressions with  ≤ 6
generate positive out-of-sample 2−values, the largest values occurring for  = 2 or  = 3 which
lead to an 2 around 4%. As  grows larger, the out-of-sample forecasting performance quickly

deteriorates with values below -10% when  = 11 or  = 12.11

Turning to the alternative approaches described earlier, Panel C shows that the Lasso forecasts

are only capable of producing small positive 2−values for  ≤ 3 and generate large negative

2−values for the largest values of . Panel D shows that the ridge regressions generate large

negative 2-values when the shrinkage parameter, , is small, corresponding to the inclusion of

many predictors. Better performance is reached for higher values of , but even the best value of 

only leads to an 2 of 2.8%. The bagging approach (panel E) suffers from similar deficiencies when

 is small, leading to large prediction models, but improves for values of  around two at which

point an 2 of 1.7% is reached. Turning to the BMA results, we also consider a value of  = 1, in

addition to the previous values of  = 12 and  = 1. This value of  induces less concentrated

weights on a few models which turns out to be advantageous here. Indeed, the Bayesian Model

Averaging forecasts produce positive 2−values in three out of four cases when  = 1 and otherwise
mostly produces negative 2−values.

To compare model performance more formally, we use the test proposed by Clark and West

(2007), treating the simple prevailing mean forecast as our benchmark. This test re-centers the

difference in mean squared forecast errors to account for the higher variability associated with

forecasts from larger models. The test results show that three of the univariate models (corre-

sponding to , , and ) produce better forecasting performance than the benchmark at the 5%

significance level. For the bagging method, forecasting performance superior to the benchmark is

obtained only when  is around two, while the BMA fails to dominate the benchmark. The ridge

regressions produce significantly improved forecasts for  ≥ 20, while the subset regressions do so
for all but the largest models, i.e., as long as  ≤ 9. Notably, the rejections are much stronger
for many of the subset regressions, with −values below 1% as long as  ≤ 5. Similar results are
obtained when the encompassing test of Harvey, Leybourne, and Newbold (1998) is adopted.

4.4.1 Recursive selection of hyperparameters

Our results so far show that the choice of hyperparameter can matter a great deal for the per-

formance of many of the combination approaches. It is therefore important to establish whether

such hyperparameters can be chosen recursively, in “real time” so as to deliver good forecasting

performance. To this end, we conduct an experiment that, at each point in time, uses the data

up to this point (but not thereafter) to select the value of the hyper parameter which would have

given the best performance. Figure 9 shows the recursively chosen values for the hyperparameters.

The subset regression approach always chooses  = 2 or  = 3 with  = 2 being chosen almost

exclusively from 1990 onwards. The value for  chosen under the ridge approach fluctuates between

11Very similar results were obtained when we expanded our list of predictor variables to include a liquidity measure

as proposed by Amihud (2002).
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100 and 200. The critical value, , in the bagging approach fluctuates between 1.2 and 2.2, while

 fluctuates between zero and 100 under the BMA approach.

Table 4 shows the resulting forecast performance numbers from this exercise. The univariate

regression approach is very poor by this measure, as are the Lasso, Elastic net and BMA approaches,

all of which generate negative 2−values. Bagging produces an 2 of 0.3%, while the Ridge

approach generates an 2−value around 0.7%. The best approach, however, is the subset regression
method which generates an 2−value of 1.5%. Using the Clark-West −values, the subset, ridge,
and bagging forecasts all improve on the prevailing mean forecast at the 10% significance level.

4.4.2 Performance with BIC weights

Our approach uses equal-weighted combinations of forecasts from models within the same subset.

As discussed in Section 2.5, many alternative weighting schemes have been proposed in the com-

bination literature. One such approach is to simply let each model’s weight be proportional to

the exponential of its Schwarz Information Criterion value. Within each subset, the number of

parameters is the same across models and so the models with high likelihood will obtain larger

weights than models with low likelihood by this procedure.

Table 5 presents results for this combination scheme. For direct comparison, we also show

results for the equal-weighted subset combination. As can be seen, there is evidence of slight

improvements in the out-of-sample 2 values for some subsets, but the values are very similar

under the two combination schemes. This suggests that although minor improvements might be

achievable by straying away from equal-weights, the convenience and simplicity of this weighting

scheme justifies its use in our approach.

4.5 Economic Value of Forecasts

To assess the economic value of our return forecasts, we consider the value of the predictions from

the perspective of a mean-variance investor who chooses portfolio weights to maximize expected

utility subject to the constraint that the weight on stocks lies in the interval [0 15], thus ruling

out short sales and leverage above 50%.

Specifically, we assume that the investor optimally allocates wealth to the aggregate stock mar-

ket given estimates of the first two conditional moments of the return distribution, [+1]− 

+1

and [+1], where +1 is the market return and 

+1 is the risk-free rate (T-bill rate). Under

mean-variance preferences, this gives rise to an optimal allocation to stocks

∗ =
[+1]− 


+1

[+1]
 (20)

where  captures the investor’s risk aversion. We set  = 3 in our analysis, similar to the value

adopted in finance studies. Following standard methods in the literature on volatility modeling, we

use a GARCH(1,1) specification to capture time-variation in volatility, [+1], but results based

on a realized volatility measure are very similar. Since our focus is on predicting mean returns, we

keep the volatility specification constant across all models.

The investor’s ex-post realized utility is

+1 = +1 + ∗ (+1 − +1)− 05∗2  +1 (21)

19



Finally, we compare the investor’s average utility, ̄ = 1
−1

P−1
=1 + under the modeling ap-

proaches that allow for time-varying expected returns against the corresponding value under the

benchmark prevailing mean model. We report results in the form of the annualized certainty equiv-

alent return (CER), i.e., the return which would leave an investor indifferent between using the

prevailing mean forecasts versus the forecasts produced by one of the other approaches. Positive

values indicate that the prevailing mean method underperforms, while negative values indicate that

it performs better than the alternative forecasts.

Table 3 shows that the better statistical performance of the subset and ridge regression methods

translate into positive CER values. For the subset regressions with  = 2 or 3 predictors, a CER

value around 2% is achieved, whereas for the ridge regressions, values around 1.5-1.7% are achieved

for the largest values of . Interestingly, the BMA approach delivers consistently good performance

on this criterion, always generating higher CER values than the prevailing mean model.

Moreover, Table 4 shows that when the methods are implemented recursively, the prevailing

mean approach delivers higher average utility under the univariate, Lasso and Elastic Net meth-

ods. Conversely, according to this utility-based approach, the bagging and BMA methods deliver

CER values around 0.5% higher than the prevailing mean, while the ridge and subset regression

approaches better the prevailing mean by more than one percent per annum.

5 Conclusion

We propose a new forecast combination approach that averages forecasts across complete sub-

set regressions with the same number of predictor variables and thus the same degree of model

complexity. In many forecasting situations the trade-off between model complexity and model fit

is such that subset combinations perform well for a relatively small number of included predic-

tors. Moreover, we find that subset regression combinations often can do better than the simple

equal-weighted combinations which include all models, small and large, and hence do not penalize

sufficiently for including variables with weak predictive power. In many cases subset regression

combinations amount to a form of shrinkage, but one that is more general than the conventional

variable-by-variable shrinkage implied by ridge regression.

Empirically in an analysis of U.S. stock returns, we find that the subset regression approach

appears to perform quite well when compared to competing approaches such as ridge regression,

bagging, Lasso or Bayesian Model Averaging.

6 Appendix

This appendix provides details of the technical results in the paper.
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6.1 Proof of Theorem 1

Proof. The proof follows from aggregating over the finite number  of subset regression esti-

mators ̂ = (
0


0)
−(0

0) = (0Σ)
−
(0Σ)̂ + (1). First, note that

̂ = (0
0)

−(0
0)

= (0
0)

−(0
0)̂

=
¡
0Σ

¢−
(0Σ)̂ +

h
(0

0)
−(0

0)− ¡0Σ¢− (0Σ)i ̂ 
Since ̂ →  and −1 0 → Σ , we have
(0

0)
−(0

0)− ¡0Σ¢− (0Σ) = (0
−1 0)

−(0Σ)−
¡
0Σ

¢−
(0Σ) + (1)

=
h
(0

−1 0)
− − ¡0Σ¢−i (0Σ) + (1)

0
−1 0 can be rearranged so that the upper ×  block is −1∗0∗ where ∗ contains the

 regressors included in the  regression. Since −1 0 → Σ  then −1∗0∗ → Σ∗ (which

is the variance covariance matrix of the included regressors) by the definition of convergence in

probability for matrices. Rearranging the term (0
−1 0)

−− (0Σ)− in this way yields an
upper  ×  block that is (1) with the remaining blocks equal to zero. The final regressor is a

sum over these individual regressors, yielding the result.

6.2 Proof of Theorem 2

Proof. From the results of Theorem 1, we have

−2 
h
 (̂ − 0)

00 (̂ − 0)
i
= −2 

h
 (̂ − 0)

0Σ(̂ − 0)
i

+−2 
h
 (̂ − 0)

0Λ0(0 −Σ)Λ(̂ − 0)
i

+(1)

= −2 
h
 (̂ − 0)

0Σ(̂ − 0)
i
+ (1)

where the second term is zero by the LIE as we assume [(̂−0)2| ] = [(̂−0)2] and
[

0
 −Σ ] = 0

Now

 12−1 Σ
12
 (̂ − 0) =  12−1 Λ(̂ − 0) +  12−1 (Λ− )0 + (1)

=  12−1 Λ(̂ − 0) + (Λ− )+ (1)

and so

−2 
h
 (̂ − 0)

0Σ(̂ − 0)
i
= −2 

h
 (̂ − 0)

0Λ0ΣΛ(̂ − 0)
i

+0(Λ− )0Σ(Λ− )

+20(Λ− )0ΣΛ
³
−1

h
 12(̂ − )

i´
+ (1)

Since  12(̂−)→ (0Σ), the third term is zero in large enough samples and 
−2
  (̂−

0)
0Λ0ΣΛ(̂ − 0)→  0Λ0ΣΛ with  ∼ (0Σ) and  [ 0Λ0ΣΛ] =

P
=1  

21



References

[1] Aiolfi, M. and C. A. Favero, 2003, Model uncertainty: thick modelling and the predictability

of stock returns. Journal of Forecasting 24, 233-254.

[2] Amihud, Y., 2002, Illiquidity and Stock Returns: Cross-section and Time-Series Effects. Jour-

nal of Financial Markets 5, 31-56.

[3] Avramov, D., 2002, Stock return predictability and model uncertainty. Journal of Financial

Economics 64, 423—458.

[4] Bates, J.M., Granger, C.W.J., 1969, The combination of forecasts. Operations Research Quar-

terly 20, 451—468.

[5] Billio, M., Casarin, R., Ravazzolo, F. and H.K. van Dijk, 2012, Combining Predictive Density

Using Bayesian Filtering with Applications to US Economics Data. Ca’ Foscari University of

Venice working paper No. 16.

[6] Breiman, L., 1996, Bagging predictors. Machine Learning 36, 105-139.

[7] Campbell, J.Y., and Thompson, 2008, Predicting the equity premium out of sample: can

anything beat the historical average? Review of Financial Studies 21, 1201-2355.

[8] Clark, T.E., and K.D. West, 2007, Approximately normal estimator for equal predictive accu-

racy in nested models. Journal of Econometrics 127, 291-311.

[9] Clemen, R.T., 1989, Combining forecasts: A review and annotated bibliography. International

Journal of Forecasting 5, 559-581.

[10] Cremers, K., 2002. Stock return predictability: A Bayesian Model Selection perspective. Re-

view of Financial Studies 15, 1223—1249.

[11] Dangl, T., Halling, M., 2012. Predictive regressions with time-varying coefficients. Journal of

Financial Economics 106, 157-181.

[12] Diebold, F.X., 2012, Comparing Predictive Accuracy, Twenty Years Later: A Personal Per-

spective on the Use and Abuse of Diebold-Mariano Tests. Manuscript, University of Pennsyl-

vania.

[13] Fernandez, C., E. Ley and F.J.J. Steel, 2001a, Benchmark Priors for Bayesian Model Averag-

ing. Journal of Econometrics 100, 381-427.

[14] Fernandez, C., E. Ley and F.J.J. Steel, 2001b, Model Uncertainty in Cross-Country Growth

Regressions. Journal of Applied Econometrics 16, 563-576.

[15] Geweke, J. and G. Amisano, 2011, Optimal Prediction Pools, Journal of Econometrics 164,

130-141.

[16] Goyal, A., and I. Welch, 2008, A comprehensive look at the empirical performance of equity

premium prediction, Review of Financial Studies 21, 1455-1508

22



[17] Groen, J.J., Paap, R., and F. Ravazzolo, 2012, Real-time Inflation Forecasting in a Changing

World, Journal of Business and Economic Statistics, forthcoming.

[18] Hans, C., Dobra, A., and West, M., 2007, Shotgun Stochastic Search for Large p Regression,

Journal of American Statistical Association 478, 507—516.

[19] Griffin, J.E. and M. Kalli, Time-varying Sparsity in Dynamic Regression Models.

[20] Harvey, D.I., S.J. Leybourne, and P. Newbold 1998, Tests for forecast encompassing, Journal

of Business and Economic Statistics 16, 254-259.

[21] Hoerl, A.E., and R.W. Kennard, 1970, Ridge regression: Biased estimation for Nonorthogonal

Problems, Technometrics 12, 55-67.

[22] Inoue, A., and L. Killian, 2008, How useful is bagging in forecasting economic time series?

A case study of US consumer price inflation. Journal of the American Statistical Association

103, 511-522.

[23] Koop, G., 2003, Bayesian Econometrics, NewYork: John Wiley.

[24] Koop, G. and D. Korobilis, 2012, Forecasting Inflation using Dynamic Model Averaging. In-

ternational Economic Review 53(3), 867-886.

[25] Korobilis, D., 2013, Hierarchical Shrinkage Priors for Dynamic Regressions with Many Predic-

tors. International Journal of Forecasting 29, 43-59.

[26] Lamnisos, D., J.E. Griffin, and M.F.J. Steel, 2012, Adaptive Monte Carlo for Bayesian Vari-

able Selection in Regression Models. Forthcoming in Journal of Computational and Graphical

Statistics.

[27] Ley, E. and M.F.J. Steel, 2009, On the Effect of Prior Assumptions in Bayesian Model Aver-

aging with Applications to Growth Regression. Journal of Applied Econometrics 24, 651-674.

[28] Ley, E. and M.F.J. Steel, 2012, Mixtures of g-Priors for Bayesian Model Averaging with

Economic Applications. Journal of Econometrics, forthcoming.

[29] Liang, H., G. Zou, A.T.K. Wan, and X. Zhang, 2011, Optimal Weight Choice for Frequentist

Model Average Estimators, Journal of the American Statistical Association 106, 1053-1066.

[30] Pettenuzzo, D., and A. Timmermann, 2011, Predictability of Stock Returns and Asset Allo-

cation under Structural Breaks. Journal of Econometrics 164, 60-78.

[31] Politis, D., and J.P. Romano, 1992, A circular block-resampling procedure for stationary data,

in Exploring the limits of bootstrap, New York: John Wiley, 263-270

[32] Politis, D., and H. White, 2004, Automatic block-length selection for the dependent bootstrap,

Econometric Reviews 23, 53-70.

[33] Raftery, A., D. Madigan, and J. Hoeting, 1997, Bayesian model averaging for linear regression

models. Journal of the American Statistical Association 97, 179-191.

23



[34] Rapach, D.E., J.K. Strauss, and G. Zhou, 2010, Out-of-sample equity premium prediction:

Combination forecasts and links to the real economy. Review of Financial Studies 23, 821-862.

[35] Sisson, S.A., 2005, Transdimensional Markov chains: A decade of progress and future perspec-

tives. Journal of American Statistical Association 100, 1077—1089.

[36] Stock, J., and M.W. Watson, 2006, Forecasting with many predictors. Pages 515-554 in Elliott,

G., C.W.J. Granger, and A. Timmermann (eds.) Handbook of Economic Forecasting. North

Holland.

[37] Tibshirani, R., 1996, Regression shrinkage and selection via the Lasso. Journal of the Royal

Statistical Society B 58, 267-288.

[38] White, H., 2000, Asymptotic Theory for Econometricians, revised edition. Academic Press,

San Diego.

[39] Zellner, A., 1986, On Assessing Prior Distributions and Bayesian Regression Analysis with

g-prior Distributions. In: Goel, P.K., Zellner, A. (Eds.), Bayesian Inference and Decision

Techniques: Essays in Honour of Bruno de Finetti. North-Holland, Amsterdam, p. 233—243.

[40] Zou, H., 2006, The Adaptive Lasso and Its Oracle Properties. Journal of the American Statis-

tical Association 101, 1418-1429.

[41] Zou, H. and T. Hastie, 2005, Regularization and Variable Selection via the Elastic Net. Journal

of the Royal Statistical Society: Series B, 67, 301-320.

[42] Zou, H. and H.H. Zhang, 2009, On the Adaptive Elastic-Net with a Diverging Number of

Parameters, Annals of Statistics 37, 1733-1751

24



Figure 1: Degree of shrinkage as a function of k (the number of included predictors) and K (the total
number of all predictors) assuming a diagonal covariance matrix.
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Figure 2: Expected loss for different values of the local-to-zero parameters (b) for Σ = I (left) and
Σ = Σ̂X(right)
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Figure 3: Relative performance of OLS versus subset regression. The figure shows the MSE loss
under subset regression relative to OLS (i.e. MSEsubset/MSEols) as a function of ρ, the correlation
between predictors, k, the number of included predictors, and K, the total number of predictors. Values
below unity show that the subset regression risk is lower than the OLS risk, whereas values above unity
indicate that OLS is better.
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Figure 4: Relative performance of ridge versus subset regression. This figure shows min(0,MSEridge-
MSEsubset) as a function of ρ, the correlation between the predictor variables on the x-axis, and γ, the
shrinkage parameter used by the ridge approach on the y-axis. Dark red color shows areas where the
subset regression produces a lower MSE than the ridge approach, while yellow and blue colors indicate
areas where the subset approach produces the highest MSE values. Each box corresponds to a different
value of k, the number of predictors included in the forecast model. The graph assumes that b is a
vector of ones and K=8.
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Figure 5: Out-of-sample forecasts of monthly stock returns for different k-variate subset combinations
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Figure 6: Bias-Variance trade-off. Each blue circle represents a single regression model, grouped
according to the number of predictors the model contains. Green circles represent average values
computed across all models with a given number of predictors, k, i.e., for a given subset. The horizontal
green line shows the average performance computed across all 4096 models while the red dotted line
refers to the performance of the equal-weighted forecast combination based on all models. The red line
tracks the combination of the k-variate models. The best and worst univariate models are displayed as
a text string; AIC and BIC refer to the models recursively selected by these information criteria. The
bottom figure displays the scatter plot of the squared bias against the variance for each of the k-variate
subset combinations (with k denoted in red) as well as for the individual univariate models.
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Figure 7: Out-of-sample forecast performance. Each blue circle represents a single regression model,
grouped according to the number of predictors the model contains. For a given value of k, the number
of possible k-variate models,

(

12
k

)

= 12!
k!(12−k)! , is reported on the upper x-axes at the top of the diagram.

Green circles represent average values computed across all models with a given number of predictors, k.
The horizontal green line shows the average performance computed across all 4096 models while the red
dotted line refers to the performance of the equal-weighted forecast combination based on all models.
The red line tracks the subset combination of the k-variate models. The best and worst univariate
models are displayed as text strings above k = 1; AIC and BIC refer to the models recursively selected
by these information criteria.
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Figure 8: Performance of pools of randomly selected models. At each point in time, n models are
randomly selected (without replacement), their forecasts pooled, and the forecast performance recorded.
This procedure is repeated 1,000 times. The red line tracks the median value across these trials. For
comparison, the green line shows the performance of the combination of all 4,096 models.
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Figure 9: Recursive choice of parameter values. For each approach the graphs shows the value of the
design parameter that, at each point in time, gets selected based on its recursive performance evaluated
up to that point in time. Parameter selection is performed from the discrete grid of values described
in the text of the paper.
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Table 1: Monte Carlo Simulation Results. This table reports the R2 from a linear prediction model yt+1 = x′
tβ+ ǫt+1, with X containing eight predictors.

The X-variables and ǫ are assumed to be normally distributed and i.i.d., while βi =
σǫ√
T
. The covariance matrix of the predictor variables has ones on the

diagonal and ρ in all off-diagonal cells, so ρ controls the degree of correlation among the predictors. All forecasting methods only use information up to

time T to produce predictions ŷ
(j)
T+1, where j refers to the simulation number. The prevailing mean forecast is ȳ

(j)
T+1 = 1

T

∑T

t=1 y
(j)
t . The reported out of

sample R2 are computed as R2 = 1−
∑25.000

j=1 (y
(j)
T+1−ŷ

(j)
T+1)

2

∑25.000
j=1 (y

(j)
T+1−ȳ

(j)
T+1)

2
The results are based on 25,000 simulations and a sample size of 100 observations.

b=[1 1 1 1 1 1 1 1 ] b=[1 1 1 1 0 0 0 0]

Subset Regression
R2 R2

k 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
ρ

0 1.608 2.725 3.356 3.498 3.139 2.256 0.816 -1.227 0.690 1.000 0.930 0.474 -0.380 -1.653 -3.378 -5.593
0.25 10.361 14.291 15.782 16.092 15.698 14.796 13.469 11.736 3.213 4.380 4.651 4.364 3.632 2.488 0.926 -1.081
0.5 21.025 24.081 24.618 24.349 23.645 22.606 21.255 19.578 6.334 7.131 7.033 6.495 5.593 4.330 2.685 0.624
0.75 31.821 32.845 32.741 32.275 31.553 30.589 29.374 27.886 10.378 10.579 10.268 9.641 8.710 7.462 5.871 3.903
0.95 37.557 37.475 37.176 36.686 35.994 35.089 33.952 32.556 12.529 12.359 11.921 11.234 10.251 8.979 7.373 5.404

Ridge Regression
R2 R2

γ 30 60 90 120 150 180 210 240 30 60 90 120 150 180 210 240
ρ

0 2.194 3.206 3.486 3.497 3.400 3.261 3.110 2.960 -1.732 -0.262 0.405 0.732 0.897 0.978 1.011 1.018
0.25 14.997 15.827 15.897 15.653 15.267 14.819 14.348 13.875 2.751 3.951 4.393 4.537 4.544 4.483 4.387 4.274
0.5 23.460 24.295 24.309 24.234 23.916 23.520 23.080 22.617 5.373 6.510 6.900 7.028 7.031 6.985 6.899 6.793
0.75 32.238 32.669 32.613 32.381 32.055 31.672 31.253 30.809 9.614 10.295 10.459 10.472 10.420 10.333 10.224 10.100
0.95 37.474 37.429 37.253 37.005 36.704 36.364 35.993 35.599 12.394 12.493 12.495 12.453 12.384 12.298 12.194 12.085

Elastic Net
R2 R2

ψ 1 15 30 45 60 75 90 100 1 15 30 45 60 75 90 100
ρ

0 0.000 2.215 2.082 0.724 -0.299 -0.820 -1.054 -1.128 0.000 0.533 -1.242 -3.254 -4.526 -5.136 -5.401 -5.483
0.25 -0.000 10.814 14.449 13.964 12.929 12.273 11.964 11.865 -0.000 3.632 3.176 1.417 0.094 -0.583 -0.874 -0.966
0.5 0.000 18.317 22.830 22.482 21.229 20.313 19.888 19.746 -0.000 5.892 5.993 3.860 2.145 1.246 0.875 0.758
0.75 -0.000 26.437 31.395 31.278 29.894 28.746 28.215 28.062 -0.000 9.041 9.790 7.871 5.777 4.635 4.176 4.049
0.95 -0.000 32.703 36.968 36.968 35.481 33.763 32.984 32.773 -0.0000 11.365 12.334 11.032 8.243 6.453 5.764 5.594
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b=[1 1 1 1 1 1 1 1 ] b=[1 1 1 1 0 0 0 0]

Lasso
R2 R2

ψ 1 15 30 45 60 75 90 100 1 15 30 45 60 75 90 100
ρ

0 0.000 2.162 1.811 0.536 -0.386 -0.853 -1.064 -1.133 0.000 0.383 -1.500 -3.429 -4.608 -5.164 -5.410 -5.488
0.25 -0.000 10.954 14.176 13.742 12.810 12.225 11.944 11.855 -0.000 3.597 2.934 1.232 0.004 -0.617 -0.887 -0.971
0.5 0.000 18.454 22.492 22.236 21.084 20.257 19.866 19.736 -0.000 5.872 5.721 3.641 2.023 1.203 0.862 0.752
0.75 -0.000 26.743 31.013 30.999 29.710 28.671 28.192 28.052 -0.000 9.049 9.533 7.569 5.600 4.574 4.159 4.041
0.95 -0.000 32.745 36.643 36.745 35.212 33.605 32.930 32.751 -0.000 11.385 12.189 10.704 7.885 6.302 5.725 5.579

Bagging
R2 R2

c 0.38 1.28 1.64 2.24 2.80 3.29 3.89 5.32 0.38 1.28 1.64 2.24 2.80 3.29 3.89 5.32
ρ

0 -1.219 -0.005 0.766 1.694 1.746 1.416 0.901 0.159 -5.558 -3.610 -2.345 -0.607 0.207 0.418 0.375 0.103
0.25 11.729 12.479 12.720 11.855 9.244 6.366 3.320 0.373 -1.061 0.654 1.709 2.690 2.429 1.758 0.927 0.093
0.5 19.581 20.546 20.848 19.403 14.738 9.704 4.771 0.455 0.656 2.689 3.926 4.766 3.852 2.566 1.228 0.102
0.75 27.902 29.061 29.417 26.747 19.246 11.942 5.392 0.428 3.937 6.086 7.364 7.669 5.613 3.451 1.509 0.108
0.95 32.617 34.233 34.550 29.972 19.913 11.435 4.696 0.310 5.467 8.094 9.615 9.596 6.614 3.853 1.579 0.119

Bayesian Model Averaging
R2 R2

m 4 6 2 4
g 1/T 1/K2 1/T 1/K2 1/T 1/K2 1/T 1/K2

θ fix random fix random fix random fix random fix random fix random fix random fix random
ρ

0 1.281 0.932 1.321 1.034 1.111 0.976 1.069 1.077 0.180 0.241 0.154 0.236 -0.225 0.219 -0.336 0.191
0.25 12.445 11.136 12.669 11.540 13.158 11.342 13.245 11.746 2.655 2.152 2.757 2.294 2.926 2.297 2.941 2.431
0.5 21.229 20.392 21.385 20.650 21.607 20.512 21.637 20.762 5.124 4.548 5.228 4.699 5.358 4.691 5.362 4.829
0.75 30.354 29.825 30.434 29.966 30.389 29.884 30.348 30.019 9.095 8.628 9.142 8.733 9.032 8.715 8.977 8.792
0.95 36.586 36.856 36.511 36.817 35.921 36.830 35.761 36.779 11.935 11.635 11.943 11.695 11.635 11.679 11.524 11.693
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Table 2: Monte Carlo Simulation Results for Large values of K. This table reports the out-of-sample
R2−value from a linear prediction model yt+1 = x′

tβ + εt+1, with X containing K = 15 (Panel A) or
K = 20 (Panel B) predictors. The X−variables and ε are assumed to be normally distributed and
i.i.d., while βi = σε/

√
T . The covariance matrix of the predictor variables has ones on the diagonal

and ρ = 0.5 in all off-diagonal cells and T = 100. All forecasting methods only use information up to

time T to produce predictions ŷ
(j)
T+1, where j refers to the simulation number.

Out-of-Sample R2

Panel A Panel B

Hybridization Hybridization
k Complete Subset Random Markov Chain Shot Gun k Random Markov Chain Shot Gun

1 43.409 43.409 43.409 43.409 1 51.909 51.909 51.909
2 50.652 49.757 49.925 49.84 2 62.485 61.362 61.696
3 52.901 52.826 52.733 52.81 3 65.61 65.273 65.217
4 53.768 53.759 53.765 53.023 4 67.657 67.898 66.395
5 54.095 54.056 54.095 53.697 5 68.687 68.761 68.25
6 54.147 54.174 54.178 53.897 6 69.363 69.424 69.507
7 54.03 54.044 53.861 53.536 7 69.839 69.837 70.236
8 53.786 53.801 53.758 53.364 8 70.017 70.003 70.206
9 53.435 53.427 53.258 52.753 9 70.272 70.24 69.832
10 52.982 53.023 52.915 52.857 10 70.37 70.381 70.336
11 52.429 52.454 52.372 52.971 11 70.39 70.291 69.815
12 51.77 51.631 51.545 51.114 12 70.3 70.381 70.3
13 50.999 50.972 50.987 50.362 13 70.221 70.4 70.091
14 50.104 50.104 50.104 50.104 14 70.103 70.073 69.966
15 49.073 49.073 49.073 49.073 15 69.863 69.734 69.63

16 69.565 69.542 69.886
17 69.011 68.992 69.101
18 68.732 68.424 68.934
19 68.332 68.332 68.332
20 67.778 67.778 67.778
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Table 3: Out-of-sample forecast performance for U.S. stock returns. Panel A displays the out-of-sample forecast performance for the univariate models,
Panel B for the Subset Regression, Panel C for the combination of random models (averaged across 1000 draws), Panel D for Ridge Regression, Panel E for
Bagging and Panel F for Bayesian Model Averaging. The p-values associated with the out-of-sample R2 are based on the one-sided test of Clark & West
(2007), and the encompassing test of Harvey, Leybourne & Newbold (1998). All forecasts of quarterly stock returns are computed recursively and cover the
period 1965Q1-2010Q4. Except for the p-values, all entries are in percentages.

Out Of Sample from 1965Q1 to 2010Q4

Panel A: Univariate Panel B: Subset Regression Panel C.1: Lasso
variable MSE oosR2 CER p-valCW p-valHLN k MSE oosR2 CER p-valCW p-valHLN ψ MSE oosR2 CER p-valCW p-valHLN

dp 0.708 0.708 0.247 0.039 0.041 0 0.713 0.000 0.000 1 0.713 0.000 -0.000 0.255 0.256
dy 0.706 0.986 0.405 0.030 0.031 1 0.691 2.991 1.364 0.002 0.002 2 0.712 0.055 0.247 0.392 0.393
ep 0.720 -1.066 -0.016 0.297 0.298 2 0.684 4.097 1.984 0.004 0.004 3 0.712 0.073 0.261 0.370 0.371
bm 0.725 -1.767 -1.272 0.427 0.428 3 0.685 3.923 2.088 0.006 0.007 5 0.717 -0.662 0.401 0.502 0.502
ntis 0.728 -2.115 -0.594 0.630 0.629 4 0.691 2.985 1.897 0.009 0.010 20 0.733 -2.829 0.341 0.140 0.142
tbl 0.731 -2.502 0.164 0.046 0.048 5 0.701 1.643 1.572 0.014 0.015 50 0.782 -9.721 -0.978 0.056 0.058
ltr 0.721 -1.150 -0.100 0.305 0.306 6 0.712 0.073 1.200 0.020 0.021 Panel C.2: Elastic-Net (α=0.5)
tms 0.732 -2.672 -1.305 0.056 0.058 7 0.725 -1.696 0.805 0.027 0.028 1 0.713 0.000 -0.000 0.255 0.256
dfy 0.732 -2.699 -1.119 0.717 0.716 8 0.739 -3.716 0.371 0.035 0.037 2 0.712 0.044 0.197 0.401 0.402
dfr 0.706 0.906 -0.110 0.110 0.112 9 0.756 -6.096 -0.139 0.046 0.047 3 0.711 0.217 0.325 0.301 0.303
infl 0.711 0.192 0.269 0.307 0.308 10 0.777 -8.979 -0.778 0.058 0.059 5 0.714 -0.174 0.454 0.403 0.404
ik 0.696 2.281 1.054 0.010 0.011 11 0.802 -12.535 -1.610 0.072 0.074 20 0.726 -1.891 0.563 0.110 0.112

12 0.833 -16.948 -2.697 0.090 0.092 50 0.780 -9.432 -0.912 0.055 0.056

Panel D: Ridge Regression Panel E: Bagging Panel F: Bayesian Model Averaging
γ MSE oosR2 CER p-valCW p-valHLN c MSE oosR2 CER p-valCW p-valHLN m| g |θ MSE oosR2 CER p-valCW p-valHLN

0.5 0.824 -15.630 -2.254 0.084 0.086 0.3853 0.754 -5.754 -0.948 0.156 0.158 0.1 | 1

n
|fix 0.723 -1.477 0.199 0.495 0.495

1 0.817 -14.671 -1.965 0.080 0.082 0.6745 0.745 -4.557 -0.550 0.137 0.139 0.1 | 1

k2
|fix 0.723 -1.423 0.166 0.519 0.518

2 0.807 -13.268 -1.582 0.074 0.076 1.2816 0.717 -0.613 0.736 0.082 0.084 0.1 | 1 |fix 0.709 0.578 0.389 0.112 0.114
3 0.800 -12.227 -1.322 0.070 0.072 1.4395 0.710 0.379 0.968 0.065 0.067 0.1 | 1

n
|rnd 0.724 -1.601 0.162 0.510 0.510

4 0.794 -11.389 -1.125 0.068 0.070 1.6449 0.705 1.137 1.109 0.055 0.057 0.1 | 1

k2
|rnd 0.723 -1.506 0.134 0.532 0.532

5 0.789 -10.684 -0.965 0.065 0.067 1.96 0.700 1.725 1.131 0.044 0.045 0.1 | 1 |rnd 0.709 0.578 0.390 0.113 0.115
10 0.771 -8.185 -0.426 0.057 0.059 2.2414 0.703 1.368 0.892 0.059 0.061 1 | 1

n
|fix 0.741 -4.029 0.212 0.392 0.393

20 0.750 -5.289 0.177 0.047 0.049 2.5758 0.706 0.979 0.608 0.080 0.082 1 | 1

k2
|fix 0.737 -3.478 0.214 0.401 0.402

50 0.722 -1.314 1.004 0.032 0.034 2.807 0.706 0.945 0.493 0.069 0.071 1 | 1 |fix 0.699 1.882 1.441 0.052 0.054
100 0.704 1.203 1.515 0.024 0.025 3.0233 0.709 0.579 0.324 0.116 0.118 1 | 1

n
|rnd 0.746 -4.686 0.129 0.462 0.462

150 0.697 2.266 1.707 0.020 0.021 3.2905 0.710 0.418 0.203 0.131 0.133 1 | 1

k2
|rnd 0.739 -3.703 0.147 0.464 0.464

200 0.693 2.793 1.778 0.017 0.019 3.4808 0.711 0.222 0.145 0.218 0.219 1 | 1 |rnd 0.703 1.338 1.396 0.072 0.074
3.8906 0.712 0.105 0.058 0.268 0.269
4.4172 0.712 0.072 0.033 0.223 0.224
5.3267 0.713 0.021 0.003 0.349 0.350
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Table 4: Out-of-sample forecast performance with recursively selected model parameters. This table
displays the out-of-sample forecast performance when the model parameters are chosen recursively in a
pseudo out-of-sample experiment with an expanding estimation window. p-values are based on Clark
& West (2007). The forecast evaluation period is 1970Q1-2010Q4. Except for the p-values, all entries
are in percentages.

MSE oosR2 CER p-valCW p-valHLN

Univariate 0.826 -9.805 -2.435 0.740 0.739
Subset 0.741 1.515 1.294 0.074 0.076
Lasso 0.769 -2.137 -0.119 0.407 0.408

Elastic Net 0.787 -4.652 -0.593 0.745 0.743
Ridge 0.747 0.704 1.093 0.076 0.079

Bagging 0.750 0.328 0.712 0.075 0.078
BMA 0.764 -1.570 0.540 0.355 0.356

Table 5: Out-of-sample forecast performance under different weighting schemes. This table displays
the out-of-sample forecast performance of complete subset regressions when models are combined using
equal weights (EW) versus weights that are proportional to the models exponentiated BIC (Bayes
Information Criterion) values. The forecast evaluation period is 1970Q1 2010Q4.

k MSEBW MSEBW oosR2

EW
oosR2

EW

1 0.692 0.691 2.967 2.991
2 0.683 0.684 4.135 4.097
3 0.684 0.685 4.010 3.923
4 0.691 0.691 3.091 2.985
5 0.700 0.701 1.750 1.643
6 0.711 0.712 0.179 0.073
7 0.724 0.725 -1.586 -1.696
8 0.738 0.739 -3.510 -3.716
9 0.755 0.756 -5.975 -6.096
10 0.776 0.777 -8.868 -8.979
11 0.801 0.802 -12.458 -12.535
12 0.833 0.833 -16.948 -16.948
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