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Abstract

This paper characterizes the term structure of risk measures such as Value at Risk (VaR)

and expected shortfall under different econometric approaches including multivariate regime

switching, GARCH-in-mean models with student-t errors, two-component GARCH models

and a non-parametric bootstrap. We show how to derive the risk measures for each of these

models and document large variations in term structures across econometric specifications.

An out-of-sample forecasting experiment applied to stock, bond and cash portfolios suggests

that the best model is asset- and horizon specific but that the bootstrap and regime switching

model are best overall for VaR levels of 5% and 1%, respectively.

Key words: term structure of risk, nonlinear econometric models, simulation methods.

1. Introduction

Quantitative models are now routinely used in risk management and have been the subject of

extensive academic interest as witnessed by the many survey papers and monographs on the topic,

c.f. Duffie and Pan (1997), Manganelli and Engle (2001) and Christoffersen (2003) and papers

such as Britten-Jones and Schaeffer (1999) and Berkowitz and O’Brien (2002). The early literature

was mainly built around volatility models, but subsequent studies have progressed to study risk

∗We thank three anonymous referees and the editor, Frank Diebold, for many comments and suggestions that

helped to significantly improve the paper.
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measures such as Value at Risk (VaR) and expected shortfall.1 Value at Risk is used to monitor

risk exposure for regulatory purposes and also to gauge risk adjusted investment performance.

In a typical portfolio optimization exercise the investor attempts to maximize the expected value

of some objective function subject to a constraint requiring that the (conditional) risk measure

does not exceed a pre-specified level. The risk measure is often calculated under a maintained

econometric model so it is important to use a model that is not misspecified. For example, if risk

is underestimated, there is a higher than expected chance of incurring large losses and regulatory

fines may ensue. Conversely, underestimation of risk leads investors to maintain needlessly large

reserves with an associated increase in their cost of capital.

In this paper we consider the term structures of commonly used risk measures under a range of

econometric specifications including multivariate regime switching, multivariate GARCH-in-mean

models with fat tails, and two-component GARCH models fitted to univariate portfolio return

series. These are highly nonlinear dynamic specifications that account for time-varying mean,

variance and higher order moments, so we propose to use simulation methods to explore their term

structure implications at several horizons. We also study risk under a non-parametric bootstrap.

While most studies on risk modeling have focused on relatively short horizons using high fre-

quency data, as argued by Christoffersen, Diebold and Schuerman (1998), the relevant horizon can

be very long and depends on the economic problem at hand. Our application considers investors’

strategic asset allocation and studies portfolios composed of broadly defined asset classes such as

T-bills (cash), bonds and stocks. We find evidence of large variations both in levels and shapes of

term structures of risk measures across econometric specifications.

The contribution of the paper is three-fold. First, we provide econometric estimates for a

range of econometric models for returns on stock and bond portfolios, using both univariate and

multivariate specifications. Second, we characterize the term structure of risk measures such as

VaR and expected shortfall under each of the econometric models. Despite the popularity of the

included models, to our knowledge the term structure of risk of such models has not previously been

subject to a comparative study such as ours. Third, we analyze the predictive performance of the

econometric models in an out-of-sample experiment. Our results suggest that the best approach

may be asset- and horizon specific and also depends on how far out in the tails risk is measured.

The structure of the paper is as follows. Section 2 introduces the econometric specifications

1Diebold, Gunther and Tay (1998) go one step further and consider models for the entire predictive density.
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and provides empirical estimates. Section 3 characterizes the term structure of VaR and expected

shortfall under the univariate and multivariate models from Section 2. Section 4 provides results

from an out-of-sample forecasting experiment using model-free diagnostic tests. Section 5 concludes.

2. Econometric Specifications

We consider models for an n × 1 vector of asset returns measured in excess of the T-bill rate rf ,
rt = (r1t, ...., rnt)

0. At the most basic level, one has to decide whether to model the multivariate

return dynamics for rt or − if portfolio weights, ω, are fixed − simply study the univariate time
series of portfolio returns, Rt. Univariate models include two-component GARCH specifications

fitted directly to portfolio return series (Engle and Lee (1999)), while multivariate models include

GARCH models (Engle and Kroner (1995)) possibly extended to include time-varying means and

fat-tailed (e.g., student-t) innovations, and regime switching models (e.g. Ang and Bekaert (2002)

and Guidolin and Timmermann (2003)). These models are designed to capture persistence in volatil-

ity as well as fat tails (outliers), c.f. Chernov, Gallant, Ghysels and Tauchen (2003). The models

also differ in how they accommodate time-variations in expected means (e.g., through GARCH-in-

mean effects or through regime-dependent intercepts). As argued by Christoffersen (2003), this can

have sizeable consequences for risk measures, particularly at long horizons.

In the following we describe the econometric specifications considered in our study. A natural

multivariate benchmark model is the Gaussian specification

rt = µ+

pX
j=1

Ajrt−j +ψεt, εt = (ε1,t, ..., εn,t)
0 ∼ IIN(0, In). (1)

ψ is the Cholesky factor of the covariance matrix, i.e. E[εtε
0
t] = ψ0ψ = Ω.

Multivariate regime switching models let the mean, covariance and any serial correlations in

returns be driven by a common state variable, St, that takes integer values between 1 and k:

rt = µst +

pX
j=1

Aj,strt−j +ψstεt. (2)

Here µst = (µ1st , ...., µnst)
0 is an n × 1 vector of mean returns in state st, Aj,st is the n × n

matrix of autoregressive coefficients associated with lag j ≥ 1 in state st, and εt ∼ IIN(0, In)

follows a multivariate normal distribution with zero mean. ψst is now a state-dependent Choleski

factorization of the covariance matrix Ωst , i.e. ψ
0
stψst = Ωst. Regime switches in the state variable,
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St, are assumed to be governed by the transition probability matrix, P, with elements

Pr(st = i|st−1 = j) = pji, i, j = 1, .., k. (3)

Each regime is thus the realization of a first-order Markov chain with constant transition prob-

abilities. This model is quite general and lets asset returns have different means, variances and

correlations in different states, allowing risk measures to vary considerably across states.

Our third multivariate specification is a constant correlation GARCH(1,1)-M model:

ri,t = ξi +
nX
j=1

nX
k≥j

λi,jkσ
2
jk,t + ηi,t,

σ2ii,t = αii + βi0η
2
i,t−1 + βi1σ

2
ii,t−1, i = 1, ..., n (4)

σ2ij,t = ρijσii,t−1σjj,t−1, i, j = 1, ..., n, i 6= j.
Here ηt = (η1,t, η2,t, .., ηn,t)

0 are heteroskedastic return innovations defined as ηt = ψtεt, and εt =

(ε1,t, ε2,t, ..., εn,t)
0 ∼ IID(0, In). ψ0

tψt = Ωt = [σ2ij,t] is the conditional covariance matrix and ρij

is the correlation coefficient which is assumed to be constant, c.f. Bollerslev (1990). This model

captures both first and second moment dynamics. As established by the recent empirical finance

literature, volatility models generally need two components, one to capture persistence in volatility

and another one to generate fat tails. While a regime switching model generates persistent volatility

and fat tails through the switching mechanism, a Gaussian GARCH(1,1)-M model might be too

restrictive to produce tails that are fat enough. To capture fat tails we therefore consider student-t

innovations.2

f(εt; v) =
Γ ((v + 2)/2)

(πv)Γ (v/2)

µ
1 +

1

v
ε0tεt

¶− v+2
2

v > 2. (5)

Our final parametric model applies to the univariate dynamics of portfolio returns Rt using the

two component GARCH(1,1) model proposed by Engle and Lee (1999), where a second component

governs changes to the long-run volatility and accommodates thick tails. Moreover, the model is

naturally extended to accommodate leverage effects allowing negative portfolio return shocks to

have a larger impact on volatility than positive shocks, c.f. Glosten et al. (1993):

Rt = ξ + λσ2t + ηt

σ2t = qt + β0
¡
η2t−1 − qt−1

¢
+ β1

¡
σ2t−1 − qt−1

¢
+ β2

µ
Dt−1η2t−1 −

1

2
qt−1

¶
, (6)

qt = ω + ρqt−1 + φ
¡
η2t−1 − qt−1

¢
.

2Γ(·) is the Gamma function and v is the degree of freedom parameter. We thank an anonymous referee for

pointing out the suitability of a fat-tailed bivariate GARCH for benchmarking in our application.
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Here ηt = σtεt, and εt ∼ IIN(0, 1), Dt = 1 if ηt < 0 and Dt = 0 if ηt ≥ 0. Positive innovations
have a marginal effect of β0 on the conditional volatility, while negative innovations have an effect of

β0+β2.
3 qt is the permanent volatility component, while departures from the permanent component,

η2t−1 and σ2t−1, determine short-run volatility. Since no multivariate generalizations of (6) have been

proposed, we estimate this model directly to the univariate portfolio return series, Rt.

We also consider risk measures computed using a nonparametric block bootstrap. This is done

by resampling the sample indices {1, 2, ..., T} where T is the sample size and the block length L
is set equal to the forecast/investment horizon, h. Risk measures are then computed as averages

across Q bootstrap resamples.

2.1. Data

Our application studies portfolios comprising three major US asset classes, namely stocks, bonds

and T-bills. Decisions on how much to invest in such broadly defined asset classes are commonly

referred to as strategic asset allocation and have recently been the subject of considerable interest

(e.g. Brennan, Schwarz and Lagnado (1997) and Campbell and Viceira (2001)). Our focus on a

small set of asset classes has the further advantage that it poses a manageable problem for the

econometric analysis and for computations of term structures of risk at several horizons.

Our analysis uses monthly returns on the value-weighted portfolio of all common stocks listed

on the NYSE. We also consider the return on a portfolio of 10-year Treasury bonds. Returns are

calculated applying the standard continuous compounding formula, r̃t ≡ lnVt − lnVt−1, where Vt is
the asset price, inclusive of any cash distributions (dividends, coupons) between time t − 1 and t.
To obtain excess returns, rt, we subtract the 30-day T-bill rate (r

f
t ) from these returns, rt ≡ r̃t− rft .

All data is obtained from the Center for Research in Security Prices. Hence the multivariate models

focus on the bivariate dynamics in stock and bond excess returns, taking the risk-free rate as given.

Our sample is January 1954 - December 1999, a total of 552 observations.

2.2. Parameter Estimates

To determine the design parameters of the regime switching model (2), we studied a range of bivari-

ate specifications with different numbers of states, k, and lag order, p. We found no evidence of any

3Leverage effects might also appear in the permanent component, but Engle and Lee (1999) and others have

generally found that they are weaker than those in the transitory component.
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significant autoregressive terms but strongly rejected the null of a single state using Davies’ (1977)

upper bound for the critical values. The Hannan-Quinn and BIC information criteria supported a

four-state specification without lagged returns (k = 4, p = 0).4

The parameter estimates for the four-state regime switching model fitted to stock and bond

excess returns, rt+1 = (rstockt+1 rbondt+1 )
0, were as follows (with one, two and three stars indicating

significance at the 10%, 5% and 1% critical levels, respectively):5

State 1: rt+1 =

 −0.0845(0.0202)

−0.0015
(0.0078)

+ εt+1 Ω̂1 =

 0.0539∗∗∗ ·
−0.8513∗∗∗ 0.0242∗∗∗



State 2: rt+1 =

 0.0091
(0.0021)

−0.0003
(0.0009)

+ εt+1 Ω̂2 =

 0.0359∗∗∗ ·
0.2008∗∗ 0.0164∗∗∗



State 3: rt+1 =

 0.0126(0.0046)

0.0001
(0.0006)

+ εt+1 Ω̂3 =

 0.0289∗∗∗ ·
−0.0288 0.0032∗∗



State 4: rt+1 =

 0.0099
(0.0047)

−0.0044
(0.0032)

+ εt+1 Ω̂4 =

 0.0479∗∗∗ ·
0.4431∗∗∗ 0.0336∗∗∗



P̂ =


0.4940∗∗ 0.0215 0.0605∗ 0.4239∗∗

0.0181 0.9767∗∗∗ 0.0000 0.0053

0.0000 0.0266 0.9734∗∗∗ 0.0000

0.0148 0.0563∗∗ 0.0000 0.9290∗∗∗

 .

There are significant time-variations in the first and second moments of the joint distribution of

stock and bond returns across the four regimes. Mean excess returns on stocks vary from 1.3% per

month - almost double their unconditional mean - in the third state to minus 8.5% per month in

4Both criteria have been used in the literature on nonlinear econometric modeling, c.f. Sin and White (1996). As

shown by Hannan (1987), the Hannan-Quinn criterion is strongly consistent. Following Kilian and Ivanov (2001) we

also adopted the Akaike criterion which selected a very large model with sixty parameters and regimes with very

small ergodic state probabilities.
5Estimates on the diagonal of Ω are monthly standard deviations, while off-diagonal estimates are correlation

coefficients. The MLE estimates for the IID Gaussian model are 0.0067 and 0.0008 for the means, 0.0424 and 0.0224

for the volatilities, and 0.2386 for the correlation coefficient.
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the first state. Interestingly, all four estimates of mean stock returns are statistically significant at

conventional levels. Less variation is observed in the mean returns of long-term bonds and none of

the mean estimates is significant for this asset class.

Turning to the volatility and correlation parameters, stock return volatility varies between 2.9%

and almost 5.4% per month, with state one displaying the highest value. Bond return volatility

varies even more across states, going from a very low value of 0.3% per month in state three to 3.4%

per month in state four. Correlations between stock and bond returns go from -0.85 in state one

to 0.44 in state four. In state three stock and bond returns are essentially uncorrelated. Such large

differences in correlations across states are important for risk management purposes and support

using a multi-state model.

The transition probability estimates and plots of the smoothed state probabilities revealed that

state one is a transitory state with relatively isolated spikes lasting on average around two months

and capturing high volatility episodes that occur in only 3% of the sample. States two and four, on

the other hand are highly persistent and capture 67% and 23% of the sample, respectively. State

three largely identifies a single historical episode from 1962-1966, although its ergodic probability

is 7%. The fact that their overall ergodic probabilities are only 10% does not mean that states one

and three are unimportant for risk management and modeling purposes, however. Clearly the left

tail of the distribution of stock and bond returns is significantly affected particularly by state one

and the possibility of shifting to this state even if starting from another state.6

Turning to the GARCH(1,1)-M specification (4), we obtained the following parameter estimates

by MLE:

rt =

 0.1378
(0.0091)

−0.0192
(0.0025)

+
 1.4846

(0.0265)
−87.4217
(0.0352)

−250.6173
(0.2053)

−2.3630
(0.0241)

104.5330
(0.2067)

0.0012
(0.2351)




σ211,t

σ212,t

σ222,t

+ ηt,

Ω̂t =

 0.0011(0.0054)
+0.0502
(0.0082)

η21,t−1+0.4881
(0.0582)

σ211,t−1 ·
0.2525
(0.0221)

×σ11,t−1 × σ22,t−1 0.0005
(0.0001)

+0.0140
(0.0402)

η22,t−1+0.4595
(0.0390)

σ222,t−1

 v̂ =6.8721
(0.0208)

.

The implied persistence of volatility is moderate for both asset classes. Stock return volatility

6Guidolin and Timmermann (2003) model the non-linear dynamics of a larger asset menu including size-sorted

equity portfolios comprising small and large stocks. They also find evidence that four states are needed to model the

dynamics in the joint returns on stock and bond portfolios but stop short of investigating the implications of this for

risk measures or predictive performance.
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scarcely affects mean returns on either asset class while bond return volatility has a considerable

effect on the equity premium. The estimate of v indicates very fat tails. Interestingly, LR tests

comparing either a Gaussian GARCH(1,1) without ‘in-mean’ effects or a Gaussian GARCH(1,1)-M

against the more general specification (4) strongly rejected the simpler models so both time-varying

mean effects and fat tails appear to be empirically important.

Turning to the univariate GARCH-components models, we used MLE to fit (6) to five portfolios

representing different levels of aggressiveness in the asset allocation: (i) 50% stocks and 50% bonds,

(ii) 50% bonds and 50% T-bills, (iii) 100% bonds, (iv) 50% stocks and 50% T-bills and (v) 100%

stocks. The results were as follows:

50% bonds 100% 50% stocks 50% stocks 100%

50% T-bills bonds 50% T-bills 50% bonds stocks

ξ −0.087
(0.0005)

−.0008
(.0009)

.0012
(.0018)

.0016
(.0019)

.0024
(.0035)

λ 5.6509
(5.6161)

6.2581
(2.6781)

5.0245
(4.1948)

3.9601
(2.9876)

2.4627
(2.0053)

β0 .0055
(0.0400)

.0084
(.0418)

.2747
(.0356)

.1557
(.4180)

.2760
(.0169)

β1 .5168
(.3577)

.4896
(.4165)

.5550
(.1424)

.4334
(.1852)

.5464
(.1377)

β2 −.0049
(.0725)

−.0024
(.0736)

.2707
(.0087)

.3178
(.0886)

.2769
(.0556)

ω .0004
(.0007)

.0011
(.0024)

.0004
(.0001)

.0007
(.0003)

.0018
(.0003)

ρ .9975
().0020

.9976
(.0048)

.9347
(.0310)

.9718
(.0183)

.9378
(.0318)

φ .1538
(.0239)

.1515
(.0256)

.1285
(.0245)

.1058
(.0277)

.1299
(.0184)

Most of the estimated coefficients in the variance equations are highly significant. Leverage

effects are not important for the bond portfolios but appear to be strong for portfolios involving

stocks with β2 > 0. Bad news therefore have a stronger impact on volatility than good news. Long-

run volatility, qt, is quite persistent, especially for bonds where ρ̂ is close to 1. Interestingly, we

find a significant feedback from volatility to mean excess returns for only one of the five portfolios

(100% bonds), although the estimated coefficient is small in economic terms.
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3. Term Structures of Risk Measures

It is important to study how risk measures vary across different horizons. For example, the entire

term structure of VaR estimates is relevant even to long-term risk managers who may choose to

adjust portfolio weights significantly following changes to short-term VaR estimates. Solutions to

the dynamic programming problem faced by a risk manager with a long investment (planning)

horizon will also reflect VaR estimates at short or intermediate (decision) horizons provided that

portfolio weights can be rebalanced at interim points.

The econometric models fitted in the previous section provide rich dynamic specifications for

asset returns. We use these models to study the term structure of risk measures in common use such

as Value at Risk and expected shortfall. Let the weight on stocks and bonds be ω = (ωstock,ωbond)0.

Then the cumulated h−period gross return on the portfolio comprising stocks, bonds and T-bills
from period t to period t+ h is

Rt:t+h = (1− ω0ι2) exp
¡
hrf
¢
+ ω0 exp

¡
rt:t+h + hr

fι2
¢
, (7)

where rf is the risk-free rate, rt:t+h ≡
Ph

i=1 rt+i is the (continuously compounded) h-period cumu-

lated excess returns and ι2 is a 2× 1 vector of ones.7

3.1. Value at Risk

Value at Risk (V aR) at the h-period horizon is simply the α quantile of the conditional probability

distribution of Rt:t+h. Reporting V aR as a positive number representing a loss, we have

Pr(Rt:t+h ≤ −V aRα
t:t+h|Ft) = α, (8)

where Ft is the period-t information set. We follow common practice and assume that Ft = {rj}tj=1
comprises information on past asset returns. For a given asset allocation, ω, the V aR estimate

depends on the horizon, h, the significance level, α, the information set, Ft, and on the econometric
model. As portfolio weights are changed, the V aR estimate also changes.

It is useful to establish how the VaR measure evolves as a function of h under the sim-

ple homoskedastic Gaussian benchmark for portfolio returns, Rt ∼ IIN(µ, σ2). Since Rt:t+h ∼
7We define the exponential of an n × 1 vector as an n × 1 vector that collects the exponentials of each of the

elements of the original vector.
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N(µh, σ2h),

V aRα
t:t+h = −µh− σ

√
hΦ−1(α). (9)

Differentiating with respect to h, we get the first order condition µ+σΦ−1(α)/2
√
h = 0. The horizon

where VaR peaks (assuming a positive mean return, µ) is therefore h∗ = σ2(Φ−1(α))2/4µ. For small

values of h VaR may initially rise, but for longer horizons it will eventually be dominated by the

linear term, µh, and will thus decline provided µ is positive.

3.2. Calculation of VaR

When returns follow one of the nonlinear specifications from Section 2, there are no closed-form

expressions for the VaR. For example, for the regime switching process, the h-step ahead distribution

of portfolio returns conditional on being in state st at time t, P (Rt:t+h|St = st) is not Gaussian

but rather a mixture of k normal distributions.8 In practice, the current state is not observable

and a risk manager will have to rely on the most recent state probability estimates computing

the probability of the time t + h regimes st+h by πst+h|t = πtP
hest+h with πt ≡ [Pr(st = 1|Ft)

Pr(st = 2|Ft) ... Pr(st = k|Ft)] being a row vector of period-t probabilities and es a k × 1 vector
with a 1 in the s−th position and zeros everywhere else.
We first explain our approach to characterize the term structure of risk in the context of the

regime switching model and then show how to adapt the algorithm to the GARCH specifications.

For a given set of portfolio weights, ω, under the regime switching model the conditional c.d.f. of

the single-period portfolio return given the current information, Ft, can be computed as follows:

F (Rt:t+h(ω) ≤ κ|Ft) =
Z
Λ(ω ,κ)


Z λ∗2

−∞

Z λ∗1

−∞

kX
st+h=1

πst+h|t

× φ2

³
Ψ−1st+h

h
rt+h − µst+h

i´
dr1,t+hdr2,t+h

o
· dλ∗

=

Z
Λ(ω,κ)


kX

st+h=1

πst+h|t

Z λ∗2

−∞

Z λ∗1

−∞
φ2(x)dx1dx2

 · dλ∗
=

Z
Λ(ω,κ)

kX
st+h=1

πst+h|tΦ2(λ
∗
1,λ

∗
2;µst+h,ψst+h

) · dλ∗, (10)

8Furthermore, (7) shows that gross portfolio returns are weighted sums of the exponential of (linear transforms

of) continuously compounded returns.
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where Φ2(·;µst+h ,ψst+h
) is the standard bivariate normal c.d.f., φ2(·) is the corresponding bivariate

p.d.f. both depending on the standardized deviations of rt+h from its mean vector, i.e. Ψst+h is the

Choleski factor of the state-dependent covariance matrix such that

Ψst+hΨ
0
st+h

= ψ0
st+h

ψst+h
+
³
M0 − µst+h ⊗ ι0k

´³
M− µ0st+h ⊗ ιk

´
.

In this expression M is defined as (c.f. Timmermann (2000)):

M ≡ [µist ] =


µ11 µ21 · · · µn1

µ12 µ22 µn2
...

...
. . .

µ1k µ2k µnk

 .

Finally λ∗ ≡ [λ∗1 λ∗2]0 ∈ Λ(ω,κ) is a 2× 1 vector function of κ and ω, with the Λ region defined as

Λ(ω,κ) ≡©λ∗ : (1− ω0ι2) exp ¡hrf¢+ ω0 exp
¡
λ∗ + hrfι2

¢ ≤ κ
ª
.

Integrating over the set λ∗ ∈ Λ(ω,κ) is the same as considering all combinations of portfolios with

total returns at or below κ.

While in principle the VaR under regime switching can be computed using (10), in practice it

is difficult to compute the integral over the set Λ(ω,κ), so Monte Carlo simulations appear to be

more attractive, using the following algorithm:

1. For each possible value of the current regime, st = 1, ..., k, simulate Q h−period (vector)
returns {rqt:t+h(st)}Qq=1 from the regime switching model9

rt+τ ,q(st) = µst+τ +ψst+τ ,qεt+τ ,q,

where rqt:t+h(st) ≡
Ph

τ=1 rt+τ ,q(st), εt+τ ,q ∼ IIN(0, In). This step allows for regime switching
at each point in time as governed by the transition matrix, P. For example, starting from

state 1 there is a probability p12 ≡ e01Pe2 of switching to regime 2 between period 1 and 2, a
probability p11 ≡ e01Pe1 of staying in state 1 and so forth.

9rqt:t+h denotes cumulative h−period vector (excess) returns generated by the q−th simulation path,
Ph

τ=1 rt+τ,q,

while rt+τ ,q denotes a vector of (excess) returns for time t + τ generated by the q−th simulation path. Rqt:t+h is
the corresponding h−period portfolio return when the weights ω are fixed. Continuously compounded returns on

individual assets are denoted as lowercase r while portfolio returns are in uppercase R.
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2. Form regime-specific h−period portfolio returns using the portfolio weights ω, Rqt:t+h(ω,st) ≡
(1− ω0ι2) exp

¡
hrf
¢
+ ω0 exp(rqt:t+h(st) + hr

fι2).

3. Combine the simulated h−period portfolio returns {Rqt:t+h(st)}Qq=1using the probability weights
from the vector πt:

Rqt:t+h(ω) =
kX
s=1

(π0tes)R
q
t:t+h(ω,st).

4. Calculate the α percentile, V aRα
t:t+h, of the resulting simulated distribution for multiperiod

portfolio returns, {Rqt:t+h(ω)}Qq=1:

1

Q

QX
q=1

I{Rqt:t+h(ω)≤−V aRα
t:t+h} = α,

where I{Rqt:t+h(ω)≤−V aRα
t:t+h} is an indicator function that equals unity if R

q
t:t+h(ω) ≤ −V aRα

t:t+h.

Since some regimes occur relatively infrequently, we set the number of Monte Carlo simulations

to a relatively large number, Q = 50, 000.

Monte Carlo methods are also employed to calculate VaR when asset returns follow a GARCH

process. For example, under a bivariate GARCH(1,1)-M process, we simply replace the first step

of the algorithm by generating Q h−period returns {rqt:t+h}Qq=1 from a model of the form

rt+τ ,q = ξ + Λvech(Ωt+τ ,q) +ψt+τ ,qεt+τ ,q

Ωt+τ ,q =

 b01 + b11η21,t+τ−1,q + b12σ211,t+τ−1,q ·
ρσ11,t+τ−1,qσ22,t+τ−1,q b02 + b12η

2
1,t+τ−1,q + b22σ

2
22,t+τ−1,q


where ψ0

t+τ ,qψt+τ ,q = Ωt+τ ,q, r
q
t:t+h ≡

Ph
τ=1 rt+τ ,q, εt+τ ,q is drawn from the appropriate IID distribu-

tion (e.g. a bivariate student-t). Simulations from univariate component GARCH models follows

similar steps. Unknown parameter values are replaced by their estimates from Section 2.

3.3. Empirical Results

For each of the econometric methods, Figure 1 shows unconditional VaR term structures at the

1% level for horizons extending from a single month to two years. These plots assume that the

initial state is drawn from the ergodic distribution for the model under consideration, i.e. using

the ergodic state probabilities (π̄ = π̄P) for the Markov switching model and average variance as
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initial values for the GARCH models. We use the convention of reporting V aR as a positive number

representing a loss. Several interesting findings emerge. First, there is very significant variation in

the VaR estimates across the models included in this study, particularly at the longer horizons. For

example, for the fifty-fifty stock-bond portfolio the 1% VaR ranges from 5% to 7% at the one month

horizon and from 8% to 28% at the 24 month horizon.

At the longest horizons the bivariate GARCH(1,1)-M model with student-t errors leads to the

highest estimates of VaR for most of the portfolios. The smallest VaR estimates are generally

produced by the Gaussian IID model although lower estimates are implied by the Markov switching

model fitted to the bond portfolios. The GARCH components models generate VaR term structures

with steep slopes at short horizons that peak after 10 to 16 months and produce the highest VaR

at short horizons for most portfolios. The non-parametric bootstrap VaR estimates generally lie in

between the parametric models.

The ordering of the VaR estimates across different methods is far from invariant to the forecast

horizon. For example, for the pure stock and mixed stock and T-bill portfolios the Markov switching

model and GARCH(1,1)-M model produce relatively low VaR estimates at the shortest one month

horizon, yet these models also produce the highest VaR estimates at the longest two-year horizon.

In practice interest lies in calculating conditional term structures given current information. To

shed light on the conditional term structures implied by our parametric models, Figure 2 plots

VaR term structures starting plus or minus one standard deviation away from the average volatility

level (dotted lines) in the case of the GARCH models, or from each of the four states in the

case of the Markov switching model. This figure shows that the changes in VaR levels and term

structure shapes across the four regimes capture wider variation than that found by varying the

initial volatility level for the GARCH models. VaR estimates for the stock portfolios are generally

very high when starting from the low-mean, high-volatility state (state 1) and conversely very low

and flat when starting from the third state with high mean returns. Conditional VaR estimates

computed under the Markov switching model are relatively conservative for bond portfolios when

starting from the regimes with low bond volatility (regimes two and three).

Notice that the initial state matters significantly for the VaR estimates even at the longest

horizons considered here. When h→∞, rt+h must come from the ergodic distribution characterized
by the state probabilities π̄ = π̄P. However, the VaR depends on the cumulated return,

Ph
τ=1 rt+τ ,

and thus reflects the initial state. One should therefore expect the lines starting from the four
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states in Figure 2 to become parallel when h → ∞, since most of the returns contributing to the
cumulants come from very similar distributions at longer horizons.

3.4. Expected shortfall

Expected shortfall is another commonly reported measure of risk. It is defined as the expected loss

conditional on the (cumulated) loss exceeding the VaR. At the h-period horizon, the conditional

expected shortfall is hence given by

ESα
t:t+h = E[(Rt:t+h|Rt:t+h ≤ −V aRα

t:t+h)|Ft].

When single-period portfolio returns are IIN(µ, σ2), the h−period expected shortfall is given by

ESα
t:t+h = µh− σ

√
h
φ(Φ−1(α))

α
. (11)

Using again the convention of reporting a negative return as a positive loss, this peaks at h∗∗ =

σ2φ(Φ−1(α))2/(4µ2α2) and declines linearly in h at long horizons.

For the nonlinear econometric models we resort once more to simulations to calculate the ex-

pected shortfall. The algorithm calculates the conditional sample mean subject to the condition that

portfolio returns fall in the α percentile to obtain an estimate of E[Rqt:t+h(ω)|Rqt:t+h(ω) ≤ −V aRα
t:t+h]:

1PQ
q=1 I{Rqt:t+h(ω)≤−V aRα

t:t+h}
·
QX
q=1

I{Rqt:t+h(ω)≤−V aRα
t:t+h}R

q
t:t+h(ω). (12)

Estimates of the unconditional (or average) expected shortfall are provided in Figure 3. Dif-

ferences across econometric models are even larger than those observed in the corresponding VaR

figures (Figure 1). This is perhaps unsurprising given the different tail behavior assumed by these

models. The GARCH models generate the highest shortfall estimates for the bond portfolios while

the Markov switching and GARCH(1,1)-M model generate the largest estimates for the pure stock

portfolio. The Gaussian IID model still produces relatively low estimates of the expected shortfall

as does the nonparametric bootstrap method.

Figure 4 compares the conditional expected shortfall under the various econometric specifica-

tions, calculated under assumptions about the initial state identical to those in Figure 2. The

picture emerging from this figure is again one of very large variations in term structures across

models depending on the initial state and the form of the econometric model with particularly large
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variation observed across the four states in the Markov switching model, reflecting the very different

properties of stock and bond returns across these states.10

The large differences in term structures of risk measures observed across different econometric

specifications suggest that the choice of econometric model has important risk management implica-

tions. To assist in evaluating how good the various models are we next analyze their out-of-sample

predictive performance.

4. Econometric Tests of out-of-sample performance

Econometric specifications used in risk management are best judged by their out-of-sample perfor-

mance. This provides an appropriate method to control for overfitting, which could be a concern

for some of the heavily parameterized approaches considered here. To assess the methods’ out-of-

sample forecasting performance we report the unconditional coverage computed as the percentage

of periods where the α% VaR is exceeded. We also report the p-values of the S-statistic suggested

by Christoffersen and Diebold (2000) which tests for predictability of the ‘hit’ sequence of indicator

variables tracking whether the VaR is exceeded. To enhance statistical power we compute this statis-

tic using overlapping data with finite-sample critical values generated using the stationary bootstrap

proposed by Politis and Romano (1994).11 Ideally one would want the unconditional coverage to

be as close to the VaR level as possible and the hit indicator function to be unpredictable.

4.1. Empirical Results

We recursively estimate all the parameters of the models introduced in Section 3 and proceed to

calculate the VaR at all points in time between 1980:01 and 1999:12. For the Markov switching

model this implies re-estimating all parameters and the state probability vector πt on an expanding

window of data using the EM algorithm. For other models, only the parameters are estimated

recursively by MLE. The block bootstrap is simply re-applied at each point in time as new data

becomes available. At each point in time simulation methods are then used to calculate conditional

10In a related study Christoffersen and Diebold (2003) analyse the importance of predictability in first and second

moments of returns at different horizons and find that sign predictability is horizon-specific, tending to be strongest

at intermediate horizons.
11In view of the limited length of the out-of-sample period we do not report results for the expected shortfall

measure, but see Christoffersen (2003) for a discussion of possible tests.
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risk measures.

Empirical results are reported in Table 1 for α = 1% and α = 5% using horizons of h = 1, 4,

6 and 12 months. The GARCH(1,1)-M model overestimates VaR for the bond portfolios and has

zero coverage probabilities at all horizons for the pure bond portfolio. If the VaR measure is used

to determine capital requirements, this model would lead to excessively high reserves. The GARCH

component model is much better at short horizons but suffers from the opposite problem at longer

horizons where it underestimates the risk of the bond portfolios. The IID Gaussian model tends

to underestimate the tail risk especially at the longer horizons (h ≥ 6 months) and for the stock
portfolios. VaR estimates from the Markov switching model are generally quite good at α = 1%

but are too low when α = 5%, particularly at the longest horizons. The bootstrap produces nearly

perfect coverage probabilities at the 5% level.

Using the S-statistic suggested by Christoffersen and Diebold (2000), there is strong evidence of

predictability in the hit sequence generated by the component GARCH models. This occurs across

horizons and portfolios. Evaluation of the GARCH(1,1)-M student-t model is made difficult by

the zero coverage probabilities produced by this model. At the 1% VaR level the Markov switching

model does not produce any significant rejections of the null of no predictability of the hit indicator,

while both the IID Gaussian and bootstrap methods do so in a number of cases. Conversely, when

α = 5%, the bootstrap method produces the fewest violations of the null.

At the 1% VaR level the best results overall are found for the Markov switching model, while

the nonparametric bootstrap method gives the best results for a VaR level of α = 5%. The good

performance of the regime switching model for risks in the far tail (α = 1%) is likely to be related

to the fact that it is a mixture of states with one state centered on a large negative mean return

(state 1). Conversely, the block bootstrap method seems to work well a little further away from the

extreme tail.

5. Conclusion

Our analysis considered implications for the term structure of risk of a variety of stock and bond

portfolios under a range of parametric econometric specifications widely used in the literature in

addition to a non-parametric bootstrap approach. The large differences in term structures of risk

measures observed across different approaches suggest that the choice of econometric model has

important risk management implications. Our out-of-sample forecasting results suggested that
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no model clearly dominates, the best performing model depending on the horizon, the portfolio

considered, and the VaR level, α. The regime switching model performed quite well for far tail risks

(α = 1%) while the non-parametric bootstrap produced the best performance a bit further away

from the far left tail at α = 5%.

Our analysis studied risk measures under the assumption of fixed portfolio weights. An important

question is how the risk measures analyzed in this paper could be used for portfolio construction.

As an illustration, consider an investor with preferences described by a utility function trading

off expected returns against expected shortfall, E[Rt:t+h] − ESα
t:t+h. Using estimates from our

econometric models, Figure 5 plots utility term structures for this function using steady state

probabilities or average volatility figures as a starting point. Under the regime switching model

a very conservative portfolio with 50% bonds and 50% T-bills is preferred by this investor at the

one-month horizon (h = 1) while for h = 24 months a portfolio that invests 50% in bonds and 50%

in stocks is preferred. Interestingly, these rankings appear to be model-specific. For example at the

two-year horizon (h = 24) under the component GARCH model a 100% bond portfolio is selected,

while under the GARCH(1,1)-M student-t model the preferred portfolio has 50% in stocks and 50%

in cash. Clearly the choice of econometric model has implications not only for the term structure of

risk measures but also for asset allocation choices that trade off expected returns against estimated

risk. We leave a more detailed analysis of this question to future analysis.

Many additional questions emerge for future research. We ignored parameter estimation uncer-

tainty in our analysis, but this could have important effects on the results. An easy - but com-

putationally intensive - way to address this is by drawing parameter values from their asymptotic

distribution and repeatedly simulating risk measures conditional on these values to form confidence

intervals. Another possibility is to extend the regime switching models analyzed here by considering

mixtures of non-Gaussian distributions or by including leverage effects.
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Table 1 

Out-of-Sample Tests of Predictive Accuracy 
The table reports the results of out-of-sample tests concerning Value at Risk measures for multi-period portfolio returns. The predictive accuracy measures consist of 
the unconditional coverage probability and Christoffersen and Diebold�s (2000) S test capturing deviations from iid-ness (persistence) of an indicator variable It that 
records portfolio returns below the VaR. The p-value for the S statistic is obtained using bootstrap methods on overlapping portfolio returns. In the table, MS stands 
for multivariate Markov Switching, t-GARCH(p,q)-M for bivariate GARCH(p,q)-in mean with t-distributed errors, C-GARCH(p,q)-M for component GARCH(p,q)-
in mean, and �Bootstrap� for an historical VaR calculated using a stationary bootstrap algorithm with block length matching the forecast horizon h. 
 

Panel I � 1% Value-at-Risk     
 50% Bonds+50% T-bills 100% Bonds 50% Stocks+50% T-bills 50% Stocks+50% Bonds 100% Stocks 
 h=1 h=4 h=6 h=12 h=1 h=4 h=6 h=12 h=1 h=4 h=6 h=12 h=1 h=4 h=6 h=12 h=1 h=4 h=6 h=12 
 A. Unconditional coverage probability 
MS 0.017 0.013 0.021 0.048 0.017 0.013 0.021 0.048 0.013 0.013 0.004 0.000 0.008 0.017 0.004 0.013 0.013 0.017 0.004 0.000 
t-GARCH-M 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.008 0.013 0.009 0.004 0.000 0.000 0.004 0.008 0.008 0.013 0.009 
C-GARCH-M 0.004 0.004 0.013 0.171 0.004 0.021 0.038 0.127 0.008 0.013 0.013 0.013 0.008 0.000 0.000 0.004 0.008 0.030 0.021 0.018 
Bootstrap 0.013 0.004 0.009 0.031 0.013 0.004 0.009 0.031 0.013 0.008 0.009 0.009 0.004 0.008 0.000 0.013 0.008 0.008 0.004 0.009 
IID Gaussian 0.013 0.013 0.009 0.039 0.013 0.013 0.009 0.039 0.008 0.025 0.030 0.026 0.008 0.025 0.030 0.044 0.008 0.025 0.030 0.026 
 B. S-statistic (p-value) 
MS 0.329 0.136 0.999 0.985 0.329 0.136 0.999 0.985 0.345 0.336 0.411 NA� 0.838 0.114 0.071 0.751 0.345 0.336 0.411 NA� 
t-GARCH-M NA� NA� NA� NA� NA� NA� NA� NA� 0.999 1.000 1.000 NA� 1.000 NA� NA� 1.000 0.999 1.000 1.000 1.000 
C-GARCH-M 0.472 0.070 0.029 0.000 0.484 0.001 0.000 0.007 0.797 0.086 0.048 0.063 0.670 NA� NA� 0.308 0.852 0.083 0.176 0.000 
Bootstrap 0.510 0.028 0.032 0.140 0.510 0.028 0.032 0.140 0.710 0.181 0.133 0.216 0.198 0.010 NA� 0.221 0.854 0.181 0.268 0.261 
IID Gaussian 0.478 0.201 0.040 0.249 0.478 0.201 0.040 0.249 0.793 0.072 0.090 0.137 0.656 0.064 0.093 0.190 0.793 0.072 0.090 0.137 
Panel II � 5% Value-at-Risk 
 A. Unconditional coverage probability 
MS 0.059 0.097 0.132 0.232 0.067 0.093 0.141 0.232 0.075 0.064 0.068 0.066 0.071 0.072 0.085 0.127 0.075 0.064 0.068 0.066 
t-GARCH-M 0.013 0.000 0.000 0.000 0.013 0.000 0.000 0.000 0.092 0.085 0.081 0.053 0.046 0.047 0.047 0.039 0.092 0.085 0.081 0.053 
C-GARCH-M 0.013 0.047 0.162 0.461 0.017 0.064 0.128 0.364 0.025 0.055 0.064 0.083 0.017 0.021 0.030 0.039 0.038 0.068 0.081 0.123 
Bootstrap 0.029 0.047 0.056 0.066 0.029 0.047 0.056 0.066 0.046 0.051 0.056 0.044 0.033 0.047 0.051 0.053 0.046 0.051 0.056 0.044 
IID Gaussian 0.033 0.064 0.107 0.215 0.033 0.064 0.107 0.215 0.054 0.085 0.094 0.132 0.046 0.097 0.115 0.167 0.054 0.085 0.094 0.132 
 B. S-statistic (p-value) 
MS 0.082 0.001 0.137 0.132 0.157 0.000 0.007 0.242 0.031 0.061 0.159 0.051 0.009 0.384 0.309 0.024 0.031 0.061 0.159 0.051 
t-GARCH-M 0.999 NA� NA� NA� 0.999 NA� NA� NA� 0.010 0.232 0.257 0.117 0.004 0.107 0.074 0.142 0.010 0.232 0.257 0.117 
C-GARCH-M 0.469 0.097 0.240 0.145 0.453 0.107 0.001 0.282 0.565 0.090 0.148 0.208 0.462 0.003 0.005 0.025 0.347 0.419 0.020 0.267 
Bootstrap 0.415 0.425 0.258 0.120 0.415 0.425 0.258 0.120 0.002 0.337 0.246 0.200 0.010 0.107 0.058 0.146 0.002 0.337 0.246 0.200 
IID Gaussian 0.328 0.000 0.001 0.245 0.328 0.000 0.001 0.245 0.001 0.350 0.089 0.207 0.000 0.389 0.375 0.082 0.001 0.350 0.089 0.207 
� = No multi-period portfolio returns are below the VaR measure in the sample. 



 21

Figure 1 

1% (Unconditional) VaR 
The graphs plot the (negative of the) first percentile of various portfolios comprising stocks, bonds, and 1-month T-
bills as a function of the investment horizon. The regime-switching VaR is calculated under the assumption the current 
vector of state probabilities correspond to the vector of ergodic (long-run) probabilities.  
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Figure 2 

1% Conditional VaR � Effects of the Horizon and of the Initial State 
The graphs plot the (negative of the) first percentile of the distribution of returns for various portfolios comprising 
stocks, bonds, and 1-month T-bills as a function of the investment horizon and of the current state. For the GARCH-
type models, term structure schedules are plotted for three cases: (i) initial variance(s) are set equal to the long-run 
(steady-state) value; (ii) initial variance(s) are set equal to the average variance minus one standard deviation; (iii) initial 
variance(s) are set equal to the average variance plus one standard deviation. Term structure schedules corresponding to 
cases (ii) and (iii) are represented as dotted curves. 
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Figure 3 

1% Unconditional Expected Shortfall 
The graphs plot the 1% shortfall of various portfolios comprising stocks, bonds, and 1-month T-bills as a function of 
the investment horizon. The regime-switching VaR is calculated under the assumption the current vector of state 
probabilities correspond to the vector of ergodic (long-run) probabilities. 
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Figure 4 

1% Conditional Expected Shortfall � Effects of the Horizon and of Initial State 
The graphs plot the 1% shortfall for various portfolios comprising stocks, bonds, and 1-month T-bills as a function of 
the investment horizon and of the current state. For the GARCH-type models, term structure schedules are plotted for 
three cases: (i) initial variance(s) are set equal to the long-run (steady-state) value; (ii) initial variance(s) are set equal to 
the average variance minus one standard deviation; (iii) initial variance(s) are set equal to the average variance plus one 
standard deviation. Term structure schedules corresponding to cases (ii) and (iii) are represented as dotted curves. 
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Figure 5 

Unconditional Risk-Adjusted Expected Return 
The graphs plot the mean portfolio return in excess of the 5% expected shortfall of various portfolios comprising 
stocks, bonds, and 1-month T-bills as a function of the investment horizon. The regime-switching values are calculated 
under ergodic probabilities.  
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