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Abstract

We develop a new approach to modeling dynamics in cash flow data extracted from

daily firm-level dividend announcements. We decompose daily cash flow news into a

persistent component, jumps, and temporary shocks. Empirically, we find that the

persistent cash flow component is a highly significant predictor of future growth in

dividends and consumption. Using a log-linearized present value model, we show that

news about the persistent dividend growth component helps predict stock returns

consistent with asset-pricing constraints implied by this model. News about the daily

dividend growth process also helps explain concurrent return volatility and the

probability of jumps in stock returns.
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1 Introduction

On most days, a multitude of firms announce cash flow news, but the number of firms, as

well as the industries they belong to, can vary greatly over time. Such variation gives rise

to a highly irregular cash flow news process and complicates investors’ attempt to infer the

underlying growth rate of cash flows for individual firms, industries, and for the economy

as a whole. This is important because the resulting cash flow growth estimates are a key

driver of investors’ forecasts of future cash flows, their assessment of cash flow risks, and,

ultimately, of how stocks are priced.1

While information extracted from firms’ cash flow announcements is critical to

understanding investors’ cash flow expectations and, in turn, movements in stock prices,

relatively few studies analyze predictability of cash flows and, in most cases, focus on

quarterly or annual changes in aggregate dividends or earnings.2 However, data aggregated

in this manner may conceal the rich dynamic patterns in cash flows recorded at a higher

frequency which reduces our ability to study important questions such as how fast cash

flow growth responds to changes in the underlying state of the economy.

Several challenges complicate attempts to measure daily cash flow dynamics. First, most

firms’ cash flows have a pronounced seasonal component related to weather patterns and

holiday sales. Second, the number of firms announcing cash flow news on any given day can

fluctuate between as little as zero to more than one hundred firms. Third, the particular

date on which a firm announces dividends can vary widely from year to year, requiring that

close attention be paid to constructing daily proxies that account for firm specific effects.

Fourth, there is considerable heterogeneity across individual firms’ cash flow processes. The

combined effect of these factors is that daily cash flow news tends to be very lumpy.

1Patton and Verardo (2012) develop a rational learning model to explain the patterns in firms’ betas
observed around earnings announcements. Their model contains unobserved firm-specific and common
earnings innovation terms and investors’ extraction of these components is modeled as a Kalman filtering
problem. Savor and Wilson (2016) develop a learning model in which investors decompose cash flow news into
firm-specific and market-wide components. Positive covariances between the cash flow process of individual
firms and of the broader market imply that bad (good) news on individual firms’ cash flows result in reduced
(increased) forecasts of aggregate cash flows. In turn, this cash flow learning channel implies that stock
returns of announcing firms and of the aggregate market are positively correlated, justifying an announcement
risk premium for exposure to individual firms’ cash flows. These models do not allow for jumps in cash flows,
although in practice this is an important feature of earnings and dividend data.

2Cochrane (2008) finds little evidence of dividend growth predictability, while van Binsbergen and Koijen
(2010), Kelly and Pruitt (2013) and Jagannathan and Liu (2019) find that growth in dividends is predictable.
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To address these challenges, we develop a new approach to measure and model dynamics

in high frequency (daily) cash flows. We deal with firm-level heterogeneity and seasonality

effects by taking a bottom-up approach that starts from changes in individual firms’ dividends

on a given day relative to their payments over the same quarter during the previous year.

In contrast with conventional smoothed estimates, only data on those firms that announce

dividend news on a given day are used to update the dividend growth estimate, ensuring

that our measure is timely in picking up changes in the cash flow process.3 Moreover, by

computing a dollar-weighted growth estimate, we account for variation in the size of the

firms paying dividends on any given day.4 Our dividend growth measure uses dividend

announcements by publicly traded firms as opposed to dividend payments which form the

basis for the CRSP measure of dividend growth conventionally used in the finance literature.

This is an important distinction because dividend announcements precede dividend payments

by several weeks, giving our dividend measure a significant timing advantage and more closely

aligns our measure with movements in market prices following dividend news.5

We account for lumpiness in daily values of year-on-year changes in firm-matched cash

flows, by decomposing cash flow news into a slowly evolving component that picks up time

variation (predictability) in the mean of the cash flow process, a transitory component whose

volatility is allowed to change over time, and large jumps whose probability of occurring can

depend on the number of firms that announce cash flow news on a given day. All three

components turn out to be important for capturing predictability in the dividend growth

process and evolution in the uncertainty that surrounds growth in cash flows.

An important test of our approach is whether it can be used to generate more accurate

forecasts of cash flows than existing methods. Empirically, we find that our estimate of

the persistent dividend growth component is a strong predictor of future dividend growth.

Moreover, the predictive power of our approach compares favorably to alternative predictors

3To illustrate the loss in information from the common practice of aggregating cash flow news over the
most recent 12-month period and updating this on, say, a monthly basis, suppose that firms’ announcement
dates are uniformly distributed across calendar dates. Every month when the cash flow estimate gets
updated, the same weight is assigned to firms announcing cash flows close to the cutoff date and firms whose
announcement date happened almost one year previously. This weighting automatically makes the resulting
growth estimate stale and also introduces serial correlation in the estimate.

4Cash flow news is often announced after the regular trading sessions in the stock market have closed and
so aggregating across firms that announced cash flows within a 24-hour interval – as opposed to modeling,
say, hourly cash flow news – seems appropriate.

5Announced dividends precede actual dividend payments by approximately 42 days, on average.
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of dividend growth proposed by van Binsbergen and Koijen (2010) and Kelly and Pruitt

(2013). We also find that our measure of the persistent dividend growth component is

a positive and significant predictor of future growth in GDP and aggregate consumption.

In sharp contrast, “raw” dividend growth, as well as the individual jump or transitory

shock components, are very noisy and turn out not to have any predictive power over future

dividend growth. Our results suggest that firms closely monitor the state of the economy and

adjust their dividend policies in anticipation of changes in slow-moving economic indicators

such as GDP and consumption growth.

A key limitation of empirical tests of asset pricing models is that while high-frequency

data are available on movements in individual and aggregate stock prices, cash flows of

individual firms are observed at much lower frequencies (typically quarterly). The absence of

high-frequency cash flow data reduces researchers’ ability to estimate and test asset pricing

models which rely on the joint dynamics of stock prices, expected returns and cash flow

growth expectations.

The second part of our paper addresses these challenges by using our new daily cash flow

estimates to study predictability of stock returns in the context of the log-linearized present

value approach developed by Campbell and Shiller (1988a). The present value model offers

several advantages. As shown by Cochrane (2008) and van Binsbergen and Koijen (2010), the

present value model implies a set of cross-equation restrictions that tie the coefficients of the

variables in the prediction model for dividend growth to the coefficients on the corresponding

variables in the return prediction model. In particular, any variable that helps predict

future dividend growth should also, in general, have the ability to forecast stock returns,

after controlling for predictor variables such as the log dividend-price ratio. We find strong

empirical evidence that variation in the persistent dividend growth component is a strong and

significant predictor of daily stock returns and that the cross-equation restrictions implied

by the present value model are supported by the data. Moreover, we show that our new

dividend growth measure can be used to predict stock returns several days into the future.

At the monthly horizon, our persistent dividend growth measure provides more accurate

out-of-sample forecasts of stock market returns than all but one of the fourteen predictor

variables considered by Goyal and Welch (2008).

We also study whether the different components extracted from the dividend process
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help explain concurrent (same-day) dynamics in stock returns. We find strong evidence

that positive shocks to the persistent dividend growth component are associated with higher

same-day mean stock returns, lower stock market volatility, and a reduced likelihood of

outliers (jumps) in stock returns, again in a manner that is consistent with the cross-equation

restrictions implied by the present value relation. Higher uncertainty about dividend growth

translates into higher stock market volatility as well as a higher chance of a jump (outlier)

in stock returns, suggesting that daily dividend news is an important driver of dynamics in

aggregate stock market returns and is not just limited to affecting the mean of stock returns.

Our paper is related to a literature that estimates the effect of new information on stock

prices on days with news releases using event-study methodology, see e.g., Cutler et al.

(1989) and McQueen and Roley (1993). A limitation of this approach is that news stories

are qualitative (e.g., “world events”), heterogeneous across news categories (news on housing

starts versus monetary policy shocks), and, sometimes, rare (monetary policy shocks). In

addition, the effect of these news may be state-dependent. For example, good news about the

economy can be bad news to stock prices in a high-growth state (McQueen and Roley (1993))

and may depend on whether the economy is operating above or below trend. Macroeconomic

news can also be difficult to decipher because they comprise a bundle of information about

cash flows and expected returns (Boyd et al. (2005)).

The methodology developed in our paper is also related to papers in the asset pricing

literature such as Chib et al. (2002) and Eraker et al. (2003a) which estimate models of

stock return dynamics with stochastic volatility and jumps. There are three key differences

between our approach and these papers. First, to the best of our knowledge, no existing

study has attempted to model the high-frequency dynamics in dividends using such methods,

let alone estimate and test a model as general as ours. Second, our paper tests asset pricing

implications implied by the present value model, using a much higher data frequency (daily)

than previously attempted. Third, our paper models the transmission from daily cash flow

news–in the form of mean, volatility, or jump components–to contemporaneous dynamics in

stock market returns, including variation in the volatility and jump probability of returns.

The outline for the paper is as follows. Section 2 introduces our data and explains how we

construct a daily cash flow index from dividend announcement data. Section 3 explains our

econometric modeling approach and reports empirical model estimates. Section 4 analyzes
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dividend growth predictability. Section 5 develops the present value framework to explore

the implications of predictability of dividend growth for return predictability, while Section

6 analyzes the effect of news about the dividend growth process on concurrent stock returns

and Section 7 concludes. Additional technical details, extensions and robustness tests are

reported in a set of web appendices.

2 Data

We start our analysis by explaining how we construct our daily dividend growth series and

describing the data sources that we use. Our analysis of daily cash flows focuses on growth

in dividends which, as pointed out by Kelly and Pruitt (2013), has been the focus of a large

literature on asset pricing.6 Because earnings can be negative, defining growth in earnings

poses challenges that are quite different from those arising when studying dividends.

The biggest effect of dividend news on asset prices is likely to come through their

information content, so we focus on dividends as initially announced as opposed to the

actual dividend payments. However, in the web appendix we also undertake an analysis of

daily dividends viewed from the perspective of the payment date which allows us to

compare the information effect to the direct cash flow effect from dividend payments.

2.1 Sample construction

Our sample includes all ordinary cash dividends declared by firms with common stocks

(share codes 10 and 11) listed on NYSE, NASDAQ, or AMEX from 1926 to 2016.7 We

do not exclude special dividends from our measure. For example, Costco (permno 87055),

which usually pays around 30 cents per quarter in dividends, declared two “special dividends”

during our sample: $7 per share on 28 November 2012 and $5 per share on 30 January 2015.

Those two dividends, with CRSP codes 1232 and 1272, respectively, are included in our

dividend measure. What is not included in our measure is non-ordinary dividends such as

M&A cash flows, buybacks and new issues. We also require firms to have valid stock prices

and a valid figure for the number of shares outstanding when dividends are announced.

6See, e.g., Campbell and Shiller (1988a), Cochrane (1992), Lettau and Ludvigson (2005), Koijen and
Nieuwerburgh (2011), and Maio and Santa-Clara (2015).

7Ordinary cash dividends have CRSP distribution codes below 2000.
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Furthermore, we make sure there are no duplicate observations in the dataset and that each

firm pays only one dividend at any point in time.8 Overall, our sample consists of 503,591

declared dividends.9

Corporate dividends have a strong firm-specific component and often display pronounced

seasonal variation. Our analysis therefore computes dividend growth by comparing same-

firm, same-(fiscal) quarter, year-on-year changes in cash flows. To this end, let Di
t be the

total dividends declared by firm i on day t, calculated as the dividend per share times the

number of outstanding shares. Moreover, let I it be an indicator variable that equals one

if company i announces quarterly dividends on day t, and otherwise takes a value of zero,

while t̃ is the associated same-quarter, prior-year dividend announcement date for firm i.10

For example, a company may have declared dividends on May 17, 2014 while it declared

the corresponding quarter’s prior-year dividends on May 9, 2013, in which case t is May 17,

2014 and t̃ is May 9, 2013.

Aggregating across firms, the total dollar value of dividends paid out on day t is∑Nt
i=1 I

i
tD

i
t, where Nt is the number of (publicly traded) firms in existence on day t.

Similarly, the total value of dividends paid out by the same set of firms for the same fiscal

quarter during the prior year is given by
∑Nt

i=1 I
i
t̃
Di
t̃
. Taking the ratio of these two numbers,

we obtain a measure of the aggregate, year-on-year (gross) growth in dividends:11

Gt =

∑Nt
i=1 I

i
tD

i
t∑Nt

i=1 I
i
t̃
Di
t̃

. (1)

Note that the number of firms used in this calculation – as well as their identity – changes on

a daily basis and from year to year as firms shift their dividend announcement dates. Only

firms for which I it = I i
t̃

= 1 are included in this calculation, ensuring that the same firms

8There are instances in CRSP in which a company declares or pays multiple dividends on the same day,
using different distribution codes but still classified as ordinary dividends. We aggregate such dividends to
convert them into a single dividend. As an example, on November 23, 1983, PPL Corporation (permno
22517) declared two ordinary dividends of 39 and 21 cents.

9Following a recent update, CRSP no longer provides the dividend declaration date prior to 1962 and
data until 1964 appear to be incomplete. Nonetheless, we also have an older version of the database in which
the declared dividend dates start in 1926. As a consequence, we have 101,476 pre-1964 observations and
402,115 post-1964 observations.

10t̃ depends on the firm, i, and same-quarter, next-year date, t, so a more precise notation is t̃(i, t).
11Only seven percent of individual firms’ year-on-year dividend growth observations in our sample are

constant, suggesting that firms often change their dividends, even marginally, every year.
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are used in both the numerator and denominator of the ratio. Equation (1) uses the dollar

amount paid in dividends by individual firms, implicitly applying value weights since large

firms tend to have larger dividend payouts.12

As a first illustration of our data, Figure 1 provides a plot of the number of firms, as

well as the dollar dividend and the (net) growth rate from equation (1) during a single

quarter (Q2 2014). The top panel shows substantial intra-quarter variation in the number of

firms announcing dividends. During this particular quarter, the maximum number of firms

announcing dividends on any one day was 68 (on April 24), while the minimum number was

one (on June 22). On several days more than 50 firms announced dividends.

The middle panel in Figure 1 shows the total value of dividends declared on individual

days. This depends on the number and size of firms announcing dividends as large firms tend

to announce bigger dividends.13 Lastly, the bottom panel in Figure 1 shows the daily net

dividend growth during the quarter. Peaks in this measure need not coincide with days where

most firms announce dividends (top panel) or days on which the overall amount of dividends

announced (middle panel) peaked. This is because the dividend growth rate depends on

dividends announced by the same group of firms during the prior year as reflected in the

denominator of equation (1). For example, the gross dividend growth rate on June 22 (1.15)

is generated by a single firm announcing dividends on that day: the firm announced $155m

in dividends in Q2, 2014 and $135m for Q2, 2013. Thus, variation in daily dividend growth

12An alternative approach that more explicitly accounts for heterogeneity in firm size is to first define
individual firms’ cash flow growth as

G̃it =

{
Dit
Di
t̃

if Iit = 1

0 otherwise
.

In a second step we can use individual firms’ market capitalization to aggregate the cash flow growth rates
across firms that pay dividends on day t :

G̃t =

Nt∑
i=1

Iitω
i
tG̃

i
t, where

ωit =
MktCapit × Iit∑Nt
i=1MktCapit × Iit

is the weight on company i in the daily year-on-year value-weighted dividend growth calculation. Results
based on this alternative measure, available in the internet appendix, are very similar to those based on the
measure in equation (1).

13The largest amount of dividends declared during Q2 2014, $7.12bn, happened on April 24, while only
$3.6m of dividends were announced on June 30.
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rates reflects both heterogeneity across firms’ dividend behavior and shifts in the number of

firms announcing dividends on a given day.

2.2 Features of daily dividend growth

Our data span the period 1927-2016, but the first part of the sample is dominated by the

Great Depression. For robustness, we therefore split the sample into halves and study both

the full sample and the second half of the sample from 1973 to 2016. Figure 2 (top panel)

plots ∆dt = ln(Gt) from 1973 to 2016. On days with no dividend announcements, we set the

series to zero.14 The daily dividend growth series is very spiky and dominated by days with

unusually large positive or negative dividend growth. There is also evidence of a sustained

decline in dividends during the financial crisis.

The features displayed by our daily series of year-on-year growth in dividends in Figure 2

can be summarized as follows: (i) the daily dividend growth series is very lumpy, reflecting

variation, both, in individual firms’ cash flow growth and in the composition of firms that,

on any given day, announce dividends; (ii) daily dividend news is driven by a persistent

component which is particularly pronounced during the financial crisis of 2008/09; (iii) the

volatility of daily cash flow news changes over time with unusually calm periods interchanged

with more volatile periods.

2.3 Comparison with the standard dividend growth measure

The conventional alternative to our bottom-up approach is to extract dividends top-down

using market returns with and without dividends as published by the Center for Research

in Security Prices (CRSP). Three limitations render this alternative approach unattractive.

First, the daily CRSP index accounts for dividends distributed on a particular day but

does not show when those dividends were announced. This distinction is crucial as firms

typically announce dividends several days prior to the payment date and it is the news effect

of announced dividends that we would expect to be important for movements in stock prices.

Second, the set of firms announcing or paying dividends on any given day is generally

different from the set of firms announcing dividends on the same day one year earlier. As a

consequence, year-on-year estimates of dividend growth from daily values of the CRSP index

14This happens on 170 days, or 1.4% of the full sample.
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are difficult to interpret as they do not control for firm fixed effects and so may get distorted

due to changes in the composition of the set of firms paying dividends on a given calendar

day, confounding dividend growth information with composition shifts.15

Third, the CRSP index contains assets such as ETFs and mutual funds (Sabbatucci

(2017)) whose dividends follow a pattern different from that of individual firms.

These points turn out to make a crucial difference to daily dividend growth. To see

this, the bottom panel of Figure 2 plots the daily dividend growth rate constructed using

the conventional top-down CRSP approach over the sample 1973-2016.16 While the daily

dividend growth series based on our bottom-up methodology (top panel) is affected by

occasional jumps, it clearly contains a persistent component linked to the state of the

economy. In contrast, the daily dividend growth series constructed from the CRSP return

indexes is very noisy throughout the sample.

3 Econometric model

To match the features of the daily dividend growth data noted above, we next develop an

econometric model that incorporates multiple components to capture different parts of the

dividend dynamics. We accomplish this as follows. First, we account for lumpiness by

allowing for a jump component in daily cash flow growth. Since the lumpiness introduced

by firm-level heterogeneity in dividend payments is more likely to be diversified away if a

large number of firms announce dividends on the same day, we allow the jump intensity to

depend on the number of firms announcing dividends. Second, we incorporate a persistent

component in the mean growth equation. Third, we account for time-varying volatility by

modeling ordinary shocks to daily dividend growth as a stochastic volatility process.

3.1 A components model for daily dividend growth

Our econometric model decomposes the daily dividend growth process, ∆dt+1, into three

parts, namely (i) a persistent term, µdt+1, which captures a smoothly evolving mean

15Changes in the composition of the dividend-paying firms has a far smaller effect on dividend growth
measured at longer time intervals such as a quarter or a year.

16To replicate our methodology as closely as possible, the daily dividend measure from CRSP shown here
computes the growth rate as the change in aggregate dividends paid on a given day relative to aggregate
dividends paid on the same day (or whichever day is closest) during the previous year.
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component; (ii) a jump component, ξdt+1Jdt+1, where Jdt+1 ∈ {0, 1} is a jump indicator

that equals unity in case of a jump in dividends and otherwise is zero, while ξdt+1 measures

the magnitude of the jump; (iii) a temporary cash flow shock, εdt+1, whose volatility is

allowed to be time-varying. Adding up these terms, we have

∆dt+1 = µdt+1 + ξdt+1Jdt+1 + εdt+1. (2)

We next motivate this decomposition and introduce our assumptions on the components.

As we reduce the time interval over which dividends are measured, the data become a

lot scarcer, with sizeable day-to-day variation in both the number and types of firms that

announce dividends. To minimize the effect of such composition shifts, our main empirical

analysis focuses on an aggregate, market-wide measure of dividend growth which offers the

broadest coverage of dividend events and minimizes the number of days with very few firms

announcing dividends.

To understand how daily changes in the composition of firms announcing dividends can

affect our dividend growth measure, suppose the data generating process for aggregate

dividend growth, ∆dAt+1, takes the form

∆dAt+1 = µdt+1 + σAεAt+1, εAt+1 ∼ N (0, 1), (3)

where µdt+1 is the conditional mean of the aggregate dividend growth process at time t+ 1

and σA is the volatility of the daily shocks, εAt+1.

We capture any persistence that may be present in the mean of the dividend growth

process by assuming that µdt+1 follows a mean-reverting first-order autoregressive process

µdt+1 = µd + φµ (µdt − µd) + σµεµt+1, εµt+1 ∼ N (0, 1), (4)

where |φµ| < 1 and εµt+1 is assumed to be uncorrelated with εAt+1. In the special case where

φµ = 0, dAt+1 follows a random walk process whose changes, ∆dAt+1, are unpredictable.

In practice, we do not observe the aggregate dividend process at the daily frequency.

Rather, we observe the dividends announced by a subset of firms on a given day. Shifts in

the composition of firms announcing dividends on any given day can introduce measurement

issues and must be carefully dealt with when modeling the dynamics in the observed dividend
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process. To see how changes in the composition of dividend-announcing firms affect our

dividend growth measure, let ∆dit+1 be the observed value of firm i’s year-on-year dividend

growth rate on day t + 1. We decompose this into a systematic component that is driven

by firm i’s cash flow beta (βi) times the growth in aggregate cash flows, βi∆dAt+1, and an

idiosyncratic component, εit+1, assumed to be uncorrelated across firms:

∆dit+1 = βi∆dAt+1 + σiεit+1, εit+1 ∼ N (0, 1). (5)

Let ωit be the weight on the dividends announced by firm i on day t, measured relative to

the total amount of dividends paid out by all firms on this day, so ωit = 0 if firm i does not

announce dividends on day t and
∑Ndt

i=1 ωit = 1 on all days, where Ndt is the number of firms

announcing dividends on day t. Our measure of (announced) dividend growth on day t+ 1,

∆dt+1, aggregated across all dividend-announcing firms, can then be computed as

∆dt+1 =

Ndt+1∑
i=1

ωit+1∆dit+1 =

Ndt+1∑
i=1

ωit+1 [βi∆dAt+1 + σiεit+1]

=

[
Ndt+1∑
i=1

ωit+1βi

]
∆dAt+1 +

[
Ndt+1∑
i=1

ωit+1σiεit+1

]
≡ βt+1∆dAt+1 + σdt+1εt+1, εt+1 ∼ N (0, 1). (6)

where βt+1 ≡
∑Ndt+1

i=1 ωit+1βi is the weighted average of cash-flow betas of firms announcing

dividends on day t+1, and σdt+1 =
[∑Ndt+1

i=1 σ2
i ω

2
it+1

]1/2

. If all stocks have identical cash flow

betas, βt+1 in (6) will be constant over time and equal to the average beta, β̄. Even if there

is heterogeneity in firms’ cash flow betas, provided that the number of firms announcing

dividends each day is large, the weights on individual firms (ωit+1) are small, and the subset

of firms announcing dividends on a given day is reasonably random over time, we would

expect little time variation in βt+1. This makes it easy to extract a daily estimate of the

aggregate dividend growth rate from equation (6) by means of filtering methods.

The number of firms announcing dividends can be low on some days and so the announced

dividends can be dominated by a few companies or by companies within the same industry.

If cash flow betas vary systematically across industries, this can lead to time variation in the

cash flow beta of the subset of dividend-announcing firms.

While these composition effects can lead to time variation in the cash flow beta of the
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observed dividend growth process, ∆dt+1, such effects are temporary and so βt+1− β̄ will be

mean reverting towards zero. Using (6), we can therefore write

∆dt+1 = β̄∆dAt+1 + (βt+1 − β̄)∆dAt+1 + σdt+1εt+1 (7)

= β̄ [µdt+1 + σAεAt+1] + (βt+1 − β̄) [µdt+1 + σAεAt+1] + σdt+1εt+1

∝ µdt+1 +
(βt+1 − β̄)

β̄
µdt+1 +

[
1 +

βt+1 − β̄
β̄

]
σAεAt+1 +

σdt+1

β̄
εt+1.

Compared to the aggregate dividend process in (3), there are some additional time-varying

terms in the observed dividend growth rate: (i) (βt+1−β̄)

β̄
µdt+1; this term can be quite volatile

because of random variation in the first part, (βt+1− β̄)/β̄, driven by the process determining

the number and types of firms announcing dividends on any given day. This term tends to be

particularly volatile on days where few firms announce dividends, increasing the probability

that |βt+1− β̄|/β̄ will be large; (ii) βt+1−β̄
β̄

σAεAt+1; this is the product of a random component

(βt+1 − β̄)/β̄ and an uncorrelated temporary shock, εAt+1; (iii) (σdt+1/β̄)εt+1. The last two

components can introduce time-varying and persistent volatility in ∆dt+1 if firms in certain

industries tend to cluster their dividend announcement dates around certain dates and if

the volatility of the idiosyncratic dividend growth component differs across industries, as we

might expect.

Our model in (2) captures the effect of these components in ∆dt+1 in two ways. First,

the jump component, ξdt+1Jdt+1, can handle temporary composition shifts that lead to large

variation in the daily cash flow beta of our composite dividend growth measure. It can also be

used to absorb outliers in company-specific dividend shocks, εit+1, on days where individual

firms dominate dividend announcements. Because the magnitude of this component is likely

to be larger on days with few firms announcing dividends, we allow the jump probability to

depend on the number of announcers, Ndt+1:

Pr (Jdt+1 = 1) = Φ (λ1 + λ2Ndt+1) , (8)

where Φ is the CDF of a standard normal distribution. The magnitude of the jumps is

modeled as ξdt+1 ∼ N
(
0, σ2

ξ

)
.

Second, our model captures time-varying heteroskedasticity in ∆dt+1 by modeling the
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variance of the residuals in the dividend growth process as a stochastic volatility process:

εdt+1 ∼ N (0, ehdt+1), (9)

where hdt+1 is the log-variance of εdt+1 which is assumed to follow a mean-reverting process

hdt+1 = µh + φh (hdt − µh) + σhεht+1, εht+1 ∼ N (0, 1), (10)

where εht+1 is uncorrelated with both εdt+1 and εµt+1. Stochastic volatility in the dividend

growth process (7) may arise due to the clustering of days with firms from similar industries

(e.g., financial institutions) announcing dividends.

To summarize, our dividend growth model in (2) accounts for a persistent mean-reverting

component, time-varying volatility, and jumps. We evaluate the importance of these features

by comparing results from the general model in (2) to a simpler (no-jump) model that ignores

jump dynamics and stochastic volatility and so takes the form

∆dt+1 = µNJdt+1 + εdt+1, εdt+1 ∼ N (0, σ2
d), (11)

where µNJdt+1 follows the process in (4). This comparison allows us to gauge the importance

of incorporating jump dynamics and stochastic volatility for our estimate of µdt+1.

3.2 Estimation

We adopt a Bayesian approach that uses Gibbs sampling to estimate the model parameters.

Details of our estimation procedure are provided in Internet Appendix A while Internet

Appendix B documents the convergence properties of our estimation algorithm.

It is worth briefly describing the priors that underlie our model. We choose standard

normal-gamma conjugate priors which simplify the process of drawing from the conditional

distributions of the model parameters in the Gibbs samplers. Moreover, we specify

independent priors for the parameters of both the mean, variance, and jump processes. For

almost all of the prior hyperparameters, we use loose and mildly uninformative priors. The

main exceptions are the persistence parameters, φµ and φh , whose priors we center on 0.98.

Further details are provided in Internet Appendix A.
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3.3 Empirical estimates

We next present estimates of the parameters of our econometric model and evaluate

empirically the behavior of the three components in the dividend growth process.

Table 1 presents parameter estimates for our general dividend growth model in equations

(2)-(10) for both the short sample (1973-2016) and the full sample (1927-2016). We focus

our discussion on the parameter estimates for the short sample but note that the estimates

for the longer sample are very similar.

First consider the parameters determining the mean of the dividend growth process in

(4). The long-run mean estimate, µd = 0.080, corresponds to an 8% annualized nominal

dividend growth rate which is close to the mean of the standard dividend growth measure

(extracted from CRSP data) of 7.8% over the same sample period – a figure well within

the 90% credible set of [0.062, 0.097]. The persistence parameter for the mean reverting

component of the dividend growth process, φµ, is centered on 0.998, corresponding to a half-

life of 350 trading days. While highly persistent, shocks to the mean-reverting component

(4) are very small as shown by the estimate σµ = 0.002. Our model thus identifies a small,

highly persistent component in the dividend growth process.

The top and bottom panels in Figure 3 plot the persistent dividend growth component,

µdt, extracted using either the no-jump model (equation 11, top panel) or the general jump

model (equation 2, bottom panel). The µNJdt series erroneously assigns large daily spikes in

the observed series to the persistent component, µdt. In contrast, the jump model succeeds

in separating temporary spikes (noise) in the daily dividend series from the persistent

component µdt which, consequently, is far smoother. Indeed, values of the persistent

dividend growth component extracted from the general model fall on a far narrower scale

than the unfiltered dividend growth series, ranging from just below zero to 0.15. The

financial crisis in 2008-09 is associated with a notable drop in the persistent dividend

growth component which, for the only time in our sample, turns negative, followed by a

notable bounce-back in the second half of 2009 and 2010.

Our empirical analysis uses the dividend growth measure in (1), but one could

alternatively have chosen to use a market (cap-) weighted growth measure. To briefly

address whether our choice of dividend growth measure makes a difference to the estimates

of our components model, we construct the daily dividend series as described in
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footnote 12 and plot the resulting estimate of µdt along with our original estimate in

Figure 4. The two series are virtually indistinguishable with a correlation of 98.11%, so the

dividend weighting scheme makes little or no difference to our results.

To empirically quantify the importance to our estimates of µdt of including days with

very few firms announcing dividends – presumably days with a higher likelihood of being

dominated by “noise” due to the potential for large composition shifts – we re-estimate

our model using only observations on dividend growth on days with at least five announcing

firms, a requirement that leads us to drop around 10% of the original sample. The correlation

between our original µdt series (constructed without requiring at least five announcing firms)

and this new estimate of µdt (constructed with at least five announcing firms) on days where

they overlap is 99.64%, so our model seems to succeed in isolating the effect of outliers in the

dividend growth data caused by a scarcity of firms announcing dividends. Allowing for jumps

in the dividend growth process is key to ensuring this robustness property. To see this, we

extracted µdt in a similar way, using only days with at least five announcing firms, but now

for a model without jumps and stochastic volatility. Comparing this series to an estimate

from the same model constructed without the requirement of at least five announcing firms,

the correlation is now reduced to only 72%, suggesting that the no-jump model is far more

strongly affected by days with few firms announcing dividends.

Our estimates of equation (10) show that the stochastic volatility process is moderately

persistent with an autoregressive parameter, φh, whose estimated mean is 0.833.

Finally, consider the jump component extracted from our model. The negative estimates

of the jump intensity parameters (λ1 and λ2) imply that a jump occurs every sixty days

on average with lower jump probabilities on days where a large number of firms announce

dividends. On many days in the sample, the jump probability indicator, Jdt, shown in the

top panel of Figure 5, is close to one. On such days, spikes in daily dividend growth are

attributed mostly to jumps rather than to clusters with high volatility from the transitory

component, εdt, in equation (2). Jumps can be very large in magnitude, as shown in the

bottom panel of Figure 5, which displays the estimated jump size, ξdt. Indeed, the estimated

standard deviation of the jump size (σξ) has a mean of 2.761 which is almost four times

larger than the estimated mean of σh (0.75). Shocks to daily dividend growth originating

from the jump component thus tend to be far bigger than the regularly occurring εdt shocks.
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To get a sense of how sensitive the dividend growth jump probability is to the number of

firms announcing dividends on a given day, Ndt, Figure 6 plots the jump intensities for three

values of Ndt chosen to match the 25th, median and 75th percentiles of the distribution of

the daily number of announcing firms. On days with a large number of announcing firms

(75th percentile, or 36 firms on average), the jump intensity distribution is centered on a

number a little over 0.005, corresponding to a jump on average every 200 days. On days with

a typical number of announcing firms (median, or 22 firms), the jump intensity is centered

around its average value near 0.016, implying a jump every 60 days. Finally, on days with a

small number of announcing firms (25th percentile, or 12 firms), the probability of a jump

is centered just below 0.03, corresponding to a jump in dividend growth every 35 days.

3.4 Firm heterogeneity and composition effects

Earlier studies have noted evidence of heterogeneity in the cash flow process across firms

with different characteristics. For example, Vuolteenaho (2002) and Cohen et al. (2009) link

firms’ book-to-market ratios to cross-sectional variation in their cash flow betas, finding that

value stocks have higher cash flow betas than growth stocks.

To address concerns about heterogeneity in cash flow betas caused by daily shifts in the

composition of the subset of dividend-announcing firms, we construct a number of daily

dividend series that only include data on firms within specific sectors or firms with certain

book-to-market ratio or size characteristics.17 In turn, we apply our methodology

separately to each of these disaggregate series and extract a persistent dividend growth

component. Provided that cash-flow betas are more homogeneous within each of these

groups, composition effects due to daily variation in the set of dividend-announcing firms

matter less.

Figure 7 shows the µdt estimates obtained from subsets of firms sorted on high versus

low book-to-market ratios (top panel) or firms sorted into small, medium, and large size

categories (bottom panel). These plots confirm that there are cross-sectional differences in

the behavior of the persistent dividend components (µdt) extracted from our model.

17For example, each month we sort all firms in our sample by their book-to-market (BM) ratios and form
two portfolios consisting of firms whose BM ratios are above (”high”) or below (”low”) the median BM ratio.
To be included in the sort in a given month, a stock needs to have reported book and market values and to
be traded on the NYSE, AMEX or NASDAQ.
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Specifically, the persistent dividend growth component displays much stronger time-series

variation for value firms than for growth firms (top panel) and for small firms compared

with large or medium-sized firms (bottom panel). Comparing the individual µdt series with

our aggregate, market-wide estimate of µdt, we find correlations of 97.80% for large firms,

88.38% for medium firms, 71.67% for small firms, 90.40% for firms with high

book-to-market ratios, and 92.89% for firms with low book-to-market ratios.

In Internet Appendix C, we also estimate the persistent dividend growth component (µdt)

for the five Fama-French industries and compute parameter estimates for our decomposition

applied to these series. The parameter estimates and time-series plots show that the basic

features of the dividend process remain the same across very different industries.

These results demonstrate that while the predictable dividend growth component varies

across firms with different characteristics and in different industries, some features are

common across firms: estimates of φµ close to unity (indicating a highly persistent

component in dividend growth), similar jump sizes, and negative dependence between the

jump probability and the number of firms announcing dividends on a given day.

4 Predictability of dividend growth

Predictability of dividend growth features prominently in discussions of asset pricing models.

Cochrane (2008) finds little evidence of predictability of US dividends, while studies such

as van Binsbergen and Koijen (2010), Kelly and Pruitt (2013), Jagannathan and Liu (2019)

argue that dividend growth is, to some extent, predictable.18 The parameter estimates

from our dividend model show that the daily dividend growth process contains a small, but

highly persistent component and this section explores the implications of our results for

predictability in dividend growth.

4.1 Predictive regressions

Existing studies on dividend growth predictability use time-aggregated dividends measured

over longer horizons than our daily interval. To explore whether our estimate of the

18A recent literature uses dividend futures to estimate the term structure of dividends. van Binsbergen
et al. (2012) and van Binsbergen and Koijen (2017) recover prices of dividend strips and show that their
expected returns are higher than those on the underlying index.
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persistent dividend growth component can predict dividends–and to make our results

directly comparable to existing ones–we use the conventional top-down approach to

construct monthly and annual measures of dividend growth from CRSP data, denoted

∆dCRSPt .19

Next, we estimate a predictive regression of future dividend growth, ∆dCRSPt+1 , on the

persistent dividend component measured at the end of the previous period, µdt, the log

dividend-price ratio extracted from CRSP, dpt, and current and lagged dividend growth:

∆dCRSPt+1 = α + βµdt + γdpt +
3∑
j=1

ρj∆d
CRSP
t+1−j + εt+1. (12)

We include the log dividend-price ratio in the regression because this has been suggested

as a predictor of cash flow growth in a variety of studies (e.g., Cochrane (1992), Cochrane

(2008), and Lettau and Nieuwerburgh (2008)).

Panel A of Table 2 shows that the persistent component of dividend growth, µdt, has

strong predictive power over future dividend growth recorded at the quarterly horizon. In

the shorter post-1973 sample, the lagged persistent dividend growth component obtains a

t-statistic of 4.6 after accounting for the effect of lagged dividend growth and the lagged

dividend-price ratio. Moreover, at 0.26 the R2 is quite high. These findings are robust to

the sample period. Starting the sample in 1927, the coefficient on µdt obtains a t-statistic of

2.5 and the R2 value of the predictive regression rises to 0.37. The coefficient on the lagged

dividend-price ratio is not significant in any of these regressions, while the first two lags of

dividend growth are significant in the quarterly models.

The predictive power of µdt over future dividend growth is very similar at the annual and

quarterly horizons in the post-1973 sample, though somewhat weaker at the annual frequency

in the longer sample that begins in 1927. Still, µdt remains highly statistically significant at

the annual horizon for both samples and this result is again robust to the presence of lagged

dividend growth and the dividend-price ratio in the predictive regression.

19Most researchers extract aggregate dividends, Dt, from CRSP as the difference between the cum-dividend
return (VWRETD), Rcumt , and the ex-dividend return (VWRETX), Rext , multiplied by the previous ex-
dividend index level, P ext−1, i.e., Dt = (Rcumt − Rext ) × P ext−1. Using the resulting aggregate dividend series,

the log dividend growth rate can be computed as ∆dCRSPt = ln
(

Dt
Dt−1

)
.
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4.2 Comparison with alternative predictors of dividend growth

Previous studies have reported evidence of predictability in dividend growth. Campbell

and Shiller (1988b) develop a vector autoregressive (VAR) model for the joint dynamics in

dividend growth, the price-dividend ratio and the cyclically adjusted price-earnings ratio

(CAPE). Lags of all three variables obtain significant coefficients in the dividend growth

equation, suggesting significant in-sample predictability of dividend growth at the annual

frequency over the period 1871-1987. Similarly, Jagannathan and Liu (2019) propose a

three-variable VAR that includes dividend growth, the dividend-earnings (payout) ratio,

and a latent component that can capture the long-run risk surrounding future dividend

growth. Although their analysis focuses on large stocks in the S&P500 index, their findings on

predictability of annual dividend growth are commensurable with ours. Finally, Donaldson

and Kamstra (1996) propose a neural net model to capture non-linear predictability in

discounted future dividend growth. Computing stock prices as the present value of expected

discounted future dividends, they can match the boom and crash in stock prices experienced

during the Great depression.

The two studies most closely related to ours are van Binsbergen and Koijen (2010) and

Kelly and Pruitt (2013). For example, van Binsbergen and Koijen (2010) use a latent variable

Kalman filtering approach to estimate a log-linearized present value model consisting of

expected returns and expected dividend growth rates for the aggregate stock market and

identify a predictable component in dividend growth.

Kelly and Pruitt (2013) assume that individual firms’ stock returns and log cash flow

growth rates are a linear function of a set of unobserved common factors which can be

estimated using a three-pass regression (partial least squares) methodology. In turn, cash

flow growth can be projected on the common factors to generate a dividend growth forecast.

Empirically, Kelly and Pruitt (2013) find strong in-sample evidence of predictability in annual

cash flow growth while their out-of-sample results are somewhat mixed; in the Depression-

era (1930-1940), dividend growth appears to be highly unstable and hard to predict while

out-of-sample predictability is stronger over the sample 1940-2010.

We next compare our dividend growth estimates to results based on these two

approaches.20 To this end, the top panel in Figure 8 plots realized values of annual

20We are grateful to Seth Pruitt for sharing data and computer code which allowed us to replicate the
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dividend growth against the persistent growth component estimated from our model, µdt,

(sampled annually) and the van Binsbergen and Koijen (2010) measure, gV BKt . The

bottom panel plots monthly dividend growth against our persistent dividend growth series,

µdt, (sampled monthly) and the Kelly and Pruitt (2013) estimate, gKPt . While these

dividend growth estimates are clearly correlated, there are also some notable differences.

Notably, our persistent dividend growth measure shows a sharper decline during the global

financial crisis compared with the two alternative estimates.

Panel B in Table 2 reports more formal results from regressions of the observed future

dividend growth on the growth estimate implied by the three approaches. Because van

Binsbergen and Koijen (2010) study cash-reinvested, annual dividend growth while Kelly and

Pruitt (2013) use monthly dividend growth extracted from CRSP, their growth estimates are

not directly comparable. We therefore report separate results for the annual and monthly

series used in the two studies. To make comparisons between the three approaches easier to

interpret and to relate the results to other parts of our paper, we use the 1973-2016 sample

adopted throughout much of our analysis.

All three growth estimates clearly have predictive power over future dividends in the

univariate regressions. For example, the growth estimate of van Binsbergen and Koijen

(2010) obtains a t-statistic of 2.16 with an R2 value of 13% in the annual sample. In

comparison, the t-statistic on our µdt estimate is 4.04 and the associated R2 value is 25%.

Including both the µdt and gV BKt measures in the regression, we continue to observe a large

t-statistic on µdt (3.97), while the t-statistic on the estimate of van Binsbergen and Koijen

(2010) drops to 0.91 with an R2 value of 27%. This demonstrates the predictive power

possessed by our estimate of the persistent growth component.

In the monthly dividend growth regressions, the growth estimate of Kelly and Pruitt

(2013) generates a t-statistic of 6.41 and an R2 value of 20%. In comparison, the t-statistic

obtained when instead we use our µdt measure is 7.23 and the R2 value is 31%. Including

both µdt and gKPt as predictors in the regression, µdt obtains a t-statistic of 5.12 while the

t-statistic of the growth estimate of Kelly and Pruitt (2013) declines to 1.58.

These results show that the persistent component in dividend growth extracted from

daily dividend announcements possesses strong predictive power over actual dividend growth

results in Kelly and Pruitt (2013).
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at both the monthly and annual frequencies. Moreover, our µdt estimate adds substantial

predictive power to existing dividend growth estimates.

To formally test and compare the predictive power of the three dividend growth estimates,

we run a pair of forecast encompassing regressions:

∆dCRSPt+1 = α + β1µdt + (1− β1)gV BKt + εt+1,

∆dCRSPt+1 = α + β1µdt + (1− β1)gKPt + εt+1. (13)

The larger is β1, the greater the weight on our dividend growth estimate and the smaller the

weight on the competing model estimate. Specifically, a value of β1 = 1 suggests that µdt

dominates (encompasses) either gV BKt (top regression) or gKPt (bottom regression).21

The top row of Panel C in Table 2 shows that the estimate of β1 equals 0.87 in the

encompassing regression that includes µdt and gV BKt . The persistent dividend growth

estimate from our model thus obtains a weight of 87% while the weight on the van

Binsbergen and Koijen (2010) estimate equals 13%. Moreover, the estimated weight on µdt

is statistically significant at the 1% level. In the second regression, the weight on µdt is

108% which is significantly different from zero, while the weight on the Kelly and Pruitt

(2013) dividend growth estimate is -8% which is not significantly different from zero.

We conclude from these regressions that our dividend growth estimate adds significant

predictive value to state-of-the-art measures proposed in the existing finance literature.

4.2.1 Out-of-sample forecasts

The analysis performed so far uses data up to 2016 and so does not address whether our

approach could have been used in real time to generate accurate forecasts of dividend growth.

To address this point, we conduct an out-of-sample forecasting experiment that only uses

historically available data to estimate the parameters of our model and generate forecasts.

Specifically, using an expanding estimation window and an initial warm-up period from 1973-

1986, we re-estimate our model every week and construct real-time, out-of-sample daily

forecasts over the 1986-2016 sample. Each month, we then take the last daily value of

our forecast and compare this to the monthly out-of-sample forecasts generated using the

approach of Kelly and Pruitt (2013). Finally, we evaluate the accuracy of these forecasts

21Note that gt = Et∆dt+1 is the forecast of dividend growth next period.
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using either univariate regressions or the forecast encompassing regressions in (13).

A univariate regression of dividend growth on our out-of-sample, real-time estimate, µdt,

generates an R2 of 27.76% (t-stat of 6.70), while the same regression using the out-of-sample

forecast of Kelly and Pruitt (2013) produces an R2 of 2.88% (t-stat of 2.38).22 Similarly, in

the forecast encompassing regression, the weight on the µdt series increases from 1.08 to 1.25

with a t-statistic of 12, while the weight on the Kelly and Pruitt (2013) forecast is -0.25.

Our dividend growth forecasts thus perform very well even out-of-sample.23

To better assess the periods in which our ∆µdt measure produces more accurate forecasts

than existing alternatives, we follow Goyal and Welch (2008) and inspect the out-of-sample

cumulative sum of squared forecast error differentials (CSSED) from a forecasting model

based on ∆µdt versus the Kelly-Pruitt dividend growth measure. Using ∆µdt leads to more

accurate forecasts than the Kelly-Pruitt model between the start of the sample (1973) and

1980, while our model underperforms during a brief spell in the late 1990s. During the

16-year period after 2000, our ∆µdt measure consistently produces more accurate forecasts

of dividend growth than the forecasting model based on the Kelly-Pruitt measure.

4.3 Data frequency and dividend dynamics

Prior work on predictability of dividend growth has focused on long horizons using monthly,

quarterly, or annual data, while our results pertain to the daily frequency. To more formally

evaluate the role of the data frequency in our analysis, we estimate our components model

using dividend data at the longer frequencies, extract the corresponding estimates of the

persistent growth component, µdt. and replicate the analysis in Panel A of Table 2. Figure 9

shows that the dividend growth estimates extracted from the lower frequency data possess

many of the features of the daily estimates. However, they also tend to be very smooth

compared to the estimates of µdt extracted from daily data. This means that the lower

frequency estimates miss some of the important troughs and peaks in the dividend growth

process. For example, the severity of the fall in dividend growth during the global financial

crisis is completely missed by the quarterly and annual estimates, although the monthly

22Results ending in 2007, excluding the recent financial crisis, are qualitative similar with an R2 of 25.47%
(t-stat of 9.01) for our measure, and an R2 of 4.05% (t-stat of 2.15) for Kelly and Pruitt (2013).

23Since our out-of-sample forecasts are generated recursively, our findings are not overly sensitive to the
Great Recession which produced a considerable amount of cash flow news, see, e.g., Campbell et al. (2013).
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estimate fares better in this regard. Table 3 shows that our daily µdt estimate outperforms

the monthly, quarterly and yearly measures in terms of predictive accuracy, generating higher

R2 values even when the basis for the comparison is the monthly, quarterly, and annual

forecast horizons used to estimate the lower-frequency measures.

Next, we perform forecast encompassing regressions, regressing monthly, quarterly, or

annual dividend growth on the daily growth estimate plus one of either the monthly,

quarterly, or annual growth estimates subject to the constraint that the coefficients

(“weights”) sum to unity. At all three horizons, we find that our daily dividend growth

estimate gains a substantially larger weight than the corresponding low-frequency dividend

growth estimates.

These results show that the data frequency is important to our findings and that applying

our decomposition on daily data yields stronger prediction results than applying it on data

recorded at lower frequencies. The reason for this finding is that the daily dividend growth

estimate better captures shifts in the momentum of dividend growth which tends to be

smoothed out in time-series averages based on longer periods.

The twin effects of using daily data on growth in announced dividends and decomposing

changes in this series into a smoothly evolving persistent component, temporary jumps and

(small) shocks with time-varying volatility is what combines to yield better forecasts of

dividend growth. So both the higher data frequency and our decomposition approach help

produce more accurate forecasts of dividend growth.

Past studies suggest that dividends are sticky as firms are cautious in raising dividends

and very hesitant in reducing them (e.g., Brav et al. (2005)). This behavior might imply

that the extent to which dividend growth is predictable differs on the upside and downside.

To explore this point, we extend the regression in the first column of Table 3 to include µdt

interacted with top and bottom quintile dummies defined according to whether the prior-

month dividend growth rate was in the highest or lowest 20% of historical dividend growth

rates, respectively. We find that, indeed, the slope coefficient on µdt increases significantly

from 0.17 on average to 0.28 during downside months, indicating downside stickiness.

Our analysis of predictive dynamics in dividend growth is based on announced

dividends rather than the commonly used paid-out dividends which lag dividend

announcements. To shed light on the importance of this distinction, we sample both
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announced and paid dividends at the monthly, quarterly and annual horizons and estimate

our components model separately on these series. Next, we produce forecasts of dividend

growth for the ensuing period. We find that predictability of dividend growth based on the

forecasts that use announced dividends is stronger than if we use forecasts based on paid

dividends. Interestingly, some advantage from using announced rather than distributed

dividends to generate forecasts remain even at the annual horizon. Further details are

provided in a web appendix.

4.4 Cash flow news and economic activity

We next examine the relation between our estimate of the persistent component of dividend

growth news and two measures of macroeconomic growth, namely GDP and consumption

growth, both of which have been examined by authors such as Liew and Vassalou (2000)

and Bansal and Yaron (2004).24 Specifically, to evaluate the statistical significance of these

relations, we estimate predictive regressions

∆yt+1 = α + β1µdt + β2∆yt + εt+1, (14)

where ∆yt+1 is the future change in either log GDP or log consumption. We include one lag

of the dependent variable, ∆yt, to control for persistence in consumption or GDP growth.

Table 4 reports the results from the regression in (14). First consider the results based on

the estimate of µdt extracted from the daily data (Panel A). In the univariate regressions,

our persistent dividend growth measure, µdt, generates positive coefficients of 0.15 with t-

statistics of 5.68 and 6.58 for GDP growth and consumption growth, respectively. Moreover,

with R2 values of 23.5% and 31.1%, µdt clearly has strong predictive power over future GDP

and consumption growth. The coefficient on µdt remains statistically significant once we add

a lag of the dependent variable, although the t-statistic declines to a value around three.

To evaluate the importance of the data frequency, we also show results for cases where

µdt is extracted from either monthly dividend growth data (Panel B) or quarterly dividend

growth data (Panel C). While the µdt estimates extracted from the lower frequency data

24The Gross Domestic Product series is downloaded from FRED and is seasonally adjusted. Consumption
expenditures are the sum of non-durable consumption plus services from Table 2.3.5 of the National Income
and Product Accounts (NIPAs) from the Bureau of Economic Analysis (BEA) website.
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remain statistically significant in helping predict both GDP and consumption growth, the

R2 values decline notably–particularly in the quarterly data for which we obtain R2 values

of 5.9% and 9.4%, compared with 23.5% and 31.1% for the daily data. High-frequency data

can, thus, significantly boost the predictive power of our dividend growth estimate.

We conclude from this evidence that our persistent cash flow measure µdt helps predict

variation in macroeconomic growth. This is consistent with our earlier finding that µdt

predicts future dividend growth and shows that this result carries over to broader measures

of economic growth. Our findings indicate that firms adjust their dividend payments in

anticipation of changes in economic conditions measured by slow-moving economic indicators

such as GDP and consumption growth.

4.5 Relation to other activity measures

Our daily dividend growth measure reflects general macroeconomic conditions and so can

be viewed as an economic indicator similar to existing measures such as the macroeconomic

uncertainty measure of Jurado et al. (2015), the economic policy uncertainty measure of

Baker et al. (2016), the ADS business conditions index of Aruoba et al. (2009), the credit

spread indicator of Gilchrist and Zakrajsek (2012), and “noise” in the Treasury market (Hu

et al. (2013)).25 Previous research has addressed whether these measures can be used to

predict the state of the economy, especially during recessions and financial crises, so we next

explore the relation between µdt and these alternative measures.

Panel A of Table 5 shows estimates of the correlations between the persistent dividend

component µdt and these daily measures of financial and macroeconomic conditions. µdt has a

highly significant negative correlation of -0.54 with the VIX, suggesting that dividend growth

is lower in times with high uncertainty, which tends to coincide with economic recessions.

µdt also has a significantly negative correlation of -0.20 with the policy uncertainty index

of Baker et al. (2016) and a negative correlation of -0.51 with the liquidity noise index of

Hu et al. (2013), indicating that firm payouts are lower in times with greater uncertainty.

25Aruoba et al. (2009) measure economic activity at the daily frequency using a variety of stock and flow
data observed at mixed frequencies. Their approach extracts the state of the business cycle from a latent
factor that affects all observed variables. Jurado et al. (2015) provide econometric estimates of time-varying
macroeconomic uncertainty and show that important uncertainty episodes appear far more infrequently than
indicated by popular uncertainty proxies. However, when such episodes do occur, they tend to be larger,
more persistent, and more correlated with real economic activity.
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Finally, µdt has a significantly positive correlation of 0.20 with the ADS index of Aruoba

et al. (2009) and with the daily inflation index of Cavallo and Rigobon (2016) (correlation

of 0.76). These findings show that our persistent dividend growth measure is significantly

negatively correlated with risk proxies, e.g., stock market volatility and policy uncertainty,

but positively correlated with economic growth and inflation.

Panel A in Table 5 uses levels and so the correlation estimates described above are driven

by common, persistent factors reflecting the state of the economy. Panel B highlights short-

run effects by reporting the correlations between daily changes in the underlying indexes.

Changes in our daily dividend growth index are only significantly correlated with changes

in daily inflation, suggesting that daily variation in our new dividend growth measure is not

captured by daily variation in other financial and macroeconomic variables but constitutes

a new source of (high frequency) information.

5 Implications for return predictability

A long-standing debate in asset pricing is concerned with the importance of cash flows

expectations as a source of variation in stock returns. For example, Cochrane (2008) argues

that dividend growth is largely unpredictable by means of variables such as the dividend-

price ratio. If true, this has important asset pricing implications because it implies that

movements in the dividend-price ratio must instead reflect time-varying risk premia.

Finding that the dividend-price ratio fails to predict future dividend growth does not,

of course, rule out that other variables–such as our persistent dividend growth measure–can

predict dividend growth and, in turn, stock returns. Whether such return predictability from

our persistent dividend growth measure can be established–and whether it is consistent with

basic principles of asset pricing–is what we set out to explore in this section.

5.1 A predictive present value model

We use a simple reduced-form present value model to explore the implications of dividend

growth predictability for predictability of stock returns. This model provides a structured

framework that allows us to quantify and test the implications of dividend growth
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predictability for predictability of stock returns.26

Our analysis of return dynamics uses the following notations. We refer to pt+1 as the

logarithm of the stock price on day t + 1 while dcft+1 is the logarithm of the dividends paid

out (distributed) on day t + 1 and, as before, dt+1 is the logarithm of dividends announced

on day t + 1. The present value model refers to paid-out cash flows (cf ) and the two

dividend measures are very different at the daily horizon–recall that, on average, dividend

announcements precede distributions by 42 days. At longer horizons such as a quarter or a

year, differences between announced and distributed dividends tend to be much smaller.27

Finally, ∆dcft+1 = dcft+1 − d
cf
t denotes the growth rate in distributed dividends, while rt+1 is

the log return on day t+ 1.

Following Campbell and Shiller (1988a), consider the approximate log-linearized present

value model

rt+1 ≈ k + ρ(pt+1 − dcft+1) + ∆dcft+1 + (dcft − pt), (15)

where ρ = 1/(1 + exp(d− p) and k = − ln(ρ) − (1 − ρ) ln(1/ρ − 1) are log-linearization

constants. At the daily frequency, the average dividend yield is very small and so ρ = 0.99998

is extremely close to unity. Using this value for ρ, the log-linearization in (15) is highly

accurate with a correlation between exact and approximate returns of 0.9998.

Again, we emphasize the distinction between announced and distributed dividends for the

daily present value model: at the daily horizon, the correlation between growth in announced

and distributed dividends (∆dt+1 and ∆dcft+1) is essentially zero (-0.0072). Moreover, if we

(incorrectly) use announced instead of distributed dividends in (15), the accuracy of the

present value approximation deteriorates sharply.

Studying return predictability in the context of the present value model in (15) offers

a number of important advantages. First, previous studies of return predictability such as

Campbell and Shiller (1988a), Cochrane (2008) and van Binsbergen and Koijen (2010), have

used this model.28 Adopting a similar framework makes it easier to compare our findings to

26Other, less parametric approaches to asset pricing are also available, e.g., the pricing kernel bounds
proposed by Hansen and Jagannathan (1997). An important advantage of the present value model is that
it lends itself to empirical tests through a set of linear restrictions on the model parameters.

27The correlations between log-dividends calculated using announced and paid-out dividends are 33.23%,
72.45% and 83.61% at the monthly, quarterly and annual frequencies, respectively.

28Jagannathan and Liu (2019) embed a dividend growth VAR specification in an asset pricing model with
recursive Epstein-Zin preferences and find significant predictability of annual stock returns from a stock yield
variable, particularly in the presence of investor learning about dividend growth dynamics.
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evidence from the existing literature.

Second, the present value model (15) has strong economic implications that directly link

predictability of dividend growth to predictability of stock returns not only from popular

predictors such as the log dividend-price ratio but also from other potential predictors such

as news about our persistent dividend growth component. In particular, (15) implies that

if a variable helps predict dividend growth, ∆dcft+1, this same variable should also predict

returns–unless this variable has an equivalent and opposite effect on the price-dividend ratio,

pt+1 − dcft+1. This latter scenario arises if a variable forecasts equal movements in expected

cash flow growth and discount rates so that the net effect on return predictability is zero.

Third, the present value model has implications for return predictability at different

horizons. Because (15) holds regardless of the horizon, if a variable helps forecast dividend

growth at multiple horizons, we would, in general, expect the same variable to possess

predictive power over stock returns across these horizons. This is relevant here, given our

empirical evidence that the persistent dividend growth component helps predict dividend

growth at short as well as long horizons.

At the long forecast horizons conventionally used in the finance literature, it is common

to predict the dividend yield, dcft+1 − pt+1, because it is easy to extract a highly persistent

component from the dividend-price ratio which is very smooth; see, e.g., Cochrane (2008).

Conversely, at the daily horizon, dcft+1−pt+1 tends to be dominated by large variations in daily

dividend distributions which, however, are temporary and so do not reflect any predictability

of long-term dividend prospects.

To deal with this and obtain a more stable forecasting model, we instead predict daily

changes in the dividend-price ratio ∆
(
dcft+1 − pt+1

)
= (dcft+1 − pt+1) − (dcft − pt). From an

econometric perspective, the main effect of predicting ∆
(
dcft+1 − pt+1

)
rather than dcft+1 −

pt+1 is to anchor daily variation in the dividend-price ratio on a random walk, imposing

a coefficient of unity on dcft − pt. Imposing a similar constraint on the dividend yield has

been found by Ferreira and Santa-Clara (2011) to reduce estimation error and lead to more

accurate forecasts of stock returns. The constraint can be viewed as a sensible economic

prior since we would expect the dividend-price ratio to contain a highly persistent (near unit

root) component at the daily frequency.
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Following this discussion, we approximate (15) as follows,

rt+1 ≈ k −∆
(
dcft+1 − pt+1

)
+ ∆dcft+1. (16)

The approximation in (16) is very accurate as a consequence of ρ being very close to

unity at the daily horizon: the correlation between rt+1 and the approximation in (16) is

0.9997 in our sample.

Note that ∆dcft+1 can be dropped from (16), so rt+1 ≈ k+(pt+1−pt), suggesting a predictive

regression that simply projects capital gains, ∆pt+1, on any candidate predictors. However,

daily capital gains and stock returns are very similar, so regressing capital gains rather

than returns on the predictors does not provide additional economic insights. Conversely,

stock prices can move because of changes in valuations (reflected in the dividend-price ratio)

or because of cash flow news (dividend growth) and our decomposition in (16) allows us

to identify predictability in these separate components. This offers the potential for new

economic insights on return predictability at the daily horizon and for testing the validity of

the cross-equation restrictions implied by the present value model (15).

Next, consider the list of predictors. Our first predictor is the lagged change in the

persistent dividend growth component, ∆µdt. Using µdt as a predictor might seem the

natural choice. However, µdt is constructed to capture the predictive component in announced

dividends whereas the present value model (16) is based on distributed dividends which are

uncorrelated with announced dividends at the daily frequency. Moreover, given its very

high persistence, µdt is not well suited for predicting daily stock returns which are not very

persistent. Conversely, ∆µdt effectively measures innovations to µdt and so captures news

about changes in the state of the economy.

Our second predictor is the lagged dividend-price ratio which has been extensively used

in the finance literature to forecast variation in the investment opportunity set and so is

important to include. To see why, note from (15) that variation in the log dividend-price

ratio should reflect changes in expected future returns and/or changes in expected future

dividend growth:

dcft − pt ∝ Et

[
∞∑
j=0

ρj
(
rt+j+1 −∆dcft+j+1

)]
. (17)

At the frequencies typically considered in empirical studies–monthly, quarterly, or annual–
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the dividend-price ratio tends to be very smooth and highly persistent. This makes it

well-suited as a predictor of slow movements in the investment opportunity set operating at

longer horizons. In contrast, because of the lumpiness in daily dividends, the daily dividend-

price ratio is very volatile. To obtain a predictor variable with persistence features more

similar to the conventional dividend-price ratio obtained at lower frequencies, we measure the

dividend-price ratio as a smoothed 30-day moving average of announced dividends divided

by the current stock price, denoted dt − pt.29

Finally, we also include the lagged value of the daily dividend growth, ∆dcft , in order to

account for short-term reversals in the daily dividend growth process as days with very large

dividend distributions tend to be followed by days with much smaller dividend payments.

Following this discussion, our daily prediction model for growth in distributed dividends

takes the form

∆dcft+1 = θ0 + θµ∆µdt + θdp
(
dt − pt

)
+ θd∆d

cf
t + εdt+1. (18)

Similarly, we predict changes in the daily dividend-price ratio using the same set of

predictors:

∆
(
dcft+1 − pt+1

)
= γ0 + γµ∆µdt + γdp

(
dt − pt

)
+ γd∆d

cf
t + εcft+1. (19)

Using equations (18) and (19) in the log-linearized return equation (16), we have

rt+1 ≈ k + θ0 − γ0 + (θµ − γµ)∆µdt + (θdp − γdp)
(
dt − pt

)
+ (θd − γd)∆dcft + εdt+1 − εcft+1. (20)

This equation can be rewritten as

rt+1 = λ0 + λµ∆µdt + λdp(dt − pt) + λd∆d
cf
t + εrt+1, (21)

where εrt+1 = εdt+1 − εcft+1. Comparing (21) to (20), it follows that the present value model

29Our empirical results are robust to using other windows to smooth the dividend process.
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imposes the following cross-equation restrictions on the parameters of the return equation:

λ0 = k + θ0 − γ0,

λµ = θµ − γµ, (22)

λdp = θdp − γdp,

λd = θd − γd.

The restriction on λdp implies that if, at any horizon, dt − pt predicts future dividend

growth (θdp 6= 0 in (18)), it must, in general, also predict future returns (λdp 6= 0). Similarly,

if, after controlling for the effect of the log dividend-price ratio, some other predictor such

as ∆µdt forecasts dividend growth (θµ 6= 0 in (18)), then the present value model requires

that this variable also forecasts returns (λµ 6= 0) unless θµ = γµ, in which case the predictive

effects from ∆µdt on ∆dcft+1 and ∆
(
dcft+1 − pt+1

)
cancel out. This case arises if the variable

predicts both higher (lower) dividend growth and higher (lower) discount rates in equal

amounts, see (17).30

An important implication of (21) and (22) is that dividend news will, in general, also

contain information about discount rates. Hence, care should be exercised when

interpreting the effect of dividend news on variables such as stock returns and the

dividend-price ratio since such news may also have sizeable discount rate effects. This

interpretation is reinforced by our finding that the persistent dividend growth component

helps predict consumption growth which, of course, is an important component of the

pricing kernel in standard consumption-based asset pricing models.

5.2 Empirical findings

Before proceeding with the empirical analysis of the present value model, it is important to

note that the behavior of the components in (15) is quite different at the daily frequency

than at the longer horizons conventionally used in empirical studies.

First, as noted previously, the distinction between announced and distributed dividends is

30The model in Cochrane (2008) is a special case of our specification which is obtained by omitting ∆µdt
and ∆dcft as predictor variables (i.e., setting λµ = λd = 0), assuming that the distributed and announced
dividends are the same, and setting ρ ≈ 1 which, as we have shown, holds to a very close approximation for
daily data.
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not important at longer horizons but is crucial at the daily horizon for which the correlation is

only 52.12% and 0.72% for the two dividend series in log-levels and log-changes, respectively.

Second, the contribution to return volatility of the individual return components in (15)

is very different at the daily and longer frequencies. For example, in quarterly data, ∆dcft+1 is

quite smooth and its volatility is roughly six times smaller than the volatility of the dividend-

price ratio, dcft+1−pt+1. Conversely, in daily data, the volatility of ∆dcft+1 is almost 50% higher

than the volatility of dcft+1 − pt+1 due to shifts in the composition of firms paying dividends

on any given day. Hence, the volatility of dividend growth is nearly an order of magnitude

greater at the daily than at the quarterly horizon, measured relative to the importance of

variation in the dividend-price ratio.

Third, days with unusually large dividend payments (large, positive dividend growth)

are typically followed by days with smaller dividend payments (negative dividend growth).

This produces negative first-order autocorrelation in daily dividend growth–the first-order

autocorrelation in ∆dcft is -0.35–which does not carry over beyond one day, however, and so

is not helpful for predicting long-term dividend growth.

These observations are important for interpreting our empirical estimates and suggest

that we should only expect to find limited predictability of dividend growth and in the log

dividend-price ratio at the daily frequency by means of our three predictors.

The top row in Table 6 presents estimates from the predictive dividend growth

regression, (18). We show results for the long sample, 1927-2016, but the estimates are

very similar in the shorter sample, 1973-2016. Both the lagged dividend-price ratio and the

lagged daily dividend growth obtain significantly negative coefficients. The negative

coefficients on dt − pt and ∆dcft are largely a consequence of the short-term negative serial

correlation (reversal) in daily dividend growth which also explains the large t-statistic on

∆dcft . Conversely, the coefficient on news about persistent growth in announced dividends

(∆µdt) fails to be significant. This is not surprising given the lead time of dividend

announcements relative to dividend distributions.

Turning to the prediction equation for the change in the dividend-price ratio, (19), the

second row in Table 6 shows that the coefficient on ∆µdt is positive but insignificant. The

coefficient on the dividend-price ratio is also insignificant, whereas lagged growth in cash

flows, ∆dcft , produces a negative and significant coefficient, again as a result of short-term
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reversals in daily dividend distributions.

Finally, in the prediction equation for daily stock returns, (21), only news about the

persistent dividend growth component, ∆µdt, turns out to be significant. The estimated

coefficient on ∆µdt is 1.28 with a t-statistic of 3.31. This indicates that positive news about

persistent dividend growth is associated with larger stock returns the following day.31

To see if these results are consistent with the asset pricing implications that follow from

the present value model, the bottom row in Table 6 reports the outcome of Wald tests of

the cross-equation restrictions in (22). We fail to reject any of the coefficient restrictions,

suggesting that the relatively precisely estimated coefficient on ∆µdt in the return equation

(21) is consistent with the present value model. In fact, the estimated coefficient on ∆µdt

(1.28) is very close to the value implied by the present value model (1.21).

Similarly, the present value model implies small coefficients on both dt − pt and ∆dcft in

the return equation which is again consistent with our estimates of (21).32 Although these

variables are significant predictors of variation in both daily dividend growth and changes

in the dividend-price ratio, the two effects cancel out and so these variables do not have

predictive power over returns. This case arises when the predictors correlate with future

cash flow growth and discount rates in the same amount but in opposite directions.

Internet Appendix C assesses the economic value of return predictability from our µdt

measure. We find that using information on µdt leads to an increase of 2.32% in the

annualized certainty equivalent return for a mean-variance investor with moderate risk

aversion.

5.3 Return predictability at longer horizons

A large empirical literature in finance examines return predictability at longer horizons such

as a month or a quarter. To make our results comparable to this literature and to explore if

our new dividend growth measure possesses predictive power over returns at longer horizons,

we undertake two exercises.

First, we regress multi-day stock returns rt+2::t+h =
∑t+h

τ=t+2 rτ on ∆µdt in addition to a

31To be consistent with standard ways of testing the present value model, we use one-period-ahead returns,
rt+1, in these regressions. However, the results are robust if, instead, we skip one day and use rt+2, as the
results in Table 7 show.

32Similar results hold in the shorter sample, 1973-2016, where, again, we fail to reject the cross-equation
restrictions in (22).
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range of alternative measures of dividend growth or dividend dynamics such as the “raw”

daily dividend growth, ∆dt, news about persistent dividend growth extracted from a model

without a jump component, ∆µNJdt , jumps in the dividend growth process, Jdtξt, the

stochastic volatility component extracted from the dividend growth process, hdt/2, and

temporary shocks to dividend growth, εdt+1. These regressions use a conservative approach

and skip one day to compute stock returns which therefore start on day t + 2. We do so in

order to show that our results are not due to price slippage effects.

Table 7 shows results for different models and forecast horizons ranging from one through

three, five, and 21 trading days. We find that ∆µdt has significant predictive power over stock

returns at one, three, and five day horizons as well as one month (21 trading days) ahead in

time. This finding strongly depends on allowing for jumps in the dividend growth process

to extract ∆µdt; we find essentially no return predictability from the alternative measure

that excludes jumps, ∆µNJdt . We also find little-to-no return predictability from raw daily

dividend growth, ∆dt or from any of the other predictors.

Second, we consider the more common monthly horizon for which return predictability

from variables such as the dividend-price ratio has been established in the literature. In

particular, we compare return predictability from ∆µdt to predictability from a set of 14

standard predictors used by Goyal and Welch (2008). Following common practice, we focus

on univariate predictive regressions conducted one predictor at a time. We use the 20-year

window 1973:01–1992:12 as an initial training sample and compute out-of-sample return

forecasts for the remaining period 1993:01–2016:12, employing an expanding estimation

window which adds new observations as they become available.

We consider out-of-sample R2 values and average utility gains. The out-of-sample R2

measures the percent reduction in mean squared forecast error obtained when conditioning

on a predictor relative to using the prevailing mean forecast. Average utility gains can be

interpreted as the portfolio management fees that an investor with mean variance preferences

and a risk aversion coefficient of five is willing to pay to have access to the forecasts generated

using a predictor, again computed relative to the prevailing mean.

The results, reported in Table 8, show that ∆µdt has significant out-of-sample predictive

power over stock returns, coming in as ranked second among the 15 predictor variables both

in terms of the strength of its out-of-sample predictive power and in terms of utility gains.
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Moreover, consistent with findings in the literature (e.g., Dangl and Halling (2012) and

Rapach et al. (2010)), the degree of return predictability, along with the size of the utility

gains, is larger during recessions than in expansions.

6 Dividend news and return dynamics

The present value model can also be used to quantify and assess the effect of dividend news

on concurrent (same day) stock returns. In particular, the model has implications for

which of the different dividend growth components is likely to most strongly affect stock

returns. Shocks to the dividend growth process should be positively correlated with

unexpected returns and shocks to the persistent (predictable) growth component should

generally have a larger impact on stock returns than shocks to the temporary growth

component. In this section, we set out to test these implications and provide a broader

analysis of how the different dividend news components affect not only the mean of stock

returns but also the volatility and probability of observing a jump in stock returns.33

6.1 Dividend news and contemporaneous stock returns

To analyze how stock returns are affected contemporaneously by shocks to the dividend

growth process, we consider two alternative formulations of the prediction equations

underlying the present value model. Although both formulations follow from the present

value model–and thus are equivalent–considering both allows us to explore the robustness

of our results in regards to how we estimate and test the model. For both cases, note that

because µdt+1 is highly persistent, ∆µdt+1 is essentially identical to the innovation to the

µdt+1 process (εµt+1): the two have a correlation of 0.9999. Hence, ∆µdt+1 can be

interpreted as the news or shock to the predictable (persistent) component of the dividend

growth process and so we include this variable in our model for contemporaneous

movements in stock returns.34

Our first specification decomposes daily stock returns into a weighted average of the

33Internet Appendix C reports results from an analysis of the cross-sectional effects of shocks to the
persistent component in the dividend growth process.

34Empirical results are essentialy identical if we use εµt+1 in our analysis instead of ∆µdt+1.
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capital gain (pt+1 − pt) and dividend yield (dcft+1 − pt):

rt+1 ≈ k + ρpt+1 − pt + (1− ρ)dcft+1

= k + ρ(pt+1 − pt) + (1− ρ)(dcft+1 − pt). (23)

Next, we relate pt+1 − pt and dcft+1 − pt to news about the persistent dividend growth

component, ∆µdt+1, controlling for movements in the smoothed log dividend-price ratio,

dt − pt, which captures investors’ forward-looking expectations:

pt+1 − pt = π0 + πµ∆µdt+1 + πdp(dt − pt) + εpt+1,

dcft+1 − pt = δ0 + δdp(dt − pt) + εcft+1. (24)

We leave out ∆µdt+1 from the equation for dcft+1−pt because dividend announcements on day

t + 1 should not affect dividends paid out on the same day due to the lengthy lag between

when dividends are announced and distributed.

The premise of our first specification, (23) and (24), is that daily dividend payments,

dcft+1, are largely known ahead of time. This is unique to the daily frequency and does not

hold at longer horizons such as a quarter or a year. Because of daily composition shifts in

the dividend-announcing firms, this does not imply that we would expect a high R2 value

for the regression of dcft+1−pt on dt − pt in (24). However, it means that investors are able to

quite accurately predict growth in next-day dividend distributions. As a result, forecasting

rt+1 at the daily frequency is largely equivalent to forecasting the capital gain, pt+1 − pt.
Combining the present value model in (23) with the regressions in (24), we get

rt+1 = λ0 + λµ∆µdt+1 + λdp(dt − pt) + εrt+1, (25)

where εrt+1 = ρεpt+1 + (1 − ρ)εcft+1. It follows from the present value model (23) that the

coefficients in (25) must satisfy the cross-equation restrictions

λ0 = k + ρπ0 + (1− ρ)δ0,

λµ = ρπµ, (26)

λdp = ρπdp + (1− ρ)δdp.
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These restrictions are analogous to the constraints obtained for the predictive present value

model in (22) which only uses prior-day (lagged) information.

Our second specification uses the present value model (15) with the key difference that

we now use the contemporaneous news shock to the persistent dividend growth component,

∆µdt+1, instead of its lagged value, ∆µdt. This model therefore takes the form:

∆dcft+1 = θ0 + θµ∆µdt+1 + θdp
(
dt − pt

)
+ θd∆d

cf
t + εdt+1,

∆
(
dcft+1 − pt+1

)
= γ0 + γµ∆µdt+1 + γdp

(
dt − pt

)
+ γd∆d

cf
t + εcft+1, (27)

rt+1 = k −∆
(
dcft+1 − pt+1

)
+ ∆dcft+1 + εrt+1.

Again, the coefficients in (27) are subject to a set of cross-equation restrictions equivalent

to those in (22).

6.2 Empirical findings

Panel A of Table 9 reports estimates of (24)-(25) fitted to returns data for the sample 1927-

2016. First consider the capital gains equation in (24). At 1.55, the estimated coefficient

on ∆µdt+1 is highly significant while, conversely, the coefficient on dt − pt is statistically

insignificant. In turn, dt − pt is highly statistically significant in the prediction equation for

dcft+1−pt with a coefficient of 0.94, consistent with dt − pt picking up a persistent component

in the daily dividend-price ratio.

Turning to the return regression (25), the coefficient on ∆µdt+1 remains highly statistically

significant with an estimate of 1.57, suggesting that higher dividend growth news translates

into positive stock returns with a strong and accurately estimated effect. The coefficient

on dt − pt is essentially zero with a t-statistic below unity, confirming our earlier finding

in Section 5 that movements in this predictor are not important for explaining variation

in next-day stock returns, rt+1. The R2 value of 0.12% shows that news about persistent

dividend growth is a non-trivial determinant of daily stock returns.

The bottom row in Panel A of Table 9 reports a set of Wald tests of the cross-equation

restrictions in (26). With p-values ranging from 0.13 to 0.98, none of the restrictions gets

rejected, suggesting that the effects of news about dividend growth are consistent with

the asset pricing implications that follow from the present value model in (23). Panel B
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reports estimates from the present value specification in (27). We find very similar coefficient

estimates to those obtained from the predictive model analyzed in Section 5. In particular,

the estimated coefficient on ∆µdt+1 in the return equation equals 1.45 with a highly significant

t-statistic of 3.74. This estimate is larger than the estimate obtained from the predictive

model (1.28) in Table 6, though a little lower than its value (1.57) obtained from equation

(25).

A key motivation for constructing a daily dividend growth measure is that it can help

identify the drivers of movements in daily stock returns. From a theoretical perspective, we

would expect the three dividend growth components in (2) to have a very different impact

on stock prices. For example, temporary shocks to dividend growth should have very little

effect on stock prices while shocks to the persistent dividend growth component should have

a larger impact. To see if this holds, we consider whether the other components from our

dividend growth model (2) help explain movements in mean returns by expanding (25) to

rt+1 = λ0 + λµ∆µdt+1 + λdp(dt − pt) + λεεdt+1 + λh exp (hdt+1) + λJJdt+1ξdt+1 + εrt+1. (28)

In sharp contrast with the significant return effect of ∆µdt+1, in unreported results we fail

to reject that λε = λh = λJ = 0 and also find that the estimated return effect of these

additional terms is very small. Hence, temporary shocks to the dividend growth process as

well as movements in dividend growth volatility or jumps in dividend growth fail to have a

significant effect on mean returns.35

These results suggest that news about the persistent dividend growth rate affects the

first moment (mean) of same-day stock returns while news about the temporary components

does not. However, dividend news need not be confined to affecting mean returns and could

also influence how volatile stock returns are on a given day: we might expect positive news

about persistent dividend growth to be associated with calmer markets as it reduces the

likelihood of being in a low-growth (“bad fundamentals”) state. Movements in the volatility

of dividend growth may also spill over to return volatility.

To explore these possibilities, we estimate the following auxiliary regression which uses

35Internet Appendix C undertakes an analysis that uses daily dividend distributions rather than dividend
announcements. Whereas dividend announcements are significantly positively correlated with same-day
stock returns, we find no such effect for dividend distributions.
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the squared daily return residual from (25) as a proxy for return variance:

ε2
rt+1 = a0 + a1ε

2
rt + a2σ

2
dt+1 + a3∆µdt+1 + εσt+1, (29)

where σ2
dt+1 = exp(hdt+1) is the stochastic variance series extracted from the daily dividend

growth process, ∆dt+1. We include the lagged squared return residual, ε2
rt, to account for

persistence in the return variance process.

Panel C of Table 9 reports results from this regression. The significantly positive

coefficient on prior-day squared return shocks, ε2
rt, picks up persistence in the daily return

variance. The variance of the dividend growth process, σ2
dt+1, is strongly positively

correlated with return variance, suggesting that higher uncertainty about dividend growth

translates into higher same-day return volatility.36 Consistent with good news about the

persistent dividend growth component being associated with calmer markets, the

coefficient on ∆µdt+1 is negative although, with a p-value of 0.12, it fails to be statistically

significant.37

Daily dividend news may also affect the probability of observing jumps in stock returns.

To explore this possibility, we go through our sample to flag days with unusually large price

movements and, following Bandi and Renò (2016), introduce a jump indicator which equals

one on days when the absolute value of the (standardized) residuals from the return equation

exceed two. We then estimate the following jump test model38

It+1 = b0 + b1ξdt+1Jdt+1 + b2σ
2
dt+1 + b3∆µdt+1 + εIt+1

Panel D in Table 9 shows that positive news about the persistent cash flow growth

component, ∆µdt+1, is associated with a reduced probability of jumps in returns with a

coefficient that is highly significant. Positive jumps in the dividend growth process tend to

36Using textual analysis, Boudoukh et al. (2019) find that, consistent with our results, public information
about firm-level news is important for explaining the variance of stock returns.

37As we show in Internet Appendix C, µdt contains significant predictive power also for volatility measures
based on high-frequency intra-daily price data and option prices (VIX).

38Estimates of a probit model linking this jump indicator to the three components extracted from our
daily dividend growth model, i.e., jumps, ξdt+1Jdt+1, stochastic variance, σ2

dt+1 and news about persistent
dividend growth, ∆µdt+1 :

Pr
(
It+1| ξdt+1, Jdt+1, σ

2
dt+1,∆µdt+1

)
= Φ

(
b0 + b1ξdt+1Jdt+1 + b2σ

2
dt+1 + b3∆µdt+1

)
. (30)

are very similar.
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be associated with a slightly reduced likelihood of observing a jump in stock returns on the

same day, although the effect is only marginally significant at the 10% level. Conversely,

higher uncertainty about cash flow growth (a larger value of σ2
dt+1) is associated with a highly

significant increase in the likelihood of a jump in stock returns on the same day. Greater

uncertainty about cash flow growth thus translates into a higher chance of large movements

in stock prices and our dividend growth components help to identify cash flow news as a

source of jumps in daily stock returns.39

7 Conclusion

This paper develops a new methodology for constructing a daily “bottom-up” measure of

aggregate cash flow growth based on firms’ dividend announcements. In constructing this

measure, we address two key challenges. First, individual firms’ announced dividends can

change by large amounts from one quarter to the next and display strong heterogeneity

across firms. Second, the number and type of firms that announce dividends often changes

substantially from day to day, leading to large composition shifts. Both effects cause

lumpiness in the daily cash flow news process.

We handle this lumpiness by decomposing news on dividend growth into a transitory

“normal” shock whose volatility can vary over time, jumps that occur more rarely but whose

magnitude tends to be much larger, and a persistent, smoothly evolving component that

captures long-run predictive dynamics in the mean of the cash flow growth process. We find

that these components are well identified in the daily dividend growth data. Importantly, the

persistent mean component captures predictable dynamics in dividend growth which is easily

overlooked in the raw dividend growth series which gets dominated by the highly volatile

temporary jump component. We show empirically that this persistent dividend growth

component can be used to produce more accurate forecasts of future dividend growth than

alternative approaches from the finance literature.

While our empirical analysis uses high-frequency (daily) dividend announcements, it also

39Our findings are related to an extensive literature in finance that finds evidence of time-varying jump
risk in stock returns using data on high-frequency intra-day returns or out-of-the-money options, see, e.g.,
Bollerslev and Todorov (2011). Similarly, Kelly and Jiang (2014) introduce a new measure of time-varying
tail risk extracted from the cross-section of stock returns which they find has strong predictive power over
returns on individual stocks and on market returns.
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offers new insights into the drivers of stock price dynamics at longer horizons. Indeed, shocks

to the persistent dividend growth component identified by our model are long-lasting–with

a half life exceeding a year–and lead measures of economic activity traditionally used as

proxies for “fundamentals” such as GDP and consumption growth. Moreover, our estimates

of persistent dividend growth can be used to produce more accurate forecasts of dividend

growth than existing alternatives at both monthly and annual horizons.

Finally, we use a present value model to explore implications for asset pricing and return

predictability associated with our results on dividend growth predictability. We find strong

evidence that the persistent dividend growth component can be used to forecast stock market

returns both at short horizons such as a single day and at longer horizons such as a month.

Moreover, the cross-equation restrictions implied by the present value model are supported

by the data. Positive news about the persistent dividend growth component are associated

with higher mean stock returns, reduced stock market volatility, and a reduced likelihood of

a jump in stock returns on the same day. Finally, we find that greater uncertainty about

cash flow growth translates into higher volatility for stock prices and we identify news about

our dividend growth components as drivers of jumps in daily stock returns.
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Parameter estimates

1927-2016 1973-2016

Mean Std 90% Credible Set Mean Std 90% Credible Set

µd 0.058 0.016 [0.035,0.080] 0.080 0.012 [0.062,0.097]

φµ 0.999 0.000 [0.999,0.999] 0.998 0.001 [0.997,0.999]

σµ 0.002 0.000 [0.002,0.002] 0.002 0.000 [0.002,0.002]

µh -5.076 0.037 [-5.138,-5.014] -5.337 0.045 [-5.415,-5.262]

φh 0.749 0.008 [0.735,0.762] 0.833 0.008 [0.820,0.846]

σh 1.320 0.031 [1.269,1.369] 0.752 0.028 [0.706,0.797]

σξ 2.651 0.040 [2.584,2.718] 2.761 0.040 [2.695,2.829]

λ1 -1.387 0.039 [-1.452,-1.323] -1.354 0.045 [-1.428,-1.281]

λ2 -0.054 0.006 [-0.064,-0.045] -0.024 0.002 [-0.028,-0.021]

Table 1: Parameter estimates for the dividend growth rate model. This table shows parameter
estimates for a model fitted to the daily dividend growth series. The equations for the components model,
further described in Section 3.1, take the following form:

∆dt+1 = µdt+1 + ξdt+1Jdt+1 + εdt+1,

µdt+1 = µd + φµ (µdt − µd) + σµεµt+1,

εdt+1 ∼ N (0, ehdt+1 ),

hdt+1 = µh + φh (hdt − µh) + σhεht+1,

Pr (Jdt+1 = 1) = Φ (λ1 + λ2Ndt+1) ,

ξdt+1 ∼ N
(

0, σ2
ξ

)
,

where µdt+1 captures the mean of the smooth component of the underlying dividend process, Jdt+1 ∈
{0, 1} is a jump indicator that equals unity in case of a jump in dividends and otherwise is zero, ξdt+1

measures the jump size, εdt+1 is a temporary cash flow shock, εµt+1 ∼ N (0, 1) is assumed to be
uncorrelated at all times with the innovation in the temporary dividend growth component, εdt+1, and
|φµ| < 1. hdt+1 denotes the log-variance of εdt+1, and εht+1 ∼ N (0, 1) is uncorrelated at all times with
both εdt+1 and εµt+1. Ndt+1 denotes the number of firms announcing dividends on day t + 1, while Φ

stands for the CDF of a standard Normal distribution and ξdt+1 ∼ N
(

0, σ2
ξ

)
captures the magnitude

of the jumps. The columns report the posterior mean, standard deviation and 90% credible sets for the
parameter estimates.
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PANEL A: ∆dCRSPt+1 = α+ ρi
∑3
i=1 ∆dCRSPt+1−i + βµdt + γdpCRSPt + εt+1

Quarterly (1973-) Annual (1973-) Quarterly (1927) Annual (1927)

µdt .36*** 2.50*** .14** .96***

[4.58] [3.95] [2.49] [3.20]

dpt -.01 .03 -.00 .04

[-1.29] [0.50] [-0.73] [1.11]

∆dCRSPt .16** -.64*** .34*** -.16

[2.20] [-4.58] [5.58] [-1.07]

∆dCRSPt−1 .07 -.53*** .22*** -.12

[1.39] [-3.87] [4.58] [-0.84]

∆dCRSPt−2 .03 -.12 .01 .01

[0.45] [-0.78] [0.26] [0.05]

R2 26.50% 27.45% 37.42% 6.31%

Observations 169 40 353 86

PANEL B: ∆dit+1 = α+ βµdt + γgit + εt+1

Annual Monthly

µdt 1.28*** 1.10*** 1.39*** 1.16***

[4.04] [3.97] [7.23] [5.12]

gV BKt .90** .34

[2.16] [0.91]

gKPt 1.45*** .43

[6.41] [1.58]

R2 25.84% 13.14% 27.27% 31.65% 20.30% 32.67%

Observations 42 42 42 527 527 527

PANEL C: ∆dit+1 = β1µdt + (1− β1)γgit + εt+1

β1 0.87*** 1.08***

p-value (0.00) (0.00)

1− β1 0.13 -0.08

p-value (0.66) (0.53)

β1 (OOS) 1.25***

p-value (OOS) (0.00)

1− β1 (OOS) -0.25***

p-value (OOS) (0.00)

Table 2: Dividend growth regressions. Panel A reports results from predictive regressions of dividend
growth extracted from CRSP data, ∆dCRSPt+1 , on the persistent component µdt estimated from our daily
dividend growth model and the log dividend price ratio, dpt, at quarterly and annual frequencies. Panel
B compares the predictive power of our persistent dividend growth component to that of two alternative
dividend growth variables. The first measure, gV BKt , is taken from van Binsbergen and Koijen (2010)
and uses cash reinvested dividend growth, measured annually. The second measure, gKPt , is taken from
Kelly and Pruitt (2013) and uses monthly data. Panel C reports results from forecast encompassing
regressions which compare the predictive power of our µdt measure to the two alternative measures,
both in-sample and out-of-sample (available only for Kelly and Pruitt (2013)). Square brackets report
t-statistics computed using Newey-West standard errors with three lags. Unless otherwise indicated, the
sample period is 1973-2016.
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∆dCRSPt+1 = α+ βµidt + γdpCRSPt +
∑3
i=1 ρi∆d

CRSP
t+1−i + εt+1

Monthly Quarterly Annual

µdaily .17*** 1.14*** .36*** .73*** 2.50*** 1.72

[5.77] [15.01] [4.58] [7.64] [3.95] [1.44]

µmonthly .14*** -.14*

[6.51] [-1.90]

µquarterly .22*** .27***

[3.19] [2.87]

µyearly 2.64** -.72

[2.58] [-0.60]

dpt -.00** -.00 -.03*** -.01 .00 -.02*** .03 .07 .05

[-2.49] [-0.97] [-9.86] [-1.29] [0.20] [-2.79] [0.50] [1.12] [0.73]

∆dCRSPt -.05 -.05 -.58*** .16** .22** -.05 -.64*** -.52*** -.52***

[-0.97] [-0.94] [-4.77] [2.20] [2.59] [-0.72] [-4.58] [-3.07] [-2.81]

∆dCRSPt−1 -.07* -.07** -.58*** .07 .10 -.10 -.53*** -.36*** -.39*

[-1.96] [-2.01] [-5.69] [1.39] [1.65] [-1.50] [-3.87] [-3.01] [-2.03]

∆dCRSPt−2 .20*** .20*** -.31*** .03 .06 -.13* -.12 -.08 -.05

[3.68] [3.59] [-3.99] [0.45] [1.05] [-1.84] [-0.78] [-0.52] [-0.26]

R2 18.29% 17.80% 26.50% 21.76% 27.45% 22.14%

Observations 525 525 525 169 169 169 40 40 40

Table 3: Dividend growth regressions. This table shows results from predictive regressions of the
conventional dividend growth measure extracted from CRSP data, ∆dCRSPt+1 on the persistent component,
µdt, extracted from daily, quarterly, or annual dividend growth series, and the log dividend-price ratio,
dpt. The first column of each block (monthly, quarterly, annual) regresses dividend growth on a daily
estimate of µdt, measured at the end of the corresponding period. The third column of each block reports
forecast encompassing regressions which impose that the coefficients on the daily estimate of µdt and the
monthly, quarterly, or annual estimates of µdt sum to unity. Square brackets report t-statistics computed
using Newey-West standard errors with three lags. The sample period for these regressions is 1973-2016.
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Panel A ∆yt+1 = α + βµdaily + γ∆yt + εt+1

∆GDP ∆Consumption

µdaily .15*** .09*** .15*** .04***

[5.68] [3.30] [6.58] [2.84]

∆yt .37*** .67***

[3.87] [12.16]

R2 23.52% 33.56% 31.08% 59.97%

Observations 171 171 171 171

Panel B ∆yt+1 = α + βµmonthly + γ∆yt + εt+1

∆GDP ∆Consumption

µmonthly .13*** .07*** .13*** .04*

[4.28] [2.53] [4.80] [1.90]

∆yt .40*** .68***

[4.59] [11.15]

R2 20.11% 32.37% 27.36% 59.85%

Observations 171 171 171 171

Panel C: ∆yt+1 = α + βµquarterly + γ∆yt + εt+1

∆GDP ∆Consumption

µquarterly .08** .04 .09*** .02

[2.06] [1.44] [2.65] [1.63]

∆yt .49*** .74***

[5.77] [17.22]

R2 5.85% 28.68% 9.36% 58.64%

Observations 171 171 171 171

Table 4: Predictive regressions of GDP and consumption growth on the persistent dividend
growth component. This table reports estimates from quarterly predictive regressions of future GDP
and consumption growth, ∆yt+1, on the persistent dividend growth component, µdt, estimated from our
daily dividend growth model (Panel A) or from dividend data sampled at the monthly (Panel B) or
quarterly (Panel C) frequencies. Square brackets show t-statistics computed using Newey-West standard
errors with three lags. The sample period used for these regressions is 1973-2015.
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PANEL A: Persistent dividend growth and indexes (levels)

VIX PU ADS Liquidity Inflation µdt

VIX 1

PU 0.34*** 1

(0.00)

ADS -0.49*** -0.26*** 1

(0.00) (0.00)

Liquidity 0.67*** 0.19*** -0.54*** 1

(0.00) (0.00) (0.00)

Inflation -0.66*** -0.36*** 0.50*** -0.63*** 1

(0.00) (0.00) (0.00) (0.00)

µdt -0.54*** -0.20*** 0.20*** -0.51*** 0.76*** 1

(0.00) (0.00) (0.00) (0.00) (0.00)

PANEL B: Persistent dividend growth and indexes (changes)

∆VIX ∆PU ∆ADS Index ∆Liquidity ∆Inflation ∆µdt

∆VIX 1

∆PU -0.02 1

(0.10)

∆ADS Index 0.01 0.00 1

(0.65) (0.94)

∆Liquidity -0.01 0.05*** -0.00 1

(0.53) (0.00) (0.95)

∆Inflation 0.03 -0.03 -0.00 -0.00 1

(0.24) (0.27) (0.89) (0.94)

∆µdt -0.02 -0.00 0.04 -0.01 0.10*** 1

(0.16) (0.77) (0.66) (0.58) (0.00)

Table 5: Correlations between the persistent dividend growth component µdt and
macroeconomic and financial activity measures. This table reports correlations between the
persistent dividend growth component µdt extracted from our daily cash flow model and the following
daily macroeconomic variables/indicators: the VIX index, the policy uncertainty index of Baker et al.
(2016), the ADS index of Aruoba et al. (2009), the liquidity noise index of Hu et al. (2013), and the daily
inflation index of Cavallo and Rigobon (2016). Panel A correlates the levels of these variables, while Panel
B correlates changes in the variables. Parentheses below the correlation estimates show p-values. Three
asterisks indicate statistical significance at the 1% level, two starts indicate significance at the 5% level,
while one star indicates significance at the 10% level. Sample periods vary according to the length of the
individual series.
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Const. ∆µdt dt − pt ∆dcft R2

∆dcft+1 -.24** 13.93 -.04** -.36*** 12.87%

(-2.31) (0.30) (-2.54) -58.32

∆
(
dcft+1 − pt+1

)
-.23** 12.72 -.04 -0.36*** 12.87%

(-2.31) (0.28) (-2.53) (-58.32)

rett+1 .00 1.28*** .00 -.00 0.08%

(0.86) (3.31) (0.27) (-0.14)

p− value of restriction 0.37 0.87 0.13 0.75

Table 6: Parameter estimates and test statistics for the predictive present value model fitted
to daily data. This table reports parameter values and test statistics for a predictive present value model
estimated at the daily frequency over the sample period 1927-2016:

∆dcft+1 = θ0 + θµ∆µdt + θdp(dt − pt) + θd∆dcft + εdt+1.

∆
(
dcft+1 − pt+1

)
= γ0 + γµ∆µdt + γdp(dt − pt) + γd∆dcft + εcft+1

rt+1 = λ0 + λµ∆µdt + λdp(dt − pt) + λd∆dcft + εrt+1

with the following restrictions implied by the model

λ0 = k + θ0 − γ0, λµ = θµ − γµ, λdp = θdp − γdp, λd = θd − γd
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Return horizon

rt+2 rt+2:t+4 rt+2:t+6 rt+2:t+22

∆dt -.00** -.00 -.00 -.00

[-2.19] [-0.07] [-0.17] [-0.32]

∆µNJdt -.00** -.00 -.00 -.00

[-2.20] [-0.00] [-0.08] [-0.26]

∆µdt 1.14*** 3.17*** 5.40*** 21.60***

[3.36] [3.90] [4.77] [4.98]

ξdtJdt -.00 .00 .00 .00

[-0.04] [1.49] [0.53] [0.37]

hdt/2 .00 .00 .00 .01

[0.13] [0.85] [1.52] [0.72]

εdt+1 -.00 .00 -.00 -.00

[-1.16] [0.37] [-0.30] [-0.77]

R2 0.03% 0.03% 0.09% 0.00% 0.00% 0.22% 0.00% 0.00% 0.37% 0.00% 0.00% 1.27%

Observations 20,965 20,965 20,965 20,963 20,963 20,963 20,961 20,961 20,961 20,945 20,945 20,945

Table 7: Predictive regressions for stock returns. This table shows estimates of predictive
regressions using cumulative stock market returns as the dependent variable and the following predictor
variables 1) daily growth in announced dividends, (∆dt); 2) changes in the persistent dividend growth
component ∆µNJt estimated from a model without jumps and stochastic volatility; 3) changes to the
persistent dividend growth component ∆µt estimated from a model that accounts for jumps and stochastic
volatility. The dependent variables are the one-day ahead return rt+2 (columns 1-3), the 3-day-ahead
cumulative return rt+2:t+4 (columns 4-6), the 5-day-ahead cumulative return rt+2:t+6 (columns 7-9), and
the 1-month (21 trading day) ahead cumulative return rt+2:t+22 (columns 10-12). We skip one day in
the predictive regressions to account for dividends announced after trading hours. t-statistics, shown in
square brackets, are computed using Newey-West standard errors with two lags for 1, 3, and 5 day-ahead
cumulative returns and 10 lags for 1-month-ahead cumulative returns. The sample period is 1927-2016.



Full Sample Expansions Recessions

R2
OS(%) p− val ∆U(%) R2

OS(%) p− val ∆U(%) R2
OS(%) p− val ∆U(%)

∆µdt 0.43 0.14 1.28 -0.02 0.35 0.11 1.68 0.03 11.40

log(DP) -1.98 0.97 -2.44 -3.06 0.99 -3.63 1.01 0.09 7.66

log(DY) -2.01 0.96 -2.28 -3.25 0.99 -3.73 1.41 0.04 10.18

log(EP) -0.85 0.67 0.74 -0.94 0.86 -1.17 -0.61 0.48 17.45

log(DE) -2.04 0.80 -0.77 -1.29 0.99 -1.24 -4.13 0.65 3.19

SVAR 1.49 0.12 1.30 0.08 0.34 0.10 5.38 0.13 11.80

BM -0.45 0.80 -0.77 -0.51 0.75 -0.96 -0.28 0.82 1.00

NTIS -2.57 0.97 -1.37 -1.31 0.72 -0.23 -6.04 0.99 -11.33

TBL -0.55 0.43 -0.57 0.42 0.12 0.93 -3.22 0.98 -13.20

LTY -0.33 0.65 -0.14 -0.17 0.50 -0.17 -0.76 0.82 0.37

LTR -0.20 0.31 -0.31 -0.28 0.33 -0.38 0.01 0.41 -0.04

TMS -1.20 0.65 -1.33 -1.11 0.51 -0.22 -1.46 0.80 -11.35

DFY -3.24 0.99 -4.13 -3.02 0.96 -2.66 -3.84 0.96 -17.29

DFR -2.13 0.41 1.08 -2.17 0.49 -0.25 -2.00 0.41 12.41

INFL -0.75 0.79 -1.06 -0.33 0.53 -0.30 -1.89 0.89 -7.62

Table 8: Out-of-sample return predictability. This table compares the out-of-sample predictive
performance of our ∆µdt measure to that of 14 standard predictors, used by Goyal and Welch (2008)
to forecast stock returns, for the period 1993:01–2016:12. The predictor variables are the log dividend
price ratio (log(DP)), the log dividend yield (log(DY)), the log earnings price ratio (log(EP)), the log
dividend payout ratio (log(DE)), the stock variance (SVAR), the book-to-market ratio (BM), the net
equity expansion (NTIS), the Treasury-bill rate (TBL), the long term yield (LTY), the long term rate of
return (LTR), the term spread (TMS), the default yield spread (DFY), the default return spread (DFR),
and the inflation rate (INFL). For all predictor variable, we use a 20-year initial estimation window from
1973:01 to 1992:12 followed by an expanding estimation window that adds new data points to the sample
as they become available. We report both the out-of-sample R2 value and average utility gains for the
full out-of-sample period as well as separately for recession and expansion months, as defined by the
NBER. For any given predictor, the out-of-sample R2 measures the percentage reduction in the mean
squared forecast error associated with a model that uses this predictor relative to the mean squared
forecast error of forecasts based on the historical mean return. Positive values indicate better performance
than this benchmark, while negative values suggest worse performance. The average utility gain can be
interpreted as the portfolio management fee that an investor with mean variance preferences and a risk
aversion coefficient of five would be willing to pay to have access to the forecasts generated by a particular
predictor, again measured relative to the historical average forecasts.
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Panel A: Estimates and tests for present value model (I)

Const. ∆µd,t+1 dt − pt R2

pt+1 − pt -.00 1.55*** -.00 0.13%

(-1.26) (3.94) (-1.62)

d
cf
t+1 − pt -4.13*** .94*** 14.44%

(-40.49) (54.80)

rett+1 -.00 1.57*** −.01† 0.12%

(-0.09) (3.97) (-0.63)

p− value of restriction .13 .98 .60

Panel B: Estimates and tests for present value model (II)

Const. ∆µdt+1 dt − pt ∆d
cf
t R2

∆d
cf
t+1 -.24** 30.28 -.04** -.36*** 12.87%

(-2.31) (0.66) (-2.54) -58.32

∆
(
d
cf
t+1 − pt+1

)
-.23** 28.86 -.04 -0.36*** 12.87%

(-2.31) (0.63) (-2.54) (-58.32)

rett+1 .00 1.45*** .00 -.00 0.11%

(0.87) (3.74) (0.28) (-0.14)

p− value of restriction 0.36 0.94 0.13 0.75

Panel C: Heteroskedasticity test

Coeff. Std. Err. t-stat p-value

Intercept 0.00*** 0.00 11.81 0.00

ε2r,t 0.17*** 0.06 3.11 0.00

σ2
t+1 0.00*** 0.00 5.56 0.00

∆µdt+1 -0.03 0.02 -1.55 0.12

Panel D: Jump Test

Coeff. Std. Err. t-stat p-value

Intercept 0.04*** 0.00 21.49 0.00

ξdt+1Jdt+1 -0.02* 0.01 -1.70 0.09

σ2
dt+1 0.31*** 0.05 6.82 0.00

∆µdt+1 -23.98** 9.59 -2.50 0.01

Table 9: Estimates and diagnostic tests for the contemporaneous present value model fitted
to daily data. Panel A reports parameter estimates and t-statistics for the contemporaneous present
value model fitted to daily data:

pt+1 − pt = π0 + πµ∆µdt+1 + πdp(dt − pt) + εpt+1

dcft+1 − pt = δ0 + δdp(dt − pt) + εcft+1

rt+1 = λ0 + λµ∆µdt+1 + λdp(dt − pt) + εrt+1

with the following restrictions implied by the model

λ0 = k + ρπ0 + (1− ρ)δ0, λµ = ρπµ, λdp = ρπdp + (1− ρ)δdp

The present value model in Panel B follows the same layout as in Table 6, with the only difference that
we have replaced the lagged term ∆µdt with the contemporaneous value ∆µdt+1.
Panel C reports estimates from the following estimates on the squared residuals from the return model:

ε2rt+1 = a0 + a1ε
2
rt + a2σ

2
t+1 + a3∆µdt+1 + εσt+1

Panel D reports the OLS estimates of the following jump test

It+1 = b0 + b1ξdt+1Jdt+1 + b2σ
2
dt+1 + b3∆µdt+1 + εIt+1

In all cases, the sample period is 1927-2016. †: coefficient has been multiplied by 100.



Figure 1: Distribution of dividend announcements within a quarter. This figure plots time-
series of dividend announcements for Q2 2014. For every day within this quarter, the top panel shows the
number of firms announcing dividends. The middle panel shows the overall nominal amount of dividends
announced by those firms (in billion dollars), while the bottom panel shows the daily (net) dividend growth
rate.
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Figure 2: Comparison between our daily “bottom-up” dividend growth series vs. a daily
“top-down” dividend growth measure extracted from CRSP. The top panel plots the log of
the daily dividend growth series Gt defined in Eq.1. The bottom panel plots the CRSP-extracted daily
dividend growth, calculated as dividends (paid out) on an given day divided by dividends distributed on
the same day, one year earlier. Both plots use daily data over the sample 1973-2016.

Figure 3: Time series of daily dividend growth and the persistent growth component. The top
panel plots the persistent dividend growth component, µNJdt , extracted from a model without jumps and
stochastic volatility. The bottom panel plots the persistent dividend growth component, µdt, extracted
from the daily dividend series using a model that accounts for jumps and stochastic volatility. All plots
use daily data over the sample 1973-2016.
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Figure 4: This figure plots estimates of the persistent dividend growth measure µdt extracted
from our model using dollar-weighted (baseline) and market-weighted (market weighted)
dividend growth data.

Figure 5: Jumps in the daily dividend growth series. The top panel plots the probability of a
jump in the daily dividend growth series while the bottom panel plots the magnitude of such jumps. Both
plots use daily dividend data over the sample 1973-2016.
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Figure 6: Jump intensities and the number of firms announcing dividend news. This figure
shows the sensitivity of the dividend growth jump probability to the number of firms announcing dividends
on a given day, Ndt, chosen to match the 25th, median and 75th percentiles of the distribution of the daily
number of firms announcing dividends. On days with a large number of announcing firms (black, dashed
curve), the jump intensity distribution is centered around 0.005, corresponding to a jump on average every
200 days. On days with a typical (median) number of announcing firms (blue curve), the jump intensity
is centered around 0.016, implying a jump roughly every 60 days. Finally, on days with a small number
of announcing firms (red, dotted curve), the probability of a jump is 0.03, corresponding to a jump on
average every 35 days.
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Figure 7: Heterogeneity in µdt and firm characteristics. The top panel plots estimates of the
persistent dividend growth component, µdt, computed separately for samples of firms with either high or
low book-to-market ratios. The bottom panel plots estimates of the persistent dividend growth component,
µdt, computed separately for small, medium and large firms. All estimations use daily data over the sample
period 1973-2016.
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Figure 8: Actual versus predicted dividend growth under alternative modeling approaches.
The top panel plots the actual dividend growth, ∆dt, against the persistent dividend growth component
extracted from our model, µdt, and the measure proposed by van Binsbergen and Koijen (2010), gV BKt .
The latter assumes cash reinvested dividend growth. The bottom panel plots actual dividend growth
against our persistent dividend growth component and the measure of Kelly and Pruitt (2013), gKPt . In
both cases we have extended the sample period originally used by the papers after replicating their results.

Figure 9: Comparison of estimates of the persistent dividend growth component, µdt,
extracted from data at the daily, monthly, quarterly, and annual frequencies. This figure
plots time-series of the µdt estimated at the daily, monthly, quarterly and annual frequencies.



Internet Appendix A MCMC Algorithm

In this Appendix, we provide the analytical derivations needed to compute the posterior

distribution of all parameters and latent states of the model we describe in Section 3 of the

paper.

A.1 The Model

We start by rewriting both the model as well as the priors distributions for all model

parameters. Starting with the observation equation and time-varying mean and volatility

processes, we have

∆dt+1 = µdt+1 + ξdt+1Jdt+1 + εdt+1, (A.1)

µdt+1 = µd + φµ (µdt − µd) + σµεµt+1, (A.2)

and

hdt+1 = µh + φh (hdt − µh) + σhεht+1 (A.3)

where εdt+1 ∼ N
(
0, ehdt+1

)
, εµt+1 ∼ N (0, 1), and εht+1 ∼ N (0, 1) independent among each

other and across time. The jump process intensity and size follow

Pr(Jdt+1 = 1) = Φ(λ′XJ
t+1) (A.4)

and

ξdt+1 ∼ N (0, σ2
ξ ) (A.5)

with XJ
t+1 exogenous. Finally, the initial conditions for µdt and hdt are as follows:

µd1 ∼ N
(
µd,

σ2
µ

1− φ2
µ

)
(A.6)
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and

hd1 ∼ N
(
µh,

σ2
h

1− φ2
h

)
. (A.7)

A.2 Priors

The model in (A.1)-(A.7) includes eight parameters, namely µd, φµ, σ2
µ, µh, φh, σ

2
h, λ, and

σ2
ξ . We specify the following prior distributions:

µd ∼ N (µ
d0
, V µd

), φµ ∼ N (φ
µ0
, V φµ)I(|φµ| < 1), σ2

µ ∼ IG(νµ, Sµ) (A.8)

µh ∼ N (µ
h0
, V µh

), φh ∼ N (φ
h0
, V φh

)I(|φh| < 1), σ2
h ∼ IG(νh, Sh) (A.9)

λ ∼ N (µ
λ
,V λ) (A.10)

σ2
ξ ∼ IG(νξ, Sξ) (A.11)

whereN denotes a normal distribution while IG stands for the Inverted-Gamma distribution.

Next, we briefly describe the choices of prior hyperparameters for the dividend growth

model, and note that we work, whenever possible, with loose and mildly informative priors.40

Starting with µd and µh, we set µ
d0

= µ
h0

= 0 and specify their variance as V µd
= V µh

= 10.

Next, we set φ
µ0

= φ
h0

= 0.98 and V φµ = V φh
= 0.12, which implies a prior belief that

the latent processes for µdt+1 and hdt+1 will be very persistent. Further, we set Sµ = 0.012

and Sh = 0.12, restricting the changes to the process for µdt+1 and hdt+1 to be 0.01 and

0.1 on average, but we also set their degrees of freedom νµ and νh to 2, which provides the

least informative proper priors on these parameters. For the timing and intensity of the

jumps, we specify a normal prior for the parameters governing the timing of the jumps, i.e.

λ = (λ1, λ2)′ ∼ N
(
µ
λ
,V λ

)
, where µ

λ
= (0, 0)′ and V λ = diag (10, 10). Finally, for the

magnitude of the jumps, we set νξ = 1, 000 and Sξ = 32 ×
(
νξ − 1

)
, which implies a prior

40Note that we impose the stationarity conditions |φµ| < 1 and |φh| < 1 directly on the priors.
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belief that on average the jump magnitude is equal to 3 and a weight given to this prior that

is approximately 10% of the weight put on the data.

A.3 Posteriors

We now describe how to obtain posterior estimates for all model parameters (µd, φµ, σ2
µ, µh,

φh, σ
2
h, λ, σ2

ξ ), as well as latent state vectors µd = {µdt}Tt=1, hd = {hdt}Tt=1, Jd = {Jdt}Tt=1,

and ξd = {ξdt}Tt=1. While the joint posterior distribution of all model parameters and latent

state variables is non-standard, we can employ a Gibbs sampler algorithm augmented with

a number of Metropolis-Hastings steps to draw recursively from the conditional posteriors

of all model parameter and state variables. In particular, we sample from the joint posterior

distribution in five different blocks, namely:

1. µd|hd, ξd,Jd, µd, φµ, σ2
µ,DT

2. Jd|µd, ξd,hd,DT

3. ξd|µd,Jd,hd, σ2
ξ ,DT

4. hd|µd, ξd,Jd, µh, φh, σ2
h, β,DT

5. µd, φµ, σ
2
µ, µh, φh, σ

2
h,λ, σ

2
ξ ,
∣∣µd,hd, ξd,Jd,DT

The last block is further broken down into eight separate sub-blocks, one for each element of

the parameter vector. We now describe in details all steps of the Gibbs sampler algorithm.

A.3.1 µd|hd, ξd,Jd, µd, φµ, σ2
µ,DT

Start by rewriting the observation equation in (A.1) as follows:

∆d? = Xµµd + εd εd ∼ N (0,Σd) (A.12)

where

∆d? =


∆d1 − ξd1Jd1

...

∆dT − ξdTJdT

 , (A.13)
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Xµ =


1

. . .

1

 µd =


µd1

...

µdT

 εd =


εd1

...

εdT

 (A.14)

and

Σd =


ehd1

. . .

ehdT

 . (A.15)

Next, combine the state equation for µd in (A.2) with the initial condition in (A.6) into:

Hµµd = δ̃µ + εµ εµ ∼ N (0,Σµ) (A.16)

where

Hµ =


1 0 . . . . . . 0

−φµ 1 0 · · · 0
...

...
...

. . .
...

0 . . . 0 −φµ 1

 , δ̃µ =


µd

(1− φµ)µd
...

(1− φµ)µd

 , εµ =


εµ1

εµ2

...

εµT

 (A.17)

and

Σµ =


σ2
µ

(1−φ2
µ)

σ2
µ

. . .

σ2
µ

 (A.18)

It is easy to show that

µd = δµ +H−1
µ εµ (A.19)

where δµ = H−1
µ δ̃µ. It follows that

µd ∼ N
(
δµ,H

−1
µ Σµ

(
H−1

µ

)′)
(A.20)
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or

µd ∼ N
(
δµ,
(
H ′µΣ

−1
µ Hµ

)−1
)

(A.21)

Finally, combining (A.12) and (A.21) leads to the following posterior:

µd|hd, ξd,Jd, µd, φµ, σ2
µ,DT ∼ N (µ,V µ) (A.22)

where

V µ =
[
H ′µΣ

−1
µ Hµ +X ′µΣ

−1
d Xµ

]−1

µ = V µ

[
(H ′µΣ

−1
µ Hµ)δµ +X ′µΣ

−1
d ∆d?

] (A.23)

A.3.2 Jd|µd, ξd,hd,DT

It is easy to show that for any given t ∈ [1, T ]

Pr
(
Jdt = 1|µdt, ξdt,λ,XJ

t , hdt,DT
)
∝ p(∆dt|µdt, ξdt, Jdt = 1, hdt)

× Pr(Jdt = 1|XJ
t ,λ)

(A.24)

where

∆dt|µdt, ξdt, Jdt = 1, hdt ∼ N
(

∆dt|µdt + ξdt, e
hdt
)

(A.25)

and Pr
(
Jdt = 1|XJ

t ,λ
)

= Φ
(
λ′XJ

t

)
while

Pr
(
Jdt = 0|µdt, ξdt,λ,XJ

t , hdt,DT
)
∝ p (∆dt|µdt, ξdt, Jdt = 0, hdt)

× Pr
(
Jdt = 0|XJ

t ,λ
) (A.26)

where

∆dt|µdt, ξdt, Jdt = 0, hdt ∼ N
(

∆dt|µdt, ehdt
)

(A.27)

and Pr
(
Jdt = 0|XJ

t ,λ
)

= 1− Φ
(
λ′XJ

t

)
.
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A.3.3 ξd|µd,Jd,hd, σ2
ξ ,DT

Start by noting that when Jdt = 0, ξdt| Jdt = 0,DT ∼ N (0, σ2
ξ ). In other words, when Jdt = 0

we rely on ξdt’s prior distribution in (A.5). In contrast, when Jdt = 1, it is possible to rewrite

the observation equation of the model in (A.1) as

∆dt − µdt = ξdt + εdt, εdt ∼ N (0, ehdt). (A.28)

Combining (A.28) with (A.5) leads to:

ξdt|µdt, Jdt = 1, hdt, σ
2
ξ ,DT ∼ N (µξdt , σ

2
ξdt

) (A.29)

where

σ2
ξdt

=
(
σ−2
ξ + e−hdt

)−1

µξdt = σ2
ξdt

(
e−hdt (∆dt − µdt)

)
.

(A.30)

A.3.4 hd|µd, ξd,Jd, µh, φh, σ2
h,DT

Start by combining the state equation for hdt in (A.3) with the initial condition for hd1 in

(A.7) into:

Hhhd = δ̃h + εh, εh ∼ N (0,Σh) (A.31)

where

Hh =


1 0 . . . . . . . . . 0

−φh 1 0 . . . . . . 0
...

...
...

. . .
...

...

0 . . . . . . 0 −φh 1

 , δ̃h =


µh

(1− φh)µh
. . .

(1− φh)µh

 , εh =


εh1

εh2

. . .

εhT

 (A.32)

and

Σh =


σ2
h

(1−φ2
h)

σ2
h

. . .

σ2
h

 (A.33)

66



This leads to

hd ∼ N
(
δh,
(
H ′hΣ

−1
h Hh

)−1
)

(A.34)

where δh = H−1
h δ̃h. Note next that the observation equation is a non-linear function in h,

so using (A.12) we first rewrite it as follows:

log (∆d??t )2 = hdt + log ε2
dt, t = 1, ..., T (A.35)

where ∆d??t = ∆d?t−µdt. We follow Kim et al. (1998) and approximate log ε2
dt with a mixture

of normal distributions,

log ε2
dt ≈

7∑
j=1

qj ×N
(
mj − 1.2704, v2

j

)
(A.36)

where mj, v
2
j , and qj are constant specified in Kim et al. (1998). Along with (A.36), we also

introduce a vector of state variables sd = {sdt}Tt=1 such that Pr (sdt = j) = qj, for j = 1, .., 7

and t = 1, ..., T . Conditional on a particular realization of this vector of state variables, we

can rewrite the observation equation in (A.35) in compact form as follows:

log (∆d??)2
∣∣µd,hd,Jd, ξd, sd ∼ N (m+ hd,V ). (A.37)

where

m =


msd1 − 1.2704

msd2 − 1.2704
...

msdT − 1.2704

 , V =


v2
sd1

v2
sd2

. . .

v2
sdT

 . (A.38)

Combining (A.37) with (A.34) leads to the following posterior for hd:

hd|µd, ξd,Jd, sd,DT ∼ N
(
K−1

h kh,K
−1
h

)
(A.39)
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where

Kh = H ′hΣ
−1
h Hh + V (A.40)

kh = H ′hΣ
−1
h Hhδh + V −1

(
log (∆d??)2 −m

)
(A.41)

As for drawing the vector of state variables sd, note that

Pr (sdt = j|µdt, ξdt, Jdt, hdt,DT
)

=
qj × fN

(
log
(

∆d∗∗t )2
∣∣hdt +mj − 1.2704, v2

j

)∑7
l=1 ql × fN

(
log
(

∆d∗∗t )2
∣∣hdt +ml − 1.2704, v2

l

)
(A.42)

where j = 1, ..., 7, t = 1, ..., T , and fN (y| a, b) denotes the kernel of a normal distribution

with mean a and variance b evaluated at y.

A.3.5 µd, φµ, σ
2
µ, µh, φh, σ

2
h,λ, σ

2
ξ ,
∣∣µd,hd, ξd,Jd,DT

We break this posterior into eight separate blocks:

• µd|µd, φµ, σ2
µ,DT :

Start by combining (A.2) and (A.6) and rewriting them as:

Zµ = Xµµd + εµ εµ ∼ N (0,Σµ) (A.43)

where

Zµ =


µd1

µd2 − φµµd1

...

µdT − φµµdT−1

 , Xµ =


1

(1− φµ)
...

(1− φµ)

 . (A.44)

Combining (A.43) with the prior for µd in (A.8) leads to

µd|µd, φµ, σ2
µ,DT ∼ N (µd, V µd) (A.45)
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where

V µd =
[
V −1
µd

+X ′µΣ
−1
µ Xµ

]−1
(A.46)

and

µd = V µd

[
V −1
µd
µ
d0

+X ′µΣ
−1
µ Zµ

]
(A.47)

• φµ|µd, µd, σ2
µ,DT :

Following Kim et al. (1998), we start by obtaining a candidate draw from the

following distribution:

φ?µ ∼ N
(
φµ, V µ

)
× I (|φµ| < 1) (A.48)

where

V φµ =

(
V −1
φµ

+
X ′φµXφµ

σ2
µ

)−1

, (A.49)

φµ = V φµ

(
V −1
φµ
φ
µ0

+
X ′φµZφµ

σ2
µ

)
(A.50)

and where

Zφµ =


µd2 − µd

...

µdT − µd

 , Xφµ =


µd1 − µd

...

µdT−1 − µd

 . (A.51)

Next, if the draw is retained (i.e., satisfy the stationarity restriction), we accept φ∗µ with

probability e(g(φ
∗
µ)−g(φoldµ )) where φoldµ is the retained draw from the previous iteration

of the Gibbs sampler, and

g (φµ) = ln p (φµ)− 1

2
ln

(
σ2
µ

1− φ2
µ

)
−
(
1− φ2

µ

)
2σ2

µ

(µd1 − µd)2 (A.52)
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with p (φµ) denoting the prior of φµ from (A.8).

• σ2
µ

∣∣µd, µd, φµ,DT :

The posterior for σ2
µ is readily available, and is given by:

σ2
µ

∣∣µd, µd, φµ,DT ∼ IG (νµ +
T

2
, Sµ

)
(A.53)

where

Sµ = Sµ +
1

2

[(
1− φ2

µ

)
(µd1 − µd)2 +

T−1∑
t=1

(µdt+1 − µd − φµ (µdt − µd))2

]
(A.54)

• µh|hd, φh, σ2
h,DT :

Start by combining (A.3) and (A.7) into:

Zh = Xhµh + εh εh ∼ N (0,Σh) (A.55)

where

Zh =


hd1

hd2 − φhhd1

...

hdT − φhhdT−1

 , Xh =


1

1− φh
...

1− φh

 . (A.56)

Next, combine (A.55) with the prior for µh in (A.9) to get

µh|hd, φh, σ2
h,DT ∼ N

(
µh, V µh

)
(A.57)

where

V µh =
[
V −1
µh

+X ′hΣ
−1
h Xh

]−1
(A.58)
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and

µh = V µh

[
V −1
µh
µ
h0

+X ′hΣ
−1
h Zh

]
(A.59)

• φh|hd, µh, σ2
h,DT :

As with φµ, we follow Kim et al. (1998) and first obtain a candidate draw from the

following distribution:

φ?h ∼ N
(
φh, V h

)
× I (|φh| < 1) (A.60)

where

V φh =

(
V −1
φh

+
X ′φhXφh

σ2
h

)−1

, (A.61)

φh = V φh

(
V −1
φh
φ
h0

+
X ′φhZφh

σ2
h

)
(A.62)

and where

Zφh =


hd2 − µh

...

hdT − µh

 , Xφh =


hd1 − µh

...

hdT−1 − µh

 (A.63)

Next, if the draw is retained (i.e., satisfy the stationarity restriction), we accept φ∗h with

probability e(g(φ
∗
h)−g(φoldh )) where φoldh is the retained draw from the previous iteration

of the Gibbs sampler, and

g (φh) = ln p (φh)−
1

2
ln

(
σ2
h

1− φ2
h

)
− (1− φ2

h)

2σ2
h

(hd1 − µh)2 (A.64)

with p (φh) denoting the prior of φh.

• σ2
h|hd, µh, φhDT :
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The posterior for σ2
h is readily available, and is given by:

σ2
h|h, µh, φh,DT ∼ IG

(
νh +

T

2
, Sh

)
(A.65)

where

Sh = Sh +
1

2

[(
1− φ2

h

)
(hd1 − µh)2 +

T−1∑
t=1

(hdt+1 − µh − φh (hdt − µh))2

]
(A.66)

• λ|W ,DT and W |λ,Jd,DT :

We follow Albert and Chib (1993) and to simplify the computations introduce the

auxiliary latent state variable Wt, t = 1, ..., T . We proceed by first rewriting the

stochastic process of the jump intenisty in (A.4) as

Jdt+1 =

1 if Wt+1 > 0

0 if Wt+1 ≤ 0
(A.67)

where

Wt+1 = λ′XJ
t+1 + εWt+1, εWt+1 ∼ N (0, 1) (A.68)

or, more compactly,

W = XJλ+ εW , εW ∼ N (0, IT ) (A.69)

where

XJ =


XJ ′

1
...

XJ ′
T

 and W =


W1

...

WT

 . (A.70)

The posterior of λ is readily available, and given by

λ|W ,DT ∼ N
(
µλ,V λ

)
(A.71)
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where

V λ =
[
V −1

λ +XJ ′XJ
]−1

(A.72)

and

µλ = V λ

[
V −1

λ µλ +XJ ′W
]
. (A.73)

As for the sequence of latent variables {Wt}Tt=1, we have that

Wt|λ, Jdt,DT ∼

TN(λ′XJ
t+1, 1, 0,∞) if Jdt = 1

TN(λ′XJ
t+1, 1,−∞, 0) if Jdt = 0

(A.74)

where TN(µ, σ2, lb, ub) denotes a truncated normal distribution with mean µ, variance

σ2, and lower and upper bounds lb, ub.

• σ2
ξ |ξd,DT :

Finally, the posterior distribution for σ2
ξ is readily available, and given by

σ2
ξ

∣∣ ξd,DT ∼ IG (νξ +
T

2
, Sξ

)
(A.75)

where

Sξ = Sξ +
1

2

T∑
t=1

ξ2
dt. (A.76)
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Internet Appendix B MCMC Convergence and

Efficiency

In this Appendix, we discuss the convergence properties of our MCMC algorithm for the

mean-reverting, stochastic volatility model with jumps described in Section 3.1. All results

are based on samples of 2,000 retained draws, obtained by sampling a total of 101,000 draws,

discarding the first 1,000 draws, and retaining every 20th draw of the post-burn samples.

Table B.1 reports summary statistics of inefficiency factors (IF) for the posterior estimates

of all key parameters of the cash flow model. Generally speaking, values of the IFs below 20

are taken as indication that the chain has satisfactory mixing properties. As is clear from

the entries in both tables, our algorithm shows excellent mixing properties.
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PANEL A: DIVIDENDS

IF 4% IF 8% IF 15%

µd 0.756 0.607 0.413

φµ 1.966 2.263 2.161

σ2
µ 6.586 6.804 4.806

µh 0.953 0.908 0.858

φh 2.337 2.886 3.047

σ2
h 3.888 4.355 4.615

σ2
ξ 0.944 0.687 0.543

λ1 1.204 1.351 0.904

λ2 2.114 2.693 3.356

PANEL B: DIVIDENDS (from 1927)

IF 4% IF 8% IF 15%

µd 1.127 1.021 1.001

φµ 1.849 1.464 1.018

σ2
µ 9.306 6.666 4.806

µh 0.738 0.477 0.353

φh 5.603 5.813 5.037

σ2
h 8.144 7.777 6.290

σ2
ξ 1.822 1.837 1.672

λ1 3.920 3.786 3.635

λ2 19.009 18.708 16.129

Table B.1: Inefficiency factors of the model. This table reports the inefficiency factors for the key
parameters of the mean-reverting, stochastic volatility model with jumps described in Section 3.1. Panel A
reports results for the model using the daily dividend growth series starting in 1973, while Panel B shows
estimates using the daily dividend growth series and starting in 1927. For each individual parameter, the
inefficiency factor is estimated as 1 + 2

∑∞
k=1 ρk where ρk is the kth-order autocorrelation of the chain

of retained draws. The estimates use the Newey-West kernel and a bandwidth of 4%, 8%, or 15% of the
sample of retained draws. All results are based on a sample of 2,000 retained draws, obtained by sampling
a total of 101,000 draws, discarding the first 1,000 and retaining every 20th draw of the post-burn sample.



Internet Appendix C Extensions and robustness tests

This section conducts a set of tests designed to explore some additional implications of our

analysis and verify the robustness of our empirical results. First, we analyze whether

innovations to our new persistent dividend growth component, µdt, are related to a range of

cross-sectional asset pricing factors that have been studied in the finance literature.

Second, we study the relation between stock returns and dividends on dividend payment

days, rather than on days where dividends get announced. Third, we study the economic

value of return predictability. Fourth, we estimate regressions of different measures of stock

market volatility on µdt. Fifth, we estimate alternative econometric specifications that

allow for state dependence in jump probabilities as well as correlated jumps in the mean

and volatility processes. Sixth, we estimate our model at the industry level.

C.1 Cross-sectional effects of dividend shocks

Our finding that the behavior of the persistent component of the dividend growth process,

µdt, varies across firms with different sizes and book-to-market ratios suggests that shocks

to µdt may be related to cross-sectional risk factors tied to firm or stock characteristics.

To see if this holds, we next investigate whether µdt is related to existing risk factors

found in the empirical asset pricing literature to capture cross-sectional variation in stock

returns. These include the market (MRP), size (SMB), book-to-market (HML), profitability

(RMW), quality (CMA) and momentum (UMD) factors. Each of these factors is formed as

the return spread on long-short portfolios of firms sorted by firm characteristics. Data are

obtained from Ken French’s website.

Our cross-sectional analysis should only be viewed as suggestive evidence as we do not

perform a full set of empirical tests, nor do we address the caveats highlighted by Lewellen

et al. (2010). In addition, several other cross-sectional risk factors have been proposed and

could be used in an extended analysis. In the interest of limiting the multiple hypothesis

testing problem, we do not explore other factors here.41

The first step in our analysis extracts the daily innovation εµt+1 in the persistent cash flow

component µdt+1 from equation (4). The second step performs a set of univariate regressions

41See Barillas and Shanken (2018) for a discussion of ways to compute model probabilities when the models
are driven by a limited subset of risk factors.
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of returns on the individual risk factors (Ft+1) on an intercept and the innovation εµt+1:

Ft+1 = α + βµdtεµt+1 + ut+1. (C.1)

Results from these regressions are reported in Table C.1. The estimated value of α shows

the unconditional mean risk premium of the individual factors. This ranges from highs of

7.4% and 6.3% for the momentum and market factors, respectively, to a low of 1.8% for the

size factor (SMB). Our main interest is of course in the estimate of βµdt which reflects the

sensitivity of the daily factor returns with respect to daily shocks to the persistent dividend

growth component. Dividend shocks, εµt+1, are positively and significantly correlated with

market returns (t-stat of 2.10). Days with above-normal stock market returns are thus

associated with days with positive shocks to persistent cash flow growth. Similarly, we

find a positive correlation between dividend shocks and returns on the size (SMB) factor,

although this is only significant at the 10% level (t-stat of 1.74). Returns on small firms

thus tend to be higher on days with positive shocks to cash flow growth and small firms

are more sensitive to changes in aggregate cash flows than large firms. The negative and

highly significant coefficient (t-stat of -4.65) on the profitability factor (RMW) suggests that

returns on firms with weak profitability tend to have higher (relative) returns than firms

with robust profitability on days where dividend growth prospects improve.

Overall, these results show that our new daily cash flow growth measure can help explain

the daily returns not only of the aggregate market, but also of at least some of the risk

factors. In particular, our findings suggest that improved cash flow prospects (positive

shocks to ∆µdt+1) disproportionately benefit small firms and firms with weak profitability.

C.2 Dividend payments versus announced dividends

Our results up to this point show that movements in aggregate stock returns and market

volatility are related to dividend news on the announcement date. This relation plausibly

reflects how investors re-assess equity prices following cash flow news. We can test this

hypothesis by exploiting the fact that we have data on both the date of the dividend

announcement and the date where a dividend is paid out, with the payment date typically

occurring several days after the announcement date. If the news effect hypothesis is

correct, we would expect to find a substantially smaller impact of dividend growth on stock
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returns on the payment date as compared to the return effect on the announcement date.

To see if this is the case, we estimate daily (contemporaneous) return regressions with the

various dividend components as regressors, but use the dividend payment dates as opposed to

the dividend announcement dates in extracting ∆µdt. The results, presented in columns 4-6

of Table C.2, show that the coefficient on ∆µdt drops from 2.78 to 0.55, with the t-statistic

dropping from 4.21 to 0.96. This is consistent with the cash flow news effect being what

matters to movements in aggregate stock market prices, rather than any liquidity effects

associated with payment of dividends.

The final column of Table C.2 shows estimates based on the daily dividend growth

measure extracted from CRSP, computed as a daily year-on-year growth rate series. Once

again, this measure, which uses information on dividend payments as opposed to

announced dividends, has no significant explanatory power over aggregate stock returns.

Table C.3 reports results on the predictability of dividend growth for both announced

and paid dividends at the lower frequencies (monthly, quarterly, and annual). Results are

stronger when we use announced dividends rather than paid dividends.

C.3 Economic value of return predictability

Consider an investor who at time t allocates ωtWt of total wealth to stocks and the remainder,

(1−ωt)Wt to a risk-free asset, where Wt = 1 is the initial wealth while ωt is the share allocated

to stocks. Furthermore, assume that once the investor makes her allocation decision at time

t, she waits until time t+ 2 to implement her investment, maintaining this position without

rebalancing until time t + h (h ≥ 2). Skipping one day before trading ensures that results

are not affected by slippage.

From Campbell and Viceira (2002) it follows that if the cumulative log excess return

between time t + 2 and t + h, rt+2:t+h, is conditionally normally distributed with mean

r̂t+2:t+h|t and variance σ̂2
t+2:t+h|t, the optimal weight (ω̂t) for an investor with CRRA utility

and a coefficient of relative risk aversion A can be approximated by

ω̂t =

(
1

A

)(
r̂t+2:t+h|t + σ̂2

t+2:t+h|t/2

σ̂2
t+2:t+h|t

)
. (C.2)

We assume that A = 5, which is a standard choice from the empirical finance literature.
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To measure the economic value of return predictability from ∆µdt, consider the following

prediction model for the mean of cumulative returns,

rτ+2:τ+h = β0 + β1∆µdτ + ετ+2:τ+h, τ = 1, .., t− h (C.3)

and the volatility of cumulative returns:

V olτ+1 = γ0 + γ1µdτ + γ2V ol
d
τ + γ3V ol

w
τ + γ4V ol

m
τ + ετ+1, (C.4)

where V olτ+1 denotes the S&P500 realized volatility at time τ+1 and V oldτ , V ol
w
τ , and V olmτ

are the lagged daily, weekly, and monthly volatility averages, respectively, as defined in Corsi

(2009). Note that because of the high persistence in V olτ+1, we use the level of µdt, rather

than its change, as a predictor in the volatility equation. Moreover, (C.4) is easily iterated

on to obtain forecasts of V olτ+h.

Our realized volatility data start in January 2000 and we use a three-year initial

estimation window so the forecasting/rebalancing dates begin on January 3, 2003 and

include every Friday until one week before the end of our sample, December 16, 2016 which

yields a total of P = 730 distinct dates.42 To reduce portfolio turnover, our analysis

assumes weekly trades (h = 5). Specifically, on any given Friday we first predict the mean

and variance of cumulative returns, rt+2:t+h, using the model (C.3)-(C.4) that includes our

persistent dividend growth measure as a predictor. Next, using these forecasts, we compute

the optimal allocation to stocks (C.2) which is held constant between time t + 2 and

t + h. As a benchmark, we also compute the portfolio allocation to stocks implied by

cumulative return and volatility forecasts for an investor who disregards information on the

persistent dividend growth component when forming her forecasts, thus setting β1 = γ1 = 0

in (C.3) and (C.4). Finally, following Campbell and Viceira (2002), we approximate the

investor’s wealth at time t+ h by

̂ln (Wt+h) = (h− 1) rft + ŵtrt+2:t+h +
1

2
ŵt (1− ŵt) σ̂2

t+2:t+h|t,

where rft denotes the risk-free rate.

42For those weeks in which the markets are not open on a Friday, we use as our rebalancing date the last
day of that week when the markets are open.
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The annualized mean, volatility, and Sharpe ratio based on the return predictions that use

information on ∆µdt are 4.98%, 8.32%, and 0.60, respectively. The corresponding numbers

for the predictions that do not use such information are 2.26 %, 6.75%, and 0.33. Finally, the

annualized certainty equivalent return differential between these two models equals 2.32%

which is economically sizeable and so suggests that there are considerable economic gains

from using information on the persistent dividend growth component to predict stock returns.

C.4 Stock market volatility and dividend news

Section 6 shows that dividend growth dynamics affect not only the mean of stock returns

but also impact the volatility and jump probability of the return process with positive news

about the persistent dividend growth component reducing stock market volatility.

To explore the robustness of this finding, we investigate the relation between daily stock

market volatility and cash flow news using two different measures of market volatility. First,

we use the VIX obtained from options prices which reflects market expectations of short-run

(30-day) volatility in stock prices. Second, we use a realized variance (RV) measure of daily

stock market volatility based on intra-day movements in the price on the S&P500 index

sampled every 5 minutes.43 Data on the VIX are available starting in 1990, while data on

realized volatility begin in 2000.

We first consider the contemporaneous relation between daily stock market volatility

and news about the persistent dividend growth component. Panel A in Table C.4 shows

that there is a significant and negative correlation between movements in the persistent

dividend growth component and stock market volatility measured by either the VIX or the

RV, consistent with positive news about long-run dividend growth reducing stock market

volatility.

Next, we consider whether dividend growth news helps predict future stock market

volatility. Following Paye (2012), we use the level of volatility in our regressions, but

account for the high persistence in this variable by including either a single lag or an

average of lagged volatility as proposed in the cascade model of Corsi (2009). Specifically,

43Our data come from the Oxford-Man Institute of Quantitative Finance, http://realized.oxford-man.
ox.ac.uk/data/download.
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we use the following two regression specifications for the volatility on day t, V OLt:

V olt+1 = α + β1V olt + β2µdt + εt+1, (C.5)

V olt+1 = α + βµdt + βdRV
d
t + βwRV

w
t + βmRV

m
t + εt+1, (C.6)

where RV d, RV w and RV m are daily, weekly, and monthly volatility averages, respectively.

Panel B in Table C.4 shows the results from these regressions using the VIX (left column)

or the realized volatility (right column). Regardless of whether we use the specification in

(C.5) or (C.6), we find strong evidence of persistence in the volatility process.

Turning to the predictive content of the persistent dividend component, µdt, over stock

market volatility, for both specifications in Panel B we find that the coefficient on µdt is

negative and highly statistically significant with t-statistics of -4.15 and -9.85, respectively.

While these t-statistics drop to -2.07 and -2.16 in the cascade model, they remain significant.

This confirms that positive news about persistent dividend growth leads to lower stock

market volatility, while negative news tends to increase stock market volatility.44

C.5 Alternative econometric specifications

To explore how sensitive our estimates of the dividend growth model are to the specifications

of the jump and volatility processes, we modify our baseline specification to test for the

importance of both state-dependence in the jump probabilities, as in Johannes et al. (1999),

and correlated jumps in the mean and volatility, as in Eraker et al. (2003b).

Starting with the state-dependent jump model, we replace (8) with the following

specification45

Pr (Jdt+1 = 1) = Φ (λ1 + λ2Nt+1 + λ3Jdt + λ4 |∆dt|) . (C.7)

Compared to our baseline specification in (8), all posteriors of the coefficients are essentially

unchanged and the estimates of λ3 and λ4 are not significantly different from zero.

Moving on to correlated jumps, we change our baseline model to match Eraker et al.

44We also analyze whether the stochastic volatility and jump components extracted from the jump model
have any contemporaneous or predictive effect on the aggregate volatility but find that the effects are
negligible and not statistically significant.

45We modify our prior on the parameters governing the timing of the jumps as follows: λ =

(λ1, λ2, λ3, λ4)
′ ∼ N

(
µ

λ
,V λ

)
, where µ

λ
= (0, 0, 0, 0)

′
and V λ = diag (10, 10, 10, 10).
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(2003b)’s most general specification with correlated jumps in the mean and volatility. In

particular, we modify our model for the log-variance of dividend growth in (10) as follows:

hdt+1 = µh + φh (hdt − µh) + Jdt+1ξ
h
dt+1 + σhεht+1, (C.8)

where ξhdt+1

∣∣ ξdt+1 ∼ N
(
ρJξdt+1, σ

2
ξh

)
.46 Testing this specification on our data, again we

find that none of the estimated coefficients in our baseline specification change materially.

We also find that the estimate of the correlation coefficient ρJ is not statistically different

from zero. Most importantly, when we compare the µdt estimates extracted from either the

Johannes et al. (1999) or the Eraker et al. (2003b) model to our baseline specification, the

three series are basically indistinguishable with a correlation of 0.9999. Plots of the three µdt

series and a table with parameter estimates are shown in Figure C.1 and Table C.5. We find

that none of the estimated coefficients in our baseline specification change materially. Most

importantly, when we compare the µdt estimates extracted from either the Johannes et al.

(1999) or the Eraker et al. (2003b) model to our baseline specification, the three estimates

of the persistent dividend component are basically indistinguishable with a correlation of

0.9999.47

C.6 Estimates for industry portfolios

Table C.6 reports estimates of the dividend growth model for the five Fama-French industries,

while Figure C.2 plots their persistent components, µdt. The basic features of the dividend

process remain the same across very different industries, including estimates of φµ close to

unity, indicating a highly persistent component in dividend growth, similar jump sizes, and

negative dependence between the jump probability and the number of firms announcing

dividends on a given day.

46We specify the following priors on the additional model parameters: ρJ ∼ N
(
0, σ2

ρJ

)
and σ2

ξh ∼

IG
(
νhξ , S

h
ξ

)
, and set σ2

ρJ = 1, ν2ξ = 2 and Shξ = 22.
47Our analysis is not intended to exhaust all jump and volatility specifications in what is now a very

large literature. For example, Bollerslev and Todorov (2011) introduce a flexible non-parametric procedure
that can accommodate complex dynamic tail dependencies and stochastic volatility. Working with closing
bid and ask quotes for S&P 500 options, Bollerslev et al. (2015) decompose the variance risk premium into
diffusive and jump risk components and link predictability of stock market returns to jump tail risk.
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PANEL A: Cross-sectional analysis

MRP SMB HML RMW CMA UMD

α (annualized) 6.32% 1.84% 5.01% 3.51% 4.27% 7.40%

t-stat 2.51 1.39 3.95 3.71 4.81 4.16

βµdt 1.09 0.43 0.26 -0.84 -0.17 -0.21

t-stat 2.10 1.74 0.10 -4.65 -1.09 -0.58

Table C.1: Return spreads and shocks to the persistent dividend growth component. This
table reports the estimated intercept and slope coefficients from regressions of daily returns on spread
portfolios tracking a variety of risk factors (MRP, SMB, HML, RMW, CMA and UMD) on a constant
and daily shocks to the persistent component in the dividend growth process extracted from our dividend
growth rate model. We also report t-statistics computed using Newey-West standard errors. The sample
period is 1973-2016.
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Dividend announcement days Dividend payment days

∆dt .00 -.00

[1.34] [-0.37]

∆µNJdt .00 -.00

[1.30] [-0.43]

∆µdt 2.78*** 0.55

[4.21] [0.96]

ξdtJdt .00 -.00

[1.60] [-0.00]

hdt/2 -.00 .00

[-0.76] [0.37]

∆dCRSPt .00

[0.45]

R2 0.01% 0.01% 0.26% 0.00% 0.00% 0.01% 0.00%

Observations 20,966 20,966 20,966 20,393 20,393 20,393 10,900

Table C.2: Daily regressions of stock returns on dividend news. This table reports estimates
from regressions of daily stock market returns on 1) daily growth in aggregate dividends, ∆dt; 2) changes
in the persistent dividend growth component, ∆µNJdt , extracted from a dividend growth model without
jumps and stochastic volatility; the following components extracted from the dividend growth model that
accounts for jumps and stochastic volatility: 3) changes in the persistent component, ∆µdt; (iv) jumps,
ξdtJdt; (v) stochastic volatility, hdt/2. In each case, the dependent variable is the two-day cumulative log
stock market return on days t and t + 1, rt:t+1. Columns 1-3 consider stock returns on the days with
the dividend news announcements, while columns 4-7 relate stock returns to dividend news on the days
where the dividend payments are actually made. The final column reports results from regressing returns
on a daily dividend growth series, ∆dCRSPt , computed from the CRSP index. Square brackets report
t-statistics using Newey-West standard errors. The sample period is 1927-2016.
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∆dCRSPt+1 = α+ ρi
∑3
i=1 ∆dCRSPt+1−i + βµidt + γdpCRSPt + εt+1

Monthly Quarterly Annual

Announced Paid Announced Paid Announced Paid

µdaily .17*** .36*** 2.50***

[5.77] [4.58] [3.95]

µmonthly .14*** .12***

[6.51] [4.87]

µquarterly .22*** .17***

[3.19] [3.18]

µyearly 2.64** 1.72

[2.58] [0.59]

dpt -.00** -.00 -.00 -.01 .00 .00 .03 .07 .06

[-2.49] [-0.97] [-0.63] [-1.29] [0.20] [0.21] [0.50] [1.12] [0.87]

∆dCRSPt -.05 -.05 -.03 .16** .22** .19** -.64*** -.52*** -.42***

[-0.97] [-0.94] [-0.51] [2.20] [2.59] [2.11] [-4.58] [-3.07] [-2.32]

∆dCRSPt−1 -.07* -.07** -.05 .07 .10 .08 -.53*** -.36*** -.24*

[-1.96] [-2.01] [-1.25] [1.39] [1.65] [1.47] [-3.87] [-3.01] [-1.70]

∆dCRSPt−2 .20*** .20*** .22*** .03 .06 .05 -.12 -.08 -.01

[3.68] [3.59] [3.70] [0.45] [1.05] [0.83] [-0.78] [-0.52] [-0.03]

R2 18.29% 17.80% 15.97% 26.50% 21.76% 23.16% 27.45% 22.14% 16.07%

Vuong test [-2.70***] [0.62] [1.28]

Observations 525 525 525 169 169 169 40 40 40

Table C.3: Dividend growth regressions. This table shows results from predictive regression of the
conventional dividend growth measure extracted from CRSP data, ∆dCRSPt+1 on the persistent component

µidt estimated from our daily dividend growth model (at the various frequencies) and the log dividend
price ratio, dpt, at quarterly and annual frequencies. The third column of each block (e.g., monthly,
quarterly, annual) shows the results using the actual paid out dividends. We report the Vuong (1989)
t-stat comparing the models with announced and paid dividends, which suggest the models differ at the
monthly frequency but not at the quarterly/annual ones. Square brackets report t-statistics computed
using Newey-West standard errors with three lags. Sample: 1973-2016.
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Panel A: Contemporaneous regressions

VIX SP500 Realized Vol

µdt -20.86*** -14.85***

[-20.34] [-14.69]

ξdtJdt -.08 .00

[-1.19] [0.02]

hdt/2 2.53*** .76

[5.07] [1.40]

R2 30.57% 21.78%

Observations 6,527 3,977

Panel B: Predictive regressions

VIX SP500 Realized Vol

AR(1) .97*** .74***

[164.65] [31.21]

µdt -0.48*** -3.80***

[-4.15] [-9.85]

R2 96.28% 64.68%

Observations 6,526 3,953

Corsi (2009) model

µdt -.26** -.86**

[-2.07] [-2.16]

RV d
t .85*** .35***

[28.38] [7.85]

RV w
t .11*** .41***

[2.75] [5.75]

RV m
t .03 .17***

[1.64] [3.21]

R2 96.38% 70.98%

Observations 6,443 3,542

Table C.4: Relation between the persistent dividend component, VIX, and realized stock
market volatility. Panel A in this table reports estimates from daily regressions of the VIX (left column)
or the realized volatility based on the S&P500 index (right column) on the contemporaneous value of the
persistent dividend growth component µdt extracted from our components model. Panel B reports similar
results, relating the VIX or realized volatility to the lagged value of µdt as well as a single lag of the
dependent variable or multiple lags based on the Corsi (2009) model. The dependent variables in Panel
A are standardized. Square brackets show t-statistics using Newey-West standard errors computed using
three lags.



Panel A: Baseline Model

Baseline State-dependent Jumps Correlated Jumps

Mean Std 90% Credible Set Mean Std 90% Credible Set Mean Std 90% Credible Set

µd 0.0802 0.0116 [0.0622,0.0973] 0.0802 0.0121 [0.0615,0.0984] 0.0793 0.0117 [0.0604,0.0958]

φµ 0.9983 0.0006 [0.9972,0.9993] 0.9983 0.0006 [0.9972,0.9992] 0.9982 0.0006 [0.9971,0.9992]

σµ 0.0019 0.0001 [0.0016,0.0021] 0.0019 0.0001 [0.0016,0.0021] 0.0019 0.0001 [0.0016,0.0021]

µh -5.3373 0.0449 [-5.4146,-5.2615] -5.3362 0.0464 [-5.4123,-5.2590] -5.3332 0.0463 [-5.4041,-5.2554]

φh 0.8332 0.0078 [0.8203,0.8462] 0.8324 0.0080 [0.8191,0.8454] 0.8314 0.0079 [0.8185,0.8444]

σh 0.7517 0.0279 [0.7056,0.7972] 0.7579 0.0286 [0.7103,0.8056] 0.7476 0.0284 [0.7024,0.7940]

σξ 2.7613 0.0398 [2.6948,2.8291] 2.7629 0.0416 [2.6943,2.8323] 2.7642 0.0422 [2.6957,2.8348]

σ
ξh

0.8544 0.1286 [0.6658,1.0846]

λ1 -1.3541 0.0446 [-1.4281,-1.2811] -1.3243 0.0513 [-1.4087,-1.2404] -1.3521 0.0453 [-1.4240,-1.2745]

λ2 -0.0244 0.0022 [-0.0281,-0.0208] -0.0244 0.0021 [-0.0281,-0.0210] -0.0245 0.0021 [-0.0280,-0.0212]

λ3 0.0300 0.1475 [-0.2138,0.2705]

λ4 -0.2799 0.2636 [-0.8075,0.0482]

ρ 0.0008 0.0408 [-0.0679,0.0660]

Panel B: Market Weight Model

Market weight State-dependent Jumps Correlated Jumps

Mean Std 90% Credible Set Mean Std 90% Credible Set Mean Std 90% Credible Set

µd 0.1085 0.0172 [0.0837,0.1310] 0.1093 0.0160 [0.0842,0.1313] 0.1070 0.0184 [0.0825,0.1301]

φµ 0.9985 0.0006 [0.9975,0.9994] 0.9985 0.0006 [0.9974,0.9994] 0.9985 0.0006 [0.9975,0.9995]

σµ 0.0021 0.0002 [0.0018,0.0024] 0.0021 0.0002 [0.0018,0.0024] 0.0021 0.0002 [0.0018,0.0023]

µh -5.0458 0.0443 [-5.1189,-4.9763] -5.0450 0.0432 [-5.1155,-4.9752] -5.0420 0.0439 [-5.1126,-4.9682]

φh 0.8423 0.0080 [0.8291,0.8560] 0.8423 0.0082 [0.8288,0.8558] 0.8400 0.0081 [0.8267,0.8529]

σh 0.6782 0.0264 [0.6338,0.7222] 0.6787 0.0279 [0.6333,0.7246] 0.6729 0.0269 [0.6282,0.7175]

σξ 2.7872 0.0403 [2.7230,2.8545] 2.7888 0.0420 [2.7213,2.8601] 2.7909 0.0412 [2.7255,2.8572]

σ
ξh

0.8867 0.1189 [0.6947,1.0932]

λ1 -1.4496 0.0448 [-1.5251,-1.3771] -1.4402 0.0496 [-1.5236,-1.3606] -1.4540 0.0421 [-1.5260,-1.3873]

λ2 -0.0206 0.0021 [-0.0240,-0.0173] -0.0205 0.0021 [-0.0241,-0.0171] -0.0205 0.0019 [-0.0236,-0.0172]

λ3 0.0624 0.1464 [-0.1788,0.2995]

λ4 -0.0890 0.1453 [-0.3464,0.1303]

ρ -0.0004 0.0395 [-0.0668,0.0632]

Table C.5: Parameter estimates for dividend growth models with different specifications
of the jump component. This table shows parameter estimates for the dividend growth models using
the jump specifications in Johannes et al. (1999) and Eraker et al. (2003b). The first model replaces our
baseline jump probability specification with the following state-dependent specification

Pr (Jdt+1 = 1) = Φ (λ1 + λ2Nt+1 + λ3Jdt + λ4 |∆dt|) .

The second model accounts for correlated jumps in the mean and volatility and modifies our original
baseline specification to

hdt+1 = µh + φh (hdt − µh) + Jdt+1ξ
h
dt+1 + σhεht+1,

where
ξhdt+1

∣∣∣ ξdt+1 ∼ N
(
ρJξdt+1, σ

2
ξh

)
Columns report the posterior mean, standard deviation and 90% credible sets for the parameter estimates.
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Parameter estimates

Consumers Manufacturing HiTech Healthcare Others

Mean Std 90% Credible Set Mean Std 90% Credible Set Mean Std 90% Credible Set Mean Std 90% Credible Set Mean Std 90% Credible Set

µd 0.078 0.014 [0.058,0.099] 0.066 0.021 [0.033,0.095] 0.069 0.027 [0.032,0.103] 0.089 0.017 [0.065,0.110] 0.098 0.014 [0.077,0.116]

φµ 0.998 0.001 [0.997,0.999] 0.999 0.000 [0.998,0.999] 0.999 0.001 [0.998,0.999] 0.997 0.002 [0.994,0.999] 0.998 0.001 [0.997,0.999]

σµ 0.002 0.000 [0.002,0.002] 0.002 0.000 [0.001,0.002] 0.002 0.000 [0.002,0.003] 0.003 0.000 [0.002,0.003] 0.002 0.000 [0.002,0.003]

µh -4.980 0.046 [-5.051,-4.903] -5.411 0.050 [-5.493,-5.327] -4.666 0.058 [-4.762,-4.572] -4.620 0.073 [-4.738,-4.499] -4.682 0.051 [-4.766,-4.596]

φh 0.839 0.008 [0.825,0.852] 0.811 0.008 [0.798,0.824] 0.860 0.008 [0.846,0.873] 0.933 0.010 [0.917,0.949] 0.833 0.008 0.820,0.845]

σh 0.688 0.028 [0.644,0.735] 0.878 0.032 [0.825,0.928] 0.685 0.036 [0.626,0.745] 0.308 0.037 [0.248,0.368] 0.852 0.029 [0.804,0.899]

σξ 2.756 0.041 [2.691,2.823] 2.806 0.043 [2.736,2.879] 2.799 0.042 [2.730,2.869] 2.831 0.043 [2.760,2.902] 2.786 0.041 [2.718,2.854]

λ1 -1.209 0.048 [-1.289,-1.130] -1.472 0.053 [-1.559,-1.388] -1.510 0.057 [-1.609,-1.420] -1.387 0.066 [-1.497,-1.277] -1.341 0.048 [-1.420,-1.261]

λ2 -0.108 0.010 [-0.125,-0.092] -0.064 0.008 [-0.078,-0.051] -0.092 0.021 [-0.126,-0.058] -0.122 0.038 [-0.186,-0.059] -0.058 0.006 [-0.069,-0.049]

Table C.6: Parameter estimates for the dividend growth rate model estimated separately for
the five Fama-French industry portfolios. This table shows parameter estimates for a model fitted
to the daily dividend growth series of the five Fama-French industry portfolios (consumers, manufacturing,
high-tech, health care, and others). The components model underlying these estimates takes the following
form:

∆dt+1 = µdt+1 + ξdt+1Jdt+1 + εdt+1,

µdt+1 = µd + φµ (µdt − µd) + σµεµt+1,

εdt+1 ∼ N (0, ehdt+1 ),

hdt+1 = µh + φh (hdt − µh) + σhεht+1,

Pr (Jdt+1 = 1) = Φ (λ1 + λ2Ndt+1) ,

ξdt+1 ∼ N
(

0, σ2
ξ

)
.

Here µdt+1 captures the mean of the smooth component of the underlying dividend process, Jdt+1 ∈ {0, 1}
is a jump indicator that equals unity in case of a jump in dividends and otherwise is zero, ξdt+1 measures
the jump size, εdt+1 is a temporary cash flow shock, εµt+1 ∼ N (0, 1) is assumed to be uncorrelated at
all times with the innovation in the temporary dividend growth component, εdt+1, and |φµ| < 1. hdt+1

denotes the log-variance of εdt+1, and εht+1 ∼ N (0, 1) is uncorrelated at all times with both εdt+1 and
εµt+1. Ndt+1 denotes the number of firms announcing dividends on day t + 1, while Φ stands for the

CDF of a standard Normal distribution and ξdt+1 ∼ N
(

0, σ2
ξ

)
captures the magnitude of the jumps. The

columns report the posterior mean, standard deviation and 90% credible sets for the parameter estimates.
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Figure C.1: Estimates of the persistent dividend growth component, µdt, based on different
specifications for the jump component. The figure plots the estimated persistent dividend growth
component, µdt, for (i) our baseline specification; (ii) a model that allows for state-dependent jumps; and
(iii) a model that allows for correlated jumps. All estimates use daily dividend announcement data over
the period 1973-2016.

Figure C.2: Comparison of µdt estimates across different industries. This figure plots time series
of µdt estimated separately for the five Fama-French industry portfolios.
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