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Abstract

Even if returns are truly forecasted by variables such as the dividend yield, the
noise in such a predictive regression may overwhelm the signal of the conditioning
variable and render estimation, inference and forecasting unreliable. Unfortu-
nately, traditional asymptotic approximations are not suitable to investigate the
small sample properties of forecasting regressions with excessive noise. To sys-
tematically analyze predictive regressions, it is useful to quantify a forecasting
variable’s signal relative to the noisiness of returns in a given sample. We define
an index of signal strength, or information accumulation, by renormalizing the
signal-noise ratio. The novelty of our parameterization is that this index explic-
itly influences rates of convergence and can lead to inconsistent estimation and
testing, unreliable R2s, and no out-of-sample forecasting power. Indeed, we prove
that if the signal-noise ratio is close to zero, as is the case for many of the ex-
planatory variables previously suggested in the finance literature, model based
forecasts will do no better than the corresponding simple unconditional mean
return. Our analytic framework is general enough to capture most of the pre-
vious findings surrounding predictive regressions using dividend yields and other
persistent forecasting variables.



Boundaries of Predictability: Noisy Predictive Regressions

In the presence of persistent time-varying expected returns it is well known that realized returns

can be extremely variable even if expected returns themselves are not. Because of this noise, it is

difficult to rely on past returns to statistically distinguish the random walk model from alternative

models characterized by slowly mean reverting stock prices.1 Consequently, researchers have turned

their attention to regressions using forecasting variables other than past returns to predict stock

returns. These forecasting variables include, among others, the dividend yield, term and credit

spreads as well as short term and long term rates of interest.

This paper argues that the noise in realized returns which plagues empirical tests of the random

walk model using lagged returns also adversely affects predictive regressions which use conditioning

variables such as the dividend yield. Dividend yields are extremely persistent but, in contrast to

returns, are not very variable. Even if there are sound economic arguments suggesting that dividend

yields do contain valuable information about future stock returns, for example, by appealing to

Campbell and Shiller’s (1988) dynamic Gordon growth model, there is so much noise in stock

returns and concomitantly so little variability in dividend yields (and all other frequently used

predictors) that reliable estimation, inference, and forecasting cannot be carried out. While the

adverse role of noise in statistical estimation may not come as a surprise, this paper provides a

systematic analysis of its full implications for predictive regression models.

Unfortunately, we cannot rely upon traditional asymptotic theory to investigate the finite sample

properties of noisy predictive regressions. In traditional theory as the sample size increases, the

underlying signal is amplified by construction, so that as a result the least squares estimator becomes

arbitrarily close to the true parameter value.2 In other words, as the sample size increases, the

signal-noise ratio is not held constant but rather increases at the same rate. The appropriate

analysis of noise in predictive regressions, however, requires an asymptotic theory in which the

signal-noise ratio does not necessarily grow with the sample size. For example, enlarging the

sample size by decreasing the sampling interval for a fixed time span, say, by going from monthly

to daily observations, may very well increase noise more so than information.3 In general, for the
1See, among others, Shiller and Perron (1985), Summers (1986), and Poterba and Summers (1988). Cochrane

(1988) also explores this issue in the context of estimating the dynamics of GNP.
2This is a loose definition of consistency.
3This is precisely the point raised by Shiller and Perron (1985) and, in particular, Perron (1989).
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sample sizes typically encountered in regressions involving forecasts of returns, it is not appropriate

to rely on a theory which at least asymptotically posits that noise and its effects are arbitrarily

small.

By contrast, we incorporate noise by parameterizing the signal-noise ratio in predictive regressions

to be a function of the sample size and explicitly control the rate of information (or signal) accu-

mulation with the increasing sample size. The novelty of our parameterization is that the rate of

information accumulation explicitly influences the rate of convergence and can lead to inconsistent

estimation and testing in predictive regressions as well as unreliable R2s. Such a parameterization

allows us to analytically investigate the small sample properties of forecasting relations when the

signal-noise ratio is small.

Using this framework, we provide an explicit measure or index of the informativeness of a posited

explanatory variable relative to the noise present in returns. We demonstrate that this index

governs the small sample behavior of predictive regressions and, furthermore, provides a boundary

delineating how much forecasting power can be expected from a predictor. For example, we find

that the index of the informativeness of the relative short term rate of interest exceeds that of other

explanatory variables including the dividend yield but, in general, none of the predictors examined

in this paper are particularly informative when measured against the noise present in returns. It is

not surprising then that Bossaerts and Hillion (1999) and Goyal and Welch (1999) conclude that the

ability of the dividend yield and other variables to forecast stock returns out-of-sample is abysmal.

In fact, we can use our asymptotic approximation to show that even if the conditioning variables

are informative about future stock returns, with so much noise, the forecasts produced with this

correctly specified model will not do better in a mean squared error sense than the unconditional

mean of past stock returns.

The adverse effects of noise analyzed in this paper are unrelated to the issues surrounding forecast-

ing regressions raised by Stambaugh (1999). Stambaugh demonstrates that if the disturbances of

the predictive regression and the autoregression describing the conditioning variable’s dynamics are

contemporaneously correlated then the presence of a predetermined variable results in a small sam-

ple bias in the predictive regression’s slope coefficient. While this bias disappears asymptotically,

our results do not and, in fact, continue to hold even if these disturbances are contemporaneously

uncorrelated. Our conclusions also do not rely upon spurious regressions arguments (Granger and
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Newbold (1974)), a concern that has been raised since at least Goetzmann and Jorion (1993). A

spurious regression arises if unrelated integrated variables are regressed against one another. We,

by contrast, assume returns and a forecasting variable, like the dividend yield, to be related. As

noted by Ferson, Sarkissian, and Simin (2000), the traditional asymptotic theory applied to spu-

rious regressions (Phillips (1986)) does not adequately describe predictive regressions in financial

economics because of the sizable noise component in realized returns which is assumed absent in

the traditional asymptotic theory. This, however, is precisely the issue addressed by our asymp-

totic theory and we establish that in the presence of this noise a spurious relation between returns

and persistent forecasting variables is unlikely. To our knowledge, this is the first paper to offer a

systematic and analytic study of predictive regressions with small signal-noise ratio.

The plan of this paper is as follows. In Section 1, assuming that a posited explanatory variable is

informative about stock returns, we present Monte Carlo evidence investigating the properties of

the resulting one-period ahead predictive regression as more noise is introduced into the estimation.

We document that reliable estimation and inference cannot be carried out in the presence of signal-

noise ratios typically encountered in practice. Section 2 provides an asymptotic theory to explain

the properties of predictive regressions in the presence of varying signal-noise ratios. We argue that

this asymptotic theory provides a better guide to understanding the results of predictive regressions

typically found in the literature where the predictors are persistent but not very variable. Section 3

investigates the role of noise in both in-sample fit as well as out-of-sample forecasting. Estimators

of the signal-noise ratio index are proposed in Section 4 and are used to assess the informativeness

of the dividend yield, term and credit spreads and short term and long term rates of interest. Our

conclusions are presented in Section 5.

1 Noisy Predictive Regressions

We consider a standard predictive regression in which an explanatory variable, Xt, is used to predict

excess stock returns, rt:

rt+1 = µ+ βXt + εt+1 (1)

Xt+1 = µx + φXt + ut+1 (2)

where εt and ut are random disturbances with mean zero, variances σ2
ε and σ

2
u, respectively, and

covariance σεu.
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Two distinct issues are addressed in this paper. First, returns are observed to be extremely

volatile when compared to many predictive variables. This, of course, is nothing but a restatement

of the observation that the coefficient of determination, R2, in the regression (1) is typically found to

be quite low when many of the predictors suggested in the finance literature are used as explanatory

variables. Unfortunately, the fact that only a small signal is present in the data has largely been

ignored by appealing to traditional asymptotic arguments. According to these arguments, a small

signal in the data is not a concern in a standard regression setting because as the number of

observations T increases, the signal is assumed to increase at the same rate.4 In practice, however,

we deal with samples of fixed length and so we cannot increase the number of observations in

order to increase the precision of our estimates. One might argue that increasing the frequency of

observations, say from monthly to daily observations, rather than lengthening the sample period,

may provide us with more information and, consequently, more precise estimates. But this need not

be the case as increasing the frequency of observations can actually increase noise and so further

obscure the small signal in the data.

Second, most explanatory variables are very persistent in the sense that the autoregressive

coefficient φ in (2) is close to one and unit-root tests have difficulty in rejecting the null hypothesis

that these variables are integrated. The fact that a nearly integrated explanatory variable is used

to forecast stationary returns raises a number of econometric issues. In fact, this estimation can

only make sense if, as pointed out earlier, the persistent variable’s signal is small when compared to

the stationary noise component arising from unexplained fluctuations in returns. Similar problems

have been addressed by, among others, Poterba and Summers (1988), Cochrane (1988) and, most

recently, Ferson Sarkissian, and Simin (2000).

It is worth emphasizing that if the system (1)-(2) is used to forecast returns then the persistence

of the predictor is intricately linked with the overwhelming noise in returns. In particular, if the

predictor is persistent and a forecasting relation does exist, then it must be the case that returns

also have a highly persistent component. However, it is both theoretically unappealing as well as

empirically unreasonable for realized returns to follow a nearly non-stationary process. In other

words, if rt has a persistent component then such a component must be very small, no matter how

4Suppose that in (1) φ < 1 so that Xt is stationary. Then, using standard Central Limit Theorem arguments, we

can show that
√
T (β̂ − β) →d N

³
0,

σ2
ε
σ2
ε

¡
1− φ2

¢´
, or β̂ − β is approximately distributed as N

0, σ2
ε

σ2
ε
(1−φ2)
T

 . No
matter how large this numerator is, as T increases, the variance of β̂ will become arbitrarily close to zero.
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large the sample size.

In this paper we assume that a predictive relation does prevail between returns and an ex-

planatory variable.5 In other words, we assume β 6= 0 in (1). We then investigate the properties of
predictive regressions in light of the noisy nature of returns data as well as the persistence exhibited

by many explanatory variables. For example, what are the implications for the properties of OLS

estimates of β and corresponding t-statistics? Can we shed any additional light on the relation

between the predictive regression’s in-sample versus its out-of-sample forecasting properties? An-

swers to these questions cannot be obtained by assuming that the signal accumulates at the same

rate as the sample size increases. Intuitively, what is required is an asymptotic theory in which

the rate of information accumulation varies with the strength of the signal present in the data. We

provide such a theory and show that it can help explain many of the stylized facts associated with

predictive regressions.

All of these issues can be readily couched in the context of our predictive regression framework,

(1)-(2). To emphasize the persistence of the forecasting variableXt, we assume that φ = 1 in (2) and

is known.6 To capture the noisiness of returns relative to the signal present in the data, recall that in

the regression (1), the systematic component βXt is the signal that helps us forecast the conditional

mean of rt+1, while the noise is the residual, εt+1. Heuristically, a small signal-noise ratio arises

whenever σ2
ε is much larger than the regression’s systematic component. Rescaling the regressor

Xt does not remedy a small signal-noise ratio.
7 Also, since researchers have relied on explanatory

variables expressed in a variety of units, for example, monthly vs quarterly observations, or logged vs

non-logged variables, we will use a scale-invariant measure of the signal-noise ratio. In particular,

we normalize both the signal and the noise by β.

5For example, lagged dividend yields can provide valuable information about future stock returns. This follows
from Campbell and Shiller’s log-linear framework where, appealing to the dynamic Gordon growth model, the log
stock return, rt+1, can be written as

rt+1 ≈ k + ρpt+1 + (1− ρ)dt+1 − pt
with p and d denoting the log stock price and log dividend, respectively, and k and ρ are parameters of the linearization.

6Alternatively, if φ is unknown but close to one, we may use the local to unity specification φ = 1 + c
T
as in

Cavanagh, Elliott and Stock (1995). In the Appendix, we show that allowing φ to be close to, but not exactly 1, will
not affect our conclusions. The only difference will be that the results will depend on the nuisance parameter, c.

7In particular, suppose we rescale Xt by a constant K in an attempt to increase the signal. Or, equivalently, we
consider

rt+1 = µ+ β
†X†

t + εt+1

where β† = β
K
and X†

t = XtK. Note that in order to preserve the posited relation, we must also rescale the regression
coefficient, thereby keeping the variance of the systematic part unchanged.
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It will also be convenient to rescale ut as ut = τvt where σ
2
v = σ

2
ε/β

2 so that

τ2 =
σ2
uβ

2

σ2
ε

represents the signal-noise ratio. If Xt is serially uncorrelated (φ = 0) the signal-noise ratio is the

familiar goodness-of-fit statistic R2. However, since we model Xt with an autoregressive root of

unity, τ2 and R2 are not identical but are related. In fact, we will see below that we can analyze

the statistical properties of R2 as a function of the signal-noise ratio.

In what follows we consider the predictive regression (1)-(2) augmented with:

·
εt
ut

¸
=

·
1 0
0 τ

¸ ·
εt
vt

¸
(3)

= Υwt. (4)

We assume that wt ≡ [εt, vt]0 is a martingale difference sequence withE(wtw0
t|wt−1, ...) = [σ

2
ε σεv; σεv σ2

v ] ≡
Σ and having finite fourth moments.

1.1 Preliminary Evidence

We are interested in the case where the signal-noise is small, or equivalently, the ratio τ = σuβ/σε is

small. The summary statistics presented in Table 1 confirm that this case characterizes predictive

regressions relying on a variety of commonly used explanatory variables.

The explanatory variables that we consider in addition to the log dividend yield (defined as the

log annualized dividends minus the log price of the CRSP VW index) include the Treasury bill rate

(defined as the log of one plus the three month Treasury bill rate), the long rate (defined as the log

of one plus the yield of the ten year Treasury note), the default spread (defined as the log of one

plus the BAA yield minus the log of one plus the AAA yield), the term spread (defined as the log

of one plus the ten year Treasury note rate minus the log of one plus the three month Treasury bill

rate), the real short rate (defined as log of one plus the three month Treasury bill rate minus the

rate of inflation), as well as the relative short term rate of interest (defined as the log of one plus

the one year Treasury bill rate minus its twelve month moving average). Annualized monthly data

are used throughout.

Panel A of Table 1 provides the means and standard deviations of these variables over the entire

sample period, 1927:1 - 1998:12, the sub-sample through approximately the end of the post-World
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War II period, 1927:1 - 1949:12, the sub-sample subsequent to the post-World War II period, 1950:1

- 1998:12, and the first and second halves of this latter sub-sample, 1950:1 - 1979:12 and 1980:1 -

1998:12. For comparison purposes, we also provide these summary statistics for the equity premium

(defined as the log of one plus the return of the CRSP VW index minus the log of one plus the

one year Treasury bill rate). Notice how variable the equity premium is relative to all explanatory

variables. Panel B presents the estimated slope coefficient β̂ when the one-month ahead equity

premium is regressed against these explanatory variables. We also provide estimates φ̂ of each

explanatory variable’s largest autoregressive root. In almost every case and across every sample

period, the estimated φs are close to one, consistent with the persistent time series behavior of

these variables. Finally, Panel C tabulates the corresponding R2s which are seen to be close to zero

and is indicative of the noisy nature of stock returns relative to the explanatory variables. This is

confirmed by the estimated τs which are extremely small throughout.

1.2 Monte Carlo evidence

1.2.1 No correlation between εt and vt

In light of the small signal-noise ratios that characterize predictive regressions using dividend yields

and other explanatory variables, the following Monte Carlo experiments investigate the sensitivity

of predictive regressions to varying signal-noise ratios. The system (1) - (4) is simulated for various

T values, T = 75, 200, 850, and various τ values, τ = 1, 0.1, 0.01, ..., 1× 10−5. The case T = 75 is

designed to correspond to a typical sample using annual data, T = 200 represents a typical sample

using quarterly data, while T = 850 corresponds to a typical sample using monthly data. Without

loss of generality, we will assume that β = 1 and set σ2
ε = σ

2
v = 1, where εt and νt are iid normal

variates with σεv = 0. The system for each specification of (τ, T ) is simulated 5, 000 times. At

every simulation, we regress rt+1 on Xt, Xt on Xt−1, and rt on rt−1, resulting in estimates β̂, φ̂, and

φ̂2, respectively. The estimated means and variances of these three OLS estimates are tabulated in

Table 2.

Looking at Table 2A, the entries in the first row, τ = 1 (i.e., σ2
u = σ2

ε = 1), show that the

distribution of the β estimates is centered exactly at its true value of β = 1. However, as τ

decreases, the β estimates worsen considerably, even for samples as large as T = 850. Since we

have restricted εt and ut to be independent, this result cannot reflect the small sample bias arising

from the presence of a predetermined lagged variable, as discussed by Stambaugh (1999).

But if this sampling behavior of β̂ does not reflect a small sample bias, how can we account
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for such poor performance even in reasonably large samples? Recall that traditional asymptotic

theory predicts that the distribution of β̂ will be centered around the true parameter value β = 1

but, as can be seen in Table 2A, this is clearly not the case as the signal-noise ratio diminishes.

In fact, our simulations suggest that as τ decreases, the β estimates diverge further from the true

value.

Table 2B documents the properties of the estimate of the autoregressive root inXt. As expected,

φ is estimated with downward bias, but this bias disappears as T increases. Notice that the estimate

of φ is unaffected by the small signal-noise ratio, since its distribution is invariant to τ . Since Xt

has a unit root and the relation (1) holds, then rt must also have a unit root. Table 2C gives the

estimates of the autoregressive root of rt, φ2. It is not surprising to find that for small values of τ

the φ2 estimates are not close to 1.
8

As shown in Table 2D, inference is also problematic when τ is small. There we tabulate the

mean of the distribution of the t-statistic for Ho : β = 1 versus Ha : β = 0. For τ small, the

distributions under the null and under the alternative are both centered at zero, implying that the

t-test will have almost no power even for samples of reasonable size (power equal to size). When

the signal-noise ratio is small in a given sample, the R2 must also, by definition, be small, but as

T increases, R2 must converge to one since we assume a relation prevailing between rt and Xt.

The mean of the R2s obtained from the simulations are shown in Table 2E and we see that for the

typical sample sizes encountered in practice the mean R2s remain close to zero for small signal-noise

ratios.

Lastly, in Table 2F we compare the out-of-sample forecast using the correct model, given in

expression (1), to a forecast using the unconditional mean. For large values of τ , the forecast from

the model outperforms the unconditional mean in a mean-squared error sense. As τ decreases,

however, these forecasts produce similar results, even for reasonably large sample sizes.

1.2.2 Correlation between εt and vt

If εt and vt are assumed to be contemporaneously correlated, the OLS estimator of the slope

coefficient, β̂ will now be biased in small samples. As noted by Stambaugh (1999) and Cavanagh,

Elliott, and Stock (1995), the size of this bias will depend on the magnitude of the fraction cov(εt,ut)
var(ut)

8To understand this result, notice that if τ is small, we can write (1− L) yt+1 = (1 + θL) rt+1 with θ very close to
−1. In other words, yt+1 is very close to being white noise and it is known that under such circumstances unit root
tests will have a size close to 1 (Perron (1988), Schwert (1989), and Pantula (1991)). Hence, it is not surprising that
the null hypothesis of a unit root in rt is rejected when σ

2
u is small.
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on the persistence of Xt. In our case, one can write
cov(εt,ut)
var(ut)

= τσεv
τ2σ2

v
= 1

τ × σεv
σ2
v
and it follows that

a decrease in τ , all else being equal, leads to an increase in this small sample bias.

Our previous Monte Carlo experiments assumed that σv = 1 and we now set σεv = −0.62
to capture the negative correlation prevailing between shocks to dividend yields and shocks to

realized stock returns.9 Table 3 provides the results when we repeat our Monte Carlo experiments

with σεv = −0.62. With few exceptions, these results are similar to the ones obtained assuming
that σεv = 0. From Table 3A we indeed see that the bias in β̂ is exacerbated by the presence

of contemporaneously correlated disturbances. Also, the means of the t-statistic under the null

and alternative hypotheses are once again similar, and more importantly, do not diverge from each

other with the increasing sample size, as would be required for a consistent statistical test. The

t-statistic under the null now appears to be centered around 1.80. As we will show below, this shift

occurs because of the correlation between the residuals and it is magnified by the small signal-noise

ratio.

Taken together, the results of Tables 2 and 3 suggest that the estimation of and inference in

predictive regressions may be adversely affected by the presence of a small signal relative to a large

amount of noise. We now turn our attention to providing an asymptotic theory that verifies the

sensitivity of predictive regressions to the prevailing signal-noise ratio.

2 Asymptotic Approximations when the Signal-Noise Ratio is Close
to Zero

The Functional Central Limit Theorem can be used to provide better approximations of the small

sample distributions of the various predictive regression statistics.

2.1 No correlation between εt and vt

If σεv = 0, then εt is uncorrelated with Xt and Σ
1/2 is diagonal. While this may not be a realistic

assumption in the context of a predictive regression using dividend yields, we impose it to help

explain the Monte Carlo simulation results of Table 2. The results we obtain will also serve as a

basis for the more realistic case σεv 6= 0.
Under this assumption, (1/

√
T )

P[sT ]
j=1wj ⇒ ΥΣ1/2W (s) and (1/

√
T )

P[sT ]
j=1(wj−w)⇒ ΥΣ1/2W µ(s),

whereW (s) = [W1(s)W2(s)]
0 is a bivariate standard Weiner process on D [0, 1]×D [0, 1] , Wµ(s) =

9As estimated using data over the 1927:1 to 1998:12 sample period (See Table 1D).
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W (s) − R 1
0 W (s)ds, t = [sT ] , and ⇒ denotes convergence in distribution. To capture the small

variance of ut relative to εt and to explicitly link the behavior of the signal-noise ratio to the sample

size, we write

τ ≡ σuβ

σε

=
1

Tα
where α ≥ 0. (5)

We can interpret the parameter α as a measure of the information in the conditioning variable

βXt relative to the noise εt:

Var(βXt)

Var(εt)
=

σ2
ut

σ2
ε

β2

= τ2t

=
t

T 2α

= sT 1−2α

for the increment s = t/T . The case α = 0 corresponds the “usual” asymptotics where the signal-

noise ratio τ is fixed. For α ∈ (0, 1/2), the information in the predictive variable will eventually
overwhelm the noise and Var(Xt)/Var(εt/β) diverges as T →∞. However, for α > 1/2, the noise
will engulf the signal and Var(Xt)/Var(εt/β)→ 0 as T →∞.

Given this parameterization, the following result obtains:

Proposition 1 Under the assumptions above, if σεv = 0 and τ = 1
Tα , the OLS estimator β̂

converges at rate T−(1−α) to a functional of diffusion processes:

T (1−α)
³
β̂ − β

´
⇒

R 1
0 W

µ
2 (s)dW1(s)R 1

0 (W
µ

2 (s))
2 ds

as T →∞. (6)

More informally, we can write

β̂ ∼ β + Z̃Tα−1

where Z̃ is a mean zero normal random variable. If α < 1, the variance of β̂ will decrease as T →∞
and the estimator is consistent. Otherwise, β̂ is inconsistent. Note, however, that E(β̂) = β since

we assume σεv = 0. The fact that we observed large simulation errors in Table 2A when computing

E(β̂) underscores the importance of Proposition 1.
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While unusual, the above result is not surprising. Unusual, because β̂ does not converge to

β at rates O(T 1/2) or O(T ). In fact, the rate of convergence varies with α. However, this is not

surprising, because we have parameterized the model so that α controls the rate at which the signal

emanating from Xt accumulates. As α increases, the signal from Xt in a given sample decreases

relative to the noise εt and the parameter β cannot be estimated precisely.

The following result helps us understand the behavior of t-statistics under varying signal-noise

ratios:

Proposition 2 Under the assumptions above, if σεv = 0 and τ =
1
Tα then

t =
β̂ − β
se(β̂)

⇒
R 1

0 W
µ
2 (s)dW1(s)³R 1

0 (W
µ

2 (s))
2
ds

´1/2
as T →∞.

The true value of β is unknown and it is customary to assume the null hypothesis of no pre-

dictability or β = 0. Under this null hypothesis, the test statistic is

tβ̂ =
β̂ − 0
se(β̂)

=
β̂ − β
se(β̂)

+
β − 0
se(β̂)

=
T 1−α

³
β̂ − β

´
1

T 1−α

³PT
t=1X

2
t

´1/2

(σ̂2
ε)

1/2
+

¡
T 1−αβ

¢
1

T 1−α

³PT
t=1X

2
t

´1/2

(σ̂2
ε)

1/2
.

By Proposition 2, the first term converges in distribution to a normally distributed random variable.

However, the second term diverges for α < 1, while for α ≥ 1 the second term converges to 0. As

a result, if α < 1, the statistic tβ̂ provides a consistent test which can reject β = 0 when it is false.

Unfortunately, for α ≥ 1 the distribution of tβ̂ is the same for β = 0 as for the true value of β. In
such a case, the test’s power equals to its size and we are unable to reject β = 0 when it is false.

While this perhaps extreme conclusion obtains for α ≥ 1, it also suggests that the t-test will have
low power for values of α higher than 0.5.

2.2 Correlation between εt and vt

If εt and vt are assumed to be contemporaneously correlated then our preceding conclusions are

only reinforced. The following Proposition generalizes our previous results to the case σεv 6= 0:
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Proposition 3 Under the assumptions above, if σεv 6= 0 and τ = 1
Tα then as T →∞

T (1−α)
³
β̂ − β

´
⇒ ¡

1− δ2
¢1/2

R 1
0 W

µ
2 (s)dW⊥(s)R 1

0 (W
µ

2 (s))
2 ds

+ δ

R 1
0 W

µ
2 (s)dW2(s)R 1

0 (W
µ

2 (s))
2 ds

t =
β̂ − β
se(β̂)

⇒ ¡
1− δ2

¢1/2

R 1
0 W2(s)dW⊥(s)³R 1

0 (W
µ

2 (s))
2 ds

´1/2
+ δ

R 1
0 W2(s)dW2(s)³R 1

0 (W
µ

2 (s))
2 ds

´1/2

where corr(εt, vt) = δ and W⊥(s) is a Wiener process obtained by projecting W1(s) on W2(s) with

E
¡
W 2
⊥(s)

¢
= 1− δ2 and by construction, W⊥(s) and W2(s) are statistically independent.

10

More informally, we can write

β̂ ∼ β + ¡
1− δ2

¢1/2
Z̃T (α−1) + δR̃T (α−1)

where Z̃ is a mean zero normal random variable while R̃ is a stochastic process with a defined density

and a negative mean. Notice that if δ = 0, the last term disappears in the above expressions and

these results reduce to those obtained when σεv = 0. All else being equal, the higher (lower) the

correlation δ between the disturbances, the more (less) dominant is the last term. Since we know

from Monte Carlo simulations that the density of the random variable R̃ has most of its mass on

negative values, this generates a negative bias in finite samples, which is the result obtained by

Stambaugh (1999) using different methods. The smaller the signal-noise ratio is, the larger this

bias. For α > 1, this bias does not disappear asymptotically and, as discussed above, the variance

of β̂ increases. Consistent with Cavanagh, Elliott and Stock (1995), to the extent that δ 6= 0, it

is not correct to use the standard normal distribution to assess the statistical significance of β. In

fact, the smaller the signal-noise ratio is, the greater the deviation between the standard normal

distribution and this appropriate distribution.

2.3 Monte Carlo—Once More

The results in Tables 2 and 3 were obtained by arbitrarily decreasing the value of τ . Tables 4 and 5

present the results of the same set of simulations but now for τ = 1
Tα and α = (0, 0.20, 0.5, 0.67, 1,

2). We assume that σε,v = 0 in Table 4 while σε,v = −0.62 in Table 5. As expected from the

previous propositions, β̂ is consistent for α < 1 but is inconsistent for α > 1 (see Tables 4A and

10This proposition can be generalized to accommodate error terms with more general autocorrelation and het-
eroskedasticity (Hansen (1992), Stock and Watson (1993)).
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4B, and Tables 5A and 5B.). The t-statistic for the null β = 1 can also be seen to be inconsistent

against the alternative β = 0 (Tables 4D and 5D).11

2.4 Spurious Regression?

A spurious regression arises whenever unrelated random walks are regressed against one another.

Ferson, Sarkissian, and Simin (2000) contend that spurious regression is a concern in predictive

regressions notwithstanding the fact that returns themselves are stationary. Their argument is

based on the observation that returns can be decomposed into an unobserved expected return

component and a noise component. To the extent that expected returns behave nearly like a

random walk, a spurious regression arises when returns are regressed against a persistent predictor

which is unrelated to the persistent expected return component.

In Appendix B we formally establish that such a spurious regression arises in the Ferson,

Sarkissian, and Simin framework only if τ is constant and does not depend on T , that is, α = 0.

This is explicitly assumed by Ferson, Sarkissian, and Simin in their Monte Carlo simulations where

the underlying coefficient of determination, R2, is held constant throughout. Intuitively, in this

case as T gets larger the persistent component of returns becomes increasingly dominant. An

implication of their assumption, however, is that returns themselves will increasingly behave like a

random walk which is neither theoretically appealing nor empirically tenable. In other words, to

the extent that realized returns are stationary then there is little concern that predictive regressions

are spurious.

3 The Explanatory Power of Predictive Regressions

Recent work by Bossaerts and Hillion (1999), using statistical model selection criteria applied to a

variety of explanatory variables, and Goyal and Welch (1999), relying exclusively on dividend yields,

demonstrate that predictive regressions have some in-sample predictability but exhibit little or no

out-of-sample predictability. While Bossaerts and Hillion suggest that these results may be due to

model nonstationarity, in this section we argue that the excessive noisy nature of returns relative

to the explanatory variables can explain both the apparent presence of in-sample predictability and

the failure to detect out-of-sample forecasting power.
11Recall from Proposition 2 that the inconsistency of the t-statistic does not depend on the choice of the alternative

hypothesis.
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3.1 In-Sample

When estimating and testing one-period ahead predictive regressions, the t-statistic is usually

only marginally significant and the coefficient of determination R2 is low. However, given the

posited relation assumed to prevail between rt+1 and Xt, one would expect when relying on normal

asymptotics the resultant R2 to increase to one with increasing sample size. In fact, in the one-

period ahead predictive regression we can establish the following result:

Proposition 4 Under the assumptions above, if τ = 1
Tα , then as T →∞

R2 →p

½
1
0

α < 1/2
α > 1/2

where →p denotes convergence in probability. For the borderline case α = 1/2, R2 = Op(1).

For a sufficiently small signal-noise ratio, an increase in the number of observations will not

result in an increase in R2, even if a relation prevails between the two variables. Enlarging the

number of observations (going, for example, from a yearly to a monthly frequency) may not result

in a higher R2. In fact, we typically see that the R2s in the monthly predictive regressions are

considerably lower than the R2s obtained in predictive regressions using yearly data.

To illustrate the above proposition, we turn to the simulation results in Tables 2E, 3E, 4E, and

5E. The first two tables present the simulation results for R2 assuming τ fixed with σε,v = 0 and

σε,v = −0.62, respectively. No matter what the correlation is, for a large τ we see that R2 increases

to one as the sample size increases. However, for very small values of τ, R2 appears to converge

to zero. This result cannot be explained by usual fixed τ asymptotics but is in accord with the

above Proposition. Tables 4E and 5E presents the results for various α values and σε,v = 0 and

σε,v = −0.62, respectively. We can clearly see that for a < 1/2, R2 increases with the sample size

but for α > 1/2, R2 converges to zero.

Bossaerts and Hillion argue that the lack of in-sample predictability of predictive regressions

cannot be due to a small signal-noise ratio. In particular, they show that if one assumes that the

R2 = 0.06 observed in their empirical regressions is the “true” coefficient of determination, then

the power of a corresponding t-test is fairly high. A reported R2, however, is but an estimate

with a finite-sample distribution. Moreover, as shown above, for small values of α the coefficient of

determination does not converge to one in probability. Figure 1 graphically displays the distribution
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of R2 for various τ and α values. The upper panels provide the entire distribution of R2, while the

lower panels show only the 0.5, 5, 50, 95, and 99.5 percentiles, respectively. For a median value of

R2 = 0.06 (denoted by the dashed lines), we can trace 90% and 99% confidence intervals for R2

corresponding to (0,0.17) and (0,0.20), respectively (denoted by dashed-dotted lines). As a result,

referring to Bossaerts and Hillion’s Figure 1, we conclude that a lack of in-sample predictability

may very well be due to the t-statistic’s lack of power. Of course, this is nothing but a restatement

of our conclusions in Proposition 2.

3.2 Out-of-Sample

Given that the slope coefficient β is not estimated precisely, how good are the out-of-sample forecasts

of one-period ahead predictive regressions? In the finance literature, the results of out-of-sample

forecasting exercises are often seen as the most relevant measure of the success of a particular

model. In light of our previous discussion, we do not expect to be able to forecast returns with

great accuracy, notwithstanding the relation assumed to prevail between returns and a forecasting

variable like the dividend yield. Consistent with this, Goyal and Welch (1999) point out that equity

forecasts produced from a predictive regression model using annual data do not perform any better

than the unconditional mean return.

We now prove that if the signal-noise ratio is small, forecasting using the estimated predictive

regression model will not do better than the simple unconditional mean. First, we show that

traditional asymptotics with fixed τ cannot give us insights into this problem. Then, we turn

attention to our alternative asymptotic theory and derive analytic results that help explain the

results of Goyal and Welch as well as the results of our simulations. In what follows, we compare

two competing long-run forecasts: r = 1
T

PT
t=1 rt and r̂T+k|T = µ̂ + β̂xT , where k = [κT ] , and

κ ∈ (0, 1) .
For a fixed τ , we can show that both forecasts are asymptotically unbiased, or

E
³
T−1/2 (rT+k − r)

´
→ 0

E
³
T−1/2

¡
rT+k − r̂T+k|T

¢´
→ 0.

More importantly, the asymptotic variances are:

E
³
T−1 (rT+k − r)2

´
→ τ2β2(κ+ 1/3)

E
³
T−1

¡
rT+k − r̂T+k|T

¢2
´

→ τ2β2κ.
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Therefore, we can conclude that asymptotically,

MSE(r) > MSE(r̂T+k|T ).

While this result is to be expected, it is inconsistent with our simulation results which suggest that

for small τ the MSEs from both forecasts are almost identical, even for relatively large sample sizes.

This fact, however, can be captured using our alternative asymptotic methods. As the following

Proposition demonstrates, under this parameterization, r̂T+k|T does not always produce superior

forecasts to r.

Proposition 5 Under the assumptions above, suppose τ = 1
Tα and k=[κT ] where κ is a fixed

number. Let r be the sample mean of rt and let r̂T+k|T=bµ+ β̂XT . Then, as T →∞, both forecasts
are asymptotically unbiased for all values of α:

E
¡
T−(1/2−α) (rT+k − r)

¢ → 0 and E
¡
T−(1/2−α)

¡
rT+k − r̂T+k|T

¢¢ → 0 , α < 1/2

E ((rT+k − r))→ 0 and E
¡¡
rT+k − r̂T+k|T

¢¢ → 0 , α ≥ 1/2.

However,

E
³
T−(1−2α) (rT+k − r)2

´
→ β2(κ+ 1/3) , α < 1/2

E
³
(rT+k − r)2

´
→ β2(κ+ 1/3) + 1 , α = 1/2

E
³
(rT+k − r)2

´
→ 1 , α > 1/2.

and

E
³
T−(1−2α)

¡
rT+k − r̂T+k|T

¢2
´
→ β2κ , α < 1/2

E
³¡
rT+k − r̂T+k|T

¢2
´
→ β2κ+ 1 , α = 1/2

E
³¡
rT+k − r̂T+k|T

¢2
´
→ 1 , α > 1/2

Therefore,

MSE(r) > MSE(r̂T+k|T ) , α < 1/2

MSE(r) =MSE(r̂T+k|T ) , α ≥ 1/2.

Notice that in the case α > 1/2, we have MSE(r) = MSE(r̂T+k|T ). In other words, if the signal-

noise ratio is extremely low then forecasts from the true model will not necessarily outperform the

unconditional mean return.

In Table 6, we compare the forecasting power of our sampled explanatory variables. Panel A

displays the percentage increase in MSE from using a given predictor instead of the unconditional
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mean return. We confirm the findings of Goyal and Welch (1999) that the log dividend yield not only

fails to significantly outperform the simple mean return, but in some periods it actually produces

inferior forecasts. Strikingly, the remaining explanatory variables do not forecast much better. In

particular, no single forecaster uniformly dominates the others across all sub-samples. The log

dividend yield performs particularly poorly in the last sub-sample period. The default spread

yields a high MSE during the 1927-1949 and 1980-1998 sample periods. The term spread performs

particularly poorly during the 1950-1979 sample period while the real interest rate’s forecasting

performance deteriorates during the 1927-1949 sample period. In general, the best forecaster is the

relative rate. In Panel B, we compare the predictive ability of our forecasters by re-estimating the

model at each sampled time point. Such a “rolling-estimation,” although not a formal test, allows

us to check whether the lack of forecastability is due to an unstable relation or to a lack of signal.12

Since the results in Panels A and B are in general agreement, we conclude that even if instability

is present it is not the only source of the lack of predictability.

4 Estimation of α

In the previous sections we have argued that the signal-noise ratio must be taken into account when

conducting estimation, inference, and forecasting with predictive regressions. Under the proposed

asymptotic approximations, the rates of convergence of all required statistics depend on the rate of

signal accumulation. This feature is not only intuitively appealing but also desirable. It provides us

with guidelines, or boundaries, delineating how much forecasting power to expect from a particular

posited explanatory variable. In this section we provide a quick and simple method of estimating

α.

Notice that for t = T we have σ2
u
σ2
ε
β2 = T−2α. Therefore, taking logs and re-arranging the above

expression, we obtain

α =
log σe − log σu − log β

log T
. (7)

If we replace the population moments with their sample counterparts and use the OLS estimate

of β, we obtain a consistent estimate of α, say α̂OLS . Unfortunately, given the unusual rates of

convergence, an analytic form of the limiting distribution of α̂OLS is difficult to derive. Moreover,

given the slow rates of convergence of β̂ discussed previously, an estimate of α constructed using (7)

12Note that some formal tests for instability are based on such rolling-regression estimation schemes (Viceira
(1997)). Therefore, this simple diagnostic should allow us to detect time-varying relation, if it were present.
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will have a small sample bias. To remedy the shortcomings of α̂OLS , we construct an estimator of

α that will be median-unbiased and around which we can define valid confidence intervals. Median-

unbiased estimators are well-known in statistics (see Lehmann (1959)) and have recently been used

in econometrics by Andrews (1993) and Stock (1991).

We propose to estimate α using a method that produces a median-unbiased estimate, α̂MU ,

and corresponding confidence intervals with exact coverage even in small samples. The procedure

involves correcting the bias in α̂OLS by inverting its distribution. More formally, we follow Andrews

(1993). Suppose we have the model in (1)-(5) and the estimator α̂OLS defined by (7). Notice that

the distribution of α̂OLS depends only on α and δ, the correlation between εt and ut. Since δ can

be estimated consistently, we will assume that it is known. The median of the distribution of

α̂OLS , denoted by M(α), will be only a function of α and is defined by P
¡
α̂OLS ≤M(α)¢ = 0.5.

Suppose that M(α) is strictly increasing on the parameter space Π, say (0, 1.2]. Then, α̂MU is a

median-estimator of α if

α̂MU =

½
M−1

¡
α̂OLS

¢
maxαΠ

α̂OLS ≤M (maxαΠ)
α̂OLS > M (maxαΠ) .

(8)

The truncation maxαΠ is necessary since the estimated value may fall outside the predetermined

parameter space Π. 13

The construction of 100 × (1− p)% confidence intervals follows in the same fashion, given

the definition of the quantiles Qp1(α) and Qp2 (α), P (Qp1(α) ≤ α̂OLS ≤ Qp2 (α)) = 1 − p,

where p1 + p2 = p. For example, if we consider the 99% centered confidence interval, we have

P (Q0.005(α) ≤ α̂OLS ≤ Q0.995 (α)) = 0.99. Replacing α̂
MU , M (α) , and M−1

¡
α̂OLS

¢
in definition

(8) by αLB, Q0.995 (α) , Q
−1
0.995

¡
α̂OLS

¢
, we obtain a lower bound on the 99% confidence interval

of α̂MU . Similarly, replacing α̂MU , M (α) , and M−1
¡
α̂OLS

¢
in definition (8) by αUB, Q0.005 (α) ,

Q−1
0.005

¡
α̂OLS

¢
, we obtain an upper bound on the 99% confidence interval of α̂MU .

Inverting the distribution of a test statistic in order to obtain α̂MU , αLB, and αUB is easily

implemented. Since we know the data generating process in (1)-(5), we can simulate the distribu-

tions of α̂OLS as a function of the true parameter α. Therefore, we can find the quantiles Q0.005(α),

M(α), and Q0.995(α) and invert them. As an illustration of the method, consider the predictive

regression using the log dividend yield over the sample period 1927:1-1998:12. Using the OLS

regression results and (7) we obtain α̂OLS = 0.72 (Table 7B). Given the estimate δ̂ = −0.62, we
13In practice, this is not a limitation, since the parameter space can be set to be arbitrarily large. In the application

of this procedure, we set Π = (0, 1.2] and the truncation is never used to find α̂MU .
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simulate the distribution of α̂OLS as a function of α for T = 850. The 0.5th, 50th, and 99.5th

quantiles of the distribution are plotted in Figure 2 as a function of α. A graphical inversion of the

quantiles, shown by dashed lines, produces
¡
αLB, α̂

MU , αUB
¢
= (0.48, 0.59, 0.73).

The advantages of the proposed estimation procedure are clear. First, we obtain an unbiased

estimator of α. Second, the confidence intervals have the correct coverage by definition even in small

samples and can be used for accurate hypothesis testing. Third, the method is easy to implement.

Fourth, the impartiality of the median unbiased estimator is particularly attractive. We do not

need to appeal to asymptotic approximations (in the Frequentist approach) nor to various priors

(in the Bayesian approach) in order to produce the statistic of interest. The only drawback of the

procedure is that it necessitates the simulation of the data generating process in (1-5), but that is

a small cost given the simplicity of the model.14

We use the estimator α̂MU to measure the signal strength of our sampled explanatory variables

over various sample periods. These estimates are displayed in Table 7A along with the correspond-

ing correctly-sized 99% confidence intervals around α̂MU . For comparison purposes, the biased least

squares estimates α̂OLS are provided in Table 7B.

A number of interesting results emerge from Table 7A.15 First, as expected, the estimates of

α are fairly high for all the regressors and range between 0.26 to 0.95. The α confidence intervals

of all the explanatory variables in all sample periods fail to include α = 0 but most do include α

values of 0.5 or higher consistent with their signal-noise ratios being low. Given these results, it is

not surprising that none of these explanatory variables can adequately explain the fluctuations in

returns in- or out-of-sample. Second, there is no explanatory variable that performs worse than the

others across all sub-samples. However, the dividend yield, the long rate and the default spread

have consistently higher α estimates than the other predictors. The dividend yield lacks signal

strength during the 1927-1950 and particularly the 1980-1998 sample periods, but performs quite

well otherwise. Interestingly, the relative rate’s estimate of α is consistently lower than that of

other variables across all sample periods. Moreover, it is significantly lower than 0.5 throughout,

thus explaining the observed superiority of this forecaster in Table 6. Third, we note that there is

a considerable variation in the signal strength from one sample period to another with the largest

14There is another, more technical drawback of the median unbiased estimator. There might be better median-
unbiased estimators than the one proposed here, i.e. estimators that are more efficient in exploiting the information
in the data. We could not find any known results about the optimality of median unbiased estimators.

15To emphasize the usefulness of α as a measure of signal strength, we note that the conclusions that we drew from
Tables 1 and 6 correspond closely to those from Table 7.
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variation across periods coming from the dividend yield. Again, the only predictor that has a

fairly constant α estimate is the relative rate. In sum, the relative rate is the only predictor

that can outperform the unconditional mean of returns. The other predictors simply do not have

enough signal.16 Interestingly, Campbell (1991) reaches a similar conclusion using more heuristic

arguments.

5 Conclusions

Stock returns are extremely noisy when compared to forecasting variables like the dividend yield

commonly used in predictive regressions. As a result, standard statistical tests and procedures will

have difficulty in detecting and properly gauging predictability when it is actually present in the

data.

Researchers typically use persistent conditioning variables in forecasting stock returns. To better

understand the results of predictive regressions in finite samples, this paper provides an alternative

asymptotic approximation, where the rate at which information accumulates with the increasing

sample size is explicitly controlled. The proposed framework allows us to analytically explore the

statistical boundaries of predictive regressions in finite samples, when the signal-noise ratio is small.

Although our analysis assumes that the predictors are persistent variables, this need not be the

case. In fact, similar results can easily be derived for stationary variables if we parameterize the

signal-noise ratio to be decreasing with the sample size.

The novelty of our parameterization is that the rate of information accumulation explicitly

influences the rate of convergence and the behavior of various statistical properties of predictive re-

gressions. Using these results, a researcher can gauge the informativeness of a particular forecasting

variable relative to its noise and determine whether reliable estimation, inference, and forecasting

can be expected in predicting stock returns. In a bivariate framework, we use our methodology to

demonstrate that even if a forecasting relation does exist between returns and some commonly used

predictors, the relative rate is the only predictor to deliver some forecasting gains when compared

to the unconditional mean of returns.

16Using sample moments in (7) is not the only method to estimate α. An alternative method would be to invert the
distribution of a sample statistic that depends on α. For example, one might want to invert the distributions of the
R2 statistic, shown in Figure 1. This method, proposed by Andrews (1993) and Stock (1991) will produce a median
unbiased estimate of the parameter as well as valid confidence intervals.
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Tables and Figures

Table 1: Summary Statistics

A: Means and Standard Deviations

1927:1-1998:12 1927:1-1949:12 1950:1-1998:12 1950:1-1979:12 1980:1-1998:12

mean stdev mean stdev mean stdev mean stdev mean stdev
EP 6.46 19.20 4.96 26.52 7.16 14.58 6.31 13.89 8.51 15.63

DY -3.07 0.33 -2.85 0.27 -3.18 0.30 -3.11 0.25 -3.28 0.35
TBL 3.71 0.91 0.90 0.38 5.03 0.83 3.93 0.65 6.78 0.84
LONG 5.35 0.87 2.71 0.15 6.59 0.83 5.06 0.59 9.01 0.67
DSPR 1.14 0.21 1.62 0.29 0.92 0.12 0.78 0.09 1.13 0.14
TSPR 1.64 0.37 1.81 0.31 1.56 0.40 1.13 0.29 2.23 0.47
RTBL 0.60 1.94 -0.44 3.04 1.08 1.08 -0.02 1.05 2.81 0.93
RR 0.01 0.29 -0.05 0.17 0.04 0.33 0.17 0.25 -0.16 0.42

B: Estimates of β and highest AR root, φ

1927:1-1998:12 1927:1-1949:12 1950:1-1998:12 1950:1-1979:12 1980:1-1998:12

β φ β φ β φ β φ β φ
DY 0.01 0.98 0.01 0.94 0.01 0.99 0.03∗ 0.98 -0.00 0.99

(0.90) (-1.35) (0.45) (-2.30) (1.43) (-0.47) (3.04) (-1.96) (-0.44) (0.70)

TBL -0.95 0.98 -2.83 0.96 -1.73∗ 0.98 -3.27∗ 0.98 -2.01 0.97
(-1.32) (-1.96) (-0.67) (-2.14) (-2.40) (-2.29) (-2.88) (-0.56) (-1.63) (-1.33)

LONG -0.72 1.00 -11.57 0.99 -1.30 1.00 -3.12∗ 1.00 -2.52 0.99
(-0.96) (-1.26) (-1.06) (-1.39) (-1.80) (-1.65) (-2.51) (0.77) (-1.62) (-0.77)

DSPR 2.29 0.98 2.54 0.98 6.36 0.97 10.81 0.97 3.42 0.97
(0.75) (-2.57) (0.45) (-1.44) (1.31) (-3.15) (1.32) (-2.81) (0.47) (-2.27)

TSPR 1.73 0.90∗ 1.67 0.95 1.86 0.89∗ 3.24 0.88∗ 1.38 0.87
(0.98) (-4.61) (0.32) (-2.08) (1.23) (-4.06) (1.26) (-3.40) (0.62) (-2.66)

RTBL 0.26 0.71∗ 0.09 0.71∗ 0.81 0.71∗ 0.48 0.54∗ 1.59 0.67∗

(0.77) (-6.86) (0.17) (-3.85) (1.46) (-5.68) (0.69) (-5.64) (1.43) (-4.68)

RR -3.24 0.75∗ 8.36 0.63∗ -4.64∗ 0.76∗ -5.01 0.78∗ -4.62 0.77∗

(-1.44) (-8.07) (0.86) (-5.02) (-2.57) (-6.56) (-1.72) (-5.32) (-1.90) (-3.85)
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Table 1 (Cont’d): Summary Statistics

C: R2 ∗ 100 and τ

1927:1-1998:12 1927:1-1949:12 1950:1-1998:12 1950:1-1979:12 1980:1-1998:12

R2 τ R2 τ R2 τ R2 τ R2 τ
DY 0.09 7.82e-003 0.07 9.58e-003 0.35 1.50e-002 2.52 5.49e-002 0.09 5.11e-003
TBL 0.20 1.03e-002 0.16 1.66e-002 0.97 2.72e-002 2.26 4.22e-002 1.17 3.75e-002
LONG 0.11 2.60e-003 0.41 1.15e-002 0.55 7.30e-003 1.73 1.07e-002 1.16 1.88e-002
DSPR 0.06 5.48e-003 0.08 6.77e-003 0.29 1.21e-002 0.49 1.53e-002 0.10 8.09e-003
TSPR 0.11 1.90e-002 0.04 9.89e-003 0.26 2.97e-002 0.44 4.06e-002 0.17 2.61e-002
RTBL 0.07 2.31e-002 0.01 8.93e-003 0.36 5.41e-002 0.13 3.49e-002 0.90 8.07e-002
RR 0.24 3.43e-002 0.27 4.59e-002 1.12 7.17e-002 0.82 6.20e-002 1.58 8.55e-002

D: Correlation between ²t and ut

1927:1-1998:12 1927:1-1949:12 1950:1-1998:12 1950:1-1979:12 1980:1-1998:12

corr(²t,ut) corr(²t,ut) corr(²t,ut) corr(²t,ut) corr(²t,ut)

DY -0.62 -0.78 -0.47 -0.40 -0.62

TBL -0.07 0.05 -0.17 -0.19 -0.16

LONG -0.18 -0.12 -0.26 -0.21 -0.34

DSPR -0.27 -0.42 0.04 0.08 0.00

TSPR 0.02 -0.07 0.08 0.14 0.03

RTBL -0.04 -0.08 0.04 0.04 0.06

RR -0.08 0.09 -0.18 -0.18 -0.17

Notes: All series with the exception of DY are expressed in annualized percentage points. DY is the log
dividend yield. For consistency with the previous literature, we use log returns throughout this paper (c.f.
Campbell et. al (1997)). The results are unchanged when simple returns are used. The following acronyms
will be used in the tables below: EP is the log of one plus the return on the value weighted CRSP portfolio
minus log of 1 plus the yield of the three month Treasury bill, DY is the log annualized dividends minus
the log price of the value weighted CRSP index, TBL is the log of one plus the yield of the three month
Treasury bill, LONG is the log of one plus the yield of the ten year Treasury note, DSPR is the log of one
plus the BAA yield minus the log of one plus the AAA yield, TSPR is the log of one plus the ten year
Treasury note rate minus the log of one plus the three month Treasury bill rate, RTBL is the log of one plus
the three month Treasury bill rate minus the log of one plus the inflation rate, and RR is the log of one plus
the one year Treasury bill rate minus its twelve month moving average. In Tableau B, the β coefficients are
tested for being equal to zero using a t-statistic, whereas the φ coefficients are tested for being equal to 1,
using an Augmented Dickey-Fuller (ADF) test. The symbol “∗” denotes significance at the 5 percent level
of the respective test. The parameter τ , defined in the text as τ = σu ∗ β/σ² is estimated using the sample
analogues of the standard deviations and the least squares estimate of β.
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Table 2A

The OLS estimator of β in forecasting regression

T= 75 T= 200 T= 850

τ E(β̂) V ar(β̂) E(β̂) V ar(β̂) E(β̂) V ar(β̂)
1 1.00 1.99e-003 1.00 2.69e-004 1.00 1.51e-005

1.0e-001 1.00 1.90e-001 1.00 2.74e-002 1.00 1.50e-003
1.0e-002 0.97 1.93e+001 0.98 2.80e+000 1.00 1.48e-001
1.0e-003 0.96 2.03e+003 0.70 2.72e+002 0.99 1.45e+001
1.0e-004 0.09 1.98e+005 1.60 2.89e+004 0.87 1.50e+003
1.0e-005 -28.80 1.97e+007 25.16 2.82e+006 2.97 1.49e+005

Table 2B

The OLS estimator of the root in Xt

T= 75 T= 200 T= 850

τ E(φ̂) V ar(φ̂) E(φ̂) V ar(φ̂) E(φ̂) V ar(φ̂)
1 0.98 1.67e-003 0.99 2.56e-004 1.00 1.34e-005

1.0e-001 0.98 1.74e-003 0.99 2.32e-004 1.00 1.46e-005
1.0e-002 0.98 1.66e-003 0.99 2.51e-004 1.00 1.49e-005
1.0e-003 0.98 1.73e-003 0.99 2.74e-004 1.00 1.38e-005
1.0e-004 0.98 1.59e-003 0.99 2.58e-004 1.00 1.37e-005
1.0e-005 0.98 1.62e-003 0.99 2.32e-004 1.00 1.34e-005

Table 2C

The OLS estimator of the root in rt

T= 75 T= 200 T= 850

τ E(φ̂2) V ar(φ̂2) E(φ̂2) V ar(φ̂2) E(φ̂2) V ar(φ̂2)
1 0.82 1.45e-002 0.92 3.01e-003 0.98 2.05e-004

1.0e-001 0.09 2.00e-002 0.21 2.17e-002 0.50 3.05e-002
1.0e-002 -0.01 1.35e-002 -0.00 4.89e-003 0.01 1.30e-003
1.0e-003 -0.01 1.34e-002 -0.00 4.96e-003 -0.00 1.15e-003
1.0e-004 -0.01 1.34e-002 -0.00 5.11e-003 -0.00 1.16e-003
1.0e-005 -0.01 1.31e-002 -0.00 5.02e-003 -0.00 1.17e-003

Notes: See next page.
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Table 2D

Mean of t-stat under Null and Alternative

T= 75 T= 200 T= 850
τ null alt null alt null alt
1 0.04 28.03 -0.00 75.10 0.00 321.05

1.0e-001 0.00 2.85 0.00 7.53 -0.03 32.03
1.0e-002 -0.02 0.28 -0.03 0.73 0.00 3.21
1.0e-003 0.01 0.03 -0.03 0.06 -0.00 0.32
1.0e-004 -0.00 -0.00 0.02 0.01 0.01 0.04
1.0e-005 -0.00 -0.01 0.03 0.01 0.03 0.01

Table 2E

Mean of R2

τ T= 75 T= 200 T= 850
1 0.88 0.95 0.99

1.0e-001 0.12 0.22 0.51
1.0e-002 0.02 0.01 0.01
1.0e-003 0.01 0.01 0.00
1.0e-004 0.01 0.01 0.00
1.0e-005 0.01 0.01 0.00

Table 2F

Comparison of MSE’s from r̄ and r̂T+k|T
T= 75 T= 200 T= 850

τ MSE(r̄) MSE(r̂T+k|T ) Ratio MSE(r̄) MSE(r̂T+k|T ) Ratio MSE(r̄) MSE(r̂T+k|T ) Ratio
1 0.375 0.054 6.968 0.380 0.049 7.719 0.376 0.050 7.467

1.0e-001 0.017 0.014 1.208 0.009 0.005 1.625 0.005 0.002 2.976
1.0e-002 0.014 0.014 0.986 0.005 0.005 0.996 0.001 0.001 1.028
1.0e-003 0.014 0.014 0.968 0.005 0.005 0.995 0.001 0.001 0.999
1.0e-004 0.013 0.014 0.980 0.005 0.005 0.989 0.001 0.001 0.995
1.0e-005 0.013 0.013 0.976 0.005 0.005 0.989 0.001 0.001 0.998

Notes: The simulated system is: rt+1 = µ + βXt + εt+1, Xt+1 = µx + φXt + ut+1 var(εt)=1, var(ut)=τ
2

× var(εt). Since we are considering very persistent predictors, we let φ = 1 but similar results obtain for
φ close to unity. Without loss of generality, we let β = 1. Note that, given the normalization used in the
text, the simulations are invariant with respect to β. τ is a fixed small number. The correlation between ut
and εt is zero, so there is no bias. The system is simulated 5000 times, for each specification of (τ, T ). The
first and second moments in Tables A-C are calculated by using sample analogues. Table F compares the
out-of-sample forecast of the unconditional vs. the conditional mean of rt, k periods ahead, where k=0.01
× T. Very similar results are obtained for fractions other than 0.01.
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Table 3A

The OLS estimator of β in forecasting regression

T= 75 T= 200 T= 850

τ E(β̂) V ar(β̂) E(β̂) V ar(β̂) E(β̂) V ar(β̂)
1 1.04 2.42e-003 1.02 3.64e-004 1.00 1.97e-005

1.0e-001 1.44 2.44e-001 1.17 3.56e-002 1.04 1.98e-003
1.0e-002 5.31 2.44e+001 2.65 3.59e+000 1.39 1.91e-001
1.0e-003 43.80 2.37e+003 17.53 3.46e+002 4.99 2.05e+001
1.0e-004 426.62 2.43e+005 160.49 3.30e+004 39.30 1.89e+003
1.0e-005 4347.70 2.52e+007 1651.65 3.45e+006 407.97 2.05e+005

Table 3B

The OLS estimator of the root in Xt

T= 75 T= 200 T= 850

τ E(φ̂) V ar(φ̂) E(φ̂) V ar(φ̂) E(φ̂) V ar(φ̂)
1 0.98 1.64e-003 0.99 2.54e-004 1.00 1.38e-005

1.0e-001 0.98 1.68e-003 0.99 2.54e-004 1.00 1.32e-005
1.0e-002 0.98 1.69e-003 0.99 2.43e-004 1.00 1.44e-005
1.0e-003 0.98 1.58e-003 0.99 2.31e-004 1.00 1.41e-005
1.0e-004 0.98 1.57e-003 0.99 2.26e-004 1.00 1.42e-005
1.0e-005 0.98 1.70e-003 0.99 2.42e-004 1.00 1.47e-005

Table 3C

The OLS estimator of the root in rt

T= 75 T= 200 T= 850

τ E(φ̂2) V ar(φ̂2) E(φ̂2) V ar(φ̂2) E(φ̂2) V ar(φ̂2)
1 0.77 1.98e-002 0.90 5.14e-003 0.97 3.91e-004

1.0e-001 0.08 2.00e-002 0.20 2.09e-002 0.49 3.10e-002
1.0e-002 -0.02 1.31e-002 -0.00 5.11e-003 0.01 1.35e-003
1.0e-003 -0.01 1.32e-002 -0.01 5.04e-003 -0.00 1.22e-003
1.0e-004 -0.01 1.32e-002 -0.00 4.85e-003 -0.00 1.22e-003
1.0e-005 -0.01 1.32e-002 -0.01 4.86e-003 -0.00 1.18e-003

Notes: See next page.
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Table 3D

Mean of t-stat under Null and Alternative

T= 75 T= 200 T= 850
τ null alt null alt null alt
1 1.87 29.35 1.83 76.24 1.78 320.88

1.0e-001 1.83 3.75 1.79 8.48 1.77 33.06
1.0e-002 1.80 1.22 1.80 1.71 1.79 4.18
1.0e-003 1.81 0.96 1.81 1.03 1.79 1.27
1.0e-004 1.78 0.93 1.71 0.93 1.73 0.96
1.0e-005 1.83 0.93 1.79 0.95 1.82 0.98

Table 3E

Mean of R2

τ T= 75 T= 200 T= 850
1 0.90 0.95 0.99

1.0e-001 0.17 0.26 0.52
1.0e-002 0.03 0.02 0.02
1.0e-003 0.02 0.01 0.00
1.0e-004 0.02 0.01 0.00
1.0e-005 0.02 0.01 0.00

Table 3F

Comparison of MSE’s from r̄ and r̂T+k|T
T= 75 T= 200 T= 850

τ MSE(r̄) MSE(r̂T+k|T ) Ratio MSE(r̄) MSE(r̂T+k|T ) Ratio MSE(r̄) MSE(r̂T+k|T ) Ratio
1 0.396 0.055 7.152 0.375 0.050 7.430 0.378 0.051 7.463

1.0e-001 0.019 0.015 1.272 0.009 0.005 1.627 0.005 0.002 3.089
1.0e-002 0.013 0.014 0.977 0.005 0.005 1.003 0.001 0.001 1.035
1.0e-003 0.014 0.014 0.970 0.005 0.005 0.993 0.001 0.001 1.002
1.0e-004 0.014 0.014 0.975 0.005 0.005 0.988 0.001 0.001 0.998
1.0e-005 0.013 0.014 0.977 0.005 0.005 0.989 0.001 0.001 0.998

Notes: The simulated system is: rt+1 = µ + βXt + εt+1, Xt+1 = µx + φXt + ut+1 var(εt)=1, var(ut)=τ
2

× var(εt). Since we are considering very persistent predictors, we let φ = 1 but similar results obtain for
φ close to unity. Without loss of generality, we let β = 1. Note that, given the normalization used in the
text, the simulations are invariant with respect to β. τ is a fixed small number. The correlation between
ut and ²t is -0.62, so there is small sample bias (Stambaugh (1999)). The system is simulated 5000 times,
for each specification of (τ, T ). The first and second moments in Tables A-C are calculated by using sample
analogues. Table F compares the out-of-sample forecast of the unconditional vs. the conditional mean of rt,
k periods ahead, where k=0.01 × T. Very similar results are obtained for fractions other than 0.01.
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Table 4A

The OLS estimator of β in forecasting regression

T= 75 T= 200 T= 850

α E(β̂) V ar(β̂) E(β̂) V ar(β̂) E(β̂) V ar(β̂)
0.00 1.00 1.88e-003 1.00 2.67e-004 1.00 1.46e-005
0.20 1.00 1.08e-002 1.00 2.18e-003 1.00 2.18e-004
0.50 1.00 1.40e-001 1.00 5.41e-002 1.00 1.27e-002
0.67 1.00 6.29e-001 1.00 3.32e-001 1.00 1.22e-001
1.00 1.10 1.09e+001 1.00 1.08e+001 1.09 1.14e+001
2.00 1.52 6.43e+004 -9.21 4.18e+005 -47.18 8.05e+006

Table 4B

The OLS estimator of the root in Xt

T= 75 T= 200 T= 850

α E(φ̂) V ar(φ̂) E(φ̂) V ar(φ̂) E(φ̂) V ar(φ̂)
0.00 0.98 1.65e-003 0.99 2.43e-004 1.00 1.38e-005
0.20 0.98 1.68e-003 0.99 2.53e-004 1.00 1.41e-005
0.50 0.98 1.59e-003 0.99 2.51e-004 1.00 1.42e-005
0.67 0.98 1.60e-003 0.99 2.50e-004 1.00 1.40e-005
1.00 0.98 1.67e-003 0.99 2.49e-004 1.00 1.43e-005
2.00 0.98 1.67e-003 0.99 2.31e-004 1.00 1.46e-005

Table 4C

The OLS estimator of the root in rt

T= 75 T= 200 T= 850

α E(φ̂2) V ar(φ̂2) E(φ̂2) V ar(φ̂2) E(φ̂2) V ar(φ̂2)
0.00 0.82 1.37e-002 0.92 3.10e-003 0.98 2.15e-004
0.20 0.56 3.84e-002 0.71 2.37e-002 0.85 8.75e-003
0.50 0.11 2.21e-002 0.12 1.38e-002 0.13 9.31e-003
0.67 0.02 1.47e-002 0.02 5.76e-003 0.02 1.43e-003
1.00 -0.01 1.32e-002 -0.00 5.03e-003 -0.00 1.19e-003
2.00 -0.01 1.35e-002 -0.00 4.90e-003 -0.00 1.15e-003

Notes: See next page.
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Table 4D

Mean of t-stat under Null and Alternative

T= 75 T= 200 T= 850
α null alt null alt null alt
0.00 0.06 28.52 -0.03 75.47 -0.02 320.93
0.20 -0.04 11.83 0.02 26.46 0.02 83.42
0.50 0.01 3.26 0.02 5.37 0.04 11.11
0.67 0.00 1.57 0.00 2.17 -0.01 3.48
1.00 0.04 0.41 -0.00 0.38 0.03 0.39
2.00 -0.01 0.00 -0.02 -0.01 -0.06 -0.03

Table 4E

Mean of R2

α T= 75 T= 200 T= 850
0.00 0.89 0.95 0.99
0.20 0.61 0.73 0.85
0.50 0.14 0.14 0.13
0.67 0.05 0.03 0.02
1.00 0.02 0.01 0.00
2.00 0.01 0.00 0.00

Table 4F

Comparison of MSE’s from r̄ and r̂T+k|T
T= 75 T= 200 T= 850

α MSE(r̄) MSE(r̂T+k|T ) Ratio MSE(r̄) MSE(r̂T+k|T ) Ratio MSE(r̄) MSE(r̂T+k|T ) Ratio
0.00 0.407 0.054 7.519 0.385 0.049 7.779 0.379 0.048 7.903
0.20 0.432 0.114 3.774 0.438 0.088 4.986 0.402 0.067 6.019
0.50 1.378 1.088 1.266 1.341 1.035 1.296 1.376 1.043 1.318
0.67 1.120 1.083 1.034 1.057 1.020 1.036 1.002 0.974 1.029
1.00 1.046 1.069 0.979 0.979 0.985 0.994 0.985 0.986 1.000
2.00 0.994 1.019 0.976 1.004 1.019 0.986 0.956 0.959 0.997

Notes: The simulated system is: rt+1 = µ+ βXt + εt+1, Xt+1 = µx + φXt + ut+1 var(εt)=1, var(ut)=τ
2 ×

var(εt). Since we are considering very persistent predictors, we let φ = 1 but similar results obtain for φ close
to unity. Without loss of generality, we let β = 1. Note that, given the normalization used in the text, the
simulations are invariant with respect to β. τ = 1/Tα, where α is a real positive number. The correlation
between ut and ²t is zero, so there is no bias. The system is simulated 5000 times, for each specification
of (α, T ). The first and second moments in Tables A-C are calculated by using sample analogues. Table F
compares the out-of-sample forecast of the unconditional vs. the conditional mean of rt, k periods ahead,
where k=0.01 × T. Very similar results are obtained for fractions other than 0.01.
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Table 5A

The OLS estimator of β in forecasting regression

T= 75 T= 200 T= 850

α E(β̂) V ar(β̂) E(β̂) V ar(β̂) E(β̂) V ar(β̂)
0.00 1.04 2.34e-003 1.02 3.57e-004 1.00 2.01e-005
0.20 1.10 1.38e-002 1.05 3.05e-003 1.02 2.99e-004
0.50 1.38 1.93e-001 1.23 6.76e-002 1.12 1.74e-002
0.67 1.79 7.99e-001 1.58 4.40e-001 1.35 1.56e-001
1.00 4.25 1.39e+001 4.25 1.35e+001 4.38 1.51e+001
2.00 253.34 8.20e+004 669.48 6.19e+005 2890.35 1.05e+007

Table 5B

The OLS estimator of the root in Xt

T= 75 T= 200 T= 850

α E(φ̂) V ar(φ̂) E(φ̂) V ar(φ̂) E(φ̂) V ar(φ̂)
0.00 0.98 1.53e-003 0.99 2.48e-004 1.00 1.47e-005
0.20 0.98 1.62e-003 0.99 2.43e-004 1.00 1.35e-005
0.50 0.98 1.82e-003 0.99 2.58e-004 1.00 1.43e-005
0.67 0.98 1.77e-003 0.99 2.54e-004 1.00 1.32e-005
1.00 0.98 1.65e-003 0.99 2.45e-004 1.00 1.47e-005
2.00 0.98 1.76e-003 0.99 2.62e-004 1.00 1.46e-005

Table 5C

The OLS estimator of the root in rt

T= 75 T= 200 T= 850

α E(φ̂2) V ar(φ̂2) E(φ̂2) V ar(φ̂2) E(φ̂2) V ar(φ̂2)
0.00 0.77 1.99e-002 0.90 4.93e-003 0.97 4.03e-004
0.20 0.51 4.17e-002 0.67 2.59e-002 0.83 1.06e-002
0.50 0.10 2.17e-002 0.12 1.30e-002 0.13 8.63e-003
0.67 0.02 1.42e-002 0.02 5.59e-003 0.02 1.39e-003
1.00 -0.01 1.33e-002 -0.01 5.06e-003 -0.00 1.17e-003
2.00 -0.01 1.33e-002 -0.01 4.90e-003 -0.00 1.17e-003

Notes: See next page.
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Table 5D

Mean of t-stat under Null and Alternative

T= 75 T= 200 T= 850
α null alt null alt null alt
0.00 1.83 29.45 1.74 76.42 1.74 323.67
0.20 1.78 12.85 1.79 27.07 1.77 83.65
0.50 1.77 4.19 1.77 6.25 1.78 11.84
0.67 1.81 2.51 1.77 3.12 1.73 4.44
1.00 1.81 1.31 1.80 1.33 1.80 1.34
2.00 1.89 0.98 1.77 0.95 1.79 0.96

Table 5E

Mean of R2

α T= 75 T= 200 T= 850
0.00 0.90 0.95 0.99
0.20 0.65 0.74 0.86
0.50 0.20 0.17 0.15
0.67 0.09 0.05 0.02
1.00 0.03 0.01 0.00
2.00 0.02 0.01 0.00

Table 5F

Comparison of MSE’s from r̄ and r̂T+k|T
T= 75 T= 200 T= 850

α MSE(r̄) MSE(r̂T+k|T ) Ratio MSE(r̄) MSE(r̂T+k|T ) Ratio MSE(r̄) MSE(r̂T+k|T ) Ratio
0.00 0.395 0.055 7.234 0.394 0.051 7.703 0.388 0.053 7.266
0.20 0.469 0.115 4.078 0.435 0.090 4.857 0.404 0.067 5.997
0.50 1.472 1.085 1.357 1.405 1.083 1.297 1.367 1.057 1.294
0.67 1.145 1.060 1.081 1.138 1.073 1.060 1.022 0.975 1.049
1.00 1.020 1.024 0.996 1.044 1.053 0.992 0.991 0.989 1.001
2.00 1.028 1.051 0.978 1.003 1.012 0.991 0.990 0.991 0.999

Notes: The simulated system is: rt+1 = µ+ βXt + εt+1, Xt+1 = µx + φXt + ut+1 var(εt)=1, var(ut)=τ
2 ×

var(εt). Since we are considering very persistent predictors, we let φ = 1 but similar results obtain for φ close
to unity. Without loss of generality, we let β = 1. Note that, given the normalization used in the text, the
simulations are invariant with respect to β. τ = 1/Tα, where α is a real positive number. The correlation
between ut and ²t is -0.62, so there is small sample bias (Stambaugh (1999)). The system is simulated 5000
times, for each specification of (α, T ). The first and second moments in Tables A-C are calculated by using
sample analogues. Table F compares the out-of-sample forecast of the unconditional vs. the conditional
mean of rt, k periods ahead, where k=0.01 × T. Very similar results are obtained for fractions other than
0.01.
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Table 6: Forecasting Error

A: (MSE(Forecastor)/MSE(Mean)-1)*100 from Fixed-Sample Estimation

1927:1-1998:12 1927:1-1949:12 1950:1-1998:12 1950:1-1979:12 1980:1-1998:12

DY 12.49 -0.32 24.85 -2.24 35.27
TBL 1.63 -0.94 0.67 3.74 -1.54
LONG 1.36 -2.09 0.45 4.97 -3.79
DSPR 0.76 10.43 0.56 -0.08 16.37
TSPR 0.62 -0.05 0.72 8.21 2.04
RTBL -0.44 6.52 -1.05 0.22 1.82
RR -0.10 -1.11 0.00 2.93 0.72

B: (MSE(Forecastor)/MSE(Mean)-1)*100 from Rolling Estimation

1927:1-1998:12 1927:1-1949:12 1950:1-1998:12 1950:1-1979:12 1980:1-1998:12

DY 0.05 -0.54 0.66 -2.26 2.84
TBL 0.30 -0.48 1.94 2.89 -2.01
LONG 1.06 -1.09 1.67 1.76 -2.09
DSPR 0.43 3.73 0.58 0.73 2.15
TSPR 0.10 0.13 1.62 2.99 0.98
RTBL 0.32 3.99 -0.10 0.32 -0.35
RR 0.15 -0.46 0.09 1.56 -0.54

Notes: The entries in Table A represent the percentage increase in forecasting error from using a given
predictor instead of the unconditional mean. All forecasts are one-period ahead. In each subsample, we
estimate the model using as much data as possible, while leaving the last 60 observations for forecasting.
Bossaerts and Hillion (1999) use a similar validation procedure. The entries in Table B present the results
from a similar comparison, with the exception that the regression is re-estimated at each period before the
forecast. Comparing Tables A and B, we reach similar conclusions, thus lending support to our claim that
the lack of predictability is not due to a lack of stability in the relation but rather to a lack of signal
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Table 7A: Median Unbiased Estimates bαMU and 99 percent CI’s

1927:1-1998:12 1927:1-1949:12 1950:1-1998:12 1950:1-1979:12 1980:1-1998:12

DY 0.59 0.74 0.50 0.32 0.95
(0.48 — 0.73) (0.57 — 1.20) (0.38 — 0.64) (0.20 — 0.47) (0.60 — 1.20)

TBL 0.53 0.54 0.40 0.36 0.41
(0.40 — 0.65) (0.36 — 0.73) (0.29 — 0.55) (0.22 — 0.51) (0.25 — 0.59)

LONG 0.73 0.61 0.63 0.60 0.56
(0.56 — 1.20) (0.44 — 0.86) (0.47 — 0.81) (0.45 — 0.83) (0.39 — 0.76)

DSPR 0.64 0.75 0.52 0.52 0.67
(0.50 — 0.77) (0.53 — 1.20) (0.40 — 0.68) (0.36 — 0.70) (0.45 — 1.20)

TSPR 0.43 0.64 0.39 0.36 0.48
(0.31 — 0.56) (0.44 — 0.97) (0.26 — 0.52) (0.22 — 0.52) (0.30 — 0.67)

RTBL 0.40 0.66 0.28 0.39 0.27
(0.29 — 0.54) (0.45 — 1.20) (0.16 — 0.43) (0.25 — 0.54) (0.12 — 0.46)

RR 0.34 0.36 0.25 0.30 0.26
(0.22 — 0.49) (0.20 — 0.51) (0.13 — 0.39) (0.17 — 0.46) (0.11 — 0.43)

Table 7B: Biased, Least Squares Estimates bαOLS
1927:1-1998:12 1927:1-1949:12 1950:1-1998:12 1950:1-1979:12 1980:1-1998:12

DY 0.72 0.83 0.66 0.49 0.97
TBL 0.68 0.73 0.57 0.54 0.60
LONG 0.88 0.79 0.77 0.77 0.73
DSPR 0.77 0.89 0.69 0.71 0.89
TSPR 0.59 0.82 0.55 0.54 0.67
RTBL 0.56 0.84 0.46 0.57 0.46
RR 0.50 0.55 0.41 0.47 0.45

Notes: Table 7A displays median-unbiased estimates of α, the index of signal strength, for different periods
and predictors. Values of bαMU close to zero indicate strong signal. As bαMU increases, the signal decreases.
For α around or higher than 0.5, the signal is weak enough that conditional and unconditional forecasts
will produce similar MSE’s (see Proposition 5). The estimates bαMU s are computed by inverting the αOLS

statistic, as discussed in section 4. The values of the bαOLS statistic are shown in Table 7B. The results in
Table 7A lead us to two conclusions. First, the signal-noise ratio in our predictors is low. The 99 percent
confidence intervals of all conditioning variables, in all sub-samples does not contain zero. Moreover, most
of the estimates are either insignificantly different from 0.5, or even higher. Second, the estimates bαMU

vary significantly from sample to sample and from predictor to predictor, indicating that it is unlikely that
any single predictor will dominate the rest in all periods. Third, the relative rate (RR) must be a good
predictor of returns, in all sub-periods. The estimates bαMU of RR are consistently lower than the rest of
the predictors, although the difference is not always significant. Recalling the results from Table 6, this
conclusion is borne out by the data. Those estimates are also in agreement with the results in Campbell
(1991). The log dividend yield performs particularly poorly in the last sub-period.
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Figure 1: Distribution of R2 as a function of the signal-noise ratio
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Notes: Figure 1 displays the distribution of the R2 statistic as a function of the signal-noise ratio. The
top panels show the entire density (as a function of τ or α ), whereas the lower panels display percentiles 0.5,
5, 50, 95, 99.5. In the lower figures, the horizontal line marks the value R2 = 0.06, assumed by Bossaerts
and Hillion to be the true value of the goodness-of-fit statistic. Note that we find significantly smaller values
of R2 using slightly different data (c.f. Table 1). The vertical dashed-dotted line facilitates the reading of
the 95 and 99 percent confidence intervals for the median value of R2 = 0.06.
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Figure 2: Estimation of αMU and Centered 99 % Confidence Intervals by diagrammatic inversion
of the αOLS statistic of the log dividend yield variable, T=850
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Notes: Figure 2 provides a graphic inversion of the distribution of αOLS in order to find αMU and
centered 99 % confidence intervals. The distribution is computed by simulating the system (1-5) for various
values of α. The 0.5th, 50th (median), and 99.5th quantiles of the distribution of αOLS are plotted in solid
lines. The estimated bαOLS = 0.72 in the log dividend yield regression is denoted as a dashed horizontal
line. The quantiles Q0.005(0.72), Q0.50(0.72), and Q0.995(0.72) are inverted as shown by the dashed vertical
lines. The 99% confidence intervals Q−1

0.005(0.72) = 0.48 and Q−1
0.995(0.72) = 0.73, and the median-estimatebαMU = Q−1

0.50(0.72) = 0.59 can be read off the horizontal axis.
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Appendix A

Calculations for equations (1-2), with τ fixed. We have

Yt+1 = µy + βXt + εt+1

Xt+1 = Xt + ut+1

ut = τvt

Then β̂ =
³PT

t=1 Yt+1

¡
Xt −X

¢´ ³PT
t=1
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Xt −X

¢2
´−1
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Define the usual t-statistic:

tβ̂ =
β̂ − 0
se(β̂)

=

³
β̂ − 0

´ ³PT
t=1

¡
Xt −X

¢2
´1/2

µ
1
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´
⇒ 1

τ

R 1
0
W2(s)dW1(s)R 1
0
W 2

2 (s)ds
. Second 1

T

³PT
t=1X

2
t

´1/2

=³
1
T 2

PT
t=1X

2
t

´1/2

⇒
³
τ2

R 1

0
W 2

2 (s)ds
´1/2

. Third, C →p
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σ2
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. Putting things together, we have the usual

result:
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R 1
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µ
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Proposition 1 Proof: Suppose τ = 1/Tα.Then, similarly to the previous calculations, β̂ = 1
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Proposition 2 Proof: Under the null, the t-statistic is:
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Proposition 3 Proof: Let υt = εt−Proj(εt|ut) = εt − δut, where Proj() is the linear projection of εt
on ut and δ =

σεu√
σuσε

. Then, 1
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Proposition 4 Proof : Recall that R2 =
β̂2 PT

t=1(Xt−X)2PT
t=1(Yt−Y )
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2
t + LOT, where LOT denotes terms of lower stochastic order for any α. For

α < 1/2, the first term dominates, for α > 1/2 the second term dominates, and for α = 1/2 the two terms
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are of the same Op order. Then, for α < 1/2, R
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Proposition 5 Proof: Before proceeding, note that YT+k = µy + βXT+k−1 + εT+k = µy + βXT +

β
Pk−1
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Appendix B

Here we use our small signal-noise asymptotics to demonstrate analytically that spurious regression is unlikely

to be a problem in predictive regressions. Ferson, Sarkissian, and Simin (2000) posit the following equation

for realized returns:

rt+1 = µ+ Z
∗
t + ut

where Z∗t are unobservable expected returns and ut are shocks or unexpected returns. An econometrician

tries to forecast returns using the following model

rt+1 = µ+ δZt + et

where Zt is an observable, persistent predictor, such as the dividend yield, modeled as Zt = φZt−1 + εt. We

will examine the extreme case φ = 1 but as argued in Appendix C, autoregressive roots close to 1 will not

change our argument nor our conclusions. Finally, expected returns as also assumed to follow a persistent

process or Z∗t = Z∗t−1 + ε
∗
t .

If the processes Zt and Z
∗
t are uncorrelated, then Phillips (1986) shows that usual estimation and inference

will not hold. In fact, the OLS estimates of δ and its t-statistic will not be consistent, producing spuriously

large values. However, another implication of the above system is that realized returns must be serially

correlated unless the variance of Z∗t is much smaller than the variance of ut,or we must have, for all t
0s :

V ar (ut) >> V ar

Ã
tX
i=1

ε∗i

!
. (9)

If the above inequality is not satisfied, then rt will behave like an integrated process, an implication that is

theoretically unappealing and empirically untenable.

Suppose that τεt = vt and τε
∗
t = v∗t where τ is a real number close to zero, and the processes vt and

v∗t have a variance of the same order of magnitude as ut. Therefore, τ must be decreasing function of T ,

otherwise (9) will not hold.

Let τ = 1
Tα
, for α ≥ 0 (again, otherwise (9) will be violated.) First, note that we can write Zt = τ

Pt
j=1 vj

and rt+1 = µ+ τ
Pt

j=1 v
∗
j + ut+1. Then, the OLS estimate of δ, after demeaning, is:
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Therefore, using the FCLT as in Appendix A, we can see that:

Tαδ̂ =

PT
t=1

1
Tα

Pt
j=1

v∗j
T 1/2

Pt
j=1

vj
T 1/2 +

Pt
j=1

vj
T 1/2

ut+1

T 1/2PT
t=1

³Pt
j=1

vj
T 1/2

´2

= Op(1).

Hence, if α ≥ 0, δ̂ is a consistent estimator of δand we do not have a problem of spurious regression.

In summary, if we require realized returns to behave as a stationary (more precisely, I(0)) process then τ

must be a decreasing function of T. But if τ = 1/T a, for α ≥ 0, then we cannot have a spurious correlation.

Appendix C

Note that the same conclusions will hold whether the forecasting variable Xt has a root at or close to unity.

We are interested in forecasters that have a largest autoregressive root φ close to unity. The literature has

modeled such processes by writing φ = 1+ c
T , or φ is in a decreasing (at rate T ) neighborhood of 1. The exact

unit root case is embedded as c = 0. We will show that the arguments for φ = 1 generalize to φ = 1+ c
T .

Assuming X0 = 0, for φ = 1, we have V ar
³

1√
T
Xt

´
= σ2

u
t
T = σ

2
us. This convergence was needed in all

calculation in Appendices A and B. Similarly, if φ = 1 + c
T , V ar

³
1√
T
Xt

´
= σ2

u
φ2t−1
φ2−1 → −σ2

u

2c

¡
1− e2cs

¢
,

as T → ∞. This is the variance of an Ornstein-Uhlenbeck process, defined by, dJc (s) = cJc (s) + dW (s),

J (0) = 0, defined on the space [0, 1]. Moreover, limc→0−σ2
u

2c

¡
1− e2cs

¢
= σ2

us, or the unit root (c=0)

obtains as a limiting case of the local-to-unity process. Therefore, all of our results can be generalized to a

local-to-unity process.
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