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Abstract

We introduce Mixed Data Sampling (henceforth MIDAS) regression models. The regressions

involve time series data sampled at different frequencies. Technically speaking MIDAS models

specify conditional expectations as a distributed lag of regressors recorded at some higher

sampling frequencies. We examine the asymptotic properties of MIDAS regression estimation

and compare it with traditional distributed lag models. MIDAS regressions have wide

applicability in macroeconomics and finance.
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1 Introduction

A typical time series regression model involves data sampled at the same frequency. The

idea to construct regression models that combine data with different sampling frequencies

is relatively unexplored.1 We discuss various ways to construct such regressions. We

call the regression framework a Mi(xed) Da(ta) S(ampling) regression (henceforth MIDAS

regression). At a general level, the interest in MIDAS regressions addresses a situation often

encountered in practice where the relevant information is high frequency data, whereas the

variable of interest is sampled at a lower frequency. One example pertains to models of stock

market volatility. The low frequency variable is for instance the quadratic variation or other

volatility process over some long future horizon corresponding to the time to maturity of

an option, whereas the high frequency data set is past market information potentially at

the tick-by-tick level. Yet another MIDAS example arises in the modelling of Value-at-Risk

which attempts to forecast likely future losses using quantiles of the (conditional) portfolio

return distribution. The horizon of interest is usually 10 days, whereas the information

is again market-driven and abundant at intra-daily sampling frequencies. The interest in

MIDAS regressions can also result from limitations to data availability. For example, some

macroeconomic data are sampled monthly, like price series and monetary aggregates, whereas

other series are sampled quarterly or annually, typically real activity series like GDP and

its components. Take for instance the relationship between inflation and growth. Instead of

aggregating the inflation series to a quarterly sampling frequency to match GDP data, one

can run a MIDAS regression combining monthly and quarterly data.

MIDAS involve regressors with different sampling frequencies and are therefore not

autoregressive models, since the notion of autoregression implicitly assumes that data are

sampled at the same frequency in the past. Instead MIDAS regressions share some features

with distributed lag models but also have unique novel features. A stylized distributed

lag model is a regression of the following type: Yt = β0 + B(L)Xt + εt, where B(L) is

some finite or infinite lag polynomial operator, usually parameterized by a small set of

hyperparameters.2 To introduce MIDAS regressions, suppose that Yt is sampled at some

1One notable exception is a chapter in John Geweke’s PhD thesis (Geweke (1975), Chap. 8), which
will be further discussed in the paper, where he studied mixed temporal aggregation with heterogeneous
observational frequencies.

2See e.g. Dhrymes (1971) and Sims (1974) for surveys on distributed lag models. Many econometrics
textbooks also cover the topic, see e.g. Greene (2000) (chap. 17), Judge, Griffith, Hill, Lutkepohl, and Lee
(1985) (chap. 9 - 10), Stock and Watson (2003) (chap. 13), Wooldridge (1999) (chap. 18), among others.
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fixed, say annual, quarterly, monthly or daily, sampling frequency and call this the interval

of reference. Moreover, let X (m) be sampled m times faster, so that for example with annual

data and m = 4, X (4) is sampled quarterly.3 Using this notation, we can write a simple linear

MIDAS regression: Yt = β0 + B(L1/m) X
(m)
t + ε

(m)
t where B(L1/m) =

∑jmax

j=0 B(j)Lj/m is a

polynomial of length jmax (possibly infinite) in the L1/m operator, and Lj/mX
(m)
t =X

(m)
t−j/m.

In other words, the Lj/m operator produces the value of X
(m)
t lagged by j/m periods. The

annual/quarterly example would imply that the above equation is a projection of yearly Yt

onto quarterly data X
(m)
t using up to jmax quarterly lags.4

There are differences and similarities between distributed lag models and MIDAS regressions.

Our goal is to present a general discussion of model specification and estimation in mixed

sampling frequency settings, starting with a comparison of MIDAS and distributed lag

models and then proceeding with more general MIDAS models. On the surface, the

econometric estimation issues appear straightforward, since MIDAS regression models

involve (nonlinear) least squares or related procedures. However, when it is recognized that

any sampling frequency can be mixed with any other, and that potential approximation

errors may come into play, one faces some challenging econometric issues. Some of these

issues are addressed, others remain open questions. For example, MIDAS regressions relate

to temporal aggregation issues. The mathematical structure commonly adopted to study

aggregation is one that assumes that the underlying stochastic processes evolve in continuous

time and data are collected at equi-distant discrete points in time. Formulating a model in

continuous time has the appeal of a priori imposing a structure on discretely observed data

that is independent of the sampling interval. It is this appeal that explains the considerable

literature on continuous time models, a very partial list of papers studying various aspects

of such models includes Bergstrom (1990), Chambers (1991), Comte and Renault (1996),

Geweke (1978), Hansen and Sargent (1983), Hansen and Sargent (1991a), Hansen and

Sargent (1991b), McCrorie (2000), Phillips (1959), Phillips (1972), Phillips (1973), Phillips

(1974), Robinson (1977) and Sims (1971).

We provide new results in the context of MIDAS regressions, showing that under certain

conditions, the aggregation bias disappears when Yt remains sampled at a fixed rate and only

3The analysis in this paper is confined to equally spaced data, albeit with different sampling frequency.
The idea of MIDAS regressions can be extended to unequally spaced data, see Ghysels, Santa-Clara, Sinko,
and Valkanov (2003) for further details.

4MIDAS regressions are obviously also not constrained to be either linear or univariate. Such extensions
will also be discussed in the paper.
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X
(m)
t is sampled more frequently. In the traditional distributed lag literature it is assumed

that both Yt and Xt are sampled more frequently (see in particular Geweke (1978)). Data

collection limitations prevent us often from sampling all series more frequently, hence the

interest in MIDAS regressions and the interest in knowing what happens to discretization

biases when only independent variables can be sampled more frequently. We show that the

discretization bias in distributed lag models and in MIDAS regression both converge to zero

as m → 0 both in a local and global sense. This result is of significance as for instance

regressions involving macroeconomic variables and financial series are usually confined to

monthly, quarterly or annual regressions due to the availability of macro series. The results

show that one can use the finer sampling of financial series to alleviate the discretization

bias despite the unavailability of high frequency data for Yt.

We also study the asymptotic distribution of estimators in the context of MIDAS regressions

and compare them with distributed lag models. MIDAS regression parameter estimation

using feasible GLS is compared with the feasible GLS in distributed lag regressions using

the same regressors. We show that MIDAS regressions may be at a disadvantage in terms of

asymptotic efficiency as the lack of sampling Yt more frequently generally results in efficiency

losses. Intuitively, feasible GLS can be computed using lagged dependent variables. In the

conventional distributed lag model it is assumed that both Y
(m)
t and X

(m)
t are available,

whereas in a MIDAS regression only Yt and X
(m)
t are. This puts constraints on the feasibility

of GLS estimation.

In contrast we show that MIDAS regressions projecting Yt onto X
(m)
t will always improve

efficiency when compared to distributed lag models involving projections of Yt onto Xt (that

is X
(1)
t ). Hence, the common practice of aggregating all the data to the common least

frequently sampled process will always be less efficient than a MIDAS regression that exploits

the availability of X
(m)
t . This result is again of significance as for instance regressions involving

macroeconomic variables and financial series are usually confined to monthly, quarterly or

annual regressions due to the availability of macro series. We show that there are efficiency

gains from using the finer sampled series. Finally, we also discuss various extensions of

MIDAS to nonlinear and multivariate settings.

The paper is organized as follows. In section 2 we motivate the study of MIDAS regressions

and discuss some of the outstanding issues. In section 3 we compare MIDAS and distributed

lag models, emphasizing similarities and differences. First we revisit aggregation bias and

aliasing. We are concerned with consistency, or absence of discretization bias as we sample
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regressors at ever increasing frequency and show that both distributed lag and MIDAS

regressions share the same properties, namely, the discretization bias is eventually eliminated.

The analysis only deals with OLS estimators and does not address any efficient estimation

methods. Next we study the asymptotics of MIDAS regression parameter estimation using

feasible GLS and comparing it with the feasible GLS in distributed lag regressions. We

show that under some special circumstances, there are no losses of efficiency when MIDAS

regressions are compared with distributed lag models. We also examine situations where

there are clear gains in efficiency, compared to conventional distributed lag models. The

section concludes with a discussion of some similarities regarding model selection and

parameterization. Section 4 deals exclusively with MIDAS models and discusses various

aspects of large sample theory. The paper concludes with section 5 which lays out possible

extensions and future work.

2 Why MIDAS Regressions?

MIDAS regressions are essentially tightly parameterized, reduced form regressions that

involve processes sampled at different frequencies. In this section we explain why we are

interested in such a setup. Consider the simple linear MIDAS regression:

Yt = β0 + β1B(L1/m)X
(m)
t−1 + ε

(m)
t (2.1)

where B(L1/m) =
∑jmax

j=0 B(j)Lj/m is a polynomial of length jmax in the L1/m operator, and

Lj/mxt=xt−j/m. In other words, the Lj/m operator produces the value of xt lagged by j/m

periods.5 Specification (2.1) is kept as simple as possible for clarity of exposition. Later

sections will present more general MIDAS regressions, allowing for other regressors with

different sampling frequencies, as well as multivariate and possibly non-linear relations. The

order of the polynomial B(L1/m) is assumed here (for simplicity) to be finite. However, even

if the number of parameters bk’s in the polynomial B(L1/m) is finite, it might be quite large.

To capture daily fluctuations in the process over the last, say, 6 months, we would need

to estimate 6 × 22, or 132 bk parameters (assuming 22 trading days a month). To account

for daily data over the last year, we would need approximately 264 parameters. It becomes

rapidly clear that one must impose some structure upon the bk’s in order to get sensible

5To identify the parameter β1 we assume that the weights of the polynomial B(L1/m) sum to one.
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results.

In empirical work, a direct treatment of mixed data samples is typically circumvented by

first aggregating the highest frequency data in order to reduce all data to the same frequency.

Then, in a second step, a standard regression model is estimated with pre-filtered data. This

amounts to imposing some a priori restrictions on the parameters of the B(L1/m) polynomial

and by the same token not fully exploiting all the available information in the high frequency

data set.

The above remarks lead us to an obvious conclusion: we face a trade-off. The mixed data

sampling regression exploits a much larger information set and is more flexible. The cost is

parameter proliferation, as a suitable polynomial B(L1/m) might involve many lags of the

X
(m)
t−j/m data and thus many parameters to estimate. Ideally, we want to preserve most of

the information in the MIDAS regression, while decreasing the number of parameters to

estimate. While there are several ways of reducing the parameter space, we use an approach

that is both simple to use and also is likely to suit many applications. Our approach has its

roots in an old literature on distributed lag models with new twists, which is a subject that

we turn to in the next section.

One may still wonder whether it is necessary to use polynomials like the ones presented in

(2.1). In some cases one can indeed formulate a time series model for the data sampled

at frequency 1/m and compute the implied MIDAS regression, an exercise called reverse

engineering and discussed in Ghysels, Santa-Clara, Sinko, and Valkanov (2003). They show

that in some cases temporal aggregation is possible and yields a simple mapping from the high

frequency data model to the implied MIDAS regression. One often cited example is the use

of the Kalman filter which is used to interpolate “missing data” (see e.g. Harvey and Pierse

(1984) and subsequent work). The Kalman filter applies the linear Gaussian systems. In

general settings, however, aggregation and interpolation is not so straightforward.6 MIDAS

6The examples showing the complexity of reverse engineering appearing in Ghysels, Santa-Clara, Sinko,
and Valkanov (2003) are drawn from the volatility literature (hence involving nonlinear models), in part
because the idea of MIDAS regressions has been applied already in a number of settings involving volatility
dynamics. Ghysels, Santa-Clara, and Valkanov (2002) show that MIDAS regressions for volatility provide a
versatile and powerful tool to study the risk-return trade-off and improve upon existing models of volatility.
See also Wang (2003) for a Bayesian model comparison which includes MIDAS regression specifications for
the risk-return trade-off. Brown and Ferreira (2003), Ghysels, Santa-Clara, and Valkanov (2003), among
others, use various MIDAS regressions to predict future volatility. The relationship between various recently
introduced high-frequency data estimators, see e.g. Andersen, Bollerslev, Diebold, and Labys (2003) and
Barndorff-Nielsen and Shephard (2003), and MIDAS regression is also discussed in Ghysels, Santa-Clara,
Sinko, and Valkanov (2003).
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regressions amount to a reduced form approach which avoid the impractical alternative

involving the complexity of reverse engineering.

3 MIDAS and Distributed Lag Models: A Comparison

In this section we compare MIDAS and distributed lag models. We focus mostly on linear

models and emphasize the differences and similarities between the two approaches. We begin

with a setup where we leave unspecified the parameterization of the polynomials both for

MIDAS and the distributed lag specification. In a first subsection, we revisit aliasing and

discretization biases. The second subsection is devoted to asymptotic efficiency comparisons.

A final subsection deals with similarities between MIDAS and distributed lag regression

models.

3.1 Aggregation Bias and Aliasing Revisited

When data of different sampling frequencies are mixed, one invariably deals with temporal

aggregation. To study aggregation issues it is convenient to assume that the underlying

stochastic processes evolve in continuous time and data are collected at discrete points in

time. Such a setting has the appeal of imposing a priori a structure on discretely observed

data that is independent of the sampling interval. This is most convenient not only to

study temporal aggregation but also to introduce a formal discussion of MIDAS models.

Throughout the paper we shall use the convention that processes in discrete time sampled at

equidistant points separated by a step size of 1/m, are denoted by Y
(m)
t whereas continuous

time processes are denoted by y(t). With this convention, observations of processes in discrete

time with sampling frequency 1/m are:

Y
(m)
k/m = y(k/m) and X

(m)
k/m = x(k/m) k ∈ . . . ,−1, 0, 1, . . . (3.1)

where y(t) and x(t) = (x1(t), . . . , xN(t))′, or more formally y(t, ω) and x(t, ω) =

(x1(t, ω), . . . , xN(t, ω))′, are realizations of covariance stationary processes in continuous time
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governed by a probability space (Ω, A, P ).7 The above case covers a point sampling scheme.

Alternatively,

Y
(m)
k/m =

∫ k/m

(k−1−a)/m
y(τ)dτ and X

(m)
k/m =

∫ k/m

(k−1−a)/m
x(τ)dτ (3.2)

where typically a = 0, though it can be positive if some type of filtering occurs (to be

discussed later). The case of m = 1 corresponds to the discrete time representation usually

studied. The superscript will often be dropped in such a case, namely Yk refers to Y
(1)
k .

To discuss many issues ranging from parameterization and approximations to discretization

biases let us start with the continuous time setting:

y(t) = b ∗ x(t) + u(t) (3.3)

=

∫ ∞

−∞

x(t − s)b(s)ds + u(t)

where the symbol ∗ denotes the convolution operator. The errors in equation (3.3) are not

necessarily i.i.d. Identification of b in equation (3.3) rests on the assumption that the x

process is, up to second moments, truly exogenous, i.e. E[x(t)u(s)] = 0, ∀ s and t.

Sims (1971) and Geweke (1978) examine equations like (3.3) and study the relationship

between inference drawn from discrete time models and the parameters of the continuous

time convolution.8

A discrete time distributed lag model corresponding to (3.3) would be as follows:

Y
(m)
t/m =

1

m

∞
∑

s=−∞

B(m)(
s

m
)X

(m)
(t−s)/m + U

(m)
t/m (3.4)

where both y and x are sampled at frequency 1/m.9 The topic of discretization bias in

distributed lag models, i.e. the difference between an estimator B(m) and b for any given

m, has been extensively studied, see for instance Sims (1971), Geweke (1978), Hansen and

7Further technical assumption will need to be imposed on the stochastic processes, but for the moment
we shall proceed without the technical details.

8Equation (3.3) subsumes special cases like one-sided projections or solutions to stochastic differential
equations, see e.g. Geweke (1978)

9The normalization of equation (3.4) by a factor 1/m is, as Geweke (1978) notes, necessary as the number
of parameters in any set

[

B(m)(s/m) : s ∈ [t1, t2]
]

increases approximately in proportion with n and each
individual coefficient in (3.4) will approach zero with increasing m.
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Sargent (1983), Hansen and Sargent (1991b), Phillips (1972), Phillips (1973) and Phillips

(1974), among others.

MIDAS regressions involve processes with various sampling frequencies. More specifically,

we study projections of Y sampled with m = 1 and X (m) sampled with m > 1. MIDAS

regression models are therefore:

Yt =
1

m

∞
∑

s=−∞

B̄(m)(
s

m
)X

(m)
(t−s)/m + Ut (3.5)

Note the differences between the two equations (3.4) and (3.5). The former has a projection

of Y
(m)
t/m onto the x process sampled discretely at frequency 1/m whereas the latter has a

projection of Y
(1)
t onto the same information set. What we are concerned with here is the

comparison between B̄(m) and B(m) ignoring in both cases the kind of parameterizations one

wishes to impose to implement the regressions in practice.

We will consider a single regressor (as in Sims (1971)) while focusing on the limiting behavior

of the discretely sampled model, as in Geweke (1978). The case of multivariate regression

is, except for one key issue, a straightforward extension omitted here to avoid the cost of

cumbersome notation. The key issue regarding multiple regressors omitted here, pertains to

temporal aggregation which can lead to contamination across the various regressors. Geweke

(1978) discusses this in great detail for the case where the dependent variable and the

regressors are sampled at the same frequency. Geweke (1975) (Chapter 8) discusses cases

where the regressors are sampled at different frequencies. This is a setting, as noted earlier,

that features similarities with MIDAS regressions. Geweke (1975) studies in particular the

cross-regressor contamination when sampling frequencies differ. Here, we focus on a single

regressor and on the case where the dependent variable is not sampled more frequently.10

In this section we revisit the convergence of parameter estimators B(m) to b in equation (3.3)

for m increasing in the context of a MIDAS regression model (3.5). It is important to note

that we only deal with OLS estimators, and therefore are not interested at this stage with

efficiency issues. The latter will be the topic of the next section. Hence, we examine OLS

estimators B(m) in distributed lag models, similar to Sims (1971) and Geweke (1978), and

OLS estimators B̄(m) in MIDAS regressions.

10The multivariate setting raises other issues as well, such as testing for Granger causality. Those are
discussed at length in Ghysels, Santa-Clara, and Valkanov (2003).
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To do so, let us recall first what happens when a distributed lag model is considered.

Following Sims (1972) the least squares estimator of B(m) in (3.4) minimizes the following

criterion:
∫ πm

−πm

|B̃(m)(ω) − b̃(ω)|2Fm[Sx](ω) (3.6)

where Sx is the spectral density of the continuously sampled process x(t) and the spectral

density of the discretely sampled process x(t−s)/m, denoted S
(m)
x ≡ Fm[Sx], is expressed in

terms of the folding operator (see e.g. Fishman (1969), p. 38) Fm[g](ω) =
∑∞

k=−∞ g(ω +

2mπk). Finally, B̃(m) and b̃ are the Fourier transforms of B(m) and b respectively. Moreover,

the discretely sampled distributed lag regression yields the OLS estimator:

B̃(m) = Fm[Sxb̃]/Fm[Sx] = Fm[Syx]/Fm[Sx] (3.7)

where Syx is the cross-spectrum of continuously sampled y(t) and x(t). Both equations (3.6)

and (3.7) suggest that MIDAS regressions may have properties regarding discretization bias

reduction similar to those of distributed lag models. Equation (3.6) tells us that the least

squares estimator minimizes a least squares distance between the Fourier transform of the

continuous sampling convolution polynomial and its discrete sampling fit weighted by Fm[Sx].

With MIDAS regressions we do have Fm[Sx] available.

Equation (3.7) also suggests that MIDAS regressions may resemble distributed lag models

in terms of discretization bias, yet it also brings us to a first technical issue that needs to

be discussed. So far we did not make a distinction between discrete data driven by a point-

sampling scheme, as in (3.1), or a flow aggregation as in (3.2). Usually in distributed lag

models the distinction is not important. A well known result often exploited in the literature

on seasonality tells us that as long as yt and xt are filtered with the same filter, there should be

no concern regarding bias.11 In the context of MIDAS regressions, point sampling is the most

straightforward case to discuss and will therefore be treated first. When flow variables are

considered one would indeed expect to see yt =
∫ t

(t−1−a)
y(τ)dτ and xk/m =

∫ k/m

(k−1−a)/m
x(τ)dτ,

which amounts to unbalanced filtering on both sides of the MIDAS regression and therefore

a potential source of bias. It is for this reason that we proceed first with the point sampling

case.

To proceed with the intuition why equation (3.7) also suggests that MIDAS regressions may

11The same filter means that a is the same in (3.2). See Sims (1974) and Wallis (1974) for the original
work on the topic and Ghysels and Osborn (2001) for the most recent literature.
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resemble distributed lag models in terms of discretization bias, it is important to note that

what matters, besides Fm[Sx], is the covariance Fm[Syx]. In a MIDAS regression, assuming

stationarity and point sampling of y and x it is clear that ultimately we recover the covariance

between yt and any lag of xt. In this regards we are in a situation similar to a distributed

lag model where the sampling frequency increases. There is another way to explain why

distributed lag models and MIDAS regressions share similar properties with regards to

discretization bias. In the previous section we noted that MIDAS regressions appear like

skip-sampled distributed lag models (again thinking of the point sampling case). The skip

sampling causes autocorrelated residuals, yet this does not preclude OLS to be consistent

and feature the same bias properties as distributed lag models. To elaborate further on this

topic we discuss the technical issues in the remainder of this section.

There is both a local and a global dimension to the bias issue, the former being point-

wise limm→∞ Bm(s) = b(s), whereas the latter is concerned how Bm(s) approximates b(s)

as a function in the limit. It is convenient to use spectral analysis, as mean square

convergence in the frequency domain is L2 convergence in the time domain, whereas L1

convergence in the spectral domain corresponds to point-wise convergence in the time

domain. Regarding global convergence properties, Geweke (1978) (Theorem 3) shows

that limm→∞

∑∞

s=−∞[Bm(s/m) − b(s/m)]′[Bm(s/m) − b(s/m)] = 0. To state the result in

general terms for MIDAS regressions we consider multivariate regressions as in the original

formulation of Geweke (1978). The following result can be stated as an extension of Geweke

(1978) (Theorems 3 and 4):

Theorem 3.1 Let Assumptions A.1 through A.4 appearing in Appendix A hold. Moreover,

consider the MIDAS regression (3.5) with data discretely point-sampled as in (3.1), then:

lim
m→∞

∞
∑

s=−∞

[Bm(s/m) − b(s/m)]′[Bm(s/m) − b(s/m)] = 0 (3.8)

and for each point t there exists a sequence of intervals Sm = (t − tm, t + tm) such that

lim
m→∞

(2tm)−1
∑

s/m∈T m

Bm
i (s/m) =

1

2
lim
ε→0

[bi(t − ε) + bi(t − ε)] i = 1, . . . , N (3.9)

The proof of Theorem 3.1 appears in Appendix B. Regressions involving macroeconomic

variables and financial series are usually confined to monthly, quarterly or annual regressions
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due to the availability of macro series. The results appearing in this section show that one

can use the finer sampling of financial series to alleviate the discretization bias.

So far we only dealt with point sampled processes and noted that flow variables are likely to be

more cumbersome in the case of MIDAS regressions since mixed sampling frequencies lead to

different flow aggregations. Recall that the cause of the problem is the unbalanced filtering yt

=
∫ t

(t−1−a)
y(τ)dτ and xk/m =

∫ k/m

(k−1−a)/m
x(τ)dτ. There is, however, a fairly simple - although

somewhat unorthodox - solution to the bias induced by unbalanced filtering. It suffices to

project yt onto xk/m =
∫ k/m

(k/m−1−a)
x(τ)dτ, which amounts to a balanced filtering on both

sides of the MIDAS regression. This scheme yields a MIDAS regression where for example

quarterly GNP growth is projected on monthly sampled 3-month inflation growth rates.

Likewise, in the case of volatility applications this scheme would amount to projecting daily

increments in quadratic variation onto five-minute sampled daily increments in quadratic

variation (assuming a 24-hour market cycle).12

To conclude this section we would like to draw attention to the dimensionality of aliasing,

as discussed in Hansen and Sargent (1983). In the case of rational polynomial lags

Hansen and Sargent (1983) (Theorem 1) show that in general there will only be finite

number of observationally equivalent models due to aliasing (though in general the class

of observationally equivalent models given equispaced discrete time series observations is

uncountable). Their result readily applies to MIDAS regressions as well.

3.2 Asymptotic Efficiency

The asymptotic analysis in the previous section was one of continuous records and the

emphasis was consistency, or absence of discretization bias as we sampled regressor at ever

increasing frequency. We showed that both distributed lag and MIDAS regressions feature

the desirable property of approximating b both locally and a globally. Moreover, the analysis

in the previous section only dealt with OLS estimators and did not address any efficient

estimation methods. In this section we turn our attention to efficient estimation. To do so,

we turn our attention to the conventional asymptotic analysis where the span of the data

set T expands asymptotically with a fixed sampling frequency m. Distributed lag models

will have sample sizes mT whereas the corresponding sample sizes for MIDAS regressions

12Such a scheme has been considered in the context of volatility estimation by Andreou and Ghysels (2002)
as a rolling sample estimator of increments of quadratic variation.
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will be T. Obviously, with m = 1 both are equivalent and MIDAS regressions turn into

distributed lag models. Consequently, distributed lag models involve more ’data’ as the

number of observations is mT, yet as far as information set is concerned, both distributed

lag and MIDAS regressions are on equal footing since they both involve the same regressors.

What we are interested in is what happens as T → ∞ so that both samples are large and

involve the same regressors.

We begin our analysis with linear models, which build directly on the discussions appearing

in the previous section. Linear models are covered in a first subsection. Next, we move

to partial linear models which feature nonlinearities separable from a linear projection and

therefore share many properties with linear models. A third and final section deals with

general nonlinear models.

3.2.1 Linear Regression Models

As in the previous section, it is not surprising that we will rely on spectral estimation

and in particular examine estimators due to Hannan (1963a) and Hannan (1963b) that are

asymptotically normal and efficient. The frequency domain GLS achieves asymptotically the

Gauss-Markov efficiency bound under general smoothness conditions on the residual spectral

density.

Consider again the discrete time distributed lag model like (3.4) where both y and x are

sampled at a fixed frequency 1/m. Hence, we consider equation

Y
(m)
t/m =

1

m

∞
∑

s=−∞

b(m)(
s

m
)X

(m)
(t−s)/m + u

(m)
t/m (3.10)

where b(m) is the pseudo-true value associated with the fixed m.13 We try to obtain an

efficient estimator which we will denote Bm
H given a data set of size mT for both Y (m) and

X(m).

13Note the two differences between equations (3.4) and (3.10). The latter uses pseudo-true parameters

b(m) and residuals u
(m)
t/m, whereas the former was expressed in terms of OLS estimator B(m) and estimated

residuals U
(m)
t/m.
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Before discussing the asymptotic distribution for Bm
H we introduce the MIDAS regression:

Yt =
1

m

∞
∑

s=−∞

b̄(m)(
s

m
)X

(m)
(t−s)/m + ut (3.11)

where b̄(m) is again the pseudo-true value associated with the fixed m in analogy with equation

(3.10). The efficient estimator for the above MIDAS regression, which we will denote Bm
M

given a data set of size T for Y and X (m) has the following properties. The efficient estimator

for the above MIDAS regression, which we will denote Bm
M given a data set of size T for Y and

X(m) has the following properties, in comparison with the distributed lag model estimator

Bm
H :

Theorem 3.2 Let Assumptions A.1 through A.6 appearing in Appendix A hold. Then, the

Hannan feasible estimator is defined as:

B̂
(m)
H = [

km
∑

j=−km+1

Ŝ
(m)
X (ωj)Ŝ

(m)
U (ωj)

−1]−1[

k
∑

j=−k+1

Ŝ
(m)
XY (ωj)Ŝ

(m)
U (ωj)

−1] (3.12)

for ωj = mπj/km and where the spectral density estimators and bandwidth are defined in

(A.1) appearing in Appendix A. Likewise, the Hannan feasible estimator for a MIDAS

regression is:

B̂
(m)
M = [

km
∑

j=−km+1

Ŝ
(m)
X (ωj)Ŝ

(1)
U (ωj)

−1]−1[

k
∑

j=−k+1

Ŝ
(m)
XY (ωj)Ŝ

(1)
U (ωj)

−1] (3.13)

The estimator (3.12) has the following asymptotic distribution:

√
mT (B̂

(m)
H − b(m)) → N(0, 2π{

∫ mπ

−mπ

Fm[Sx(ω)](Fm[Su(ω)])−1dω}−1) (3.14)

whereas estimator (3.13) has the following asymptotic distribution:

√
T (B̂

(m)
M − b̄(m)) → N(0, 2π{

∫ π

−π

Fm[Sx(ω)](F1[Su(ω)])−1dω}−1) (3.15)

Provided, b̄(m) and b(m) are equal, the two estimators are asymptotically equivalent if Fm[Su]

is constant, i.e. U (m) is white noise.
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The proof of the above theorem appears in Appendix C. Note that the pseudo-true values

b̄(m) and b(m) might differ, although the results of the previous section warrant to assume

that such a difference would be negligible for sufficiently large m. Therefore, in the remainder

of our analysis we will ignore any differences that might exist between b̄(m) and b(m).

Let us first further elaborate on why the asymptotic efficiency of distributed lag and MIDAS

regressions differ. To do this it will be helpful to consider a slight variation of equation (3.3).

Often the equation is obtained from a so called rational distributed lag:

b2 ∗ y(t) = b1 ∗ x(t) + v(t) (3.16)

where identification of b1 and b2 is achieved by assuming that v is serially uncorrelated as

well as uncorrelated with x.

Equations (3.16) and (3.3) are related via the relationship b ≡ b−2 ∗ b1 where b−2 is the inverse

under convolution. Consequently, the serial dependence of the residuals in (3.3) is determined

by v(t) = b−2 ∗ u(t). A discrete time distributed lag model corresponding to (3.16) would be

as follows:

Y
(m)
t/m =

1

m

∞
∑

s=−∞

b
(m)
1 (

s

m
)(b

(m)
2 (

s

m
))−X

(m)
(t−s)/m + u

(m)
t/m

A simple strategy that leads to efficient estimation is to prefilter the equation by b2 :

Y
(m)
t/m =

∞
∑

s=−∞

(b̃
(m)
2 (

s

m
))Y

(m)
(t−s−1)/m +

∞
∑

s=−∞

b
(m)
1 (

s

m
)X

(m)
(t−s)/m + v

(m)
t/m

where the availability of lagged Y
(m)
t/m allows us to apply the polynomial b2. In a MIDAS

regression this strategy is infeasible due to the lack of high frequency Y
(m)
t/m . Consequently,

the errors remain correlated and the estimator has to settle with an autocorrelation structure

that cannot be further unravelled. The advantage of distributed lag models is the availability

of the additional information about Y (m).

The result in Theorem 3.2 tells us that uncorrelated errors in the distributed lag equation

are a situation where the advantage of distributed lag models is not of any consequence as

there is no need to prefilter. This observation is valid for models that are not determined by

rational polynomials as well, the case of rational polynomials is one where the results can be

presented in a transparent way. It is important to note, however, that theorem 3.2 does not

state that white noise is both necessary and sufficient. Indeed, there are cases where the two
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estimators are asymptotically equally efficient despite the fact that Fm[Su] is not constant,

i.e. U (m) is autocorrelated. A simple case would be where U (m) is an MA(q) process with q

< m. In such situations, there is correlation in U (m) but U (1) is uncorrelated as the original

process has memory shorter than the temporal aggregation. The Hannan efficient estimator

of the distributed lag model picks up the autocorrelation up to lag q, whereas the MIDAS

regression is asymptotically efficient without such a correction.

There is another important comparison between MIDAS and distributed lag models that

needs to be considered. As noted before, a direct treatment of mixed data samples is typically

circumvented by first aggregating the highest frequency data in order to reduce all data to

the same frequency. Then, in a second step, a standard regression model is estimated with

pre-filtered data. In such a case one should consider a distributed lag model where both y

and x are sampled at a fixed low frequency m = 1. Hence, we consider equation

Y
(1)
t =

∞
∑

s=−∞

b(1)(s)X
(1)
t−s + u

(1)
t (3.17)

The above equation is compared with (3.11) where the same Yt is projected onto the high

frequency set of regressors instead of aggregating them. The efficient estimator for the

MIDAS regression, which we will again be denoted Bm
M given a data set of size T for Y and

X(m) has the following properties, in comparison with the distributed lag model estimator

B
(1)
H :

Theorem 3.3 Let Assumptions A.1 through A.6 appearing in Appendix A hold. Then,

the Hannan feasible estimator B̂
(1)
H as defined in (3.12) with m = 1 has the asymptotic

distribution:

√
T (B̂

(1)
H − b(1)) → N(0, 2π{

∫ π

−π

F1[Sx(ω)](F1[Su(ω)])−1dω}−1) (3.18)

whereas the MIDAS regression estimator (3.13) has the asymptotic distribution appearing in

(3.15). Provided, b̄(m) and b(1) are equal, the MIDAS regression estimators is asymptotically

more efficient.

The proof of the above theorem follows from the fact that for each frequency ω ∈ [−π, π],

F1[Sx(ω)] ≥ Fm[Sx(ω)]. The latter property holds by the definition of the folding operator,

or equivalently, as a consequence of aliasing due to aggregation of the regressors. The
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implications of Theorem 3.3 are important as they tell us that MIDAS regressions are more

efficient than the common practice of first aggregating the highest frequency data in order

to reduce all data to the same frequency.

To conclude we should first of all note that Hannan’s estimation procedure requires the

choice of a bandwidth km, and an unsuitable bandwidth selection can produce poor

estimates. Robinson (1991) discusses frequency domain inference with data-based bandwidth

selection and proposed a commonly used spectral estimator based on a weighted average of

periodogram estimates of the fundamental frequencies, or:

B̂
(m)
R = [

mT/2
∑

j=−mT/2+1

I
(m)
X (ωj)Ŝ

(m)
U (ωj)

−1]−1[

mT/2
∑

j=−mT/2+1

I
(m)
XY (ωj)Ŝ

(m)
U (ωj)

−1] (3.19)

The above estimator B̂
(m)
R is first order equivalent to the original estimator proposed by

Hannan. It is not difficult to show that the results in this section extend to such alternative

estimators when MIDAS and distributed lag regressions are compared in terms of asymptotic

efficiency. One outstanding issue, beyond the scope of the present paper is how higher-order

approximations for the coefficient estimates in MIDAS and distributed lag models compare.

Xiao and Phillips (1998) discuss such expansions for Ĥ
(m)
R . We leave such analysis for future

research.

Finally, it should also be noted that simultaneous equations linear MIDAS regressions can

also be studied and compared with systems of linear distributed lag regressions. Indeed, the

analysis in this section, using the Hannan efficient estimation procedure, has multivariate

extensions. In particular, Hannan (1968) studies the circumstances under which least squares

are asymptotically efficient for the estimation of in systems of linear regressions and provides

a theorem which can be used to extend the result in Theorem 3.2 to multivariate settings.

3.2.2 Partial Linear Models

The analysis in this section is inspired by Phillips, Guo, and Xiao (2002) who consider:

Y
(m)
t/m =

1

m

∞
∑

s=−∞

b(m)(
s

m
)X

(m)
(t−s)/m + g(Z

(m)
t/m) + u

(m)
t/m (3.20)
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where the above equation is an adaptation of (3.10) to include a nonlinear functional g.14

Hence, in this model the response is assumed to be linearly related to X
(m)
t/m and nonlinearly to

Z
(m)
t/m (without lags). Partial linear models have been studied extensively and Phillips, Guo,

and Xiao (2002) provide an elaborate list of papers on the subject. Following early work

by Robinson (1988), a Nadaraya-Watson kernel estimator is used to eliminate the unknown

nonlinear function in a first step. Robinson (1988) assumed i.i.d. errors and showed that a

second stage least squares estimator for the linear regression part is
√

mT consistent and

asymptotically normal. Phillips, Guo, and Xiao (2002) extends this to general autocorrelated

residuals and use a spectral density approach like in the previous section. Consider the

following MIDAS partial linear regression:

Yt =
1

m

∞
∑

s=−∞

b̄(m)(
s

m
)X

(m)
(t−s)/m + g(Z

(m)
t/m) + ut (3.21)

Taking expectations conditional on Z
(m)
t/m in both equations (3.20) and (3.21) and subtracting

the result from the original equations yields:

Ỹ
(m)
t/m =

1

m

∞
∑

s=−∞

b(m)(
s

m
)X̃

(m)
(t−s)/m + u

(m)
t/mỸt =

1

m

∞
∑

s=−∞

b(m)(
s

m
)X̃

(m)
(t−s)/m + ut

where Ỹ
(m)
t/m = Y

(m)
t/m - E[Y

(m)
t/m |Z(m)

t/m], Ỹt = Yt - E[Yt|Z(m)
t ], and X̃

(m)
t/m = X

(m)
t/m - E[X

(m)
t/m|Z(m)

t/m].

Note that Ỹt is still conditional on the same Z(m) process as Ỹ
(m)
t/m . If the conditional

expectations were known, the above regression would simply be respectively a linear

distributed lag and MIDAS regression. In partial linear models the quantities Ỹ
(m)
t/m , Ỹt and

X̃
(m)
t/m involve nonparametric estimation using a standard Nadaraya-Watson kernel estimator.

The analysis of Robinson (1988) and Phillips, Guo, and Xiao (2002) allows us to extend

theorem 3.2 to partial linear MIDAS models.15

14To be precise Phillips, Guo, and Xiao (2002) consider a regression such as (3.20) with a general regressor
which we have specialized to the distributed lag setting.

15It should be noted, however, that the technical assumptions appearing in Appendix A require some
strengthening, see Phillips, Guo, and Xiao (2002) for details.
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3.3 Some Similarities

The most striking similarity between MIDAS regressions and distributed lag models is the

fact that lag polynomials need to be tightly parameterized. In this respect there are similar

issues that emerge. Various parameterizations have been suggested in the distributed lag

literature, see e.g. Judge, Griffith, Hill, Lutkepohl, and Lee (1985) for further discussion.16

This common theme between distributed lag and MIDAS regressions generates similarities

with regards to estimation. Take for example a “rational” polynomial lag structure, as

appearing in equation (3.16). Often such a rational polynomial is thought of as an

approximation for the function b(s) in (3.3). Therefore, model selection issues and asymptotic

misspecification errors are relevant for both MIDAS and distributed lag regressions and there

is no new theory as far as MIDAS is concerned. Spectral estimation typically amounts to

fixing the model size deterministically as a function of the sample size (see Sims (1974)

for further discussion). In a different approach, due to Akaike (1973) and many subsequent

refinements such as Schwarz (1978), among many others, a model fitting information criterion

function is used. We do not further explore this area here, except for noting that there is

a large literature already on the subject that can be applied in the context of MIDAS

regressions.

4 General MIDAS Models

It will be convenient to start from a conventional asymptotic analysis. Let us consider a

general multivariate MIDAS regression setting, namely:

Yt+1 = B0 + f(

K
∑

i=1

L
∑

j=1

Bij(L
1/mi)g(X

(mi)
t , β), β) + εt+1 (4.1)

and we collect all the parameters controlling the polynomials into the parameter vector

b. As noted in the previous section, the polynomials Bij(L
1/mi) can be two-sided and the

functions f and/or g can involve unknown parameters β. The parameters that determined

the polynomial lag weights are collected into a parameter vector b. When unconstrained

16Ghysels, Santa-Clara, and Valkanov (2003) introduce a distributed lag based on the beta function, which
is to the best of our knowledge novel to the literature and has proven to be very useful. The lag structure
can take many shapes and is determined only by two parameters.
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estimation is considered the latter is potentially infinite. In the context of MIDAS regression

models the parameter vector b is a function of hyperparameters θ, therefore we will use the

notation b(θ). To separate the hyperparameter vector θ controlling the polynomials from

the other parameters we denote γ = (β ′ θ′)′. Therefore unconstrained estimation involves

the possibly infinite parameter space (β ′ b′)′, which is replaced in a MIDAS regression by

(β ′ b(θ)′)′, or (β ′ θ′)′.17 At first we will assume fixed mi, i = 1, . . . , K, and show that for

such cases we can estimate MIDAS regression with the usual asymptotic tools. Hence, for

all practical purposes one can do the estimation with standard software using conventional

econometric methods.

The asymptotic analysis becomes slightly more involved when we let at least one mi go to

infinity, implying a continuous record conditioning set of regressors. In a first subsection

we present the conventional asymptotic analysis and then in a second subsection we turn to

MIDAS regressions with continuous record observations.

4.1 Fixed and Finite Sampling Frequencies

We consider the general class of extremum estimators. This class, which maximizes some

objective function that depends on the data and sample size, includes maximum likelihood

(MLE), nonlinear least squares (NLS) and generalized method of moments (GMM)

estimators which are the three types of estimators we would like to consider. An estimator

γ̂T is an extremum estimator if there is an objective function M̂T (γ), given a sample size T

such that θ̂T maximizes M̂T (γ) subject to θ ∈ Γ. The MLE estimator corresponds to

M̂T (γ) ≡ T−1

T
∑

t=1

l(εt|γ) (4.2)

where l is the log likelihood based on distributional assumptions on the error process in (4.1).

As for the NLS estimator, the objective function is

M̂T (γ) ≡ −T−1
T

∑

t=1

εt(γ)2 (4.3)

17We keep using the term MIDAS regression, although we are now dealing potentially simultaneous
equations.
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where εt+1(γ) ≡ [yt+1 - B0 - f(
∑K

i=1

∑L
j=1 Bij(L

1/mi)g(X
(mi)
t ))]. Finally for the GMM

estimator the objective function

M̂T (γ) ≡ −[T−1
T

∑

t=1

gt(γ)]′ŴT [T−1
T

∑

t=1

gt(γ)] (4.4)

where gt(γ) ≡ υt × Zt−1 where Zt−1 is an instrument vector.18

One of the standard regularity conditions for consistency is that the parameter space is

compact, which in most cases is achieved by assuming a finite dimensional closed and

bounded parameter space. More specifically, Γ ⊂ Rq and Γ is compact. MIDAS regressions

therefore assume the standard environment in terms of parameter spaces. A second critical

assumption to establish consistency is identification, which can be written as:

Assumption 4.1 Given the information set It ≡ X
(mi)
τ , τ < t, i = 1, . . . , K, there exists a

function b(θ0) with dim(θ0) finite (small) and a parameter β0 such that

E[εt+1(β
′
0, b(θ0))

′)|It] = 0

for a unique γ0 = (β ′
0, θ

′
0)

′ ∈ Γ ⊂ Rq and Γ is compact.

This assumption is critical as it ensures the correct specification of the MIDAS polynomials.

When this assumption replaces the usual identification assumption we obtain the usual

asymptotic results, provided all other standard regularity conditions apply. More specifically,

the MLE, NLS and GMM estimators are consistent and asymptotically normal under

suitable regularity conditions appearing for instance in Gallant and White (1988), among

many others. Note that the asymptotics is for fixed mi, i = 1, . . . , K, and T going to infinity.

4.2 Continuously Sampled Regressors

In this section we devote our attention to cases where at least one mi in (4.1) goes to infinity,

implying a continuous record conditioning set of regressors. Hence, we ultimately estimate

a functional approximation with a continuum of past observations rather than a polynomial

18Recall that when autoregressive augmentations appear in MIDAS regressions we know that the lagged
dependent variable may not be a valid instrument, as discussed earlier.
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lag of a MIDAS regression. To discuss this case, we focus on a univariate single regressor

model without intercept and slope:

Yt+1 = B(L1/m)X
(m)
t + ε

(m)
t+1 (4.5)

where B(L1/m) = b0 + b1L
1/m + b2L

2/m+ . . . +bjmaxLjmax/m.19 Suppose now that we take

the limit of m → ∞ with jmax/m → κ. Hence, we are essentially sampling a continuum of

data between t and t− κ, allowing possibly κ to be infinite. With a continuum of data (4.5)

becomes the following convolution equation:

Yt+1 = β0 + β1

∫ κ

j=0

bj(θ)X
(∞)
t−j dj + ε

(∞)
t+1 (4.6)

The MLE and NLS estimators of a correctly specified MIDAS regression, that is one

satisfying Assumption 4.1, are again standard provided we can compute the integral in (4.6)

without numerical approximation error. Note that now εt+1(θ) ≡ yt+1 −
∫ κ

j=0
bj(θ)x

(∞)
t−j dj.

The GMM estimator requires more discussion because the choice of moment conditions and

instruments is not so straightforward. Recall that the GMM estimator specializes to

M̂T (θ) ≡ −[T−1
T

∑

t=1

[(yt+1−
∫ κ

j=0

bj(θ)x
(∞)
t−j dj)Zt−1]

′ŴT [T−1
T

∑

t=1

[(yt+1−
∫ κ

j=0

bj(θ)x
(∞)
t−j dj)Zt−1]]

(4.7)

and in principle any x ∈ I
(∞)
t,t−κ is a valid instrument so that one can exploit all possible

moment conditions that arise from the cross-product of errors and regressors in the MIDAS

regression polynomial. This ultimately yields a continuum of moment conditions, with a

finite parameter space. The fact that we approach a continuum of moments implies that

the moment conditions in (4.7) become more correlated and in the limit their covariance

matrix (and hence the inverse of the optimal GMM weighting matrix) approaches singularity.

This problem has been recognized by Carrasco and Florens (2000), who propose a so called

C − GMM estimator in situations of a limit continuum of moment conditions.

The C − GMM estimator is based on the arbitrary set of moment conditions:

Eθ0ht(τ ; θ0) = 0 (4.8)

19For simplicity we also assume that the polynomial to be one-sided.
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where ht+1 (τ ; θ) ≡ [yt+1 −
∫ κ

j=0
bj(θ)x

(∞)
t−j dj]x

(∞)
t−τ , with τ ∈ R+. We will refer to ht(τ ; θ0) as a

moment function.20 Let ĥT (τ ; θ0) =
∑T

t=1 ht(τ ; θ0)/T denote the sample mean of the moment

functions. The most convenient way to work with such infinite set is to impose a Hilbert

space structure. Carrasco and Florens introduce a space L2 (π) to which ht(.; θ0) belongs as

a function of τ. The inner product in this space is defined as

〈f, g〉 =

∫

f (τ) g (τ) π (τ) dτ (4.9)

where π is a probability density usually selected to be Gaussian. The norm corresponding

to the inner product is ‖ f ‖2= 〈f, f〉 . Similar to the standard GMM setup, one can prove

the central limit result for the sample mean of moment functions:

√
T ĥT (τ ; θ0)

L⇒ N (0, K) (4.10)

Since hT is an element of Hilbert space, N is understood as a Gaussian random element of

the same space with variance 〈Kf, f〉, where the covariance operator K satisfies:

〈Kf, g〉 = Eθ0 [〈f, ht(θ0)〉 〈g, ht(θ0)〉] (4.11)

Note that K is an integral operator that can be written as

Kf (τ1) =

∫

k (τ1, τ2) f (τ2)π (τ2) dτ2 (4.12)

with k (τ1, τ2) = Eθ0

(

ht (τ1; θ0) ht(τ2;θ0)

)

. The function k is called the kernel of the integral

operator K.

One way to implement the C-GMM estimator is to minimize the objective function:

min
θ

v̄′ (θ)
[

IT − C
[

αT IT + C2
]−1

C
]

v (θ) (4.13)

where C is a T × T−matrix with the eigenvalues identical to those of KT and with (t, l)

20We continue here with the special case of a single regressor. Multi-regressor or multivariate extensions
are straightforward extensions.
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element ctl/ (T − q), t, l = 1, ..., T, IT is the T × T identity matrix, v = [v1, ..., vT ]′ with

vt (θ) =
〈

ĥT (τ ; θ) , ht

(

τ ; θ̂1
T

)〉

,

ctl =
〈

hl

(

τ ; θ̂1
T

)

, ht

(

τ ; θ̂1
T

)〉

.

where θ̂1
T is a first step estimator which consistent (as in the usual GMM setting).

The above estimator, when Assumption 4.1 which guarantees that the MIDAS regression

is asymptotically correctly specified, has the standard properties of GMM estimators:

consistency, asymptotic normality and optimality. The following result is stated without

proof, as details appear in Carrasco and Florens (2000) and Carrasco, Chernov, Ghysels,

and Florens (2002):

Proposition 4.1 Let Assumption 4.1 hold and all other regularity conditions for the C-

GMM appearing in Carrasco and Florens (2000) hold as well. Moreover, let B be a bounded

linear operator defined on L2 (π) or a subspace of L2 (π) and BT a sequence of random

bounded linear operators converging to B. The C-GMM estimator θ̂T = argmin
θ

∥

∥

∥
BT ĥT (θ)

∥

∥

∥

has the following properties:

1. θ̂T is consistent and asymptotically normal such that

√
T

(

θ̂T − θ0

)

L→ N
(

0, V −1
1 × V2 × V −1

1

)

where V1 =
〈

BEθ0 (∇θh) , BEθ0 (∇θh)
〉

and V2 =
〈

BEθ0 (∇θh) , (BKB∗) BEθ0 (∇θh)
〉

.

2. Among all admissible weighting operators B, there is one yielding an estimator with

minimal variance. It is equal to K−1/2, where K is the covariance operator defined in

(4.12).

Carrasco, Chernov, Ghysels, and Florens (2002) extend this to the case of weakly dependent

processes. If it is a weakly dependent process then, ht is replaced by Uht in vt and ctl, see

Carrasco, Chernov, Ghysels, and Florens (2002) for a definition of Uht and further details.

This estimator, like the usual GMM, also involves a two-step procedure and a HAC-type

estimator of the covariance operator.

It is important to stress that in the above analysis, the sample size T drives the asymptotics.

This is perhaps not surprising since the left hand side of a MIDAS regression determines the
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data accumulation rate in terms of the reference interval of time. In this regard, our analysis

differs from recent developments such as Barndorff-Nielsen and Shephard (2003), who study

a multivariate covariance and regressions framework and consider “filling in” of data x(m)

over fixed time intervals and obtain non-Gaussian asymptotic distributions. Along these lines

one could consider letting the sampling interval of Yt and X
(m)
t shrink at appropriate rates

to yield a continuous record data sample. We leave this question open for future research.

Once a continuum of moments approach is considered one can also wonder what the most

efficient choice of instruments would be. Carrasco, Chernov, Ghysels, and Florens (2002)

consider so called double index moment functions where τ in (4.8) is multidimensional, that

is τ = (τ1 τ2) ∈ R2.21 In particular, consider the set of moment conditions:

ht+1 (τ ; θ) ≡ [yt+1 −
∫ θ

j=0

bj(θ)x
(∞)
t−j dj]Z(τ1, x

(∞)
t−τ2) (4.14)

where Z(τ1, x
(∞)
t−τ2) is some ’optimal’ instrument choice. Using results in Carrasco, Chernov,

Ghysels, and Florens (2002) one can compute the asymptotic variance of θ̂T , namely one can

compute
(〈

Eθ0 (∇θh) , Eθ0 (∇θh)
〉

K

)−1
. To establish conditions under which this variance

coincides with the Cramer Rao efficiency bound, consider S, the linear space spanned by

{h (τ, yt; θ0)} and S be its closure. The results in Carrasco, Chernov, Ghysels, and Florens

(2002) imply that double-index C-GMM estimator based on (4.14) is efficient when the score

belongs to the span of the moment conditions. Intuitively, such a choice of instrument should

be clear. Since we can not construct the optimal instrument in, we can span it via a set

of basis functions. The choice of functions Z(τ1, x
(∞)
t−τ2) is closely related with the choice of

test functions to construct consistent conditional moment test, see Bierens (1990) as well

as Stinchcombe and White (1998) and references therein. In particular, using the results of

Stinchcombe and White (1998), Z(τ1, x
(∞)
t−τ2) could be based on any analytic functions but

the polynomials. One choice would be to consider the set of base functions Z(τ1, x
(∞)
t−τ2) =

exp τ1x
(∞)
t−τ2 , with τ1 ∈ R and τ2 ∈ R+. The utilization of the continuum of moment conditions

is precisely what allows one to perform this spanning. Needless to say that imposing a

distributional assumption on υt yields an efficient MLE estimator that can be implemented

straightforwardly as well. The issue of efficient estimation also needs further exploration.

21We continue here again with the special case of a single regressor. Multi-regressor or multivariate
extensions are straightforward extensions.
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5 Conclusions

We introduced MIDAS regression models which involve time series data sampled at

different frequencies. MIDAS regressions are essentially tightly parameterized reduced form

regressions that involve processes sampled at different frequencies. At a general level, the

interest in MIDAS regressions addresses a situation often encountered in practice where

the relevant information is high frequency data, whereas the quantity of interest is a low

frequency process. In addition, MIDAS regressions also address situations where data

collection limitations result in data that are not sampled at the same frequency. In empirical

work, a direct treatment of mixed data samples is typically circumvented by first aggregating

the highest frequency data in order to reduce all data to the same frequency and then in

a second step estimate a standard regression model. We examined the features MIDAS

regressions share with distributed lag models but also emphasized their unique novel features.

Among the most important findings, we show that MIDAS regressions will always lead to

more efficient estimation than the typical approach of aggregating all series to the least

frequent sampling. In some cases MIDAS regressions are also as efficient as distributed lag

regressions with all series available at the highest frequency. We also show that discretization

biases are the same for MIDAS and distributed lag models and vanish when regressors are

sampled more frequently.

While we discussed a large variety of issues, we clearly indicated some areas that remain

unresolved. These areas pertain to estimation and specification errors as well as the

treatment of long memory, seasonality and other common time series themes like (fractional)

co-integration.
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A Regularity Conditions

It is worth recalling equation (3.3), namely:

y(t) = b ∗ x(t) + u(t)

=

∫ ∞

−∞

x(t − s)b(s)ds + u(t)

where the errors are not necessarily i.i.d. In addition, the following technical conditions are assumed to hold:

Assumption A.1 The continuous time processes y(t), x(t) and u(t) are covariance stationary with spectral

densities Sy, Sx, Su and cross-spectrum Sxy.

Assumption A.2 To ensure identification of b in equation (3.3) rests on the assumption that the x process

is, up to second moments, truly exogenous, i.e. E[x(t)u(s)] = 0, ∀ s and t ∈ R.

So far, we did not distinguish single regressor and multiple regressor cases. In the main body of the paper

we treated the single regressor case for ease of presentation. The following technical conditions cover the

general multiple regression case.

Assumption A.3 b(s) in (3.3) is an N -dimensional vector of absolutely integrable functions of bounded

total variation.

Assumption A.4 The eigenvalues of the spectral density matrix of x(t) are strictly bounded away from

zero on every finite frequency interval and that in the auxiliary regressions: xi(t) =
∫ ∞

−∞
xj(t − s)′bij(s)ds

+ εij(t) all bij are ordinary absolutely integrable functions.

In order to define the Hannan efficient estimators studied in section 3 we consider the spectral densities

Fm[Sx], Fm[Sx] and cross-spectrum Fm[Syx], and define the estimators:

Ŝ
(m)
Z (λ) =

1

2πm

km
∑

s=−km

K(
s

km
)R̂

(m)
Z (s) exp(−isλ) (A.1)

for Z(m) equal to X(m) or U (m), where km is a bandwidth parameter, K is a kernel function and R̂
(m)
Z (s)

is the autocovariance function of Z(m). Equation (A.1) can be straightforwardly modified to deal with the

cross-spectrum Fm[Syx] as well. The following conditions are assumed to hold:

Assumption A.5 The bandwidth km = o(
√

mT ) and the kernel K(x) is an even, bounded function for x

∈ [−1, 1] with k(0) = 1 and k(x) = 0 for x /∈ [−1, 1].

30



In addition, the following assumption is made regarding the error processes and autocovariances:

Assumption A.6 The error processes u
(m)
t/m and ut in equations (3.10) and (3.11) respectively, are linear

processes with absolute summable Wold decomposition moving average representations. Moreover, the

autocovariances appearing in Assumption A.5, R
(m)
Z (s) satisfy:

∑∞

s=−∞ |s|‖R(m)
Z (s)‖ < ∞.

B Proof of Theorem 3.1

We start from the observation in Sims (1972) that the least squares estimator of B(m) in (3.4) minimizes

the following criterion:
∫ πm

−πm

|B̃(m)(ω) − b̃(ω)|2Fm[Sx](ω) (B.2)

When all processes are point-sampled, the residuals of the MIDAS regression (3.5) are skip-sampled versions

of the residuals in (3.4). Consequently, the least squares estimator minimizes the criterion (B.2) subject to

frequency folding:
∞
∑

j=−∞

∫ π

−π

|B̃(m)(ω + 2πj) − b̃(ω + 2πj)|2Fm[Sx](ω + 2πj) (B.3)

Since it is assumed that the spectral density matrix is strictly positive the minimizations in (B.2) and (B.3)

yield the same minimand B̄(m).

Another way of obtaining the equivalence between B(m) in (3.4) and B̄(m) in (3.5) is to note that Sims

(1971) shows the following relationship between continuous sampled b in (3.3) and the discretely sampled

distributed lag estimator B(m) in (3.4):

B(m) =

∫ ∞

−∞

r(m)
x b(s)ds (B.4)

r(m)
x (t) =

∞
∑

s=−∞

R−∗

X(m) (s)Rx(t − s)

where RX(m) (s) is the autocovariance function of x(t) and R−∗

X(m)(s) is the inverse under convolution of

RX(m)(s).22 From equation (B.4) Sims (1971) notes (p. 548) that B(m) is obtained from b by first smoothing

b using the filter Rx ∗ RX(m) since another way of writing the above equation is B(m) = b(s) * Rx(t − s) *

R−∗

X(m) . Clearly, this filter only involves X (m) and therefore the same relationship holds for B̄(m).

The remainder of the proof follows Geweke (1978), following the same steps to show that (3.8) holds for

MIDAS regressions. Likewise, to establish that (3.9) holds it is also straightforward to follow the proof in

Geweke (1978).

22Equation (B.4) is derived for multivariate regressions in Geweke (1978).
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C Proof of Theorem 3.2

In this section we present the proof of theorem 3.2. The result of the MIDAS regression estimator appearing in

equation (3.13) is a straightforward application of the original result in Hannan (1963a) and Hannan (1963b)

who imposes Assumptions A.1 through A.5 (with some slight modifications that are of no consequence here).

In particular the MIDAS regression is viewed as a regression projection of Y onto X (m) in the context of

the Hannan procedure. The result for the distributed lag estimator is similar to that appearing in Hannan

(1963a) and Hannan (1963b), yet modified for the sampling at frequency 1/m. The asymptotic distributions

appearing in(3.14) and (3.15) follow as well.

We are interested in the efficiency comparison and therefore focus on the difference between the distribution

of
√

T (B̂
(m)
M − b(m)) versus that of

√
mT (B̂

(m)
H − b(m)) (ignoring, as noted in the main body of the paper

the potential differences in discretization biases with fixed m). First we re-scale the latter such that the

asymptotic distribution is in terms of
√

T , yielding the covariance matrices:

2
π

m
{
∫ mπ

−mπ

Fm[Sx(ω)](Fm[Su(ω)])−1dω}−1)

and

2π{
∫ π

−π

Fm[Sx(ω)](F1[Su(ω)])−1dω}−1)

Assuming that Fm[Su] is constant, i.e. U (m) is white noise, leads to the above being equal to:

2
π

m
{
∫ mπ

−mπ

Fm[Sx(ω)](
σ2

u

2πm
)−1dω}−1)

and

2π{
∫ π

−π

Fm[Sx(ω)](
σ2

u

2π
)−1dω}−1)

which are equivalent.
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