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1 Introduction

The notion that financial variables measured at a high frequency (e.g., daily interest rates

and stock returns) can be used to improve forecasts of less frequently observed monthly or

quarterly macroeconomic variables is appealing and has generated considerable academic interest

in a rapidly expanding literature on mixed-data sampling (MIDAS) models. MIDAS models

aggregate data sampled at different frequencies in a manner that has the potential to improve

the predictive accuracy of regression models. By using tightly parameterized lag polynomials

that allow the weighting on current and past values of the predictors to be flexibly tailored

to the data, the MIDAS approach makes it feasible to include information on long histories of

variables observed at a higher frequency than the outcome variable of interest.1

Empirical studies in the MIDAS literature have analyzed the dynamics in variables as diverse

as GDP growth (Andreou et al. (2013), Carriero et al. (2015), Clements and Galvao (2008),

Clements and Galvao (2009), Kuzin et al. (2011), Kuzin et al. (2013), Marcellino et al. (2013)),

stock market volatility (Ghysels et al. (2007), Ghysels and Valkanov (2012)) and the relation

between stock market volatility and macroeconomic activity (Engle et al. (2013) and Schorfheide

et al. (2014)). Such studies typically use simple and compelling designs to introduce high

frequency variables in the conditional mean equation and frequently find that the resulting

point forecasts produce lower out-of-sample root mean square forecast errors (RMSFEs) than

benchmarks ignoring high frequency information.

This paper introduces MIDAS-in-volatility effects using a Bayesian modeling approach that

allows for stochastic volatility (SV) dynamics and thus treats the underlying volatility as an

unobserved process. Previous studies either estimate MIDAS-in-mean models and allow for

SV effects (but not MIDAS-in-volatility) or estimate a MIDAS model on an observable proxy

for the volatility such as the realized variance. The premise of our approach is that there are

good reasons to expect information in variables observed at a high frequency to be helpful in

predicting the volatility of monthly or quarterly macroeconomic variables. Studies such as Sims

and Zha (2006) and Stock and Watson (2002) document that the volatility of macroeconomic

1A common alternative is to use an average of recent values, e.g., daily values within a quarter. However, this
overlooks that recent observations carry information deemed more relevant than older observations. Alternatively,
one can use only the most recent daily observation. However, this may be suboptimal, particularly in the presence
of measurement errors.
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variables varies over time. Moreover, accounting for dynamics in the volatility equation can lead

to more efficient estimators and improved point forecasts as shown by Clark (2011), Carriero

et al. (2012), Carriero et al. (2015), and Clark and Ravazzolo (2014).2

The Bayesian modeling approach offers several advantages in our setting. Notably, the

objective of the Bayesian analysis is to obtain the predictive density given the data, as opposed

to simply computing a point forecast. Such density forecasts can be used to evaluate a range

of measures of predictive accuracy, including RMSFEs, log scores, and the continuously ranked

probability score of Gneiting and Raftery (2007a). Measures of the accuracy of density forecasts

are more likely to have power to detect improvements in volatility forecasts than measures

based on point forecasts such as the RMSFE. Moreover, our forecasts account for parameter

estimation error. This can be important in empirical applications with macroeconomic variables

for which data samples are short and parameters tend to be imprecisely estimated. Finally,

because we construct the predictive density for a range of different models, we can compute

forecast combinations that optimally weighs the individual models. Such forecast combinations

provide a way to deal with model uncertainty since they do not depend on identifying a single

best model. As new data arrive, the combination weights get updated and models that start

to perform better receive greater weight in the combinations.

Our paper exploits that the MIDAS lag polynomial can be cast as a linear regression model

with transformed daily predictors. For models with constant volatility and normal innovations,

Bayesian estimation can therefore be undertaken using a two-block Gibbs sampler. For models

with stochastic volatility we propose a specification that adds a MIDAS term to the log con-

ditional volatility equation. Conditional on the sequence of log-volatilities and the parameters

determining the stochastic volatility dynamics, our MIDAS specification reduces to a standard

linear regression model. In turn, to obtain the sequence of log-volatilities and the stochastic

volatility parameters we rely on the algorithm of Kim et al. (1998), extended by Chib et al.

2Carriero et al. (2015) develop a Bayesian method for producing current-quarter forecasts of GDP growth
that is closely related to the U-MIDAS approach proposed by Foroni et al. (2013), and allow for both time-
varing coefficients and stochastic volatility in the estimation. Ghysels (2012) extends the standard Bayesian VAR
approach to allow for mixed frequency lags and MIDAS polynomials. Marcellino et al. (2013) develop a mixed
frequency dynamic factor model featuring stochastic shifts in the volatility of both the latent common factor and
the idiosyncratic components. Rodriguez and Puggioni (2010) cast a MIDAS regression model as a dynamic linear
model, leaving unrestricted the coefficients on all the high frequency data lags.
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(2002) to allow for exogenous covariates in the volatility equation.3 Hence a four-block Gibbs

sampler can be used to produce posterior estimates for the model parameters. Our approach

is straightforward to implement and well-suited for generating sequences of recursively updated

density forecasts.

We illustrate our approach in empirical applications to U.S. inflation and growth in industrial

production, both of which have been extensively studied in the literature. We use daily observa-

tions on eight predictor variables, including interest rates, stock returns and the business cycle

measure proposed by Aruoba et al. (2009). Because we estimate both MIDAS-in-mean and

MIDAS-in-volatility models, we can compare the contributions of high-frequency information

towards predicting first and second moments.

We find few instances where the MIDAS-in-mean effects lead to systematic improvements in

the point or density forecasts. In contrast, we find that MIDAS-in-volatility effects lead to sig-

nificantly better density forecasts of inflation and industrial production growth both in-sample

and out-of-sample. This holds even for benchmarks that are tough to beat such as factor models

with stochastic volatility (non-MIDAS) dynamics. Our finding holds across multiple forecast

horizons ranging from one through twelve months and across most of the daily predictor vari-

ables. Moreover, we find that model combination schemes produce better density forecasts than

a range of benchmarks, suggesting that our results are robust to model uncertainty. Moreover,

the Geweke and Amisano (2010) optimal prediction pool approach places at least 50 percent

of the weight on MIDAS-in-volatility models, further underscoring their importance to out-of-

sample performance in forecasting inflation and industrial production growth.

The outline of the paper is as follows. Section 2 introduces the MIDAS methodology and ex-

tends the model to include stochastic volatility effects and, as a new contribution, MIDAS terms

in both the conditional mean and the log conditional volatility equation. Section 3 introduces

our Bayesian estimation approach and discusses how to generate draws from the predictive den-

sity using Gibbs sampling methods. Section 4 describes our empirical applications, while Section

5 covers different forecast combination schemes. Section 6 concludes.

3Posterior simulation of the whole path of stochastic volatilities under an arbitrary second moment MIDAS
lag polynomial would require the use of a particle filter.

4



2 MIDAS regression models

This section outlines how we generalize the conventional regression specification to account for

MIDAS effects in the volatility equation, while also allowing for stochastic volatility.

2.1 MIDAS Setup

Suppose we are interested in forecasting some variable yt+1 which is observed only at discrete

times t− 1, t, t+ 1, etc., while data on a predictor variable, x
(m)
t , are observed m times between

t − 1 and t. For example, yt+1 could be a monthly variable and x
(m)
t could be a daily variable.

In this case m = 22, assuming that the number of daily observations available within a month

is constant and equals 22.

Let H ≥ 1 be an (arbitrary) forecast horizon and suppose we use the direct forecasting

approach to generate multi-period forecasts by projecting the period τ+H outcome on informa-

tion known at time t. It is natural to consider using lagged values of x
(m)
t to forecast yt+1. We

denote such lags of x
(m)
t by x

(m)
t−j/m, where the m superscript makes explicit the higher sampling

frequency of x
(m)
t relative to yt+1. To include such lags we could use a simple MIDAS model4

yτ+H = β0 + B
(
L1/m;θ

)
x(m)
τ + ετ+H , τ = 1, ..., t−H (1)

where

B
(
L1/m;θ

)
=

K−1∑
k=0

B (k;θ)Lk/m.

Lk/m is a lag operator such that L1/mx
(m)
τ = x

(m)
τ−1/m, and ετ+H is i.i.d. with E (ετ+H) = 0 and

V ar (ετ+H) = σ2
ε . K is the maximum lag length for the included predictors. The distinguishing

feature of MIDAS models is that the lag coefficients in B (k;θ) are parameterized as a function of

a low dimensional vector of parameters θ = (θ0, θ1, ..., θp). To use a concrete example, suppose

again that yt+1 is a monthly series which gets affected by twelve months’ of daily data, x
(m)
t .

In this case, we would need K = 264 (22× 12) lags of daily variables. Without any restrictions

on the parameters in B
(
L1/m;θ

)
there would be 264 + 2 parameters to estimate in (1). By

making B
(
L1/m;θ

)
a function of a small set of p + 1 << K parameters we can greatly reduce

the number of parameters to estimate.

4For simplicity, our notation suppresses the dependence of the parameters on the forecast horizon, H.

5



It is sometimes useful to cast the MIDAS model as

yτ+H = β0 + β1B1

(
L1/m;θ1

)
x(m)
τ + ετ+H , τ = 1, ..., t−H (2)

where β1B1

(
L1/m;θ1

)
= B

(
L1/m;θ

)
and β1 is a scalar that captures the overall impact of lagged

values of x
(m)
τ on yτ+H . Since β1 enters multiplicatively in (2), it cannot be identified without

imposing further restrictions on the polynomial B1

(
L1/m;θ1

)
, e.g., by normalizing the function

B1

(
L1/m;θ1

)
to sum to unity.5

The model in (1) can be generalized to allow for py lags of yt and another pz lags of r

predictor variables zt = (z1t, ..., zrt)
′ measured at the same frequency as yt :

yτ+H = α+

py−1∑
j=0

ρj+1yτ−j +

pz−1∑
j=0

γ ′j+1zτ−j + B
(
L1/m;θ

)
x(m)
τ + ετ+H . (3)

This regression requires the estimation of (2 + p+ py + pz × r) coefficients. The distributed lag

term
∑py−1

j=0 ρj+1yτ−j captures same-frequency dynamics in yt+H , while the addition of the zt

factors allows for predictors other than own lags. We refer to the model in (3) as the Factor-

augmented AutoRegressive MIDAS, or FAR-MIDAS, for short. If the lagged factors are excluded

from equation (3), the model has only autoregressive and MIDAS elements and is called AR-

MIDAS. These abbreviations reflect the nested structure of the models that we consider.6

2.2 MIDAS weighting functions

The functional form of the MIDAS weights B
(
L1/m;θ

)
depends on the application at hand and

has to be flexible enough to capture the dynamics in how the high frequency data x
(m)
τ affect

the outcome. We adopt a simple unrestricted version of B
(
L1/m;θ

)
, known as the Almon lag

polynomial, which takes the form

B (k;θ) =

p∑
i=0

θik
i, (4)

where θ = (θ0, θ1, ..., θp) is a vector featuring p + 1 parameters. Under this parameterization,

(3) takes the form

yτ+H = α+

py−1∑
j=0

ρj+1yτ−j +

pz−1∑
j=0

γ ′j+1zτ−j +

K−1∑
k=0

p∑
i=0

θik
iLk/mx(m)

τ + ετ+H . (5)

5Normalization and identification of β1 are not strictly necessary in a MIDAS regression but can be useful
in settings such as those of Ghysels et al. (2005) and Ghysels et al. (2007) where β1 is important for economic
interpretation of the results.

6The FAR-MIDAS model is called FADL-MIDAS (for factor augmented distributed lag MIDAS) in Andreou
et al. (2013).
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Define the (p+ 1×K) matrix Q

Q =


1 1 1 . . . 1
1 2 3 . . . K
1 22 32 . . . K2

...
...

...
. . .

...
1 2p 3p . . . Kp

 , (6)

and the (K × 1) vector of high frequency data lags X
(m)
τ

X(m)
τ =

[
x(m)
τ , x

(m)
τ−1/m, x

(m)
τ−2/m, ..., x

(m)
τ−1, ..., x

(m)
τ−(K−1)/m

]′
. (7)

Given the linearity of (4) and (5), we can rewrite (5) as

yτ+H = α+

py−1∑
j=0

ρj+1yτ−j +

qz−1∑
j=0

γ ′j+1zt−j + θ′X̃
(m)

τ + ετ+H , (8)

where X̃
(m)

τ = QX
(m)
τ is a (p+ 1× 1) vector of transformed daily regressors. Once estimates

for the coefficients θ are available, we can compute the MIDAS weights from (4) as B̂ (k;θ) =∑p
i=0 θ̂ik

i. We can also impose the restriction that the weights B̂ (k;θ) sum to one by normalizing

them as

B̃ (k;θ) =
B̂ (k;θ)∑K
i=1 B̂ (i;θ)

. (9)

In forecasting applications, this normalization does not provide any advantages. Hence, we

work with the unrestricted expression (8) for which the MIDAS parameters θ can conveniently

be estimated by OLS after transforming the daily regressors X
(m)
τ into X̃

(m)

τ .

It is useful to briefly contrast the Almon weights in (4) with other parameterizations in the

MIDAS literature. These include the exponential Almon lag of (Ghysels et al. (2005), Andreou

et al. (2013))

B (k;θ) =
eθ1k+θ2k2+...+θpkp∑K
i=1 e

θ1i+θ2i2+...+θpip
,

and the normalized Beta function of Ghysels et al. (2007)

B (k;θ) =

(
k−1
K−1

)θ1−1 (
1− k−1

K−1

)θ2−1

∑K
i=1

(
i−1
K−1

)θ1−1 (
1− i−1

K−1

)θ2−1
.

Estimation of MIDAS models with these parameterizations requires non-linear optimization.
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A third alternative is the stepwise weights proposed in Ghysels et al. (2007) and Corsi (2009)

B (k;θ) = θ1Ik∈[a0,a1] +

p∑
p=2

θpIk∈[ap−1,ap],

where the p + 1 parameters a0, ..., ap are thresholds for the step function with a0 = 1 < a1 <

... < ap = K and Ik∈[ap−1,ap] is an indicator function, with

Ik∈[ap−1,ap] =

{
1 if ap−1 ≤ k < ap
0 otherwise

.

Provided that the threshold values are known, estimation of MIDAS models with these weights

can also be undertaken using OLS. A final alternative is the Unrestricted polynomial (U-MIDAS)

approach proposed by Foroni et al. (2013). In this case, all the high frequency lag coefficients

are left unconstrained, and estimation can be undertaken using OLS.

2.3 MIDAS in volatility

We next generalize the constant-volatility MIDAS models in the previous subsection to allow

for time-varying volatility and MIDAS-in-volatility effects. This generalization is potentially

important because it is well established that the use of high frequency variables leads to better

in-sample fit and out-of-sample forecasting performance for many financial and macroeconomic

variables; see Andersen et al. (2006), Ghysels et al. (2007), Engle et al. (2013), and Schorfheide

et al. (2014).

We generalize the constant volatility model in two steps. First, consider extending the FAR-

MIDAS model (8) to allow for stochastic volatility as

yτ+H = α+

py−1∑
j=0

ρj+1yτ−j +

pz−1∑
j=0

γ ′j+1zτ−j + θ′X̃
(m)

τ + exp (hτ+H)uτ+H , (10)

where hτ+H denotes the log-volatility of yτ+H and uτ+H ∼ N (0, 1). It is commonly assumed

that the log-volatility evolves as a driftless random walk

hτ+H = hτ + ξτ+H , (11)

where ξτ+H ∼ N
(

0, σ2
ξ

)
and ut and ξs are mutually independent for all t and s. We refer to

(10) and (11) as the FAR-MIDAS SV model. This type of specification is considered by Carriero
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et al. (2015), and Marcellino et al. (2013), but with a different parameterization of the MIDAS

weights.7

The SV model in (11) permits time varying volatility but does not allow high frequency

variables, v
(m)
τ , to affect the conditional log-volatility. To accomplish this, we generalize (11) to

include second moment MIDAS effects

hτ+H = λ0 + λ1hτ +

K−1∑
k=0

Bh (k;θh)Lk/mv(m)
τ + ξτ+H . (12)

The daily variables v
(m)
τ need not be the same as those entering the first moment in (10), x

(m)
τ .

Similarly, the MIDAS weights Bh (k;θh) need not be the same as those in the conditional mean

equation. The specification in (10) and (12) is a FAR-MIDAS with MIDAS stochastic volatility

or FAR-MIDAS SV-MIDAS model. In addition to allowing the high frequency lags to enter the

log-volatility equation, (12) relaxes the random walk assumption and introduces autoregressive

dynamics for the log-volatility.8 The stochastic volatility MIDAS specification is an analogue to

the MIDAS-in-mean specification, (3).

To complete the model in (12), we need to specify the SV-MIDAS weights, Bh (k;θh) , and

the v
(m)
τ variables. We focus on specifications for which the first moment and second moment

MIDAS variables are the same, x
(m)
τ = v

(m)
τ , and apply Almon lag polynomials for both the first

and second moments. Under these assumptions, we can rewrite (12) as

hτ+H = λ0 + λ1hτ + θ′hX̃
(m)

τ + ξτ+H , ξτ+H ∼ N
(
0, σ2

ξ

)
. (13)

We use the FAR-MIDAS SV-MIDAS model comprised of (10) and (13) in the estimation and

forecasting sections.

3 Bayesian estimation and forecasting

This section explains how we use Bayesian methods to estimate the MIDAS forecasting models

and generate density forecasts.

7The link between MIDAS models and time varying volatility has also been explored by Engle et al. (2013)
who use a MIDAS-GARCH approach to link macroeconomic variables to the long-run component of volatility.
Their model uses a mean reverting daily GARCH process and a MIDAS polynomial applied to monthly, quarterly,
and biannual macroeconomic and financial variables.

8The addition of exogenous covariates in the log-volatility equation has been studied by Chib et al. (2002).
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3.1 MIDAS models with constant volatility

Let Φ denote the regression parameters in the constant-volatility FAR-MIDAS model (3), ex-

cluding the MIDAS coefficients θ, i.e., Φ =
(
α, ρ1, ..., ρpy ,γ

′
1, ...,γ

′
qz

)′
. Conditional on θ, the

MIDAS model reduces to a standard linear regression and one only needs to draw from the

posterior distributions of Φ and the variance of ετ+H , σ
2
ε . Assuming standard independent

Normal-inverted gamma priors on Φ and σ2
ε and normally distributed residuals, ετ+H , drawing

from the posterior of these parameters is straightforward and simply requires using a two-block

Gibbs sampler.

The same logic extends to estimation of the MIDAS parameters θ in cases where the trans-

formed high frequency variables X̃
(m)

t have a linear effect on the mean. Such cases include the

(non-normalized) Almon lag polynomial specification in (8), the step function polynomial spec-

ification of Ghysels et al. (2007), and the U-MIDAS approach of Foroni et al. (2013). Suppose

that ετ+H is normally distributed along with conjugate priors for the regression parameters

and error variance. For such cases a two-block Gibbs sampler can be used to obtain posterior

estimates for the parameters Φ, θ, and σ2
ε .

9

To see how this works, rewrite (8) as

yτ+H = ZτΨ + ετ+H (14)

τ = 1, ..., t− 1

where Ψ=
(
Φ′,θ′

)′
and Zτ =

(
1, yτ , ..., yτ−py+1, z

′
τ , ...,z

′
τ−qz+1, X̃

(m)′
τ

)′
. Following standard

practice, suppose that the priors for the regression parameters Ψ in (14) are normally distributed

and independent of σ2
ε

Ψ ∼ N (b,V ) . (15)

All elements of b are set to zero except for the value corresponding to ρ1 which is set to one.

Hence, our choice of the prior mean vector b reflects the view that the best prediction model is

9Under the U-MIDAS approach of Foroni et al. (2013), the matrix of transformed regressors, X̃
(m)

t , is the

same as the original matrix, X
(m)
t .
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a random walk. We choose a data-based prior for V :10

V = ψ2

s2
y,t

(
t−1∑
τ=1

Z ′τZτ

)−1
 , (16)

with

s2
y,t =

1

t− 2

t−1∑
τ=1

(yτ+1 − yτ )2 .

In (16), the scalar ψ controls the tightness of the prior. Letting ψ →∞ produces a diffuse prior

on Ψ. Our analysis sets ψ = 25, corresponding to relatively diffuse priors.

For the constant volatility model we assume a standard gamma prior for the error precision

of the return innovation, σ−2
ε :

σ−2
ε ∼ G

(
s−2
y,t , v0 (t− 1)

)
. (17)

v0 is a prior hyperparameter that controls how informative the prior is. v0 → 0 corresponds to

a diffuse prior on σ−2
ε . Our baseline analysis sets v0 = 0.005. This corresponds to a pre-sample

of half of one percent of the actual data sample, again representing an uninformative prior.

LetDt denote information available at time t. Obtaining draws from the joint posterior distri-

bution p
(
Ψ, σ−2

ε

∣∣Dt) of the constant-volatility MIDAS regression model is now straightforward.

Combine the priors in (15)-(17) with the observed data to get the conditional posteriors:

Ψ|σ−2
ε ,Dt ∼ N

(
b, V

)
, (18)

and

σ−2
ε

∣∣Ψ,Dt ∼ G
(
s−2, v

)
, (19)

where

V =

[
V −1 + σ−2

ε

t−1∑
τ=1

Z ′τZτ

]−1

,

b = V

[
V −1b+ σ−2

ε

t−1∑
τ=1

Z ′τyτ+1

]
, (20)

and

s2 =

∑t−1
τ=1 (yτ+1 −ZτΨ)2 +

(
s2
y,t × v0 (t− 1)

)
v

, (21)

10Priors for the hyperparameters are often based on sample estimates, see Stock and Watson (2006) and Efron
(2010). Our analysis can be viewed as an empirical Bayes approach.
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where v = v0 + (t− 1) .

For more general MIDAS lag polynomials, obtaining posterior estimates for θ is only slightly

more involved and requires a straightforward modification of the Gibbs sampler algorithm out-

lined above. As an example, Ghysels (2012) focuses on the case of normalized beta weights where

θ = (θ1, θ2)′, and suggests using a Gamma prior for both θ1 and θ2

θj ∼ G (f0, F0) , j = 1, 2. (22)

Here f0 and F0 are hyperparameters controlling the mean and degrees of freedom of the Gamma

distribution. Next, to draw from the posteriors of θ1 and θ2, Ghysels proposes utilizing a

Metropolis-in-Gibbs step as in Chib and Greenberg (1995). The Metropolis step is an accept-

reject step that requires a candidate θ∗ from a proposal density q
(
θ∗|θ[i]

)
, where θ[i] is the

last accepted draw for the MIDAS parameters θ. For example, when the Gamma distribution

is chosen for q
(
θ∗|θ[i]

)
, at iteration i+ 1 of the Gibbs sampler

θ∗j ∼ G
(
θ

[i]
j , c

(
θ

[i]
j

)2
)

, j = 1, 2, (23)

where c is a tuning parameter chosen to achieve a reasonable acceptance rate. The candidate

draw gets selected with probability min {a, 1} ,

θ[i+1] =

{
θ∗ with probability min {a, 1}
θ[i] with probability 1−min {a, 1} (24)

where a is computed as

a =
L
(
Dt
∣∣Φ,θ∗)

L
(
Dt|Φ,θ[i]

) G (θ∗| f0, F0)

G
(
θ[i]
∣∣∣ f0, F0

) G
(
θ[i]
∣∣∣θ∗, c (θ∗)2

)
G
(
θ∗|θ[i], c

(
θ[i]
)2
) . (25)

L
(
Dt
∣∣Φ,θ∗) and L

(
Dt
∣∣Φ,θ[i]

)
are the conditional likelihood functions given the parameters

Φ,θ∗ and Φ, θ[i], respectively.

3.2 MIDAS models with time-varying volatility

Next, consider estimation of the models that allow the volatility of ετ+1 to change over time, as

in either (11) or (13). We focus our discussion on the most general process for the log-volatility,

(13), and note that when working with (11), λ0, λ1, and θh drop out of the model. For the FAR-

MIDAS SV-MIDAS model in equations (10) and (13), we require posterior estimates for all mean
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parameters in equation (10), Ψ=
(
Φ′,θ′

)′
, the sequence of log volatilities, ht = {h1, h2, ..., ht},

the parameters (λ0, λ1,θh), and the log-volatility variance σ2
ξ .

We follow the earlier choice of priors for the parameters in the mean equation Ψ

Ψ ∼ N (b,V ) . (26)

Turning to the sequence of log-volatilities, ht = (h1, ..., ht), the error precision, σ−2
ξ , and the

volatility parameters λ0, λ1, and θh, we can write

p
(
ht, λ0, λ1,θh, σ

−2
ξ

)
= p

(
ht
∣∣λ0, λ1,θh, σ

−2
ξ

)
p (λ0, λ1,θh) p

(
σ−2
ξ

)
.

Using (13), we can express p
(
ht
∣∣λ0, λ1,θh, σ

−2
ξ

)
as

p
(
ht
∣∣λ0, λ1,θh, σ

−2
ξ

)
=

t−1∏
τ=1

p
(
hτ+1|λ0, λ1,θh, hτ , σ

−2
ξ

)
p (h1) , (27)

with hτ+1|λ0, λ1,θh, hτ , σ
−2
ξ ∼ N

(
λ0 + λ1hτ + θ′hX̃

(m)

τ , σ2
ξ

)
. To complete the prior elicitation

for p
(
ht, λ0, λ1,θh, σ

−2
ξ

)
, we only need to specify priors for λ0, λ1, θh, the initial log-volatility,

h1, and σ−2
ξ . We choose these from the normal-inverted gamma family

h1 ∼ N (ln (sy,t) , kh) , (28) λ0

λ1

θh

 ∼ N (mh,V h) , (29)

and

σ−2
ξ ∼ G

(
1/kξ, vξ (t− 1)

)
. (30)

We set kξ = 0.01, vξ = 1, and kh = 0.1. These are more informative priors than our earlier

choices. Setting kξ = 0.01 and vξ = 1 restricts changes to the log-volatility to be only 0.01 on

average. Conversely, kh = 0.1 places a relatively diffuse prior on the initial log volatility state.

We conduct a sensitivity analysis for these priors in a subsequent section.

Following Clark and Ravazzolo (2014) we set all the elements of the prior mean hyperpa-

rameter mh in (29) to zero, except for the parameter corresponding to the AR(1) coefficient

λ1, which we set to 0.9. As for the prior variance hyperparameter V h in (29), we set it to an

identity matrix with diagonal elements equal to 0.52, except for the element corresponding to
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the AR(1) coefficient λ1, which we set to 0.012. This corresponds to a mildly uninformative

prior on the intercept and MIDAS coefficients, and a more informative prior on λ1, matching

the persistent dynamics in the log volatility process.

To obtain posterior estimates for the mean parameters Ψ, the sequence of log volatilities

ht, the stochastic volatility parameters (λ0, λ1,θh) , and the log-volatility variance σ2
ξ , we use

a four-block Gibbs sampler to draw recursively from the following four conditional posterior

distributions:

1. p
(

Ψ|ht, λ0, λ1,θh, σ
−2
ξ ,Dt

)
.

2. p
(
ht
∣∣Ψ, λ0, λ1,θh, σ

−2
ξ ,Dt

)
.

3. p
(
σ−2
ξ

∣∣∣Ψ,ht, λ0, λ1,θh,Dt
)

4. p
(
λ0, λ1,θh|Ψ,ht, σ−2

ξ ,Dt
)

Simulating from the first three of these blocks is straightforward using the algorithms of Kim

et al. (1998), extended by Chib et al. (2002) to allow for exogenous covariates in the volatility

equation. The conditional posterior distribution of the SV-MIDAS parameters p
(
λ0, λ1,θh|Ψ,ht, σ−2

ξ ,Dt
)

in the fourth step can be expressed as

λ0, λ1,θh|Ψ,ht, σ−2
ξ ,Dt ∼ N

(
mh,V h

)
,

where

V h =

V −1
h + σ−2

ξ

t−1∑
τ=1

 1
hτ

X̃
(m)

τ

[1, hτ , X̃(m)′
τ

]
−1

, (31)

and

mh = V h

V −1
h mh + σ−2

ξ

t−1∑
τ=1

 1
hτ

X̃
(m)

τ

hτ+1

 . (32)

3.3 Forecasts from MIDAS models

The objective of Bayesian estimation of MIDAS forecasting models is to obtain the predictive

density for yt+1. This density conditions only on the data and so accounts for parameter un-

certainty. For example, working with the constant volatility MIDAS model (8), the predictive
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density for yt+H is given by

p
(
yt+H | Dt

)
=

∫
Ψ,σ−2

ε

p
(
yt+H |Ψ,σ−2

ε ,Dt
)
p
(
Ψ,σ−2

ε

∣∣Dt) dΨdσ−2
ε , (33)

where p
(
Ψ,σ−2

ε

∣∣Dt) denotes the joint posterior distribution of the MIDAS parameters condi-

tional on information available at time t, Dt.

Alternatively, when working with the FAR-MIDAS SV-MIDAS model in (10) and (13) the

density forecast for yt+H is given by

p
(
yt+H | Dt

)
=

∫
Ψ,ht+H ,λ0,λ1,θh,σ

−2
ξ

p
(
yt+H |Ψ,ht+H ,ht, λ0, λ1,θh, σ

−2
ξ ,Dt

)
×p
(
ht+H |Ψ,ht, λ0, λ1,θh, σ

−2
ξ ,Dt

)
(34)

×p
(

Ψ,ht, λ0, λ1,θh, σ
−2
ξ

∣∣∣Dt) dΨdht+Hdλ0dλ1dθhdσ
−2
ξ .

We can use the Gibbs sampler to draw from the predictive densities in (33) and (34). These

draws, y
(j)
t+H|t, j = 1, ..., J can be used to compute objects such as point forecasts, ŷt+H|t =

J−1
∑J

j=1 y
(j)
t+H|t or the quantile of the realized value of the predicted variable, J−1

∑J
j=1 I(yt+H ≤

y
(j)
t+H|t), where I(yt+H ≤ y

(j)
t+H|t) is an indicator function that equals one if the outcome, yt+H ,

falls below the jth draw from the Gibbs sampler.

3.4 Implementation of the Gibbs Sampler

We run the Gibbs samplers for 15,000 iterations, after a burn-in period of 1,000 iterations,

thinning the chains by keeping one out of every three draws.11 To evaluate convergence we

compute the following diagnostics: (1) autocorrelation functions of the draws (the smaller the

autocorrelations, the more efficient the samplers are); (2) inefficiency factors (IFs) for the pos-

terior estimates of the parameters. The IF is the inverse of the relative numerical efficiency

measure of Geweke (1992), i.e., the IF is an estimate of (1 + 2
∑∞

k=1 ρk), where ρk is the k-th

autocorrelation of the chain. In our application the estimate is performed using a 4% tapered

window for the estimation of the spectral density at frequency zero. Values of the IFs below or

around 20 are regarded as satisfactory; (3) Raftery and Lewis (1992) diagnostics on the total

number of runs required to achieve a certain precision. The parameters for the diagnostics are

specified as follows: quantile = 0.025; desired accuracy = 0.025; required probability of attaining

11The calculations were performed on the High Performance Computing Cluster at Brandeis University.
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the required accuracy = 0.95. The required number of runs should fall below the total number

of iterations used.

We compute these diagnostics for all estimated models. To preserve space we only report

results here for the FAR-MIDAS SV-MIDAS models, i.e., the most general of the models under

consideration.12 In all cases the 20th order sample autocorrelation of the draws is less than 0.06.

Similarly, in most cases the Geweke (1992) IF of the posterior parameter estimates is around

3, and is never larger than 7. Finally, the Raftery and Lewis (1992) diagnostic on the total

number of draws required is significantly below the total number of iterations used to estimate

our models. In summary, all convergence diagnostics appear satisfactory.

4 Empirical Results

This section introduces our monthly data on U.S. growth in industrial production and inflation

(our target variables), a set of macroeconomic factors, and the daily predictors. We then analyze

the in-sample and out-of-sample predictive accuracy of our forecasts for the model specifications

described in sections 2 and 3. We apply a range of measures to evaluate the predictive accuracy

of our forecasts. As discussed above, one of the advantages of adopting a Bayesian framework

is the ability to compute predictive distributions, rather than simple point forecasts, and to

account for parameter uncertainty. Accordingly, to shed light on the predictive ability of the

different models, we evaluate both point and density forecasts.

4.1 Data

Our empirical analysis uses monthly data on U.S. industrial production and the inflation rate.

Specifically, Let Iτ denote the monthly seasonally adjusted Industrial Production Index (IPI) at

time τ , obtained from the Federal Reserve of St. Louis FRED database, and define

yτ = 100× ln (Iτ/Iτ−1) . (35)

Similarly, the monthly inflation rate is obtained as

yτ = 1200× ln (Pτ/Pτ−1) , (36)

12These results are based on the specification that predicts the growth in industrial production for H = 1,
using as daily predictor the federal funds rate. Similar results are obtained for other forecast horizons and daily
predictors, and for either growth in industrial production or inflation.
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where Pτ denotes the U.S. monthly seasonally adjusted Consumer Price Index for All Urban

Consumers (All Items) at time τ , again downloaded from the Federal Reserve of St. Louis FRED

database.

The monthly predictor variables are an updated version of the 132 macroeconomic series used

in Ludvigson and Ng (2009) and extended by Jurado et al. (2014) to December 2011. The series

are selected to represent broad categories of macroeconomic quantities such as real output and

income, employment and hours, real retail, manufacturing and trade sales, consumer spending,

housing starts, inventories and inventory sales ratios, orders and unfilled orders, compensation

and labor costs, capacity utilization measures, price indexes, bond and stock market indexes,

and foreign exchange measures.13 We follow Stock and Watson (2012) and Andreou et al.

(2013) and extract two common factors (zτ ) from the 132 macroeconomic series using principal

components.

We consider eight daily series, x
(m)
τ , in this study: (i) the effective Federal Funds rate

(Ffr), first-differenced to eliminate any trends; (ii) the interest rate spread between the 10-

year government bond rate and the federal fund rate (Spr); (iii) value-weighted returns on US

stocks (Ret); (iv) returns on the portfolio of small minus big stocks considered by Fama and

French (1993) (Smb); (v) returns on the portfolio of high minus low book-to-market ratio stocks

studied by Fama and French (1993) (Hml); (vi) returns on a winner minus loser momentum

spread portfolio (Mom), (vii) the ADS daily business cycle variable of Aruoba et al. (2009);

and (viii) the default spread measured as the difference in the yield on portfolios of BAA and

AAA-rated corporate bonds.14 The interest rate series are from the Federal Reserve Bank of

St. Louis database FRED. Value-weighted stock return data are obtained from CRSP and

include dividends. Returns on the Smb, Hml, and Mom spread portfolios are downloaded from

Kenneth French’s data library.15 The ADS series are published by the Federal Reserve Bank of

Philadelphia. Our data sample spans the period from 1962:01 to 2011:12.

To test whether a better in-sample fit and out-of-sample forecasts can be obtained by includ-

ing the daily series in the forecasting model through MIDAS polynomials, we estimate several

13The data are available on Sydney Ludvigson’s website at http://www.econ.nyu.edu/user/ludvigsons/jlndata.zip
14Using an international sample of data on ten countries, Liew and Vassalou (2000) find some evidence that

Hml and Smb are helpful in predicting future GDP growth.
15We thank Kenneth French for making this data available on his website, at

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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versions of the MIDAS specifications discussed above. These fall into one of three categories:

(i) MIDAS-in-mean with constant volatility (8); (ii) MIDAS-in-mean with stochastic volatility

(10 and 11); and (iii) MIDAS in both the mean and the volatility (10 and 13).

To explore the importance of MIDAS-in-mean effects, we compare AR-MIDAS and AR-

MIDAS SV models to the corresponding non-MIDAS models. We do the same for the FAR-

MIDAS and FAR-MIDAS SV models. Similarly, to assess the importance of MIDAS-in-volatility

effects, we compare AR-MIDAS SV-MIDAS and FAR-MIDAS SV-MIDAS models to AR-MIDAS

SV and FAR-MIDAS SV models, respectively. In total we consider six different MIDAS speci-

fications.

Every MIDAS specification is estimated with one of the eight daily variables, Ffr, Spr, Ret,

Smb, Hml, Mom, ADS, and Def, as defined above. Therefore, we have a total of 48 MIDAS

forecasting models. In addition, we estimate four benchmark non-MIDAS models: a purely

autoregressive model (AR); the same model with stochastic volatility (AR SV); a model that

includes AR terms and factors (FAR); and a model with factors and stochastic volatility (FAR

SV). In all cases our analysis assumes four AR lags of y (py = 4), two lags of the macro factors

(pz = 2) and twelve months of past daily observations.16

4.2 In-sample estimates and model comparisons

We first compare the fit of the different model specifications over the full sample, 1962:01-

2011:12. In a Bayesian setting, a natural approach to model selection is to compute the Bayes

factor, B1,0, of the null model M0 versus an alternative model, M1. The higher is the Bayes

factor, the higher are the posterior odds in favor of M1 against M0. We report two times the

natural log of the Bayes factors, 2 ln(B1,0). To interpret the strength of the evidence, we follow

studies such as Kass and Raftery (1995) and note that if 2 ln(B1,0) is below zero, the evidence

supports M0 over M1. For values of 2 ln(B1,0) between 0 and 2, there is “weak evidence” that

M1 is a more likely characterization of the data than M0. We view values of 2 ln(B1,0) between

2 and 6, 6 and 10, and higher than 10, as “some evidence,” “strong evidence,” and “very strong

16Our baseline results impose no restrictions on the coefficients of the four AR lags. We separately investigated
the importance of this assumption by adding a stationarity restriction on the coefficients of the four AR lags,
specifying a truncated normal prior for Ψ with support over the stationary region. We implemented this restriction
by augmenting our Gibbs sampler with an accept/reject step that removes all explosive draws from the posterior
of Ψ, and found the stationary restriction to have virtually no impact on the results.
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evidence”, respectively, in support of M1 versus the null, M0.

Table 1 shows pairwise model comparisons based on the transformed Bayes factors, 2 ln(B1,0).

First consider the results for the growth in industrial production shown in the left columns.

Panels A and B display results for the AR-MIDAS and FAR-MIDAS models (8) relative to AR

or FAR models, respectively, while Panels C and D reports the same statistics for models with

SV dynamics in the second moment. Each of the MIDAS models is estimated by including a

single daily predictor at a time, as shown in separate rows. At the shortest horizons (H = 1, 3

months) only the MIDAS models based on the Ret or ADS variables lead to strong improvements

in forecasting performance relative to the corresponding benchmarks. These results carry over

to the models that allow for stochastic volatility dynamics; by and large, ADS appears to be

the only predictor that leads to better forecasts at the one-month horizon (H = 1).

Panels E and F in Table 1 report Bayes factors for specifications with MIDAS effects in the

volatility relative to non-MIDAS SV models, assuming that the mean already includes a MIDAS

term. In other words, we test different versions of (10) and (13) versus the model implied by

(10) and (11). We use the simpler SV volatility specification in our benchmark to reflect the

popularity of this approach in empirical work; see Cogley et al. (2005), D’Agostino et al. (2013),

Stock and Watson (2007), as well as the empirical evidence reported in Clark and Ravazzolo

(2014). Also, empirical tests show that the RMSE performance generated by the two SV models

in (13) and (11) is statistically indistinguishable.17

In general, for both the AR-MIDAS, SV-MIDAS and FAR-MIDAS, SV-MIDAS models the

evidence strongly supports adding MIDAS effects to the volatility specification for the vast

majority of comparisons. The evidence in favor of the IPI models with MIDAS in volatility

grows stronger, the longer the forecast horizon.

For the inflation rate models shown in the right columns of Table 1 the results mirror the

IPI findings, namely, there is spotty evidence of improvement in the forecasting models due to

the inclusion of MIDAS effects in the conditional mean (Panels A-D). In contrast, there is very

strong evidence that the models that include MIDAS in the volatility equation lead to superior

forecasts (Panels E-F). For the inflation series there is less evidence of systematic patterns in

17While the more general SV model (13) produces significantly better log probability scores than (11), this
model is outperformed by the best SV-MIDAS models that include daily variables such as the ADS index.
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the Bayes factors related to the forecast horizon compared with the data on growth in industrial

production.

In summary, the (in-sample) evidence from the Bayes factors suggests that there are no gains

in the performance of the prediction models from including MIDAS effects in the conditional

mean. In contrast, we find strong evidence of improvements as a result of including MIDAS

terms in the volatility equation. This holds across predictor variables and at both short and

long forecast horizons.

4.2.1 Sensitivity to Choice of Priors

Readers may be concerned that the Bayes factors are sensitive to our choice of priors, particularly

in the case of the volatility parameters which are chosen to be relatively informative. To address

this point, we conduct a sensitivity analysis that highlights the robustness of our results by

varying the key prior hyper-parameters, ψ, v0, and kξ over a wide range. In particular, ψ varies

between 100 and 2.5 (we set ψ = 25 in our baseline results); v0 varies between 0.001 and 0.1

(v0 = 0.005 in our baseline results), and kξ varies between 0.0001 and 1 (kξ = 0.01 in our

baseline results).

Table 2 reports Bayes factor results obtained under these alternative priors for the daily

predictors Ffr, Ret, and ADS. The baseline results only change in meaningful ways when we

change the prior on kξ which significantly alters the dynamics in the volatility equation. For the

other prior parameters, conclusions obtained under the other choices of priors are in line with

our baseline results.

4.2.2 MIDAS weighting of daily predictors

An alternative, and more traditional, way to investigate the importance of the MIDAS weighting

scheme applied to the daily predictor variables is to compare our MIDAS models with Almon

polynomials to a set of alternative models featuring a simple time average of the high frequency

data in either the mean and/or the volatility equation. The latter set of models are obtained by

restricting the Q matrix in Equation (6) to only its first row. Thus, we can test the importance of

the MIDAS weighting schemes in the mean and volatility by running an F-test on the coefficients
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(θ1, θ2, ..., θp) for the mean and (θh,1, θh,2..., θh,p) for the volatility.18 The results of such F-tests,

reported in Table 3, suggest that the simpler weighting scheme in many cases is rejected against

the nesting MIDAS structure. Specifically, for the industrial production growth rate data we

find that the interest rate spread, stock returns, ADS and the default spread variables require

the more flexible MIDAS weighting schemes than the simple time average. While the evidence is

somewhat weaker for the inflation rate data, we still find strong evidence that the more flexible

weighting scheme is required for the models that include the interest rate spread, ADS, and

default spread data.

4.3 Out-of-sample forecasts

We next turn our attention to out-of-sample forecasting performance. To generate these, we

use the first twenty years of data as an initial training sample, i.e., we estimate our regression

models over the period 1962:01-1981:12 and use the resulting estimates to predict the outcome

in 1982:01. Next, we include 1982:01 in the estimation sample, which thus becomes 1962:01-

1982:01, and use the corresponding estimates to predict the outcome in 1982:02. We proceed

recursively in this fashion until the last observation in the sample, producing a time series of

one-step-ahead forecasts spanning the time period from 1982:01 to 2011:12.

4.3.1 Point forecasts

First consider the performance of the point forecasts. For each of the MIDAS models we obtain

point forecasts by repeatedly drawing from the predictive densities, p (yτ+H |Mi,Dτ ), and aver-

aging across draws. We have added Mi in the conditioning argument of the predictive density

to denote the specific model i, while τ ranges from 1981:12 to 2011:12-H. Following Stock and

Watson (2003) and Andreou et al. (2013), we measure the predictive performance of the MIDAS

models relative to a random walk (RW) model. Specifically, we summarize the precision of the

point forecasts of model i, relative to that from the RW model, by means of the ratio of RMSFE

values

RMSFEi =

√
1

t−t+1

∑t
τ=t e

2
i,τ√

1
t−t+1

∑t
τ=t e

2
RW,τ

, (37)

18We use the means and variance-covariance of the posterior distributions for (θ1, θ2, ..., θp) and (θh,1, θh,2..., θh,p)
as inputs to these F tests.
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where e2
i,τ and e2

RW,τ are the squared forecast errors at time τ generated by model i and the RW

model, respectively. t and t denote the beginning and end of the forecast evaluation sample.

Values less than one for RMSFEi indicate that model i produces more accurate point forecasts

than the RW model.

The top panels in Figure 1 plot the sequence of recursively generated point forecasts of the

IPI growth rate generated by random walk, AR-MIDAS, AR-MIDAS SV, and AR-MIDAS SV-

MIDAS models fitted to short (H = 1) and long (H = 12) horizons. The RW forecasts are quite

different and notably more volatile than those from the three other models, particularly at the

longest horizon. A similar pattern holds for the inflation rate data plotted in the lower panels,

although the differences are attenuated for this series.

Figure 2 plots volatility forecasts for the same set of models. These are again generated

recursively and so are updated as new data arrives. This explains why the volatility forecast from

the AR-MIDAS model displays a slight downward trend, reflecting the lower average volatility

in the data following the start of the Great Moderation. The two SV models show considerable

short-term variation in the conditional volatility. However, the dynamics are markedly different.

For instance, the pure SV model generates more extreme volatility forecasts than the model

that includes MIDAS effects in the volatility equation, notably during 2007-2009.

Table 4 presents results for the RMSFE ratio in (37) using the IPI growth rate data. The

first column (marked “No MIDAS”) shows the RMSFE ratio for the benchmark models that do

not include MIDAS effects (i.e., AR, FAR, AR-SV, and FAR-SV models), while the subsequent

columns show RSMFE values for the different MIDAS models, each of which includes a single

daily predictor variable. We present results for different model specifications that add MIDAS

effects to the mean (rows 1, 2, 3, and 5) or to the volatility (rows 4 and 6) and across forecast

horizons ranging from H = 1 to H = 12 months.

An immediate observation from Table 4 is that all RMSFE ratios are well below one, typi-

cally ranging from 0.70 to 0.80, thus suggesting that the models reduce the RMSFE by 20-30%

relative to the random walk benchmark.19 At the short horizon (H = 1) 25% of this improve-

ment comes from adopting an AR specification rather than imposing a unit root, while another

19The models’ RMSFE values are all significantly lower than that of the random walk benchmark so we do not
report evidence of statistical significance in this table.
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5% improvement comes from adding factors. Second, the results show that using the MIDAS

approach to add daily stock returns (Ret) to the benchmark AR or FAR models results in small

(up to 3%), but systematic reductions in the RMSFE for forecast horizons up to H = 6 months.

At the shortest one-month horizon, MIDAS models based on the ADS reduce the RMSFE ratio

quite substantially. However, consistent with our findings in Table 1, these improvements seem

limited to the shortest forecast horizon.

Table 5 shows that reductions of 10-25% in the RMSFE of the random walk model are

obtained for the inflation rate series. However, for this variable the evidence is much weaker

that adding MIDAS to the mean and/or volatility equation results in more accurate out-of-

sample point forecasts.20

To test more formally if the MIDAS forecasts are more accurate than various competitors,

Table 6 reports Diebold-Mariano p-values under the null that a given model has the same pre-

dictive ability as the RW benchmark. Each case provides a pairwise comparison of a model with

MIDAS-in-mean effects to the corresponding model without such MIDAS effects. Consistent

with the results in Table 4, only the ADS variable generates significant reductions in the MSFE

values at the shortest one-month horizon for the IPI growth rate series (Panel A).21

4.3.2 Density forecasts

One limitation of the RMSFE values reported above is that they fail to capture the richness of the

MIDAS models as they do not convey the full information in the density forecast p
(
yt+1|Mi,Dt

)
.

Indeed, comparing the plots of the point forecasts and the volatility forecasts in Figures 1 and

2, it is clear that there are much greater differences between the volatility forecasts generated

by the different models. Figure 3 shows that such differences give rise to very different density

forecasts at two points in time. The left panels show the densities for 1994:01. Compared to

AR-MIDAS models, SV dynamics compress the predictive density for this period. SV-MIDAS

has a similar, but weaker, effect preserving some of the greater uncertainty associated with the

constant volatility forecasts. The second snapshot, shown in the right panels in Figure 3, occurs

20Our empirical results are obtained using a limited set of daily predictor variables representing stock returns,
interest rates and the daily business cycle index proposed by Aruoba et al. (2009). It is possible that further
improvements could be obtained from MIDAS-in-mean effects by using a richer set of daily variables such as that
proposed by Andreou et al. (2014).

21A comparison of MSE-values for the models with MIDAS-in-volatility effects to the models that omit such
effects yielded very similar results and so are not reported here to preserve space.
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in the middle of the global financial crisis (2008:12). Here the SV model generates a much higher

conditional volatility than the constant-volatility benchmark, with the SV-MIDAS model again

falling in the middle.

To measure the importance of such differences, we follow Amisano and Giacomini (2007),

Geweke and Amisano (2010), and Hall and Mitchell (2007) and compute the average log-score

differential (LSD)

LSDi =

t∑
τ=t

(LSi,τ − LSRW,τ ) , (38)

where LSi,τ (LSRW,τ ) denotes the log-score of model i (RW), computed at time τ. Positive values

of LSDi indicate that model i produces more accurate density forecasts than the RW model

and the larger the value, the greater the improvements.

Table 7 and Table 8 report results for the log-score measure for the IPI growth rate series

(Table 7) and the inflation rate (Table 8). Once again the first column reports the value of the

LSD for a given benchmark model that does not include MIDAS effects (i.e., AR, FAR, AR-SV,

and FAR-SV models). Compared with the RMSFE measure, the LSD results identify more

cases with improvements relative to the various benchmarks, particularly for the models that

include MIDAS-in-volatility effects (rows 4 and 6 in each panel). This makes sense because the

LSD measure reflects improved volatility forecasts whereas the RMSFE measure ignores such

improvements.

To assess the statistical significance of these results, Table 9 reports Diebold-Mariano p-

values for tests of equal predictive ability using the log-scores. We report results only for the

models that add MIDAS effects to the volatility since adding MIDAS to the mean does not result

in significant improvements as we have seen. Adding MIDAS effects to the volatility equation

produces significantly higher values of the log-score measure than the corresponding benchmark

model without such effects. This holds for most of the predictive variables, across most forecast

horizons, and for both the IPI growth rate and inflation rate series.

To see how the log score differential evolves over time, we compute the cumulative log score

differential for model i versus the RW model

CLSDi,t =

t∑
τ=t

(LSi,τ − LSRW,τ ) . (39)
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Positive and increasing values of CLSDi,t suggest that model i produces more accurate density

forecasts than the RW model.

Figure 4 plots cumulative log score differentials for a benchmark AR SV model, an AR-

MIDAS SV and an AR-MIDAS SV-MIDAS model, in each case selecting the MIDAS variable

that is most informative. Top panels show results for the IPI growth rate while bottom panels

show results for the inflation rate. At the 1-month horizon (left panel), the model that incorpo-

rates MIDAS-in-mean effects is notably better than the pure AR model. At the twelve-month

horizon (right panel) there is less to distinguish between the MIDAS-in-mean and AR models,

both of which are dominated by the SV-MIDAS model. For the inflation rate data shown in the

bottom plots, there are no benefits from adding MIDAS-in-mean effects whereas adding MIDAS-

in-volatility effects leads to better forecasting performance at both the one- and twelve-month

horizons.

Following Gneiting and Raftery (2007b), Gneiting and Ranjan (2011) and Groen et al. (2013),

we also compute the average continuously ranked probability score differential (CRPSD) of model

i relative to the RW model22

CRPSDi =

1
t−t+1

∑t
τ=tCRPSi,τ

1
t−t+1

∑t
τ=tCRPSRW,τ

. (40)

CRPSi,τ (CRPSRW,τ ) measures the average distance between the empirical cumulative distri-

bution function (CDF) of yτ (which is simply a step function in yτ ), and the empirical CDF

associated with the predictive density of model i (RW). Values less than one for CRPSDi suggest

that model i performs better than the benchmark RW model.

To save space we do not report the CRPSD results in separate tables but instead summarize

our findings. For the IPI growth rate data the CRPSD results fall between those obtained

for the RMSFE and LSD measures: for all MIDAS models based on the ADS variable we

observe improvements in the forecasts at the shortest horizon (H = 1). In addition, we observe

improvements across all horizons for the MIDAS-in-volatility specifications that include the

ADS variable. Similar, if somewhat weaker, results hold for the MIDAS models based on daily

aggregate stock returns (Ret). For the inflation rate series the CRPSD results are similar to

22Gneiting and Raftery (2007b) explain how the CRPSD measure circumvents some of the problems of the
logarithmic score, most notably the fact that the latter does not reward values from the predictive density that
are close to, but different from, the realization.
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the RMSFE ratio results reported in Table 5 and there is very little evidence of systematic

improvements in forecasting performance due to adding MIDAS effects in the mean or volatility

specifications.

Figures 5 and 6 illustrate how the ranking of IPI growth rate and inflation models varies

across the RMSFE, LSD, and CRPSD criteria. Focusing on Figure 5, as the two figures contain a

similar message, the left panel plots performance according to the RMSFE ratio on the horizontal

axis against performance according to the log-score criterion on the vertical axis. The figure

shows very clearly that the SV-MIDAS models perform better than the SV models which in

turn outperform the linear models on the log score criterion. In contrast, there is not much to

differentiate between the SV and SV-MIDAS models according to the RMSFE criterion. Thus,

the benefits from using MIDAS models to incorporate daily information show up more strongly

in the density forecast measures than in point forecasts. The right windows in Figure 5 show

a close relation between the ranking by the RMSFE and CRPSD criteria within each class of

models. Importantly, however, the CRPSD measure ranks the SV-MIDAS models better than

the SV models which in turn perform better than the linear models, consistent with the ranking

by the LSD criterion. Figure 6 conveys the same information for inflation models across the

RMSFE, LSD, and CRPSD criteria.

4.3.3 Real time data

One concern about the factor augmented model is that many of the underlying macro variables

are not observed in real time and are subject to data revisions. To address this point, we estimate

models that replace the macroeconomic factors with the monthly NAPM PMI series which is

available in real time. We find that the density forecasts implied by the resulting models are

virtually indistinguishable from those we obtain from the baseline FAR models, thus suggesting

that the role of data revisions in our setting is somewhat limited.23

23In particular, we find that for both the IPI growth and inflation rate series the RMSFE ratio obtained
from comparing a FAR model to an AR model augmented with the NAPM PMI series is always statistically
indistinguishable from one. Similarly, the log score differential between the same two sets of models is in almost
all cases statistically indistinguishable from zero, with the exception of the inflation series for H = 12, for which
we obtain an LSD value of 0.012 with a p−value of 0.030.
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5 Forecast combinations

Our analysis covers multiple specifications that differ in terms of the identity of the daily MIDAS

variables, inclusion of macro factors, as well as assumptions about volatility dynamics. In

practice a forecaster will not know which, if any, model produces the best forecasts and so

is confronted with model uncertainty. An attractive strategy in this situation is to combine

forecasts from multiple models, rather than attempting to select a single best model or use a

large model that nests all other specifications.

5.1 Forecast combination schemes

To see how model combination works in our setting, let Mi denote a specific model and suppose

we have N different models with predictive densities
{
p
(
yt+1|Mi,Dt

)}N
i=1

. Our starting point

is the equal-weighted pool (EWP) which assigns equal weights to each model Mi

p
(
yt+1| Dt

)
=

1

N

N∑
i=1

p
(
yt+1|Mi,Dt

)
. (41)

Next, consider the optimal predictive pool proposed by Geweke and Amisano (2011),

p
(
yt+1| Dt

)
=

N∑
i=1

w∗t,i × p
(
yt+1|Mi,Dt

)
. (42)

We use the past predictive performance of the N models to recursively determine the (N × 1)

vector of weights w∗t =
[
w∗t,1, ..., w

∗
t,N

]
. This requires determining w∗t by solving a maximization

problem using only information available at time t,

w∗t = arg max
wt

t−1∑
τ=1

log

[
N∑
i=1

wit × Sτ+1,i

]
, (43)

subject to w∗t ∈ [0, 1]N . Sτ+1,i = exp (LSτ+1,i) is the exponential of the recursively computed

log-score for model i at time τ + 1. We follow Geweke and Amisano (2010) and compute the

marginal likelihoods by cumulating the predictive log scores of each model, after conditioning

on an initial warm-up estimation sample, as

Pr
(
Dt
∣∣Mi

)
= exp

 t∑
τ=t

LSτ.i

 . (44)
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As t→∞ the weights chosen according to (43) minimize the Kullback-Leibler distance between

the data generating process and the combined density. Finally, we consider Bayesian model

averaging (BMA) which weighs the individual models by their posterior probabilities

p
(
yt+1| Dt

)
=

N∑
i=1

Pr
(
Mi| Dt

)
p
(
yt+1|Mi,Dt

)
. (45)

Here Pr
(
Mi| Dt

)
denotes the posterior probability of model i, computed using all information

available at time t,

Pr
(
Mi| Dt

)
=

Pr
(
Dt
∣∣Mi

)
Pr (Mi)∑N

j=1 Pr (Dt|Mj) Pr (Mj)
. (46)

Pr
(
Dt
∣∣Mi

)
and Pr (Mi) are the marginal likelihood and prior probability for model i, respec-

tively. We assume that all models are equally likely a priori and so set Pr (Mi) = 1/N .

The idea of using forecast combination methods in MIDAS regressions is also explored by

Andreou et al. (2013) in the context of predicting quarterly GDP growth by means of a host of

daily financial variables. We note, however, that Andreou et al. (2013) combine point forecasts

from the individual MIDAS models whereas our approach combines density forecasts.

5.2 Empirical results for forecast combinations

Panels A and B of Table 10 report out-of-sample results for the RMSFE ratio and log-score

differential using the three combination schemes discussed above and so are directly comparable

to the values shown in Tables 4-9. Panels C, D, E and F conduct Diebold-Mariano tests against

the AR model (Panels C and D) or the AR-SV model (Panels E and F). Results for the IPI

growth rate are shown in the top panels while the bottom panels show results for the inflation

rate data.

For the IPI growth rate series the RMSFE ratios in Panel A are comparable to, or sometimes

even better than, the best of the univariate models reported in Table 4. A similar finding holds

for the log-scores in Panel B which are comparable to the best models from Table 7. At the

shortest horizon (H = 1) the results are particularly strong for the BMA and optimal prediction

pools, whereas the results tend to favor the equal-weighting scheme at horizons H ≥ 3. This

suggests that estimation errors in obtaining the combination weights matter more at the longer

horizons.
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Using the Diebold-Mariano statistic to formally test if the combined forecasts produce bet-

ter out-of-sample results than specific benchmarks, we find that all three combination schemes

generate significantly better performance at the one-month horizon than both an AR bench-

mark (Panels C and D) and an AR-SV benchmark (Panels E and F). The results are a little

weaker at the longer horizons, although the equal-weighted combination continues to signifi-

cantly outperform the two benchmarks across most of the horizons and for both performance

metrics.

Quite similar results hold for the inflation rate data. Again we find that the model combi-

nations generate significantly better forecasts than the random walk model. Moreover, all three

combinations produce better forecasts than the AR benchmark, particularly when measured

along the log-score metric. For horizons up to H = 6 months the BMA and optimal prediction

pool produce significantly better forecasts than the AR-SV model as measured by the average

log-score.

To gain insights into how adding MIDAS effects to the volatility specification helps improve

the forecasts, Figure 7 provides a recursive plot of the combination weights assigned to different

classes of models. Except for the earliest part of the post-1982 sample, the AR-MIDAS and

AR-MIDAS SV models receive very little weight. In the remainder of the sample the two

models with SV-MIDAS dynamics receive most of the probability weight. The FAR-MIDAS

SV-MIDAS model is particularly important for H = 1 whereas the AR-MIDAS SV-MIDAS

receives significant weight for H = 12. The FAR-MIDAS SV model receives considerable weight

around 2000 in the inflation rate forecasts, particularly at the one-month horizon. Looking at

the figure from another perspective, the optimal weights assigned to the SV-MIDAS models is 50

percent or higher for the IPI growth rate and inflation at both horizons after an initial learning

period. This underscores the superior out-of-sample predictive ability of these models.

Turning to the probability mass assigned to MIDAS models containing the eight different

daily predictor variables, Figure 8 shows that the ADS business cycle variable receives most of

the weight in the short-run IPI growth rate forecasts (top panels), whereas the Ffr, Spr, Ret and

Hml variables are more important at the 12-month horizon. Less clear-cut results are obtained

for the inflation rate data (bottom panels).

A key observation from these plots is that the weighting of the different models fluctuates
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considerably over time. Del Negro et al. (2014) develop a dynamic version of the prediction pool

approach which they show works well for combinations of two models. Extending their approach

to more than two models is computationally demanding so we stop short of implementing their

approach empirically. However, it is worth noting that the evolution in the combination weights

shown in Figures 7 and 8 resembles the type of patterns found by Del Negro et al. (2014).

In summary, these results show clear advantages from using forecast combinations as a way to

deal with model uncertainty. The superior predictive ability of SV-MIDAS models is manifest in

large weights from an optimal prediction pool. Moreover, our results clearly show time variations

in the optimal weights assigned to different MIDAS predictor variables and different types of

model specifications. By recursively updating the model weights, the forecast combinations

adaptively adjust to changes and produce better out-of-sample forecasts.

6 Conclusions

We develop a Bayesian approach to estimation of forecasting models that allows for MIDAS

effects in both the first and second moments of the predicted series along with stochastic volatility

dynamics. Our SV-MIDAS approach is easy to implement using conventional Gibbs sampling

and generates predictive densities that only condition on the data available when the forecasts

are made.

Empirical applications to monthly growth in industrial production and the monthly inflation

rate in the U.S. show that the inclusion of MIDAS-in-volatility effects leads to significantly better

in-sample and out-of-sample density forecasts compared with similar specifications without such

MIDAS effects. We do not find similar improvements using root mean squared error measures

based on the accuracy of point forecasts, nor do we find that adding MIDAS effects to the mean

equation leads to systematically better forecasts. Importantly, our results hold across multiple

forecast horizons stretching from one month through twelve months, and continue to hold even

when a state-of-the-art model with factors in the mean and stochastic volatility dynamics is

used as the benchmark.

Our results are obtained using daily data on individual variables. Some variables, notably

market-wide stock returns and the business cycle index of Aruoba et al. (2009), work better than

others when used in the MIDAS specification. This implies that model uncertainty could be an
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issue. To handle this, we investigate a variety of model combination approaches. Empirically we

find strong evidence that such combinations produce significantly better out-of-sample density

forecasts.

Our empirical results open up a promising new venue for improving on macroeconomic and

financial volatility forecasts using the MIDAS-in-volatility approach. Previous studies have

found that it is difficult to improve out-of-sample volatility forecasts of variables such as stock

returns relative to a model that simply uses lagged volatility as a predictor (e.g., Paye, 2012).

However, such studies have not explored the combination of stochastic volatility dynamics with

MIDAS-in-volatility effects as proposed here.
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Table 1. Bayes factors

Panel A: AR-MIDAS vs. AR

Daily series
IPI growth rate Inflation rate

H = 1 H = 3 H = 6 H = 9 H = 12 H = 1 H = 3 H = 6 H = 9 H = 12

Ffr 5.035 0.702 -1.227 -1.527 -2.085 12.566 2.534 -1.453 -9.971 5.990
Spr -6.053 -26.141 -17.451 -8.096 3.646 11.873 7.453 -6.287 -13.761 -2.861
Ret 20.478 28.045 7.986 2.773 -1.942 -3.607 -5.921 -4.744 -5.305 -4.179
Smb 4.966 -0.061 -4.637 -5.252 -4.767 -1.058 -1.250 -4.831 -5.519 -6.226
Hml -3.231 -4.199 -4.267 -2.500 -0.393 -5.216 -1.999 -1.706 -3.561 -7.859
Mom -0.705 7.688 -5.670 -11.231 -16.720 -1.653 -5.624 -6.606 -13.098 -6.170
ADS 85.414 2.114 4.607 3.411 -2.384 -1.945 0.243 -6.489 -5.122 -3.329
Def 6.435 -3.377 -6.891 -9.013 -15.840 -3.451 -8.375 -14.600 -17.409 -13.951

Panel B: FAR-MIDAS vs. FAR

Ffr -2.099 -6.896 -1.572 -1.103 -4.457 -1.999 -0.852 -1.987 -7.694 -4.891
Spr -0.961 -7.869 -12.290 -12.635 -12.137 -1.907 1.029 -3.540 -8.521 -2.466
Ret 3.747 7.341 1.402 -1.401 -15.852 0.324 -2.677 -6.320 -7.112 -5.014
Smb -2.219 -5.505 -3.567 -5.353 -7.285 2.169 -1.577 -7.517 -6.575 -7.477
Hml -3.477 -3.753 -5.265 -4.319 -2.975 -4.755 -1.518 -2.118 -2.393 -3.471
Mom -3.274 -3.776 -11.284 -9.386 -9.294 -3.477 -3.570 -6.756 -9.167 -5.447
ADS 34.634 -2.313 2.936 -0.631 -6.367 2.265 15.480 -10.444 -13.588 -11.300
Def 0.993 -5.984 -8.698 -5.164 -8.037 -1.722 5.834 -10.001 -14.275 -10.424

Panel C: AR-MIDAS SV vs. AR SV

Ffr -4.202 -9.050 -19.678 -9.468 -28.776 -3.492 -10.224 -2.380 -3.028 -1.154
Spr -19.166 -40.150 -28.134 -25.714 -6.167 -2.287 -4.322 -14.816 -39.427 -26.722
Ret 9.271 -2.800 -2.844 -13.269 -9.567 -2.388 -5.919 -28.664 -1.237 -7.630
Smb 1.561 -8.388 -12.046 -16.369 -17.933 -0.570 1.588 -2.780 4.508 -5.152
Hml -9.638 -15.631 -31.106 -27.338 -22.168 -5.448 -5.963 -10.014 -2.291 -10.410
Mom -4.287 -9.398 -39.450 -36.212 -30.285 -3.941 -1.296 -22.837 4.467 -2.078
ADS 66.997 4.527 9.210 6.420 -7.445 -2.960 -7.430 -18.625 -9.220 -18.920
Def 1.671 -11.992 -33.778 -20.861 -18.997 4.234 -2.469 -0.468 -3.536 -1.093

Panel D: FAR-MIDAS SV vs. FAR SV

Ffr -3.672 -8.625 -12.921 -3.371 -24.363 -7.179 -8.728 -2.815 12.864 -3.761
Spr 1.160 -11.630 -10.596 -25.894 -12.209 -3.641 -7.215 -15.783 4.471 -10.397
Ret -0.930 -1.142 -7.295 -7.828 -25.213 -5.080 -12.999 -29.673 6.462 -15.077
Smb -5.187 -13.988 -9.639 -9.327 -17.292 0.170 -1.993 10.936 14.268 -8.200
Hml -6.695 -15.436 -26.916 -25.179 -24.520 -7.328 -8.311 -3.893 5.241 -8.380
Mom -8.668 -15.073 -28.388 -20.395 -28.185 -2.634 -3.499 -30.219 14.843 -1.001
ADS 38.654 -11.055 0.162 3.597 -8.821 4.567 3.353 -7.000 -4.409 -13.625
Def -4.720 -16.080 -33.443 -17.634 -11.370 10.607 6.908 3.056 4.640 -0.812

Panel E: AR-MIDAS SV-MIDAS vs. AR-MIDAS SV

Ffr 9.962 19.527 38.172 41.127 59.056 21.726 31.325 61.524 27.415 27.252
Spr 0.553 -3.654 25.815 8.516 66.973 29.973 50.073 55.670 2.331 -6.704
Ret 27.660 38.825 49.499 35.354 69.606 19.531 36.202 54.915 30.917 21.801
Smb 19.832 25.954 43.312 30.447 62.111 20.785 36.453 60.542 34.179 23.220
Hml 7.954 18.359 26.601 26.642 67.721 9.155 36.214 59.045 33.045 18.866
Mom 13.922 31.694 23.702 13.589 43.405 12.493 39.514 47.950 28.720 27.367
ADS 79.708 36.043 56.360 44.895 70.462 15.739 28.742 43.332 14.847 5.825
Def 15.107 23.652 16.992 16.378 45.410 20.792 28.700 46.399 16.192 0.757

Panel F: FAR-MIDAS SV-MIDAS vs. FAR-MIDAS SV

Ffr 22.758 26.663 29.059 43.199 57.174 26.241 34.665 67.709 30.086 29.776
Spr 30.299 32.302 30.451 14.262 58.036 33.900 41.432 62.925 13.746 16.824
Ret 27.510 42.061 33.666 35.622 46.425 31.173 32.218 53.554 25.713 22.762
Smb 24.115 28.187 32.785 32.607 60.811 33.460 33.349 66.882 34.285 27.958
Hml 20.403 24.142 22.600 27.687 59.379 19.027 31.942 64.711 24.572 21.799
Mom 22.759 29.314 11.173 18.235 49.743 24.889 39.622 52.387 23.861 32.933
ADS 57.213 33.414 39.822 41.413 64.113 33.828 44.358 46.618 15.392 18.570
Def 23.176 18.889 -8.501 25.032 57.831 37.629 47.702 59.418 24.439 26.984

This table reports pairwise model comparisons using twice the natural logarithm of the Bayes factor, 2 × (lnB1,0), where

B1,0 denotes the Bayes factor obtained from comparing model M1 vs. M0 B1,0 = Pr
(
Dt
∣∣M1

)
/Pr

(
Dt
∣∣M0

)
. Pairwise

model comparisons are listed in the first column, where the notation ‘AR’ refers to an autoregressive model, ‘AR-MIDAS’

refers to an augmented distributed lag MIDAS model, ‘FAR’ refers to a factor augmented autoregressive model, and ‘FAR-

MIDAS’ refers to a factor augmented distributed lag MIDAS model. The suffixes ‘SV’ and ‘SV-MIDAS’ denote models with

stochastic volatility and MIDAS stochastic volatility, respectively. Column headers denote the daily predictor used in the

MIDAS models, namely: the effective Federal Funds rate (Ffr), the interest rate spread between the 10-year government

bond rate and the federal funds rate (Spr), value-weighted stock returns (Ret), the SML portfolio return (Smb), the HML

portfolio return (Hml), the MOM portfolio return (Mom), the business cycle variable of Aruoba et al. (2009) (ADS), and

the default spread between BAA and AAA rated bonds. Kass and Raftery (1995) suggest interpreting the results as follows:

For 2 × (lnB1,0) less than 0, the evidence favors M0 over M1; for 2 × (lnB1,0) 0-2, 2-6, 6-10, and higher than 10, there

is “weak evidence”, “some evidence”, “strong evidence”, and “very strong evidence” in favor of M1 relative to M0. Bold

numbers denote weak or stronger evidence in favor of M1.



Table 2. Bayes factors, alternative prior choices

AR-MIDAS SV vs. AR SV

(a) ψ = 100, v0 = 0.001, kξ = 0.1 (b) ψ = 2.5, v0 = 0.1, kξ = 0.1

Daily series

IPI growth rate Inflation rate IPI growth rate Inflation rate

H = 1 H = 12 H = 1 H = 12 H = 1 H = 12 H = 1 H = 12

Ffr -0.819 -29.199 -0.335 -20.352 -4.692 -2.073 2.811 -0.043
Ret 10.779 -11.589 14.137 -5.611 -2.725 -4.973 -0.842 0.319
ADS 69.926 -7.525 69.888 -2.774 -5.395 -26.804 0.897 2.450

(c) ψ = 25, v0 = 0.005, kξ = 0.01 (d) ψ = 25, v0 = 0.005, kξ = 1

Ffr 2.120 -9.915 4.528 -14.575 10.306 1.964 8.730 -10.657
Ret 24.437 -0.700 26.182 4.071 2.975 -1.891 -0.574 -10.838
ADS 85.006 3.966 68.382 3.443 -0.186 -20.695 -5.031 -32.238

FAR-MIDAS SV vs. FAR SV

(a) ψ = 100, v0 = 0.001, kξ = 0.1 (b) ψ = 2.5, v0 = 0.1, kξ = 0.1

Ffr 1.726 -23.044 -4.766 -20.588 -6.127 -8.232 1.072 -4.551
Ret 3.879 -27.529 5.099 -21.932 -2.543 -18.765 -2.188 -1.835
ADS 42.650 -10.782 43.305 -9.361 2.625 -19.495 1.057 -1.304

(c) ψ = 25, v0 = 0.005, kξ = 0.01 (d) ψ = 25, v0 = 0.005, kξ = 1

Ffr 1.820 -6.595 -2.997 -7.441 -2.025 -6.236 -1.054 -4.355
Ret 5.916 -19.761 17.027 -41.753 -0.607 -8.643 0.934 -24.196
ADS 38.818 -8.247 38.300 -12.530 5.672 -21.775 7.647 -6.888

AR-MIDAS SV-MIDAS vs. AR-MIDAS SV

(a) ψ = 100, v0 = 0.001, kξ = 0.1 (b) ψ = 2.5, v0 = 0.1, kξ = 0.1

Ffr 8.316 60.694 6.066 53.630 20.346 22.493 10.200 14.390
Ret 24.646 67.923 25.115 59.494 22.267 16.764 9.643 13.185
ADS 78.306 68.327 80.780 59.034 17.677 -6.731 10.482 10.441

(c) ψ = 25, v0 = 0.005, kξ = 0.01 (d) ψ = 25, v0 = 0.005, kξ = 1

Ffr -27.646 -12.119 -47.857 12.815 1.542 1.919 29.526 -439.053
Ret -7.881 -10.743 38.489 41.670 -10.166 -6.641 15.838 15.640
ADS 54.511 -6.395 81.267 55.592 -10.243 -19.511 23.591 -6.302

FAR-MIDAS SV-MIDAS vs. FAR-MIDAS SV

(a) ψ = 100, v0 = 0.001, kξ = 0.1 (b) ψ = 2.5, v0 = 0.1, kξ = 0.1

Ffr 20.182 53.282 23.200 53.929 27.107 29.778 10.369 19.705
Ret 25.108 44.802 31.008 47.488 31.300 18.359 11.329 17.826
ADS 59.082 61.700 63.051 60.297 32.583 10.270 12.650 14.961

(c) ψ = 25, v0 = 0.005, kξ = 0.01 (d) ψ = 25, v0 = 0.005, kξ = 1

Ffr -24.640 -8.949 -15.869 -95.626 4.465 4.132 -57.439 -195.555
Ret -15.360 -23.657 38.760 -10.402 7.004 -4.765 31.490 1.388
ADS 14.059 -9.982 38.815 19.207 11.788 -9.928 31.260 16.555

This table reports pairwise model comparisons under four different prior choices. The table entries are equal to twice the

natural logarithm of the Bayes factor, 2×(lnB1,0), where B1,0 denotes the Bayes factor obtained from comparing model M1

vs. M0 B1,0 = Pr
(
Dt
∣∣M1

)
/Pr

(
Dt
∣∣M0

)
. Pairwise model comparisons are listed in the first column, where the notation

‘AR’ refers to an autoregressive model, ‘AR-MIDAS’ refers to an augmented distributed lag MIDAS model, ‘FAR’ refers to

a factor augmented autoregressive model, and ‘FAR-MIDAS’ refers to a factor augmented distributed lag MIDAS model.

The suffixes ‘SV’ and ‘SV-MIDAS’ denote models with stochastic volatility and MIDAS stochastic volatility, respectively.

Column headers denote the daily predictor used in the MIDAS models, namely: the effective Federal Funds rate (Ffr),

the interest rate spread between the 10-year government bond rate and the federal funds rate (Spr), value-weighted stock

returns (Ret), the SML portfolio return (Smb), the HML portfolio return (Hml), the MOM portfolio return (Mom), the

business cycle variable of Aruoba et al. (2009) (ADS), and the default spread between BAA and AAA rated bonds. Kass

and Raftery (1995) suggest interpreting the results as follows: For 2 × (lnB1,0) less than 0, the evidence favors M0 over

M1; for 2× (lnB1,0) 0-2, 2-6, 6-10, and higher than 10, there is “weak evidence”, “some evidence”, “strong evidence”, and

“very strong evidence” in favor of M1 relative to M0. Bold numbers denote weak or stronger evidence in favor of M1.



Table 3. F test on the statistical significance of the MIDAS weighting schemes

Daily series

IPI growth rate Inflation rate

H = 1 H = 3 H = 6 H = 9 H = 12 H = 1 H = 3 H = 6 H = 9 H = 12

Ffr 0.010 0.773 0.420 0.297 0.784 0.170 0.490 0.770 0.995 0.932
Spr 0.171 0.028 0.005 0.018 0.010 0.088 0.235 0.067 0.007 0.008
Ret 0.402 0.003 0.008 0.003 0.434 0.228 0.157 0.310 0.453 0.872
Smb 0.234 0.337 0.762 0.276 0.547 0.140 0.307 0.707 0.427 0.932
Hml 0.803 0.594 0.128 0.101 0.062 0.830 0.364 0.673 0.393 0.496
Mom 0.944 0.105 0.132 0.493 0.010 0.342 0.106 0.104 0.354 0.144
ADS 0.000 0.000 0.000 0.187 0.722 0.021 0.000 0.029 0.842 0.061
Def 0.003 0.066 0.064 0.031 0.093 0.037 0.144 0.155 0.196 0.063

This table reports the p-values of an F test that the MIDAS coefficients (θ1, ..., θp) and
(
θh,1, ..., θh,p

)
are jointly equal to

zero. We use the posterior means and variance-covariances of the posterior distributions for (θ1, ..., θp) and
(
θh,1, ..., θh,p

)
as inputs in the F tests. Bold numbers indicate significance at the 10 percent level.
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Table 4. Out-of-sample forecast performance for IPI growth rate - RMSFE

Model
No

Ffr Spr Ret Smb Hml Mom ADS Def
Midas

H = 1

AR-MIDAS 0.750 0.750 0.769 0.728 0.747 0.754 0.747 0.669 0.741
FAR-MIDAS 0.683 0.687 0.682 0.679 0.684 0.686 0.684 0.647 0.679
AR-MIDAS SV 0.737 0.740 0.747 0.715 0.735 0.737 0.735 0.652 0.725
AR-MIDAS SV-MIDAS 0.745 0.750 0.718 0.738 0.742 0.738 0.657 0.728
FAR-MIDAS SV 0.675 0.681 0.673 0.668 0.678 0.675 0.678 0.635 0.672
FAR-MIDAS SV-MIDAS 0.683 0.675 0.672 0.680 0.678 0.680 0.639 0.673

H = 3

AR-MIDAS 0.804 0.814 0.871 0.775 0.807 0.809 0.786 0.811 0.810
FAR-MIDAS 0.804 0.810 0.809 0.791 0.809 0.807 0.799 0.802 0.810
AR-MIDAS SV 0.804 0.820 0.837 0.774 0.807 0.805 0.800 0.794 0.811
AR-MIDAS SV-MIDAS 0.821 0.838 0.776 0.810 0.809 0.795 0.797 0.813
FAR-MIDAS SV 0.791 0.799 0.799 0.779 0.799 0.792 0.788 0.792 0.796
FAR-MIDAS SV-MIDAS 0.805 0.801 0.785 0.806 0.801 0.794 0.796 0.803

H = 6

AR-MIDAS 0.789 0.813 0.839 0.784 0.794 0.792 0.794 0.779 0.801
FAR-MIDAS 0.778 0.783 0.796 0.776 0.781 0.784 0.788 0.775 0.792
AR-MIDAS SV 0.791 0.810 0.815 0.778 0.795 0.793 0.813 0.775 0.802
AR-MIDAS SV-MIDAS 0.813 0.818 0.779 0.795 0.793 0.808 0.776 0.804
FAR-MIDAS SV 0.763 0.774 0.776 0.760 0.765 0.765 0.776 0.761 0.774
FAR-MIDAS SV-MIDAS 0.779 0.779 0.764 0.769 0.768 0.779 0.762 0.781

H = 9

AR-MIDAS 0.750 0.765 0.772 0.755 0.759 0.752 0.764 0.743 0.763
FAR-MIDAS 0.749 0.757 0.767 0.752 0.757 0.753 0.759 0.750 0.753
AR-MIDAS SV 0.755 0.769 0.768 0.752 0.759 0.758 0.784 0.747 0.765
AR-MIDAS SV-MIDAS 0.773 0.776 0.753 0.761 0.756 0.775 0.749 0.764
FAR-MIDAS SV 0.749 0.763 0.763 0.750 0.753 0.754 0.761 0.750 0.751
FAR-MIDAS SV-MIDAS 0.765 0.769 0.749 0.754 0.751 0.760 0.751 0.752

H = 12

AR-MIDAS 0.703 0.730 0.719 0.705 0.708 0.702 0.735 0.705 0.732
FAR-MIDAS 0.694 0.723 0.726 0.713 0.703 0.695 0.712 0.700 0.703
AR-MIDAS SV 0.714 0.729 0.707 0.719 0.720 0.715 0.736 0.719 0.734
AR-MIDAS SV-MIDAS 0.732 0.711 0.715 0.717 0.712 0.733 0.716 0.736
FAR-MIDAS SV 0.699 0.720 0.709 0.712 0.704 0.703 0.713 0.701 0.704
FAR-MIDAS SV-MIDAS 0.723 0.715 0.714 0.706 0.703 0.715 0.704 0.707

This table reports the ratio between the RMSFE of model i and the RMSFE of the Random Walk (RW) model, computed
as

RMSFEi =

√
1

t−t+1

∑t
τ=t e

2
i,τ√

1
t−t+1

∑t
τ=t e

2
RW,τ

,

where e2i,τ and e2RW,τ are the squared forecast errors at time τ generated by model i and the RW model, respectively,

and i denotes any of the models described in section 3. Values less than one for RMSFEi indicate that model i produces

more accurate point forecasts than the RW model. The notation ‘AR’ refers to an autoregressive model, ‘AR-MIDAS’

refers to an augmented distributed lag MIDAS model, ‘FAR’ refers to a factor augmented autoregressive model, and ‘FAR-

MIDAS’ refers to a factor augmented distributed lag MIDAS model. The suffixes ‘SV’ and ‘SV-MIDAS’ denote models

with stochastic volatility and MIDAS stochastic volatility, respectively. For MIDAS models, the column headers denote

the daily predictor used in the regressions, namely: the effective Federal Funds rate (Ffr), the interest rate spread between

the 10-year government bond rate and the federal funds rate (Spr), value-weighted stock returns (Ret), the SML portfolio

return (Smb), the HML portfolio return (Hml), the MOM portfolio return (Mom), the business cycle variable of Aruoba

et al. (2009) (ADS), and the default spread between BAA and AAA rated bonds. All forecasts and forecast errors are

produced with recursive estimates of the models. The out-of-sample period starts in 1982:1 and ends in 2011:12. Bold

numbers indicate the lowest RMSFE across all predictors for a given model.



Table 5. Out-of-sample forecast performance for inflation rate - RMSFE

Model
No

Ffr Spr Ret Smb Hml Mom ADS Def
Midas

H = 1

AR-MIDAS 0.918 0.912 0.905 0.921 0.921 0.921 0.928 0.919 0.930
FAR-MIDAS 0.918 0.920 0.914 0.916 0.922 0.921 0.925 0.916 0.918
AR-MIDAS SV 0.909 0.907 0.905 0.910 0.913 0.911 0.923 0.910 0.913
AR-MIDAS SV-MIDAS 0.905 0.901 0.912 0.913 0.913 0.922 0.909 0.917
FAR-MIDAS SV 0.911 0.915 0.916 0.910 0.915 0.913 0.923 0.913 0.908
FAR-MIDAS SV-MIDAS 0.914 0.910 0.910 0.914 0.914 0.921 0.908 0.908

H = 3

AR-MIDAS 0.817 0.825 0.810 0.824 0.822 0.819 0.825 0.821 0.836
FAR-MIDAS 0.819 0.829 0.816 0.825 0.825 0.820 0.826 0.808 0.813
AR-MIDAS SV 0.815 0.822 0.812 0.817 0.814 0.815 0.817 0.814 0.823
AR-MIDAS SV-MIDAS 0.822 0.811 0.819 0.816 0.815 0.817 0.812 0.827
FAR-MIDAS SV 0.815 0.827 0.813 0.817 0.813 0.816 0.818 0.800 0.806
FAR-MIDAS SV-MIDAS 0.825 0.811 0.818 0.816 0.816 0.818 0.799 0.807

H = 6

AR-MIDAS 0.795 0.792 0.800 0.804 0.796 0.801 0.804 0.809 0.820
FAR-MIDAS 0.802 0.803 0.809 0.813 0.806 0.806 0.812 0.813 0.816
AR-MIDAS SV 0.798 0.795 0.804 0.812 0.799 0.799 0.803 0.814 0.795
AR-MIDAS SV-MIDAS 0.786 0.791 0.795 0.788 0.794 0.796 0.796 0.799
FAR-MIDAS SV 0.806 0.806 0.811 0.816 0.800 0.806 0.811 0.810 0.791
FAR-MIDAS SV-MIDAS 0.790 0.796 0.798 0.790 0.797 0.800 0.794 0.791

H = 9

AR-MIDAS 0.808 0.822 0.832 0.821 0.814 0.816 0.821 0.828 0.842
FAR-MIDAS 0.819 0.837 0.842 0.834 0.827 0.823 0.831 0.837 0.843
AR-MIDAS SV 0.798 0.799 0.824 0.791 0.787 0.790 0.790 0.800 0.790
AR-MIDAS SV-MIDAS 0.801 0.805 0.794 0.790 0.794 0.796 0.800 0.795
FAR-MIDAS SV 0.818 0.804 0.811 0.800 0.788 0.793 0.798 0.805 0.788
FAR-MIDAS SV-MIDAS 0.809 0.814 0.805 0.793 0.797 0.803 0.804 0.791

H = 12

AR-MIDAS 0.786 0.785 0.802 0.794 0.792 0.801 0.793 0.798 0.810
FAR-MIDAS 0.782 0.796 0.798 0.787 0.788 0.790 0.790 0.797 0.797
AR-MIDAS SV 0.749 0.750 0.754 0.749 0.747 0.756 0.746 0.760 0.755
AR-MIDAS SV-MIDAS 0.757 0.765 0.755 0.753 0.765 0.752 0.759 0.760
FAR-MIDAS SV 0.750 0.755 0.756 0.752 0.747 0.753 0.748 0.753 0.747
FAR-MIDAS SV-MIDAS 0.762 0.764 0.759 0.754 0.762 0.755 0.756 0.754

This table reports the ratio between the RMSFE of model i and the RMSFE of the Random Walk (RW) model, computed
as

RMSFEi =

√
1

t−t+1

∑t
τ=t e

2
i,τ√

1
t−t+1

∑t
τ=t e

2
RW,τ

,

where e2i,τ and e2RW,τ are the squared forecast errors at time τ generated by model i and the RW model, respectively,

and i denotes any of the models described in section 3. Values less than one for RMSFEi indicate that model i produces

more accurate point forecasts than the RW model. The notation ‘AR’ refers to an autoregressive model, ‘AR-MIDAS’

refers to an augmented distributed lag MIDAS model, ‘FAR’ refers to a factor augmented autoregressive model, and ‘FAR-

MIDAS’ refers to a factor augmented distributed lag MIDAS model. The suffixes ‘SV’ and ‘SV-MIDAS’ denote models

with stochastic volatility and MIDAS stochastic volatility, respectively. For MIDAS models, the column headers denote

the daily predictor used in the regressions, namely: the effective Federal Funds rate (Ffr), the interest rate spread between

the 10-year government bond rate and the federal funds rate (Spr), value-weighted stock returns (Ret), the SML portfolio

return (Smb), the HML portfolio return (Hml), the MOM portfolio return (Mom), the business cycle variable of Aruoba

et al. (2009) (ADS), and the default spread between BAA and AAA rated bonds. All forecasts and forecast errors are

produced with recursive estimates of the models. The out-of-sample period starts in 1982:1 and ends in 2011:12. Bold

numbers indicate the lowest RMSFE across all predictors for a given model.



Table 6. Diebold-Mariano p-values from tests of equal predictive ability - RMSFE

Comparison Ffr Spr Ret Smb Hml Mom ADS Def

Panel A: IPI growth rate

H = 1

AR-MIDAS vs. AR 0.353 0.969 0.018 0.236 0.846 0.210 0.013 0.264
AR-MIDAS SV vs. AR SV 0.509 0.945 0.012 0.326 0.631 0.220 0.003 0.133
FAR-MIDAS vs. FAR 0.704 0.384 0.260 0.847 0.777 0.691 0.015 0.285
FAR-MIDAS SV vs. FAR SV 0.871 0.300 0.146 0.857 0.546 0.808 0.004 0.299

H = 3

AR-MIDAS vs. AR 0.782 0.999 0.104 0.689 0.762 0.154 0.777 0.610
AR-MIDAS SV vs. AR SV 0.895 0.995 0.065 0.702 0.640 0.301 0.266 0.592
FAR-MIDAS vs. FAR 0.949 0.896 0.153 0.903 0.691 0.417 0.408 0.740
FAR-MIDAS SV vs. FAR SV 0.951 0.917 0.156 0.882 0.659 0.489 0.501 0.579

H = 6

AR-MIDAS vs. AR 0.922 0.991 0.441 0.849 0.635 0.653 0.337 0.820
AR-MIDAS SV vs. AR SV 0.898 0.970 0.278 0.796 0.632 0.960 0.087 0.672
FAR-MIDAS vs. FAR 0.826 0.982 0.393 0.896 0.745 0.976 0.328 0.902
FAR-MIDAS SV vs. FAR SV 0.895 0.977 0.354 0.772 0.645 0.973 0.418 0.774

H = 9

AR-MIDAS vs. AR 0.898 0.913 0.580 0.935 0.546 0.969 0.253 0.897
AR-MIDAS SV vs. AR SV 0.894 0.903 0.427 0.701 0.667 0.992 0.135 0.862
FAR-MIDAS vs. FAR 0.893 0.973 0.595 0.975 0.754 0.984 0.609 0.762
FAR-MIDAS SV vs. FAR SV 0.931 0.989 0.633 0.795 0.869 0.990 0.258 0.730

H = 12

AR-MIDAS vs. AR 0.900 0.675 0.535 0.996 0.451 0.976 0.586 0.961
AR-MIDAS SV vs. AR SV 0.880 0.406 0.850 0.968 0.559 0.953 0.827 0.936
FAR-MIDAS vs. FAR 0.967 0.937 0.997 0.993 0.627 0.971 0.952 0.891
FAR-MIDAS SV vs. FAR SV 0.991 0.655 0.999 0.980 0.706 0.976 0.927 0.850

Panel B: Inflation rate

H = 1

AR-MIDAS vs. AR 0.208 0.014 0.702 0.751 0.826 0.988 0.524 0.951
AR-MIDAS SV vs. AR SV 0.320 0.187 0.604 0.802 0.736 0.993 0.602 0.921
FAR-MIDAS vs. FAR 0.639 0.208 0.418 0.736 0.756 0.963 0.341 0.487
FAR-MIDAS SV vs. FAR SV 0.780 0.853 0.448 0.695 0.708 0.983 0.568 0.408

H = 3

AR-MIDAS vs. AR 0.827 0.210 0.865 0.897 0.724 0.961 0.615 0.903
AR-MIDAS SV vs. AR SV 0.915 0.448 0.770 0.401 0.511 0.730 0.541 0.838
FAR-MIDAS vs. FAR 0.894 0.348 0.788 0.843 0.465 0.969 0.190 0.279
FAR-MIDAS SV vs. FAR SV 0.970 0.327 0.631 0.354 0.529 0.663 0.117 0.225

H = 6

AR-MIDAS vs. AR 0.281 0.765 0.748 0.799 0.754 0.947 0.698 0.817
AR-MIDAS SV vs. AR SV 0.041 0.917 0.952 0.615 0.719 0.972 0.961 0.293
FAR-MIDAS vs. FAR 0.619 0.828 0.802 0.964 0.661 0.946 0.948 0.844
FAR-MIDAS SV vs. FAR SV 0.470 0.818 0.895 0.183 0.509 0.970 0.728 0.057

H = 9

AR-MIDAS vs. AR 0.524 0.918 0.722 0.952 0.742 0.924 0.712 0.791
AR-MIDAS SV vs. AR SV 0.582 0.997 0.341 0.225 0.287 0.323 0.480 0.302
FAR-MIDAS vs. FAR 0.675 0.950 0.765 0.989 0.609 0.934 0.930 0.875
FAR-MIDAS SV vs. FAR SV 0.234 0.387 0.246 0.086 0.140 0.196 0.252 0.116

H = 12

AR-MIDAS vs. AR 0.163 0.806 0.972 0.935 0.889 0.851 0.748 0.963
AR-MIDAS SV vs. AR SV 0.219 0.675 0.432 0.370 0.770 0.193 0.782 0.804
FAR-MIDAS vs. FAR 0.864 0.928 0.877 0.988 0.832 0.880 1.000 0.689
FAR-MIDAS SV vs. FAR SV 0.886 0.850 0.736 0.303 0.752 0.367 0.946 0.262

This table reports Diebold-Mariano p-values under the null that a given MIDAS-in-mean model has the same predictive

ability as its nested non-MIDAS model, using mean squared error loss. The notation ‘AR’ refers to an autoregressive model,

‘AR-MIDAS’ refers to an augmented distributed lag MIDAS model, ‘FAR’ refers to a factor augmented autoregressive model,

and ‘FAR-MIDAS’ refers to a factor augmented distributed lag MIDAS model. The suffixes ‘SV’ and ‘SV-MIDAS’ denote

models with stochastic volatility and MIDAS stochastic volatility, respectively. For MIDAS models, the column headers

denote the daily predictor used in the regressions, namely: the effective Federal Funds rate (Ffr), the interest rate spread

between the 10-year government bond rate and the federal funds rate (Spr), value-weighted stock returns (Ret), the SML

portfolio return (Smb), the HML portfolio return (Hml), the MOM portfolio return (Mom), the business cycle variable of

Aruoba et al. (2009) (ADS), and the default spread between BAA and AAA rated bonds. The underlying p-values are

based on one-sided t-test, where the t-statistics computed with a serial correlation robust variance, using the pre-whitened

quadratic spectral estimation of Andrews and Monahan (1992). Bold numbers indicate significance at the 10 percent level.



Table 7. Out-of-sample forecast performance for IPI growth rate - Log score differentials (LSD)

Model
No

Ffr Spr Ret Smb Hml Mom ADS Def
Midas

H = 1

AR-MIDAS 0.248 0.251 0.239 0.276 0.255 0.244 0.246 0.371 0.258
FAR-MIDAS 0.345 0.342 0.344 0.350 0.343 0.341 0.341 0.397 0.347
AR-MIDAS SV 0.339 0.329 0.310 0.352 0.341 0.326 0.332 0.435 0.343
AR-MIDAS SV-MIDAS 0.342 0.332 0.371 0.360 0.344 0.350 0.448 0.355
FAR-MIDAS SV 0.386 0.380 0.387 0.384 0.379 0.376 0.374 0.443 0.380
FAR-MIDAS SV-MIDAS 0.412 0.422 0.420 0.415 0.411 0.412 0.465 0.415

H = 3

AR-MIDAS 0.235 0.233 0.202 0.274 0.234 0.230 0.245 0.240 0.227
FAR-MIDAS 0.281 0.271 0.272 0.291 0.272 0.276 0.277 0.277 0.270
AR-MIDAS SV 0.304 0.289 0.248 0.302 0.292 0.283 0.290 0.310 0.285
AR-MIDAS SV-MIDAS 0.316 0.288 0.345 0.325 0.315 0.333 0.340 0.321
FAR-MIDAS SV 0.296 0.284 0.280 0.295 0.277 0.275 0.275 0.281 0.274
FAR-MIDAS SV-MIDAS 0.321 0.332 0.343 0.324 0.318 0.325 0.331 0.311

H = 6

AR-MIDAS 0.291 0.291 0.273 0.302 0.284 0.286 0.283 0.300 0.279
FAR-MIDAS 0.322 0.321 0.305 0.323 0.317 0.316 0.307 0.327 0.309
AR-MIDAS SV 0.339 0.312 0.307 0.337 0.322 0.296 0.284 0.351 0.292
AR-MIDAS SV-MIDAS 0.366 0.354 0.380 0.371 0.348 0.344 0.390 0.335
FAR-MIDAS SV 0.368 0.349 0.353 0.356 0.355 0.331 0.328 0.368 0.321
FAR-MIDAS SV-MIDAS 0.390 0.391 0.393 0.395 0.379 0.365 0.404 0.334

H = 9

AR-MIDAS 0.302 0.306 0.294 0.304 0.294 0.298 0.287 0.308 0.289
FAR-MIDAS 0.319 0.317 0.302 0.316 0.311 0.313 0.306 0.318 0.314
AR-MIDAS SV 0.337 0.328 0.304 0.319 0.314 0.299 0.288 0.346 0.308
AR-MIDAS SV-MIDAS 0.386 0.337 0.371 0.364 0.359 0.342 0.384 0.345
FAR-MIDAS SV 0.338 0.334 0.302 0.327 0.325 0.304 0.310 0.343 0.315
FAR-MIDAS SV-MIDAS 0.394 0.351 0.380 0.375 0.368 0.357 0.387 0.368

H = 12

AR-MIDAS 0.348 0.342 0.350 0.344 0.342 0.348 0.324 0.344 0.323
FAR-MIDAS 0.369 0.359 0.348 0.349 0.359 0.366 0.355 0.363 0.360
AR-MIDAS SV 0.360 0.321 0.352 0.347 0.335 0.329 0.318 0.350 0.332
AR-MIDAS SV-MIDAS 0.403 0.414 0.414 0.402 0.411 0.378 0.414 0.379
FAR-MIDAS SV 0.361 0.325 0.343 0.329 0.338 0.328 0.321 0.351 0.347
FAR-MIDAS SV-MIDAS 0.406 0.406 0.394 0.410 0.408 0.394 0.416 0.406

This table reports the average log-score (LS) differential, LSDi =
∑t
τ=t

(
LSi,τ − LSRW,τ

)
, where LSi,τ (LSRW,τ ) denotes

the log-score of model i (RW), computed at time τ , and i denotes any of the models described in section 3. Positive

values of LSDi indicate that model i produces more accurate density forecasts than the RW model. The notation ‘AR’

refers to an autoregressive model, ‘AR-MIDAS’ refers to an augmented distributed lag MIDAS model, ‘FAR’ refers to a

factor augmented autoregressive model, and ‘FAR-MIDAS’ refers to a factor augmented distributed lag MIDAS model.

The suffixes ‘SV’ and ‘SV-MIDAS’ denote models with stochastic volatility and MIDAS stochastic volatility, respectively.

For MIDAS models, the column headers denote the daily predictor used in the regressions, namely: the effective Federal

Funds rate (Ffr), the interest rate spread between the 10-year government bond rate and the federal funds rate (Spr),

value-weighted stock returns (Ret), the SML portfolio return (Smb), the HML portfolio return (Hml), the MOM portfolio

return (Mom), the business cycle variable of Aruoba et al. (2009) (ADS), and the default spread between BAA and AAA

rated bonds. All forecasts and forecast errors are produced with recursive estimates of the models. The out-of-sample

period starts in 1982:1 and ends in 2011:12. Bold numbers indicate the largest LSD across all predictors for a given model.



Table 8. Out-of-sample forecast performance for inflation rate - Log score differentials (LSD)

Model
No

Ffr Spr Ret Smb Hml Mom ADS Def
Midas

H = 1

AR-MIDAS 0.141 0.159 0.158 0.136 0.140 0.134 0.139 0.139 0.137
FAR-MIDAS 0.164 0.161 0.162 0.165 0.167 0.158 0.159 0.167 0.162
AR-MIDAS SV 0.217 0.211 0.214 0.214 0.216 0.210 0.211 0.213 0.223
AR-MIDAS SV-MIDAS 0.242 0.254 0.239 0.241 0.225 0.230 0.235 0.241
FAR-MIDAS SV 0.221 0.211 0.217 0.215 0.222 0.211 0.217 0.228 0.236
FAR-MIDAS SV-MIDAS 0.248 0.259 0.255 0.259 0.238 0.247 0.259 0.264

H = 3

AR-MIDAS 0.206 0.212 0.218 0.198 0.205 0.203 0.197 0.208 0.193
FAR-MIDAS 0.213 0.212 0.213 0.209 0.211 0.210 0.207 0.235 0.220
AR-MIDAS SV 0.267 0.254 0.261 0.258 0.269 0.258 0.264 0.257 0.262
AR-MIDAS SV-MIDAS 0.298 0.322 0.302 0.303 0.302 0.306 0.294 0.291
FAR-MIDAS SV 0.262 0.251 0.251 0.244 0.259 0.250 0.257 0.268 0.272
FAR-MIDAS SV-MIDAS 0.299 0.307 0.295 0.297 0.294 0.304 0.313 0.316

H = 6

AR-MIDAS 0.202 0.199 0.193 0.195 0.195 0.198 0.191 0.191 0.181
FAR-MIDAS 0.198 0.196 0.192 0.190 0.188 0.193 0.187 0.184 0.185
AR-MIDAS SV 0.199 0.195 0.177 0.159 0.195 0.184 0.167 0.172 0.198
AR-MIDAS SV-MIDAS 0.276 0.268 0.267 0.274 0.272 0.257 0.251 0.255
FAR-MIDAS SV 0.189 0.184 0.166 0.148 0.204 0.183 0.146 0.179 0.193
FAR-MIDAS SV-MIDAS 0.274 0.268 0.255 0.273 0.270 0.253 0.245 0.263

H = 9

AR-MIDAS 0.168 0.151 0.148 0.160 0.160 0.161 0.150 0.159 0.143
FAR-MIDAS 0.170 0.156 0.157 0.160 0.161 0.165 0.156 0.148 0.150
AR-MIDAS SV 0.212 0.208 0.156 0.207 0.214 0.205 0.215 0.194 0.203
AR-MIDAS SV-MIDAS 0.240 0.205 0.248 0.251 0.250 0.246 0.223 0.225
FAR-MIDAS SV 0.182 0.196 0.185 0.190 0.199 0.187 0.199 0.172 0.188
FAR-MIDAS SV-MIDAS 0.238 0.215 0.235 0.245 0.232 0.231 0.217 0.233

H = 12

AR-MIDAS 0.212 0.219 0.208 0.206 0.204 0.199 0.203 0.208 0.193
FAR-MIDAS 0.225 0.217 0.223 0.219 0.216 0.219 0.217 0.212 0.209
AR-MIDAS SV 0.281 0.277 0.245 0.270 0.273 0.265 0.278 0.255 0.279
AR-MIDAS SV-MIDAS 0.315 0.268 0.308 0.310 0.303 0.316 0.286 0.279
FAR-MIDAS SV 0.270 0.267 0.260 0.250 0.258 0.258 0.268 0.254 0.268
FAR-MIDAS SV-MIDAS 0.306 0.289 0.296 0.303 0.295 0.310 0.291 0.302

This table reports the average log-score (LS) differential, LSDi =
∑t
τ=t

(
LSi,τ − LSRW,τ

)
, where LSi,τ (LSRW,τ ) denotes

the log-score of model i (RW), computed at time τ , and i denotes any of the models described in section 3. Positive

values of LSDi indicate that model i produces more accurate density forecasts than the RW model. The notation ‘AR’

refers to an autoregressive model, ‘AR-MIDAS’ refers to an augmented distributed lag MIDAS model, ‘FAR’ refers to a

factor augmented autoregressive model, and ‘FAR-MIDAS’ refers to a factor augmented distributed lag MIDAS model.

The suffixes ‘SV’ and ‘SV-MIDAS’ denote models with stochastic volatility and MIDAS stochastic volatility, respectively.

For MIDAS models, the column headers denote the daily predictor used in the regressions, namely: the effective Federal

Funds rate (Ffr), the interest rate spread between the 10-year government bond rate and the federal funds rate (Spr),

value-weighted stock returns (Ret), the SML portfolio return (Smb), the HML portfolio return (Hml), the MOM portfolio

return (Mom), the business cycle variable of Aruoba et al. (2009) (ADS), and the default spread between BAA and AAA

rated bonds. All forecasts and forecast errors are produced with recursive estimates of the models. The out-of-sample

period starts in 1982:1 and ends in 2011:12. Bold numbers indicate the largest LSD across all predictors for a given model.



Table 9. Diebold-Mariano p-values from tests of equal predictive ability - Log score differentials

Comparison Ffr Spr Ret Smb Hml Mom ADS Def

Panel A: IPI growth rate

H = 1

AR-MIDAS SV-MIDAS vs. AR-MIDAS SV 0.156 0.065 0.102 0.095 0.089 0.093 0.175 0.164
FAR-MIDAS SV-MIDAS vs. FAR-MIDAS SV 0.007 0.004 0.008 0.004 0.013 0.002 0.052 0.008

H = 3

AR-MIDAS SV-MIDAS vs. AR-MIDAS SV 0.060 0.010 0.019 0.022 0.021 0.012 0.024 0.014
FAR-MIDAS SV-MIDAS vs. FAR-MIDAS SV 0.008 0.001 0.004 0.003 0.005 0.002 0.001 0.020

H = 6

AR-MIDAS SV-MIDAS vs. AR-MIDAS SV 0.003 0.003 0.002 0.006 0.002 0.016 0.016 0.024
FAR-MIDAS SV-MIDAS vs. FAR-MIDAS SV 0.005 0.005 0.005 0.009 0.001 0.027 0.011 0.191

H = 9

AR-MIDAS SV-MIDAS vs. AR-MIDAS SV 0.004 0.067 0.003 0.016 0.009 0.026 0.056 0.069
FAR-MIDAS SV-MIDAS vs. FAR-MIDAS SV 0.003 0.015 0.002 0.009 0.003 0.017 0.016 0.011

H = 12

AR-MIDAS SV-MIDAS vs. AR-MIDAS SV 0.003 0.006 0.004 0.005 0.001 0.026 0.009 0.072
FAR-MIDAS SV-MIDAS vs. FAR-MIDAS SV 0.004 0.007 0.005 0.005 0.003 0.008 0.012 0.023

Panel B: Inflation rate

H = 1

AR-MIDAS SV-MIDAS vs. AR-MIDAS SV 0.005 0.001 0.016 0.028 0.103 0.079 0.043 0.043
FAR-MIDAS SV-MIDAS vs. FAR-MIDAS SV 0.001 0.000 0.000 0.002 0.015 0.014 0.009 0.008

H = 3

AR-MIDAS SV-MIDAS vs. AR-MIDAS SV 0.004 0.000 0.004 0.019 0.004 0.005 0.022 0.031
FAR-MIDAS SV-MIDAS vs. FAR-MIDAS SV 0.002 0.001 0.001 0.013 0.003 0.002 0.005 0.004

H = 6

AR-MIDAS SV-MIDAS vs. AR-MIDAS SV 0.015 0.007 0.009 0.015 0.012 0.014 0.009 0.035
FAR-MIDAS SV-MIDAS vs. FAR-MIDAS SV 0.014 0.006 0.008 0.023 0.012 0.009 0.019 0.022

H = 9

AR-MIDAS SV-MIDAS vs. AR-MIDAS SV 0.085 0.035 0.017 0.039 0.017 0.055 0.092 0.108
FAR-MIDAS SV-MIDAS vs. FAR-MIDAS SV 0.018 0.072 0.009 0.018 0.019 0.049 0.023 0.011

H = 12

AR-MIDAS SV-MIDAS vs. AR-MIDAS SV 0.019 0.073 0.022 0.015 0.021 0.016 0.064 0.458
FAR-MIDAS SV-MIDAS vs. FAR-MIDAS SV 0.014 0.061 0.009 0.004 0.025 0.011 0.032 0.040

This table reports Diebold-Mariano p-values under the null that a given (F)AR-MIDAS SV-MIDAS model has the same

predictive ability as the (F)AR-MIDAS SV model. P-values are computed for the LSD statistic. The notation ‘AR’ refers

to an autoregressive model, ‘AR-MIDAS’ refers to an augmented distributed lag MIDAS model, ‘FAR’ refers to a factor

augmented autoregressive model, and ‘FAR-MIDAS’ refers to a factor augmented distributed lag MIDAS model. The suffixes

‘SV’ and ‘SV-MIDAS’ denote models with stochastic volatility and MIDAS stochastic volatility, respectively. For MIDAS

models, the column headers denote the daily predictor used in the regressions, namely: the effective Federal Funds rate

(Ffr), the interest rate spread between the 10-year government bond rate and the federal funds rate (Spr), value-weighted

stock returns (Ret), the SML portfolio return (Smb), the HML portfolio return (Hml), the MOM portfolio return (Mom),

the business cycle variable of Aruoba et al. (2009) (ADS), and the default spread between BAA and AAA rated bonds. The

underlying p-values are based on one-sided t-test, where the t-statistics computed with a serial correlation robust variance,

using the pre-whitened quadratic spectral estimation of Andrews and Monahan (1992). Bold numbers indicate significance

at the 10 percent level.

44



Table 10. Out-of-sample forecast performance - model combinations

IPI growth rate

Model
Panel A: RMSFE Panel B: LSD

H = 1 H = 3 H = 6 H = 9 H = 12 H = 1 H = 3 H = 6 H = 9 H = 12

Equal-weighted combination 0.675 0.780 0.766 0.743 0.697 0.407 0.338 0.386 0.379 0.419
Bayesian model averaging 0.649 0.787 0.770 0.761 0.723 0.453 0.325 0.382 0.369 0.366
Optimal prediction pool 0.657 0.780 0.774 0.758 0.717 0.446 0.331 0.376 0.368 0.374

Panel C: RMSFE vs. AR model Panel D: PL vs. AR model

H = 1 H = 3 H = 6 H = 9 H = 12 H = 1 H = 3 H = 6 H = 9 H = 12

Equal-weighted combination 0.000 0.016 0.089 0.321 0.214 0.000 0.000 0.000 0.001 0.005
Bayesian model averaging 0.001 0.110 0.240 0.823 0.838 0.000 0.001 0.001 0.027 0.360
Optimal prediction pool 0.000 0.027 0.228 0.818 0.772 0.000 0.001 0.002 0.020 0.295

Panel E: RMSFE vs. AR SV model Panel F: PL vs. AR-SV model

H = 1 H = 3 H = 6 H = 9 H = 12 H = 1 H = 3 H = 6 H = 9 H = 12

Equal-weighted combination 0.000 0.010 0.032 0.141 0.026 0.001 0.096 0.051 0.073 0.031
Bayesian model averaging 0.002 0.089 0.219 0.796 0.740 0.000 0.179 0.072 0.158 0.447
Optimal prediction pool 0.001 0.015 0.212 0.709 0.611 0.000 0.098 0.071 0.136 0.358

Inflation rate

Model
Panel A: RMSFE Panel B: LSD

H = 1 H = 3 H = 6 H = 9 H = 12 H = 1 H = 3 H = 6 H = 9 H = 12

Equal-weighted combination 0.908 0.812 0.778 0.797 0.759 0.229 0.283 0.254 0.227 0.286
Bayesian model averaging 0.910 0.805 0.783 0.799 0.760 0.252 0.309 0.261 0.228 0.292
Optimal prediction pool 0.912 0.797 0.773 0.787 0.764 0.241 0.308 0.266 0.233 0.282

Panel C: RMSFE vs. AR model Panel D: PL vs. AR model

H = 1 H = 3 H = 6 H = 9 H = 12 H = 1 H = 3 H = 6 H = 9 H = 12

Equal-weighted combination 0.033 0.347 0.247 0.175 0.004 0.000 0.000 0.009 0.003 0.000
Bayesian model averaging 0.129 0.096 0.375 0.239 0.011 0.000 0.000 0.022 0.019 0.001
Optimal prediction pool 0.182 0.049 0.193 0.066 0.036 0.000 0.000 0.012 0.020 0.006

Panel E: RMSFE vs. AR SV model Panel F: PL vs. AR-SV model

H = 1 H = 3 H = 6 H = 9 H = 12 H = 1 H = 3 H = 6 H = 9 H = 12

Equal-weighted combination 0.428 0.427 0.141 0.450 0.868 0.154 0.145 0.018 0.222 0.378
Bayesian model averaging 0.528 0.147 0.167 0.477 0.870 0.004 0.011 0.012 0.214 0.294
Optimal prediction pool 0.621 0.061 0.061 0.252 0.927 0.035 0.009 0.005 0.112 0.463

This table reports out-of-sample results for the optimal predictive pool of Geweke and Amisano (2011), an equal-weighted

model combination scheme, and Bayesian Model Averaging applied to 36 MIDAS forecasting models that use different daily

predictors and make different choices regarding the inclusion or exclusion of additional macro factors and the volatility

dynamics of US quarterly GDP growth. In each case the models and combination weights are estimated recursively using

only data up to the point of the forecast. Panels A and B report various measures of point and density forecast performance

over two out-of-sample periods, namely 1982:1 to 2011:12 (panel A), and 2001:I to 2008:IV (panel B). The statistics

reported are: RMSFEi, the ratio between the RMSFE of model combination i and the RMSFE of the Random Walk (RW)

model; LSDi, the average log-score differential between model combination i and the RW model; CRPSDi, the average

continuously ranked probability score differential of model combination i relative to the RW model. Values less than one

for RMSFEi indicate that model combination i produces more accurate point forecasts than the RW model; positive

values of LSDi indicate that model combination i produces more accurate density forecasts than the RW model; values

less than one for CRPSDi suggest that model combination i performs better than the benchmark RW model. Panels C

and D report the Diebold-Mariano p-values under the null that a given model combination has the same predictive ability

than the benchmark model, over the same two out-of-sample periods, 1982:1 to 2011:12 (panel C), and 2001:I to 2008:IV

(panel D). P-values are computed for the RMSFE, LSD, and the CRPSD statistics, both against the Random Walk (RW)

benchmark and the autoregressive (AR) benchmark, and are based on one-sided t-tests, where the t-statistics are computed

with a serial correlation robust variance, using the pre-whitened quadratic spectral estimation of Andrews and Monahan

(1992). Bold numbers in Panels C-F indicate significance at the 10 percent level.



Figure 1. Mean forecasts of MIDAS models
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This figure shows the recursive conditional mean forecasts computed using the Random Walk model (dashed back line)

as well as the predictive distributions of the AR-MIDAS (solid blue line), the AR-MIDAS SV (dashed red line), and the

AR-MIDAS SV-MIDAS (green dashed-dotted line) models. All MIDAS models displayed in the two panels use the Ffr daily

series as predictor. All models are estimated recursively over the out-of-sample period, which starts in 1982:1 and ends in

2011:12.
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Figure 2. Volatility forecasts of MIDAS models
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This figure shows the recursive conditional volatility forecasts computed using the predictive distributions of the AR-MIDAS

(solid blue line), the AR-MIDAS SV (dashed red line), and the AR-MIDAS SV-MIDAS (green dashed-dotted line) models.

All MIDAS models displayed in the two panels use the Ffr daily series as predictor. All models are estimated recursively

over the out-of-sample period, which starts in 1982:1 and ends in 2011:12.
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Figure 3. Predictive density of IPI growth and inflation under different AR-MIDAS models
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This figure shows the predictive density for the IPI growth rate (top panels) and the inflation rate (bottom panels) under

alternative MIDAS models, produced in pseudo real-time for 1994:1 (left panels) and 2008:12 (right panels). The top panels

display the predictive density for IPI growth under three alternative MIDAS models, where the blue solid line corresponds

to the AR-MIDAS model, the red dashed line refers to the AR-MIDAS SV model, and the green dashed-dotted line refers

to the AR-MIDAS SV-MIDAS model. The bottom panels display the predictive density for inflation using the same three

MIDAS models. All MIDAS models use the daily Ffr series as predictor, and all predictive densities are produced using

recursive model estimates.
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Figure 4. Cumulative sum of log-score differentials (CLSD) for AR-MIDAS SV models
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This figure shows the sum of log predictive scores from AR-MIDAS SV and AR SV models, computed relative the sum

of log predictive scores of the Random Walk (RW) model. Each quarter we estimate the parameters of the forecast

models recursively and generate one-step-ahead density forecasts of real GDP growth which are in turn used to compute

log-predictive scores. This procedure is applied to the benchmark RW model as well as to all the alternative forecasting

models. We then plot the cumulative sum of log-predictive scores (LSt) for the alternative models computed relative to

the cumulative sum of log-predictive scores of the RW model, LSt − LSRWt . Values above zero indicate that a forecast

model generates better performance than the RW benchmark, while negative values suggest the opposite. The top two

panels compare the forecasting performance of different autoregressive models for IPI growth with time-varying volatility

and different forecast horizons, while the bottom two panels focuses on Inflation.
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Figure 5. Relation between RMSFE and other measures of predictive performance for IPI growth
rate
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This figure presents scatter plots of out-of-sample predictive performance measures against the RMSFE (root mean squared

forecast error) measure. All estimates of predictive performance are measured relative to the Random Walk (RW) model,

so that the origin in each figure, shown as the intersection of the solid black lines, corresponds to the RW model. In

addition, the intersection of the black dashed lines displays the relative out-of-sample performance of the AR model. The

left panel displays the relation between RMSFE and the average log-score differential (LSD), while the right panel shows the

relation between RMSFE and the continuously ranked probability score differential (CRPSD). Blue squares correspond to

linear models (including AR, AR-MIDAS, FAR, and FAR-MIDAS models), red diamonds represent the stochastic volatility

models (including AR SV, AR-MIDAS SV, FAR SV, and FAR-MIDAS SV), and the green triangles depict the MIDAS in

volatility models (including AR-MIDAS SV-MIDAS and FAR-MIDAS SV-MIDAS). All measures of predictive performance

are produced with recursive estimates of the models. The out-of-sample period starts in 1982:1 and ends in 2011:12.
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Figure 6. Relation between RMSFE and other measures of predictive performance for Inflation
rate
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This figure presents scatter plots of out-of-sample predictive performance measures against the RMSFE (root mean squared

forecast error) measure. All estimates of predictive performance are measured relative to the Random Walk (RW) model,

so that the origin in each figure, shown as the intersection of the solid black lines, corresponds to the RW model. In

addition, the intersection of the black dashed lines displays the relative out-of-sample performance of the AR model. The

left panel displays the relation between RMSFE and the average log-score differential (LSD), while the right panel shows the

relation between RMSFE and the continuously ranked probability score differential (CRPSD). Blue squares correspond to

linear models (including AR, AR-MIDAS, FAR, and FAR-MIDAS models), red diamonds represent the stochastic volatility

models (including AR SV, AR-MIDAS SV, FAR SV, and FAR-MIDAS SV), and the green triangles depict the MIDAS in

volatility models (including AR-MIDAS SV-MIDAS and FAR-MIDAS SV-MIDAS). All measures of predictive performance

are produced with recursive estimates of the models. The out-of-sample period starts in 1982:1 and ends in 2011:12.
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Figure 7. Weights on different model classes in the optimal prediction pool
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This figure plots the optimal weights on different models in the predictive pool, computed in real time by solving the
minimization problem

w∗t = arg max
w

t−1∑
τ=1

log

[
N∑
i=1

wi × Sτ+1,i

]

where N = 36 is the number of models considered, and the solution is found subject to w∗t belonging to the N−dimensional

unit simplex. Sτ+1,i denotes the time τ + 1 recursively computed log score for model i, i.e. Sτ+1,i = exp (LSτ+1,i). Dark

blue bars show the weights on the AR-MIDAS models in the optimal prediction pool, blue bars show the weights assigned

to the AR-MIDAS SV models, and light blue bars show the weights assigned to the AR-MIDAS SV-MIDAS models; gray

bars show the weights on the FAR-MIDAS models in the optimal prediction pool, orange bars show the weights assigned

to the FAR-MIDAS SV models, and yellow bars show the weights assigned to the FAR-MIDAS SV-MIDAS models.
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Figure 8. Weights on individual daily predictors in the optimal prediction pool
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This figure plots the optimal weights on different daily predictors in the predictive pool, computed in real time by solving
the minimization problem

w∗t = arg max
w

t−1∑
τ=1

log

[
N∑
i=1

wi × Sτ+1,i

]

where N = 36 is the number of models considered, and the solution is found subject to w∗t belonging to the N−dimensional

unit simplex. Sτ+1,i denotes the time τ + 1 recursively computed log score for model i, i.e. Sτ+1,i = exp (LSτ+1,i). Dark

blue bars show the weights associated with the effective Federal Funds rate (Ffr) predictor in the optimal prediction pool,

blue bars show the weights associated with the 10-year government bond rate and the federal fund rate (Spr), and light

blue bars show the weights assigned to the value-weighted stock returns (Ret); celeste bars show the weights associated

with the SML portfolio return (Smb), and green bars show the weights assigned to he HML portfolio return (Hml); gray,

orange, and yellow bars show the weights associated with the MOM portfolio return (Mom), the Aruoba-Diebold-Scotti

index (ADS), and the Default spread (Def)
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