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Abstract

Convergence trades exploit temporary mispricing by simultaneously buying relatively un-
derpriced assets and selling short relatively overpriced assets. This paper studies optimal con-
vergence trades under both recurring and non-recurring arbitrage opportunities represented by
continuing and ‘stopped’ cointegrated price processes and considers both fixed and stochastic
(Poisson) horizons. We demonstrate that conventional long-short delta neutral strategies are
generally suboptimal and show that it can be optimal to simultaneously go long (or short) in two
mispriced assets. We also find that the optimal portfolio holdings critically depend on whether
the risky asset position is liquidated when prices converge. Our theoretical results are illustrated
using parameters estimated on pairs of Chinese bank shares that are traded on both the Hong
Kong and China stock exchanges. We find that the optimal convergence trade strategy can yield
economically large gains compared to a delta neutral strategy.
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1 Introduction

Convergence trades are arguably one of the most importatégies used to exploit mispric-
ing in financial markets. In a classic convergence trade,assets trade at different prices but
have the same (or similar) payoff with certainty at a futueded Familiar examples of con-
vergence trades include merger arbitrage (risk arbitrgua)s trading (relative value trades),
on-the-run/off-the-run bond trades, relative pricing r@inched structured securities, and arbi-
trage between the same stocks trading in different marketsBondarenko (2003), Hasbrouck
(2003), and Hogan et al. (2004).

Industry practice as well as academic studies conventipassume that convergence trades
are based on delta neutral long-short positions, so thakehaxposure gets eliminated; see
Shleifer and Vishny (1997), Mitchell and Pulvino (2001),hoeann (2002), Liu and Longstaff
(2004), Liu, Peleg and Subrahmanyam (2010), and Jurek and (2907). However, our anal-
ysis demonstrates that the delta neutral arbitrage syrégagt the most efficient way to exploit
temporary mispricing. Specifically, we show that the opticavergence trading strategy that
maximizes expected utility generally does not involve rada delta neutral position. If the
investor really prefers a market neutral portfolio, this ¢e better obtained by combining the
optimal individual asset portfolio with the market indexuc a “market layover” strategy can
potentially improve the performance of the combined pdidfo

The basic message of our analysis is that there is a tradeetieen diversification and arbi-
trage. Delta neutral convergence trades are designed ltarexpng-term arbitrage opportunities
but, in so doing, also create exposure to idiosyncraticwisich opens up diversification oppor-
tunities. By focusing on long-term arbitrage, delta ndwteategies do not take full advantage
of the short-term risk-return trade-off and diversificatioenefits. By placing arbitrage oppor-
tunities in the context of a portfolio maximization probleour optimal convergence strategy
accounts for both arbitrage opportunities and diversificabenefits.

We obtain several surprising new results. First, we show ithean be optimal to take
the same ‘side’ of both risky assets (i.e., be long in botletassr short in both assets at the
same time) even when prices eventually converge. This typesult, in which the sign of
the optimal asset position can differ at short and long itmaest horizons, only occurs in a
multiperiod model and will not happen in the static setting.second surprising finding is
how much of a difference it can make whether the arbitragedppities are recurring or non-
recurring, particularly for small levels of mispricing. Aitd surprising finding is that the optimal
convergence trade in some special cases involves holdilygooe asset and disregarding the
second asset



To model convergence trades, we follow earlier studies @litierature, e.g., Alexander
(1999), Gatev, Goetzmann and Rouwenhorst (2006) and Jade¥amg (2007), in assuming that
individual asset prices contain a random walk componeritiHai pairs of asset prices can be
cointegrated. This setup offers a tractable, yet flexibld@hthat provides closed-form solutions
in the case with recurring arbitrage opportunities. Cagjragon between pairs of asset prices
gives rise to a mean reverting error correction term whighasents an expected excess return
over and above the risk premium implied by the CAPM. This exge excess return is similar
to a conventional ‘alpha’ component except that it is tinagying and has an expected value of
zero in the long run. Such time variation in alpha reflectlaisolute mispricingabnormal
expected returns over and above the CAPM benchmark vaaresrelative mispricing reflect-
ing the relative prices of the two assets. At short horizéinge is too scarce for the arbitrage
mechanism to be effective, and absolute mispricing doregait longer horizons, relative mis-
pricing plays a key role as price differentials can be exgetd revert to zero and the optimal
portfolio is long in the (relatively) underpriced asset ahdrt in the (relatively) overpriced asset.

Under recurring arbitrage opportunities, the optimal fodid may switch from being long
in one asset to shorting this asset if it changes from beialgtively) underpriced to being
overpriced. Arguably, this misses the important point thaestors close out their positions
when prices converge and profit opportunities diminish. @alavith this issue, we maodify the
setup to allow for a ‘stopped’ cointegration process in Wmhiwvestors close out their position
in the pair of risky assets when prices have converged angritiisy has disappeared. This
case with non-recurring arbitrage opportunities gives t® a set of very different boundary
conditions when solving for the optimal portfolio weights.

Comparing the cases with recurring and non-recurring raidpit opportunities, we show that
the optimal holdings in the risky assets can be very diffengarticularly when the price differ-
ential is small. Specifically, while risky stock holdings fgozero as the mispricing goes to zero
under recurring arbitrage opportunities, under non-méogirarbitrage opportunities, risky asset
positions are bounded away from zero when mispricing iszem-and only get eliminated at
zero. In practice, this can lead to quite different optimattiplio holdings for the two cases.

We next compare the optimal unconstrained and delta nem#idihg strategies. To illus-
trate the economic loss from adopting the delta neutrategfya we consider a model whose
parameters are calibrated to a new data set on Chinese gastlanes. Stocks of some Chinese

1 Our analysis does not account for funding risk. Even withxébigok arbitrage and a logarithmic utility maximizer,
explicit modeling of funding risk is very involved, see, g.giu and Longstaff (2004). Qualitatively, investors shbu
hold smaller positions when funding risk is a concern whilamtitatively it is difficult to combine both risky arbitrag
and funding risk.



companies are traded simultaneously on the Hong Kong stattkaaege as H shares and on the
Chinese stock exchanges as A shares. A and H shares carrgrttgedividends and control
rights, but can trade at very different prices. Due to trgdiestrictions on Chinese investors,
H shares are more likely to be fairly priced while A sharesramee likely to be mispriced. In
this case the delta neutral long-short strategy is subaptimd we find that the optimal conver-
gence trade can generate economically significant gainstieearbitrage strategy for some of
the banks.

In summary, the key contributions of our paper are as folldvwirst, we derive in closed form
the optimal convergence trading strategy under the assomibiat asset prices are cointegrated
and arbitrage opportunities are recurring. We show thad#iia neutral strategy is, in general,
suboptimal and the optimal arbitrage strategy is deterchimeboth relative mispricing (risky
arbitrage) and absolute mispricing. Second, we extendettup g0 allow for a stopped cointe-
grated price process in which the investor’s position irrgaf risky assets is liquidated once
prices converge. This can lead to optimal trading strasetyiat are quite different from those
assuming recurring arbitrage opportunities. Third, wevigl® analytical solutions for optimal
portfolio holdings when the holding period is stochastigagerned by a Poisson termination
process. Fourth, we use a calibration exercise to pairs imigSa banking shares to demonstrate
that the loss incurred from following the delta neutral tgiggy can be economically significant.

The paper is organized as follows. Section 2 specifies ouehfodhow asset prices evolve.
Section 3 introduces the investor’s portfolio choice penfl Sections 4 and 5 provide solutions
for the optimal unconstrained and delta neutral strategespectively, separately considering
the cases with recurring and non-recurring arbitrage dppiires. Section 6 analyses the case
with a Poisson termination process. Section 7 conducts girieal analysis of pairs of Chinese
bank stocks simultaneously traded on the stock exchangéhiima and Hong Kong. Section 8

concludes. Proofs are contained in the Appendix.

2 Convergence Trade and Cointegration

We assume that there is a riskless asset which pays a coretamf return, . A risky asset
trading at the priceP,,,; represents the market index. This follows a geometric randalk

process,
APt

Pmt
where the market risk premium,,,, and market volatility,s,,,, are both constant an#l; is a

= (T + :U’m) dt + omdBy, (l)

standard Brownian motion. The market index is fairly pricBépers such as Dumas, Kurshev
and Uppal (2009) and Brennan and Wang (2006) assume thatdheimndex is subject to
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pricing errors. We make no such assumptions here and inst@azkbntrate on mispricing in
(pairs of) individual asset prices.

In addition to the risk-free asset and the market index, warag the presence of two risky
assets whose pricdd;, i = 1,2, evolve according to the equations

% — (r+Bu,) dt + BomdBy + 0dZ, + bdZ, — Miwedt, 2)

1t

dPo

- = (r+ Bu,y,) dt + BoymdBy + 0dZy + bdZay + Aoxydt, (3)
ot

where\q, Ao, 8, b, ando are constant parameters; and Z;; are standard Brownian motions,
and By, Z;, andZ;; are all mutually independent far= 1,2.2 z, represents pricing errors in
our model and is the difference between the logarithms ofwtloeasset pricesy;; = In Py,

P,
Ty = p1y — p2r = In <P—1t> . (4)
ot

We make the key assumption that + Ay > 0. This implies thatr, is stationary and the
logarithms of the prices are cointegrated with cointegratrector(1, —1). Following Engle
and Granger (1987), we refer tq as the error-correction term. For simplicity, we use the
CAPM as the benchmark, but our results will continue to holdother asset pricing models.

Other statistical processes could be used to capture tamypdeviations from equilibrium
prices, including non-linear relations or fractional degration, to name a few. Our styl-
ized model is meant to capture essential features of prieings while maintaining analytical
tractability and allowing us to characterize the optimatling strategy in closed form.

To make our analysis tractable we assume, unlike Xiong (Rafat the processes gener-
ating asset prices are exogenous with respect to the imgdexisions, and thus consider the
optimal trades of a “small” investor with no market impacioXg considers investors with log-
arithmic utility and shows that while convergence tradeysmally reduce price volatility, they
can actually amplify unfavorable shocks in situations ey are forced to liquidate their
positions?

Our setup captures the idea that two assets with identiyaffisecan trade at different prices.
Examples include pairs of stocks that have the same clainividetids and identical voting
rights but are traded in different markets and two stockh e same payoffs such as the target
and acquirer stocks in a merger. Specifically, the shareshell 8nd Royal-Dutch traded at
different prices despite being claims on the same undeylgssets. If the time of convergence
of the two prices was known with certainty, there would bes&less arbitrage opportunity and

2 The presence of a common nonstationary factor is consisiémthe equilibrium asset pricing model analyzed by

Bossaerts and Green (1989).
3 See also Kondor (2009) for an approach that endogenizesitleeocess.
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investors would have shorted the overpriced stock in theesamount as they would have been
long in the underpriced stock. In reality, however, while tivo stock prices can be expected
to converge over time, the date where this would occur is notva ex antgand so this is an
example of risky arbitrage, i.e. a self-financing tradingtsigy with a strictly positive payoff
today but a zerexpecteduture cumulative payoff.

In equations (2)-(3)f0.,,dB; represents exposure to the market risk whitéZ; + bdZ;;
represents idiosyncratic risks. It is standard to assumeidiosyncratic risks are independent
across different stocks with the market risk representigadnly source of correlation among
different assets. In our case, both assets are claims otasiimndamentals and so the pres-
ence of common idiosyncratic riskZ;, is to be expected. The two asset prices are correlated
both because of their exposure to the same market-wideaisérf ({3;) and common idiosyn-
cratic risk ({Z;) but also due to the mean reverting error correction terfpwhich will induce
correlation between the two asset prices even in the absdice two former components.

2.1 Alphaand Absolute Mispricing

The expected stock return in equations (2)-()is Bu,,, )dt — Ay zdt and(r+ S, ) dt+ Aoxdt
respectively. IfA; = Ay = 0, expected returns satisfy the CAPM relation+ 5y, )dt; in this
sense (i.e., that the CAPM correctly specifies the expeeted), there is no mispricing in either
asset and only the market index and the riskless asset wikloe Neither of the individual risky
assets are held because of their additional idiosyncrgtioarhich goes without any associated
extra expected return.

If either or both\'s are non-zero, expected returns have an extra term whiatesents
deviations from the CAPM relation. When\;z; > 0, asset one has a higher expected return
than is justified by its risk, i.e., a positive alpha, and ssea®ne is underpriced. Conversely,
when—\;z; < 0, asset one has a lower expected return than justified byksire., a negative
alpha, and is overpriced. Similarly, wheaz, > 0, asset two has a positive alpha and thus is
underpriced; whensz; < 0, asset two has a negative alpha and is overpriced. Therefate:;
and\sz; represent mispricing “alphas” and they capture each asslesolute mispricing which
we know must exist; after all, convergence trades invoh@agsets with the same payoff trading
at different prices.

Different combinations of tha; and\, price adjustment parameters are likely to reflect the
(relative) liquidity of the two assets. For example, if twiglirvolume stocks are both traded
in liquid markets, it is likely that their prices adjust efjyaapidly and soA; = X, holds as
a good approximation. A good point in case is the Royal Dutath Shell shares traded on
the Amsterdam and London stock exchanges, respectivelgprasidered by Jurek and Yang
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(2007). Conversely, in the case of the Chinese stocks traddzbth H-shares in Hong Kong
and as A-shares in China, we might expect that stock pricistachore rapidly in the Hong
Kong market where there are fewer market frictions than im&hand so the\-value in Hong
Kong is expected to be greater than thevalue in China, a conjecture that we corroborate
empirically in Section 7. Idiosyncratic liquidity shocks pairs of shares that lead one price to
be relatively high while the other becomes relatively lom taen be represented By and Ao
values that have the same sign but are of different magrstués a third case, suppose two
Chinese banking shares are hit by a common (industry-wide)dity shock that leads both
assets to become underpriced, but that one asset is morgtioed than the other. This case
can be captured by lettinl; and A, be of different signs. For example,asf > 0 and\; < 0,

Ao > 0, then both assets are underpriced relative to the markein e stability condition
A1+ A2 > 0, the second asset must be more underpriced than the firsaskso is expected
to revert back to its equilibrium price more rapidly.

2.2 Cointegration and Relative Mispricing

The variabler; = In(Py¢/Py) is the difference in the logarithm of the prices of two assieds
should be identical and so represents relative mispricifigh; + Ao > 0, equations (2)-(4)
constitute a continuous-time cointegrated system withx; and \sx; as the error correction
terms.

Even though both asset prices are almost geometric Browndations, the difference be-
tween the two is stationary because of the error correction which captures relative mispric-

ing between the two assets. The dynamics of this term satisfie

dxy = —Apxdt + bpdZ oy, (5)
where
Az = A1+ Ao,
bpdZy = bdZyy — bdZy, (6)

andb, = v/2b. The assumption that the mean reversion coefficigntjs positive ensures that
x; IS stationary. Mean reversion iy captures the temporary nature of any mispricing.

The error correction term produces mean reversion thaskeegpricing stationary and pric-
ing errors “small” compared to either of the individual igtated price processes;, po;. This
ensures that, in the words of Chen and Knez (1995), “closefgrated markets should assign

to similar payoffs prices that are close”.



We consider two cases. In the first case (“recurring arlsti@gportunities”), the price dif-
ferential, x;, only spends an infinitesimally small time at zero, is chemazed at all times by
the dynamics in Eq. (5) and so follows a stationary processhik case, stock prices are al-
ways described by Egs. (2)-(3). In the second case (“namdrieg arbitrage opportunities”),
any price difference is temporary and gets permanentlyiedited the first time the two prices
converge and:; = 0. In this case, the price dynamics is subject to the additiesriction that
zr4+n = 0 forall A > 0, wherer = min(¢ : z; = 0) is a stopping time. In this case, prices
remain identical after they converge. As we show later,nogkiportfolio weights are different
for these cases.

To summarize, absolute mispricing is determined in thetgiuor by the conditional alphas

while relative mispricing is determined in the long run byntegration between asset prices.

3 Portfolio Choice Problem

Denote the investor’s allocation to the market portfoliodyy, while the weights on the indi-
vidual risky assets are given ky,, i = 1,2. In the absence of intermediate consumption, the

investor’'s wealth}V;, evolves according to the process

P, P P
aw, = W, <rdt + O (d - rdt) + d1t (E — T‘dt> + Pop (M — rdt))
Pt Py Py

= W; <rdt + (Dps + B(D1y + b9p)) (e dt + 01 dBy) + ¢y, (0dZy + bdZ1y — Axedt)

—%¢%(0d2&—%bd25t+—A2wﬂ#)>.

We assume that the investor maximizes the expected valugoivar utility function defined
over terminal wealthiV
1 1y
max —Ey [WT } . (7
{SmtY o1t g {02 }g 1 =7
If the investor is a hedge fund; can be viewed as the fund’s lifetime.

The investor’s value function is given by

1

E w7, 8)

J(t,z, W) = |

4 Under the first scenario, any mispricing is stationary oiveet Conversely, mispricing in Liu and Longstaff (2004)
and Liu, Peleg, and Subrahmanyam (2010) is expressed irs tefrm Brownian bridge and a generalized Brownian
bridge. These specifications are not stationary and areltsedescribe cases where mispricing will be zero for sure at
some future date. For example, on the settlement date ofieeBitontract, the difference between the spot and futures
price has to be zero even though the individual spot and dstprices follow non-stationary processes (Brenner and
Kroner, 1995).



whereW; is the wealth at timg” obtained by the optimal trading strategy withy = W and
z; = x at timet.

Using standard results, it follows that when prices arerilesd by diffusion processes such
as those in equations (1)-(3),satisfies the HIB equation

1 -
“max  Ji+ (=Ax)Jp + ibiJm + (1 4 byt + (= A1y + Xaghg) )W Ty
¢m7¢17¢2

(61 = 00 Taaw + 5 (a0 (91 + 620 + (8 + B2 yw = 0. ()

Hereg,, = ¢,, + B(¢d, + &), noting that maximizing ovefo,,,, ¢;, ¢,) is equivalent to maxi-
mizing over(¢,,,, ¢,, ¢, ). Exploiting homogeneity, the value function should take fibilowing
form ey

J(t,x, W) = ﬁe““ﬂ”. (10)
Expressed in terms af(t, z), the first-order conditions fap,,, ¢, and¢, are

(%mo'gn(_’}/) + By = O’
—Mz + b2y + (91 + ¢o)o? + ¢1b%) (=) = 0,
Aoz — bPuy + ((p1 + ¢2)0'2 + ¢2b2)(—7) = 0

Solving these equations, the optimal portfolio weightettie form

$re = Wi—g;—wzwzt),

7y B 1 R N - —\iz + by, 1)
b5, V(202 + b2)b? —0? 0?4 b? Aoz — b2uy |

The first term in the expression for the market portfolio viig” ., is the standard mean-

mt?
variance portfolio weight and thus depends on the markéigg & ratio divided by the investor's
coefficient of risk aversion and market volatility. The sedderm offsets the market exposure
of the individual assets which is linear in the portfolio gleis, ¢], and¢3,, and proportional to
their beta.

Turning to the expression faf}, andg3,, the first term in the bracket in Eq. (11), which de-
pends explicitly om\; and)s, is the mean-variance term; the second term, which is ptiopai
to u, is the intertemporal hedging term. Note that parametesscieted with the market index
such asg, u,,, ando,,, do not affecty],, ¢5,. This is because the individual assets’ market
exposure is hedged using the market index. In contrast{-ggeeific parameters such as the

volatility of the common and independent idiosyncrati& i@mponentsd, b), their sensitivity



to the mispricing componenf\( and \2), the size of the mispricinge(= In(P;/P,)) in addi-
tion to the investor’s attitude to risk/] and investment horizon (through,), determine optimal
asset holdings.

Substituting the optimal portfolio weights back into theBHquation, the following PDE is
obtained foru(t, )

A 1
0=u — Zauy + bug, + —bzui
Y

L[ 5, o A2+ +2\ 002 + X302 +02)

The terminal condition is

u(T,z) = 1. (13)

Note that the PDE for in (12) and the boundary condition in (13) are quite generéhé sense
that they hold under both recurring and non-recurring eabié opportunities. In contrast, the
boundary condition for (¢, ) depends on what happens whereaches zero and the two prices
converge.

4 Optimal Investment Strategies

This section separately considers cases with a continwoindegrated price process (recurring
arbitrage opportunities), which gives closed-form solusi for the optimal portfolio weights,
versus a stopped cointegrated price process (non-reguarisitrage opportunities) for which

the optimal portfolio weights have to be solved numerically

4.1 Continuing Cointegrated Price Process

We first consider the case where stock prices continue todmidled by the cointegrated process
even after the price difference reaches zero. In this caith, probability 1, the prices will
diverge again. This case is relevant for Royal Dutch andIShsbck prices as well as for A-
and H-share prices of Chinese stocks. In this case, the PDEfor) is satisfied for alk: and

can be solved in closed form.

Lemmal Suppose asset prices evolve according to equations (BrBjhe investor has con-

stant relative risk aversion preferences. Then the valoetfan in equation (10) is characterized
by
1
u(t,x) = A(t) + iC(t)wQ,

where theA(t) and C'(t) functions only depend on timg,and are given in the Appendix.
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Substituting the specific form af(.) in Lemma 1 into equation (11), the optimal portfolio

weights can be obtained.

Proposition 1 Under the assumptions of Lemma 1, the optimal weights on dhleatrportfolio,
¢r.., and the individual assets¢{,, ¢3,), are given by

T TR

m

o1 | 1 o2+ —o? —\1 4+ b2C(1) I (&)
o Y202+ )0\ 52 2R Ay — B2C(1) Py)
This result follows from equation (11) and Lemma 1 which imglthatu, = C(t)x. We

shall use Proposition 1 to compute optimal portfolio wesgbiven a set of estimates for the
parameter§\;, \g, b2, 02}

4.2 Stopped Cointegrated Process

Next consider the case where the price differengestays at zero when it reaches zero so that
it follows a “stopped” cointegrated process. This caselevent for “one-shot” arbitrages such
as risk arbitrage in mergers and acquisitions. Alternbtiviethe investor decides to close out
the position once prices converge, we can also view the prioeess as a stopped cointegrated
process.

Formally, letr be defined by

7 =min{t : x; = 0}.

The log-price differential now follows a stopped AR(1) pess X = z¢p-.

Whent < 7, the value function(t, x) satisfies the same partial differential equation in (12)
as the continuing cointegrated process. When 7, prices have converged, the investment
opportunity in the individual stocks is gone, and the ingestill hold only the market index.
This is a standard Merton problem and so produces utility Gft

Wr ™! (=)l ) (1)

20 . (14)
L=y

Equation (14) implies that

2

u(r,0) = (1 —7)(r + 25;”2 )T — 7). (15)

Whenz — oo, x is unlikely to reach zero before tim&, so the boundary condition becomes

u(t,x) — A(t) + %C(t)wz. (16)
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whereA(t) + 1C(t)x? is theu(t, z) function for the continuing cointegrated process intratlic
in Lemma 1. In this case, there is no closed-form solutiortiervalue function(t, x), but we
can solve for(t, z) numerically and obtain the optimal portfolio weights useggation (11).

The most surprising feature of the portfolio weights undetogpped cointegrated price pro-
cess is that they approach a non-zero limittas> 0. Under recurring arbitrage opportunities,
the individual portfolio weights are proportional to thelprice differenceg, and so approach
zero asr — 0. The position in these two assets unwinds gradually: as 0. In contrast, if
x is stopped at: = 0, the individual portfolio weights approach a non-zero timhenx — 0.

In this case, the investor has finite positions in both assets| 0; to unwind the position as
required for this case, a large portfolio adjustment hastmbde ai: = 0.

To establish intuition for this finding, note that in the ca$eecurring arbitrage opportuni-
ties, the risk premium, which is proportional 10 can become negative. In fact, when= 0,
the probability that: becomes negative in the next instant equals the probathility: becomes
positive. As a consequence, wherquals zero, it is optimal to hold zero in the two risky stocks
holding individual stocks would only add idiosyncratickriwithout any additional increase in
expected returns since there is no mispricing.

Conversely, in the case with non-recurring arbitrage ojymities, the investment opportu-
nity disappears the first timeequals zero. Because thgrocess cannot fall below zero, there
is not the same downside risk as in the case with recurringragle opportunities. Suppose
now thatz is very small but just a little above zero. Then the distitnutof future returns is
similarly truncated since the worst that can happen to glegiemium is that it becomes zero
(whenz = 0). Since the future risk premium is finite but positive andr¢his limited downside
risk, the agent chooses optimally to hold a finitely positiveount in the risky assets.

To illustrate our results, we use parameter values obtdinetlan empirical analysis of pairs
of Chinese banking stocks traded simultaneously as A-sltar¢he Chinese stock exchange and
as H-shares on the Hong Kong stock exchange. Details of @igss are provided in Section
7. We focus on two pairs of error-correction parameter \@lnamely(A;, A2) = (0.29,0.31)
and(\, \2) = (0.52,—0.35), corresponding to the estimated parameters for AgricallBank
of China and China Citic Bank, respectively. We devary from zero to 0.2, corresponding to
asset one being relatively overpricedror the first set of parameters;, A2) = (0.29,0.31),
the positive error correction term leads to a decrease ipribe of asset one and an increase in
the price of asset two. For the second set of parametersd.) = (0.52, —0.35), the price of

asset two tends to decrease when this asset is undervalitetietprice of asset one decreases

5This and the subsequent figures use the following (annublizarameter values calibrated to the Chinese bank
share datas = 0.15, b = 0.30, p,,, = 0.05, 0., = 0.35, 7 = 0.02.

11



by even more, thus ensuring convergence.

The left window of Figure 1 plots the optimal weights undettb@curring and non-recurring
arbitrage opportunities when the degree of mispricing isedafrom zero to 20%, while the
investment horizon is kept fixed & = 1 year andy = 4. Under these parameter values,
and assuming recurring arbitrage opportunities, the a@dtineights are of opposite signs and
almost identical in magnitude. Moreover, agets large, the weights under recurring and non-
recurring arbitrage opportunities converge as we woulceetysince it becomes unlikely that
x Will cross zero prior to tim&’. Whenz is small, however, the two sets of weights are very
different. Whereas the weights under recurring arbitragpodunities converge to zero, the
weights under non-recurring arbitrage opportunities iarbaunded away from zero even for
small values of:.

The right window of Figure 1 shows that the two sets of weiglas differ by even more
when Ay and A\, are of opposite signs. For this case the optimal holding®ureturring ar-
bitrage opportunities are short in both stocks, althoughhibiding in the second stock is quite
close to zero. In contrast, the holdings under non-recuir@imitrage opportunities start with a
short position in the first stock and a long position in theosecstock, although the latter de-
clines towards zero asgets larger. Once again, as the magnitude of the mispricimgsj the
two pairs of weights converge.

4.3 Short-Term Risk-Return Trade-off and Long-Term Arbitrage

Our cointegrated price processes allow for mispricing & ghort term but impose that prices
revert to their equilibrium (no arbitrage) relation in tlomg term. These properties are reflected
in the portfolio weights. At short horizons, the portfoliceights are dominated by the mean-
variance component, which is determined by the instantaneigk-return trade-off. At long
horizons, the portfolio weights reflect equilibrium force€onventional long-short arbitrage
strategies impose that the two stock portfolio weights &hbave opposite signs. This is not
true for the optimal portfolio strategy. We show below thatshort horizons, it is possible
that both stock portfolio weights can have the same signlevtilong horizons they can have
opposite signs. To illustrate these points, we take adgentd the closed-form solution for
the case with continuing cointegrated processes, but thgiam and conclusion applies to the
stopped cointegrated processes as well.

From Proposition 1, the optimal stock portfolio weights fioe continuing cointegrated pro-
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cess can be written as

ot —(M )% N 1 1 1 <P1t>
= S ct) | -m(=2). @z
(qb;t) (( (M +A2)% + Ao )20‘2+b2+<1) ())Vn o 7)

At short horizons the term proportional @(¢) is small. Without loss of generality, we can
assume thab; > 0. If P;; > Py, then (17) shows that it is optimal to short the first stock,
i.e.,¢1; < 0, which is unsurprising since this stock is (relatively) msdued and has a negative
alpha. More surprisingly, however, it is possible that ibgimal to simultaneously short the
second stock, i.e¢;, < 0. This follows when(\; + Ag)g—j + X2 < 0 and suggests the following

corollary:

Corollary 1 Suppose that\; + /\Q)Z—j + A2 < 0. Then at short horizons the optimal portfolio
takes a short position in both stocks.

The intuition for this result is as follows. At short horiznntertemporal hedging ceases
to be important and so both assets are shorted if they hawiveglphas and are overpriced.
In this situation, investors can optimally exploit the dbg® mispricing by shorting the two
assets and are willing to be exposed to idiosyncratic riskshrt horizons, the investor acts
myopically and portfolio holdings are dictated by the carti@nal mean-variance trade-off.

This result is in stark contrast with the delta neutral sgggtwhich consists of symmetric
long-short positions in the two stocks.

Turning to the opposite case with a long horizon, using tesalthe appendix we have,

23D (02152 o2
A+ 20— /(O + g2 — 2PEEREE bt ()
202 22

C(t) — (18)

where

A2 4+ 2\2) (02 4 b2) 4+ 221 \go2
52\/(>\1+>\2)2—2( L 2)(((;2120)2)+ 227 (1— ).

Hence, at long horizons, the optimal stock holdings arergine

b1 _ —(A1 4+ A2)o? = Ab? + (A + Ao — €)(207 + b?) ﬂ
ba (A 4 A2)o? + Agb? — (A1 + Xo — €) (202 +b2) | 1b?(202 +0?)

) (<A1+A2><a2+b2>5<202+b2>w ) ()

— (A4 A2)(02 4 82) + £(20% + b2) + Agb? | WP (20% +17)

Using this result, we get the following corollary:

Corollary 2 Suppose that- (A1 +X2) (02 +b%) +£(202 +b%) + A2b? > 0. Then at long horizons
the optimal portfolio takes a short position in one stock arldng position in the other stock.
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At long horizons, the intertemporal hedging component a@atas. In our analysis the in-
tertemporal hedging component reflects how prices convergige equilibrium implied by no
arbitrage and so the optimal portfolio holdings of an ingestith a long horizon will reflect
the no-arbitrage conditions. The condition in Corollaryeguires that the arbitrage effect dom-
inates the mean-variance risk-return trade-off. Whes close to 1¢ is close toA; + X9, and
the long-run inequality in Corollary 2 reduces to the shart-inequality in Corollary 1, so the
two stock positions will be of opposite signs at long horizdrand only if this holds at the short
horizon. However, when >> 1, £ can be arbitrarily large and the positions in the two stocks
will always have opposite signs at long horizéns.

Figure 2 shows that these results are not only of theoratitedest and apply to the empirical
analysis of some of the Chinese banks traded in China and Kong. The left window shows
the case wherg; ~ Ay > 0. For this case the optimal stock weights under recurringreomd
recurring arbitrage opportunities are of opposite sigrsamearly identical magnitude at both
long and short horizons. In contrast, in the right window Wwevs a case wherg,; and )\, are
of opposite signs. For this case it is optimal to hold bothretighort, i.e.¢], < 0,95, < 0,
at short horizons. As the horizon grows, the sign of the Ingigliin asset two changes from
negative to positive, so at long horizons we haye< 0, ¢35, > 0.

Jurek and Yang (2007) derive the optimal investment styategler power utility, assuming
recurring arbitrage opportunities angd = \,. Like us, they find that the intertemporal hedging
demand component can be an important part of the investegisab position.

4.4 Optimal Convergence Tradeswith a Single Stock

Another surprising result is that it may be optimal to holdlyame stock in a convergence trade.
It is often automatically assumed that the optimal convecgetrade strategy will hold the two
assets simultaneously, i.e., buy the underpriced assettantithe overpriced asset. However,
as we shall see, this need not hold, at least not if assetspieemodeled by cointegrated price
processes. In fact, it is possible that the optimal positiolds only one of the assets.
Specifically, suppose that = 1 so thatC(t) = 0 and there is no dynamic hedging. Fur-
thermore, assume that one of the assets is mispriced (0) while the other is correctly priced

6 Alternatively, the optimal stock portfolio weights can beitten as

o1e \ =1\ (A1 +X2)0? =1 1 1 1 Pi;
( e - 1 b2(202 1 b2) + " 292 1 12 + ;) C ;ln B, )
While the first and third terms in the large bracket have ofe@sgns and identical magnitude, this need not hold for

the second term as long As # A2. Thus the two optimal stock positions need not have equahgith opposite signs.
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(A2 = 0) and unaffected by the error correction term. Finally, assthatc = 0 so there is no
correlation between idiosyncratic shocks:

P
% = (r + By dt + BopdBy + bdZyy — Myaydt,
1t
dP,
—P;: = (r+ By dt + BoymdBy + bdZy,. (20)

The optimal portfolio puts a zero weight on asset two in thisec Thus, the optimal convergence
trade strategy holds only one stock, and not the pair. Thgngrising, since convergence trades
seem to imply that both assets are held.

This result can be understood as follows. Although the tvgetggrices remain cointegrated,
all price adjustment occurs through the first asset. Whey asdet one is mispriced, asset two
will be held to reduce the variance of the optimal strategg thutheir common idiosyncratic
risks. Whero = 0, the idiosyncratic risk of asset two is independent of thesghcratic risk of
asset one, so asset two cannot be used to reduce the varfassz=bone and therefore will not
be held.

There is a catch to this result, however. Even though thamtsheous correlation between
idiosyncratic risks of asset one and asset two is zero, theréng-term correlation due to their
cointegration. In factdZ,; is one of the shocks tdz;, so there is an intertemporal hedging
benefit from holding asset two. Therefore, for investorshwit=£ 1, even though the myopic
component of the optimal portfolio weight on asset two iB géro, the intertemporal hedging
component will not be zero. The ratj@s,|/|#7,| will then increase from zero as the horizon

expands.

5 Optimal Delta Neutral Strategy

Many popular investment strategies assume that the portfotlelta neutral. For example, Liu
and Longstaff (2004) and Liu, Peleg, and Subrahmanyam J2fii€ctly specify the dynamics
of the difference in asset prices and so one can view theegtest studied in these papers as
assuming tha;, = —¢,,. As pointed out by Gatev et al. (2006), and confirmed emplyica
by these authors, pairs of stocks are often selected to deetrraeutral. In our model where the
two stocks are assumed to have identical market betas, maltsality directly translates into
the constraint;; = — .

This section shows that although the market-neutral gfydatevery popular, it can clearly be
suboptimal. If the investor really prefers a market-ndytatfolio, this can be better obtained
by combining the optimal individual asset holdings with tharket index. A utility maximizer

could rationally accept some exposure to the market pattolearn the market risk premium.
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When there is mispricing, the optimal portfolio should haeene exposure to the market (and
thus not be delta neutral) and some position in the mispiéssets. Our results suggest that the
best way to achieve a delta neutral position is to use theeharllex to hedge away the market
exposure in the mispriced assets. Using mispriced asswie & achieve delta neutrality will
necessarily under-exploit opportunities offered by mpg in the individual stocks.

With the constraintg,, = —¢,,, we haved,,, = ¢, + B(d1; + Por) = Py~ The HIB
equation is then given by

1 -
max Jy + (—Agx)J, + ingM + (r 4+ bty — H1 (A1 + X)) W I

d)mv(z)l
1
+0220, W T + 5(%0,%1 + 2630%) W2 Jyw = 0. (21)
Assume again that the investor has power utility so the vialnetion takes the form
1—y
— W ev(t,:v)’ (22)
L—n

whereu(t, z) is the delta neutral counterpart4gt, =) in (10). The HIB equation reduces to

1
max vy = Aty + b3 (V7 + Va) + (7 + Guftin — 101+ A2)w)(1 =)
d)mv(z)l

1
+26% 01 (1 = 7)vp + 5 (60 + 2616%) (1 = 7)(=7) = 0.
The first-order condition fop,, is

Moy, + U?nqﬁm(_’)/) = 07
which leads to
1 m
g, = —tm. (23)

S ol
Similarly, the first-order condition fop, is

— (A1 + o)z + 2b%0, + 20797 =0,

and so )
. —(A+ )z + 207,
¢1t = 2’Yb2 (24)
Substituting the optimal weights back into the HIB equatiwa get the following PDE
1 1
UV — A\pTUyp + §b§(vm +02) + (r + g/ﬁn/afn)(l —7)
1 (—(A1+A 2b%v,,)?
) 25)

2v 2h2
The terminal condition is
v(T,z) =0.

Once again we separately characterize the optimal partfiolidings for the cases with recurring

and non-recurring arbitrage opportunities.
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5.1 Continuing Cointegrated Process

In this case, the PDE specified by equation (25) has a clased-golution.

Lemma 2 Suppose asset prices evolve according to equations (Br@jhe investor has con-
stant relative risk aversion preferences. Then the functi@, ) is characterized by

o(t,z) = B(t) + %D(t)xz,

where theB(t) and D(t) functions only depend on timg,and are given in the Appendix.

From equations (23) and (24) and Lemma 2, the optimal pastfekights under the con-

straint thatp,; = —¢,, can be characterized in closed form as follows:

Proposition 2 The optimal portfolio weights under the delta neutralitmstaint,, + ¢, = 0

are given by
ok Hom,
(bmt 70_12%7
L —(M+ M) (1’;—;) +262D(t) In (1’;—;)
b1 = 2vb2 ’

To illustrate this result, Figure 3 compares the optimalunstrained and delta neutral stock
weights using the parameter estimates from our empiricaiais. For the first set of parameter
values where\; = \o, the delta neutral and unconstrained optimal weights asengiglly
identical as we would expect from propositions 1 and 2 sindhis case)], ~ ¢5,. Conversely,
the delta neutral weights are very different from the untrainsed optimal weights in the right
window whereA; and )\, are of opposite signs. For this case, the delta neutrakgiyaakes a
short position in stock one, which is (relatively) ovened and a long position in stock two,
which is undervalued. In contrast, the optimal unconsgrdistrategy takes a large short position
in the first stock and a small short position in the secondkstoc

5.2 Stopped Cointegrated Process

Using similar arguments as for the unconstrained case dhedary conditions foo(t, =) are

2

0(t,0) = (1 =)+ 57 25)(T = 7). (26)
Whenx — oo, we have
o(t,z) = B(t) + %D(t)x? 27)
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Here, B(t) + 3 D(t)z? is thev(t, z) function for the case with recurring arbitrage opportisiti
given in Lemma 2. Again, we can solve the PDE numerically far ¢ase with non-recurring
arbitrage opportunities.

Figure 4 illustrates the delta neutral positions for thexa@ish non-recurring arbitrage oppor-
tunities. Once again the delta neutral position is virulentical to the unconstrained position
for the first set of parameter estimates for which ~ X\, (left window). Large differences
occur, however, when; and )\, are dissimilar, as they are in the right window. For example,
the unconstrained optimal holding of the second stock dseeas a function af, while con-
versely the delta neutral holding in the second stock irsgeas grows so as to balance out the
increasingly short position in the first stock. As a restilg magnitude of the delta neutral and
the unconstrained optimal positions can be very differemss a wide spectrum af-values.

To better understand the differences between the uncoretraptimal weights and the delta
neutral weights, consider again the case with mispriciryg iomasset oneX; = 1, Ao = 0). For
this case we expect the magnitude of the myopic demand fet as® in the unconstrained
optimal portfolio to exceed that in the delta neutral pditfoTo see why, notice that shocks to
asset one have two components: one that is perfectly ctadelgith shocks to asset twdy)
and one that is independent of shocks to this aség).(The unconstrained allocation ensures
that the perfectly correlated shock is completely hedgedaking an appropriate position in
asset two. Hence the unconstrained optimal holding is ahited by the risk premium and the
variance of the independent shock.

The delta neutral portfolio constrained to have suboptiraktive weights (1,-1), earns the
same risk premium as asset one because the risk premiunmebvhaess zero §; = 0). Further-
more, the size of the independent shock to asset two is the aarthat for asset one, but is not
completely hedged. Thus the suboptimal portfolio earns#me risk premium but at a higher
risk and so the investor will hold less of asset one under ¢instcained strategy.

By the same token, because the unconstrained portfolioHgasame risk premium as the
delta neutral portfolio but also has lower risk, the investould take a larger position in the
unconstrained portfolio for the intertemporal hedging dach

5.3 Wealth Gainsfrom the Optimal Strategy

Differences between the optimal and delta neutral tradirajegjies, while interesting in their
own right, are not of economic significance unless we can detrate that they sometimes lead
to sizeable economic losses for sensible choices of paeam&ties. This subsection therefore

explores cases where the expected wealth gain from impaositg neutrality will be minimal
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as well as cases where the opposite holds. First, we prodd#iaient condition for the optimal

unconstrained strategy to be delta neutral:
Proposition 3 The optimal strategy is delta neutralif = Xs.

This follows from equation (11) sincg], = —¢5, and the optimal strategy is delta neutral
whenA; = A;. When this condition holds, clearly there will be no lossnfrapplying a delta
neutral strategy.

We next address more broadly the size of the economic lossiatsd with adopting the
conventional delta neutral strategy. We base our compansoa simple result that allows us
to compute the wealth gain of the optimal investment stsatetative to the suboptimal delta
neutral strategy.

The following proposition allows us to compare the wealtdemthe two investment strate-
gies for the scenario with recurring arbitrage opportesiti

Proposition 4 The wealth gain of the optimal strategy relative to the deletral strategy
assuming a mispricing af is
R = o1 ulta)—v(t2))

)

whereu(t, z) andv(t, ) are defined in equations (10) and (22), respectively.

To see this, note that, given a wealth lel#] we needV x R under the delta neutral strategy
to achieve the same level of utility as under the optimatetpg where

(W X R)l_’y ev(t,m) — Wi eu(t,m)
1—7 1—7

from which the result follows. A similar result allows us torapute wealth gains under the
stopped cointegrated price process.

Using Proposition 4, it is easy to evaluate the investor'sltilegain. Figure 5 shows the
expected wealth gain from adopting the unconstrained @ptirading strategy versus the delta
neutral strategy as a function of the initial price diffezerw. The graph considers the second
set of error correction parametersy; = 0.52,\, = —0.35) since expected gains are close
to zero for the first set of parameters because the two seteights are nearly identical; see
Proposition 3. Assuming recurring arbitrage opportugitidne expected gain rises from close
to 3% of initial wealth to 4.5% of initial wealth as goes from zero to 20%. In the case with
non-recurring arbitrage opportunities, the expected gtarts at zero, but increases to a level
close to 3.5% whenr = 0.20.
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6 Stochasticlnvestment Horizon with Poisson Ter mina-
tion Process

So far, we have assumed either that the investor’s horizdeterministic (that is, the horizon is
a constanfl’) or stochastic in a way that is related to thg@rocess crossing some boundary. An-
other possibility is that the fund is forced to liquidate pigsition at a random time for reasons
extraneous to the risky arbitrage such as withdrawal of gumdliquidity shocks. For exam-
ple, Krishnamurthy (2010) argues that small shocks to ti@diiquidity conditions can have
large balance sheet and/or information amplifiers on firdnotermediaries, and these could
ultimately force a fund to wind up its positions if it can nagger obtain funding.

To capture this case, suppose that the investor's horizgivés by an exogenous Poisson
arrival time,r. Thus the investor’s objective is

1

&o [m Tl_y] ) (28)

wherer is a Poisson arrival time, and= min(7,T"), andT is constant. For exampl&; could
be the lifetime of a limited partnership hedge fund. The elq®n operato€, denotes the
expectation taken with respect to the Poisson proeessaddition to Brownian motions.

The problem with Poisson exit time when stock prices follogeametric Brownian motion
is studied for the case without transaction costs by Mert®7@) and with transaction costs by
Liu and Loewenstein (2002). In our paper, asset prices argewnetric Brownian motions. We
obtain the analytical solution for the portfolio weights cymbining the dynamic programming
approach and the martingale approach.

Following Merton (1970), the objective can be written as

e—rT

T
_ 1 1— 1—
Eo U pe Pt —— W} Vdt + Wi, (29)
0 L—y ! 1—y T

where p is the intensity of the Poisson processand Eg denotes the expectation assuming
a deterministic horizon, and thus applies to the Browniarions. This leads to a standard
dynamic programming problem.

To obtain an analytical expression for the value functionnggt consider the martingale
approach. Note that the (unique) pricing kernel can be espias

2
_1Hm __HEm
T = e—rte 252, om dB”Lte—%(n%t"rﬁ%t)—(’?ltdzlt +nordZat) (30)

9

wheren, is the market price of risk which is given by

V2024b24b vV2024b2—b Y
. N1t . 5 5 — 1Tt
e = - V252102—b /202102 +b \
Ubs; 2 5 2Tt
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To solve the investor’'s problem in this case, note that thegdnfinitely many constraints, each
indexed byt, forall ¢ > 0 :
EO[ﬂ'tWt] = Wo,

wherer; is the pricing kernel. We show in the Appendix that the valugction under a stochas-
tic horizon specified by a Poisson arrival process is the kte@yaverage of the value function
under deterministic horizons with weights given by the Basdistribution. Moreover, in this
case the optimal portfolio weights are given in the follogvproposition:

Proposition 5 Suppose the assumptions of Lemma 1 hold and that the ingebtmizon is
governed by a Poisson termination process with intensitgipaterp. Then the optimal weights
on the individual assets¢{,, ¢5,), are given by

L A= (A Ao 2 [ C(1)eteADHCWE gt 4 o0 (t)e (T -D AD+CM?

b1 = T,
' V0 (b + 202) 5 ( ST e=pteA®+CW gt 4 e—p<T—t>eA<t>+c<t>x2>
and
" A+ (A 4 Ag)o? 2 [ C(1)ePleADTCW gp 4 20 (1) (T =1 AW +C(1)2>
2 = xTr — xZ.

V0% (b + 20%) 5 ( JiF empteA®+C022 gt 4 e=p(T~1) eA<t>+c<t>x2>
whereA(t) andC(t) are the same as in Lemma 1.

Figure 6 compares the deterministic horizon (of leri§j)hversus stochastic (Poisson) hori-
zon solutions under recurring arbitrage opportunitiesuasng a Poisson intensity parameter
of p = 2 and settingl’ = 1. The solution under the stochastic horizon is quite closenab
under the deterministic horizon. The possibility of anyé&etrmination of the arbitrage opportu-
nities leads the investor to reduce the positions in the/ regsets. This is understandable since
the value function under the stochastic horizon is a wethhteerage of the value function under
deterministic horizons with horizon lengths between ze7. This dampens the sensitivity of
the optimal weights in the Poisson case with respect to mewné&sinz, because the sensitivity

to z increases with the horizon in the deterministic case.

7 Empirical Example: Chinese Bank Shares

To illustrate the empirical relevance of our theoreticaules, we next provide an analysis of
pairs of Chinese bank stocks. Some Chinese bank sharesded simultaneously as A shares
on the Shanghai stock exchange and as H Shares in Hong Koeg.ré@present claims on the
same assets and so should not, once converted into the saraacyu be priced differently.
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Hence this case matches our theoretical setup and we usasthis empirical example to cali-
brate the parameters of our cointegrated model.

Specifically, we consider seven pairs of Chinese A and Honggke bank shares, namely
Agricultural Bank of China (sample period: 7/16/2010 - 2Z208.2) China Merchants Bank
(9/22/2006 - 2/15/2012); Bank of China (7/15/2006 - 2/18/20) China Citic Bank (4/27/2007
- 2/15/2012); China Minsheng Banking (11/26/2009 - 2/1%2)0 China Con. Bank (9/25/2007
- 2/15/2012); and Bank of Commerce (5/15/2007 - 2/15/20TRe shortest sample spans 394
days, while the longest sample spans 1,411 days. Chinesar@ssare quoted in yuan, while H
shares are quoted in Hong Kong Dollars, so we convert botbsseto US dollar terms to make
them comparable.

Figure 7 shows that log-prices of the pairs of A- and H-shaeesl to move broadly in
synchrony. The price differentials plotted in Figure 8 shibvat differences at times can be
quite substantial, although the figure also suggests tia differences tend to decrease when
they get unusually large, consistent with mean reversiaratds zero, although the speed of
mean reversion can be quite slow. Bearing in mind that cgiate®n tests can have low power
in relatively short samples such as ours, pair-wise testoiitegration, reported in the first
column in Table 1, reject the null of no cointegration for faii the seven series.

To help calibrate the parameters of our model, we estimakeisa error correction models
for the seven sets of A-shares and H-shares. Table 1 repertestimated values of; and
A2 along with their¢-statistics. The first set of estimates only includg(P;;) andlog(Ps;)
in the error correction model and so may be subject to omitgedble bias since the effect
of the market price is left odt. To deal with this issue, we also show results for a two-stage
procedure that first orthogonalizes the bank share pricdsrespect to the market index and
then estimates an error correction model for the resultiggprices? In all but one case, the
sum of the estimated values af and ), is positive. This is consistent with our modeling
assumption of mean reversion in price differentials. Tlok laf statistical significance of some
of the \; and )\, estimates can again be attributed to the relatively shaet siamples and the

fairly slow speed of mean reversion.

" The test results are based on an ADF unit root test for thetagg differencelog(Py¢) —log(Ps;). This has slightly
better power than the conventional cointegration testesindoes not require estimating the cointegration paramete

which is instead assumed to be unity.
8 The findings are robust to the number of lags included in ttayais and also hold when a Bayesian vector error

correction model is used.
9 Although the two pairs of\ estimates differ, their correlation, at 0.78 J and 0.67 4>), is quite high.
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7.1 Trading Results

To further illustrate the difference between the delta re@wersus the unconstrained strategies,
we undertake a simple trading experim&htFor each pair of banking shares we compute the
optimal weights using the end-of-day valuewpf= log(P;;)—log( Pz ), the estimates af\, o)
from Table 1 and moment-based estimate@dfo?, 3). We assume,,,, = 5%, 0,,, = 35%,7 =
2%. We set the terminal dat&;, to February 15, 2010 corresponding to the end of our data and
focus on the case with recurring arbitrage opportunitieElviields more observations than the
case with non-recurring arbitrage opportunities and sersfthe more informative comparisons
for this particular applicatioh! Rebalancing is assumed to take place daily and we setd.
While daily rebalancing does not match the assumption dfiltoous time price dynamics, it is
likely to provide a reasonable approximation, see Bertsji{agan, and Lo (2000).

Table 2 reports the results. In all cases the mean portfetiorm associated with the uncon-
strained strategy is at least as large as that associatedhsitielta neutral strategy and in some
cases it is substantially larger, i.e., 16.7% versus 6.9%@paum for China Merchants Bank
and 16.1% versus 8.3% for China Minsheng Banking. Since okeility of returns on the un-
constrained strategy is also higher, we consider the Shiatiseand cumulated wealth, starting
from $100. In four of seven cases this is highest for the usitamed strategy. Similarly, the
cumulated wealth of the optimal strategy, reported in tisé panel of Table 2, exceeds that of
the delta neutral strategy for all but China Con. Bank.

These results ignore transaction costs which are unfaglynanavailable and difficult to
assess. Interestingly, however, for four of the seven pitzanking shares, the turnover of
the unconstrained and delta neutral strategies, meaduaeh(|A¢7,| + |Ap3,|)/2, are very
close, i.e., within 10% of each other, and so transactiotsomsuld not appear to explain the
differences in performance of the two strategies, at leaasth humber of the pairings.

8 Conclusion

Convergence trades form an important part of many relatalaevinvestment strategies. It is
generally assumed that a delta neutral long-short positiould be taken in pairs of under- and
over-valued assets so as to ensure market neutrality. @per@rgues that such a strategy does
not optimally take advantage of the associated risk-retiamhe-off. Instead, we derive optimal
portfolio strategies when pairs of risky asset prices aiiategrated so that their conditional

10\We thank the editor, Pietro Veronesi, for suggesting to usading strategy to illustrate our theoretical results.
11 For the majority of banking shares crosses zero after relatively few observations.
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excess return can be characterized through a mean revertimrgcorrection process. When ar-
bitrage opportunities are recurring, the optimal portfdibldings can be characterized in closed
form. We also consider the interesting case where the iowegiosition is closed out as soon as
prices converge. This second case can give rise to verydliffesolutions for the optimal port-
folio holdings and expected utility. We compare our optirsalutions to those achieved under
conventional trading strategies restricted to be deltaraku.e., insensitive to market condi-
tions, and show that considerable gains in expected utéity be achieved by deviating from
conventional convergence trades.

Our analysis considers the actions of an unconstrained. flimdeality funds’ trades are
constrained in important ways, reflecting limits on bornogyi regulatory constraints and other
market imperfections. Perhaps the single most importanstcaint arises from funding risk
which arises when a trade has to be closed down early duekmfdanding. Moreover, such
funding risk is likely to be greatest in bad states of the @i@hd so could well be correlated
with the arbitrage opportunities analyzed here. We view/disia topic of great interest for future

research.

Appendix

This appendix derives the results needed for the optimdighorweights presented in the paper.

Proof of Lemma 1

Without the boundary condition at= 0, we conjecture
1
u(t,x) = A(t) + iC(t)wQ.

Substituting this conjecture into equation (12) yields goation that is affine ir:. Setting the
terms in the equation that are independent: Gind the coefficient ok to zero, we have the
following ordinary differential equations (ODE)

_ 1 2 1 2 2
0= At + 2be+ (T + 27Mm/0m)(1 ’Y)a

20z

o4 2o M (02 + b%) + 20 dao? + N3(b? + 0?)
Y Y

vb2 (b2 + 202)

0= Ct - (1 — "y)
We first solve forC'. The ODE forC' can be written as

0=C+ %zﬂ(c _o)(C -,
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whereC.. are the roots of the following quadratic equatior(in

ﬁ() N (A2 + 23) (0% + %) + 2\ Mo0?

_ 2 _ _
0=C"=13 W42 1 202) (1=7).

These roots are given by

Ao 3 (h0)? — 2CEERNEH T e () )

(b2+202)

C 202

The ODE forC' can be solved in the following steps. First,

22
Cr = —7(0 - L) (C -,
which can be written as
(C-Cp(C-C) ’
or, equivalently,
1 1 2b>
(C— o C_C_)dC —7(C+ —C_)dt
Integrating on both sides, we have
C-Cy 202
1 = - —C_ .
dn'C—C_ fy(C’+ C_)dt

Using the terminal conditiod’(7") = 0, we get

C-0Cy Cy| 2b2
IH‘C’—C’_ In ol e (Cy —C)(T —1),
which is the same as
C/Cs —1| _ 22(ci—co)T-0)
c/C-—1 '

e Wheny > 1,Cy > 0andC_ < 0,and0 > C > C_.

e Wheny < 1, if C are real, ther > 0, andC'(¢) decreases fror®’ < C_ att =0to 0
att =T. Thus,C < C_ < C4.

In both cases,

1-C/Cy _ 1-C/Cy
1-C/C- 1-C/C_’
Thus, we get
1 -C/Cy _ 22 (ci-coya-)
1-C/C- ’
which can be solved as
S (Cr—Co)(T-t) _ L (Cr—Co) Tt _
C(t) = - 22 =C- 262 :
1 B (Cp—C)(T-t) eT(CJr—C,)(T—t) _C-
oy T - C+
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Turning to the solution ford(¢), integrating over the ODE fad(t), we get

T
0= A() = 58 [ COMs +(r+ 5pifa2) (1 =)0 = )

where we have used the terminal conditié(i’) = 0. Note that

o 2 _C_)(T—t)
/TC()d o - &y ! o kol
— s)ds=C_ |t—T — (5 — n
¢ Cr TEZ(Cy -0 1-&
. 1 ¢ o E(Ca—C)(T-t)
_ o +
= C_|t T—I—2C_b2ln o
(o
Hence, we get
1 1 o 2 (C—C)(T-)
¥ C
AW) = (0 5ok /o)L= 7) + O )T = 1) = S o
Cy
Note that
252
C _C_e—T(CJr—C,)(T—t)
D20 (T —t)+ LIn [ ==
C-(T=t)+ 5 ( C,—C_
= —%lﬁ(T—t)
7, O 5@ =CT=0 _ o~ (0 =C)T-0)
T . —C_
— —%bQ(T—t)
N c++c,+2(c+—c,)e%(m—c,)(:r—t) _ c++c,—2(c+—c,)e—%(m—c,)(:r—t)
—1
T C,—C_
N C+ +C- 2 Y
= 5 (T —t) + 5 %
o, _ _ _ o _ _
. (C“Lceﬂm CNT—t) _ ~5(Ch=C)(T—1) L L ECmcman 2
2 C, —C_ 2
= MRy
Sr-t) 51—t )
7 (M;M er ; ! + %(e%(T_t) +67’5(T_t))> 7
with

A2 4+ 2A2) (02 4 b2) + 221 Aao2
52\/()\1-1-)\2)2—2( Lt 2)((22——::20)2;_ 1227 (1 —7).
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Hence, we can writel(¢) as

1 p2, AL+ Ao
- — fmy — — 2T —
A(t) (r+ > Ugm)( NI —1) + (T —1)
£(T—1) —£(T-1)
Y A+ A e —e 7 1 Sy | =)
el G ( £ ) Fglent e )

This yields the result ford(¢) andC(¢) and so proves Lemma 1.

Proof of Lemma 2

Next consider the case with delta neutral portfolio weighkere¢,, = —¢,,. We conjecture
that
1
v(t,x) = B(t) + §D(t)x2.

Substituting this equation into (25) yields an affine equain z. Setting the term that is inde-
pendent ofr and the coefficient aof to zero leads to the following ODEs

1
B; + b°D + (r+ a,uzn/afn)(l —v) =0,

l ()\1 + )\2)2 — 4()\1 + /\2)b2D + 4b*D?

Dy —2(\1 + \2)D + 2b* D? 1—7v)=0.
¢t —2(A\1 + A2)D + +7 52 (1-9)=0
These two ODEs can be simplified to
1
Bt+b2D+(r+g(u%/o%))(l—v) = 0,
- = — == (1-v) = 0.
Dy V(A1+A2)D+7bD +’Y 552 (I1—7) 0

Let

AL+ A
Dy = 12b2 2(1+ 7).

The solution to the ODE is then

2(A A
( }/J% 2)(T—t)

1—e
D(t) = 200 H32) (7_y) )
1/D+ —e V7 /D_
and
1 AL+ A
B(t) = (r+ /o)L= —t) + =5 =T =)
gl A AU W T Sea
—5111 (A1 + A2) o +§(€”f +e 7 )],

where

n=(A+X2)\7-

27



Proof of Proposition 5

The wealth dynamics of a self-financing trading strategisfies
AW, = W, <rdt F (G + Bld1y + boy)) (1 dt + oomdBy) + b1,(0dZ; + bdZ1y — Medt)
Vo (0dZy + bdZoy + )\gxtdt)>.

Let by = Byt + B(B1; + Bay). Note that maximizing ovefs,,,, ¢, ¢-) is equivalent to maxi-

mizing over(g,,, d,, ds).
The HJIB equation is

1
0=max J; + (p, — o) Jz + iTr((ﬁxamU;nﬁ; + 0,400 + bxb;)Jm/>
+ (r Bt — qb'/\x) W Juw

~ /
(B0 b + 7200 + AW S) W Ty

1/~ ~ 1=y
+3 ((blmama;ngbm + oo’ + ¢’bb’¢> W2JTww + p <‘1V_ i J> )

We conjecture that the value function takes the form

Wi

T W) =

f ().
In terms of f, the HIB equation is

1 ~
(Z)md?xd> 0= ft - )\:cwfx + §b920f:c:c + (T + (bm:um + (_)‘1(251 + )‘2¢2)w)(1 - ’Y)f
mr¥1r%2

+0* (1 — o) (1 — V) fo + %(fbfnafn + (¢ + 02)%0” + (67 + $3)b°) (1 —7)(=7)f + p(1 — /).

The first order condition fop,, is

Moy, T O-gn&m(_/y) =0,

which leads to
5 _ Lim
moyod
The first-order conditions fap; and¢, are

Mz 4V fo)f + (f) + do)o? + 6167 (—y) = 0,
oz — U fo/f 4+ ((¢y + ¢3)0” + ¢ob®)(—y) = 0.

These equations lead to

— —\ib? — (M + )\2)02 1
¢1 - ,ng(b2+20_2) T+ ,fo/fa
)\2b2 + (A + )\2)0’2

. _1
%= TR ey 5l
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Substituting the optimal weights back into the HIB equatios get
1 1
0= Jut (“Xat)fa + Ghefoe+ (r + 5opim/om) (=)

1 A2 (02 4+ 12) + 200202 + M3(b2 + o2
b (20002 — 20 4 dghofe/g + LT ML) ) (g

+po(1 = f).

This equation be can simplified to

A 1 1
0=fr— Zafo+ b2 e+ b1 —f2/f
gl 2 gl

L[5, 5 M2+ + 20002 + N30 +02) ,

il 1—
+ (T t o (um/am + 2(02 + 202) | (L =)f
+p(1 = f)

which is the same as the equation for a deterministic honwitim f; replaced by (1 — f). The
boundary condition ig(z) — 0 asz — +oo for v > 1.
Note that wheny = 1, the PDE forf becomes

Az 1
0=fi— 7$fw + §bgzgfm +p(1 = f),

and the solution isf = 1. Next, we use the martingale approach to obtain a closed form
expression forf (¢, x). Itis straightforward to show that the (unique) pricingrie 7, is

2
1Hm _H

o e—Tte_§E_ﬁdBmte—%(W%t‘f'??%t)—(’?ltdzlt+772tdZ2t)'
Note that ) )
2 2 (0'2+b2)()\1+)\2)+2)\1)\20'2 2—H 2
T + Mot = b2(20'2 n b2) Ty = 11Ty,
where

(02 +b2)(A2 + A3) + 2M\1 M0
b2(202 + b?) ’
The agent’s objective is to solve the optimization problem

H =

E /OO pe Pt 1 W dt + e_pTLI/Vl_7
"o -yt 1—y T )
subject to infinitely many constraints, each indexed dgr ¢ > 0:

Eo[ﬂ‘tWt] = Wo.

The Lagrangian is

> 1 _
Eo [/ pe‘ptl th Tdt — k¢ (Bo[meWy] — wo)dt
0 -7
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wherex; is the Lagrangian multiplier corresponding to theconstraint. The first order condi-
tion is
pe PPW,T — kymry = 0.

Thus, solving forlV/,
Wi = (eptﬁtﬂt/P)_lm-

From the constraint, we can derive the Lagrangian multiplje
T = (e o) (Bolmy M) M.
Inserting this in the wealth expression, we have
Wi =, P (Bolmy ™)) .

The value function is

—1 1—1/y7y— 1=y
© W < (Wt /V(EO[Wt /V]) 1w0>
J(wo,z) = / pe P'Eq dt:/ pe P'Eq dt
0 1- 0 1—7
wy [ 1-1/ 1-1/77\ 7! wy [ 1-1/77\7
= 0 pe PEo |7, 7 (Eolm, 7] dt = pe Pt (Eolm, /7)) dt.
t t t
1—=7Jo 1—7vJo

Using the equation for the pricing kernel, we have

1 (=1,
Eolrl ™) = oA rtm gy g "Eole~2 =1/ Jo o md,)du—(1=1/7) 1y dZ1u-+nydZ2u)]

Note that

E, [e—%(l—l/w) fg(n%u+n%u>du—(1—1/v><n1udzlu+n2tdzzu>]

Y

- E9 [e—%u—lmf&(n%m%u)du} — EY [e—%(l—l/w Jo xidu}
whereEOQ denotes the expectation under the equivalent mea3udefined by the following
Radon-Nikodym derivative
dQ 1 a-1/72 [ 2, 43, )du— (1-1/3) (11,21 41y dZ2)
dpP
Under@), the dynamics of; is
do = — 2% 0t + bdZS — bdZS.
Y
From Feynman-Kac, we know that

T
l(a,t) = B [e73 (=10 it
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satisfies the following PDE

A 1 H
I — 2l + b2l — —(1—1 2] =

with the terminal condition

We conjecture that

=0 ST A ha(t “02(hy + R22?) — ——(1—1 =
Hence,
— +=bih; = 0
a 2 ’
— —2—h(t)+bhf ——(1 -1 =
2O TR -0 =1/) = 0,

subject to the terminal conditions

ho(T) = 0,
h(T) = 0.
The solution tohy(t) andhy(t) is given byhy(t) = @ andhq(t) = @, where A(t) and

C'(t) are given in Lemma 1. Therefore, we have
T
fla.t) = / pePT=WAWHECWE? gy 4 (=r(T=DAUIHEC(D3
t

where A(t) and C'(t) are given in Lemma 1. The value function under a stochastizdm
specified by a Poisson arrival process is the weighted agarfipe value function under deter-
ministic horizons with weights given by the Poisson disttibn. The optimal portfolio weights
are given by

2 2
%= A1;)1)2(1)511 ;03)2)0 v %fm/f
—)\11)2 — (A1 + )\2)0’2
vb2(b? + 202)
ftT C(w)e—PT-)AWF5CW2 gy L O(T — ¢)e=r(T—1) AN+

7ftT e—p(T—u) AW+ECW)a2 g 1 o—p(T—1) LAMD+5C ()2

X

31



and

/\2b2 + ()\1 + )\2)02
vb2(b? + 202)
/\2b2 + ()\1 + )\2)02
vb2(b2 + 202)
ftT C(u)e—p(T—u) eA(u)-i—%C(u):cj du + C(T _ t)e—p(T—t) eA(t)-l—%C’(t):c2

1

v ftT e—P(T—w) AW +3CWE gy 1 o—p(T—1) LA +3C(1)2 -

Wheny =1, A(t) = 0 andC(t) = 0, and so

T
flz) = / pe Ptdt + T =1,
0

which is consistent with the solution using the dynamic paogming approach.
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Stock Regular Prices Orthogonalized Prices

Coint. test Ay t-stat (Ay) Ao t-stat (\y) A1 testat (A1) Ao testat (A2)
Agricultural Bank of China -2.261 0.288 2.100 0.309 1.009 0.192 1.564 0.473 1.613
China Merchants Bank -4.281F*%%  _0.370 -1.981 0.653 3.053 0.023 0.163 0.622 3.177
Bank of China -2.879 0.086 0.660 0.291 1.773 0.308 2.968 -0.481 -3.100
China Citic Bank -4.623%**  (0.314 1.733 0.269 1.285 0.526 3.962 -0.346 -1.754
China Minsheng Banking -2.333 -0.284 -1.727 0.606 2.890 -0.235 -1.715 0.540 2.679
China Con. Bank -3.189* 0.135 0.868 0.377 1.745 -0.029 -0.247 0.679 3.435
Bank of Commerce -3.603**  -0.137 -0.780 0.612 2.843 -0.141 -1.061 0.593 2.976

Table 1: Cointegration estimates for pairs of Chinese Bank A and H-shares. This table
reports parameter estimates from a cointegration model fitted to the log-prices of pairs of Chinese
banks traded as A-shares in China and as H-shares in Hong Kong. All prices have been converted
into a common currency (US dollars). The first column reports a test for cointegration between the
two log-prices. The second and fourth column reports estimates of the loadings on the error-correction
terms for the price process in China (A;) and Hong Kong (Az). We consider both the regular stock
prices (columns 2-5) as well as prices that have been orthogonalized with respect to a common China
market index (columns 6-9). For the cointegration test, * indicates significance at the 10% level, **
indicates significance at the 5% level, *** indicates significance at the 1% level.



Regular Prices

Mean Std Sharpe Wealth
Stock unc con unc con unc  con unc con

Agricultural Bank of China  8.185  8.048 9.862  9.755 0.828 0.823 112,757 112.534
China Merchants Bank 16.677  6.902 14.300  6.539 1.165 1.052 231.925 143.235

Bank of China 9.878  8.437 19.475 16.103 0.506 0.523 156.519 149.204
China Citic Bank 18.568 18.299 26.538 26.769 0.699 0.683 205.692  202.500
China Minsheng Banking 16.110  8.340 15.388  6.907 1.046  1.205 138.702 119.419
China Con. Bank 6.305  6.304 15.398 13.529 0.408 0.464 125.077  126.549
Bank of Commerce 21.690 11.469 23.239 14.708 0.932 0.778 246.202  163.590

Orthogonalized Prices

Mean Std Sharpe Wealth
Stock unc con unc con unc  con unc con

Agricultural Bank of China 11.082  9.160 13.136  11.290 0.842 0.810 117.280 114.217
China Merchants Bank 19.284 16.195 14.846 12.091 1.298 1.338 265.633 229.510

Bank of China 10.460  3.292 19.227  11.306 0.543 0.289 161.831 115.979
China Citic Bank 23.323  6.293 24.825 13.981 0.939 0.449 263.167 128.917
China Minsheng Banking  14.078  7.595 13.567 6.384 1.036  1.187 133.422 117.575
China Con. Bank 10.647  9.823 27.611 21.235 0.385 0.462 134.949 139.276
Bank of Commerce 20.804 10.728 22.386  13.952 0.928 0.768 238.218 158.755

Table 2: Results from daily trading of pairs of Chinese banking shares. This table reports
the performance of unconstrained and constrained delta-neutral trading strategies based on daily re-
balancing of the holdings in the Chinese A share, Hong-Kong H share and the market portfolio. All
results assume that trading ceases on February 15, 2012. The results assume pu,, = 0.05, o,, = 0.35,
r = 0.02, v = 4, and use empirical estimates of the remaining stock-specific parameters. All numbers
are reported in percentage terms and ignore transaction costs.



Figure 1: Comparison of optimal portfolio holdings under recurring versus
non-recurring arbitrage opportunities. This figure plots the optimal holdings un-
der recurring (¢7° and ¢5°) and the optimal holdings under non-recurring arbitrage
opportunities (@77 and ¢57" ") as a function of the log-price differential, x. The
results are illustrated for two different combinations of the loadings on the error cor-
rection term, \; and Ay, with values based on the estimates fitted to pairs of Chinese
banks traded in China and Hong Kong.
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Figure 2: Optimal positions in assets 1 and 2 as a function of the horizon,
T-t. This figure plots the optimal holdings under both recurring and non-recurring
arbitrage opportunities, holding the price difference between the two assets fixed at
20%. The results are illustrated for two different combinations of the loadings on the
error correction term, A; and Ao, with values based on the estimates fitted to pairs of
Chinese banks traded in China and Hong Kong.
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Figure 3: Optimal holdings under recurring arbitrage opportunities: con-
strained versus unconstrained solutions. This figure plots the optimal uncon-
strained holdings (¢7 and ¢3) and the optimal constrained holdings (¢; and ¢,) as a
function of the log-price differential, . The results are illustrated for two different com-
binations of the loadings on the error correction term, A; and A\, with values based on
the estimates fitted to pairs of Chinese banks traded in China and Hong Kong. The
figure assumes recurring arbitrage opportunities.
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Figure 4: Optimal holdings under non-recurring arbitrage opportunities. This
figure plots the optimal unconstrained holdings (¢3 and ¢3) and the optimal constrained
holdings (¢; and ¢,) as a function of the log-price differential, z. The results are
illustrated for two different combinations of the loadings on the error correction term,
A1 and Ay, with values based on the estimates fitted to pairs of Chinese banks traded
in China and Hong Kong. The figure assumes non-recurring arbitrage opportunities, as
positions are closed down when the price differential crosses zero.
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Figure 5: Wealth gain under recurring and non-recurring arbitrage oppor-
tunities. The plot shows the percentage wealth gain (in percentage of initial wealth)
from not imposing the constraint that the position be delta neutral, as a function of
the log-price differential, x. The results are illustrated for A\; = 0.526 and Ay = —0.346,
with values based on the estimates fitted to pairs of Chinese banks traded in China and
Hong Kong.
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Figure 6: Optimal portfolio holdings under recurring arbitrage opportuni-
ties with stochastic (Poisson) horizon versus fixed horizon. This figure plots
the optimal unconstrained holdings under a stochastic (Poisson) horizon (¢°%°" and
@Lotsson) versus the optimal unconstrained holdings under a fixed horizon (¢4 and ¢5)
as a function of the log-price differential, x. The results are illustrated for two different
combinations of the loadings on the error correction term, \; and Ay, with values based
on the estimates fitted to pairs of Chinese banks traded in China and Hong Kong.
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Figure 7: Time series plots of pairs of Chinese banking shares. This figure plots
stock prices for pairs of Chinese banks traded as A shares in China and as H shares in

Hong Kong.
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Figure 8: Time series plots of price difference between pairs of Chinese
banking shares. This figure plots the price difference between pairs of Chinese banks
traded as A shares in China and as H shares in Hong Kong.
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