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Abstract

Using data on cross-sectional dispersion in forecasters’long- and short-run predictions of macro-

economic variables, we identify key sources of disagreement. Dispersion among forecasters is highest

at long horizons where private information is of limited value and lower at short forecast horizons.

Moreover, differences in views persist through time. Such differences in opinion cannot be explained

by differences in information sets; our results indicate they stem from heterogeneity in priors or

models. We also find evidence that differences in opinion move countercyclically, with heterogeneity

being strongest during recessions where forecasters appear to place greater weight on their prior

beliefs.
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1 Introduction

Differences in agents’beliefs play an important role in macroeconomic analysis. In models where

agents observe noisy private and public information, heterogeneity in beliefs has been offered as an

explanation for why monetary policy shocks can have real and persistent effects on output growth

due to limited capacity for processing information (Woodford (2003), Mackowiak and Wiederholt

(2009)), infrequent updating of beliefs (Mankiw and Reis (2002)) or slow aggregate learning arising

from dispersed information (Lorenzoni (2009)). Differences in beliefs also play a key role in deter-

mining the effect of public information signals in the literature on the social value of information

where agents have a coordination motive due to the strategic complementarity of their actions

(Morris and Shin (2002), Amador and Weill (2009)).1

While heterogeneity in agents’beliefs can be an important determinant of the “average opinion”

about macroeconomic conditions, the reasons why agents disagree are not well understood. This is

important since differences in agents’priors versus differences in their private information signals

need not display the same degree of persistence and thus may influence macroeconomic dynamics

very differently. Moreover, a better understanding of what determines heterogeneity in agents’

beliefs and how this heterogeneity evolves over time can facilitate sharper tests of macroeconomic

models for which subjective beliefs are a driver of economic activity. This point is highlighted by

the sensitivity of some of the conclusions drawn from models with heterogeneous information to

the type of signals observed by agents (e.g., Hellwig and Venkateswaran (2009)).

Hence it is important to establish empirically why agents disagree and how this disagreement

evolves over time and across different states of the economy. In this paper we explore survey data

on differences in agents’subjective views at several forecast horizons and develop a novel approach

for comparing these to model-based predictions of forecast dispersion. This allows us to address

to what extent agents disagree, whether this disagreement has diminished over time, whether the

primary source of disagreement is differences in models or differences in information, and to what

extent disagreements depend on the state of the economy.

We make use of a unique data set on forecasts of GDP growth and inflation for a given year

recorded at different forecast horizons. Fixing the time period and varying the forecast horizon

1Heterogenous beliefs and information asymmetries also play an important role in models of financial markets

(Brunnermeier (2001)) and foreign exchange rate models (Bacchetta and van Wincoop (2006)).
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allows us to identify the source of disagreement among forecasters. This holds because heterogeneity

in private signals versus heterogeneity in model priors have very different effects on the cross-

sectional dispersion of beliefs at long, medium and short forecast horizons. If instead we used

the conventional approach of fixing the forecast horizon and varying the time period, variations

in disagreement might simply reflect changes in the volatility of the underlying variable (e.g., the

“Great Moderation”, McConnell and Perez-Quiros (2000)) and so the two effects would be diffi cult

to disentangle.

Our analysis accomplishes five objectives. First, we document empirically how the dispersion

among agents’beliefs varies over time as well as across different forecast horizons, whether there is

any relation between “average”beliefs and dispersion in beliefs, and how persistent differences in

individual agents’beliefs tend to be.

Second, we address the question from the title, namely the key sources of disagreement among

forecasters. At the most basic level of analysis, agents may disagree either because of differences

in their information signals or because of differences in their priors or models. Intuitively, in a

stationary world differences among agents’information signals should matter most at short forecast

horizons and less so at long horizons since variables will revert to their mean. Conversely, differences

in prior beliefs about long-run inflation or output growth, or differences in their models of these

quantities, should matter relatively more at long horizons where signals are weaker. If cross-

sectional dispersion was only available for a single horizon it would not be possible to infer the

relative magnitude of priors versus information signals underlying the cross-sectional dispersion.

By studying the term-structure of dispersion in beliefs−i.e., differences in forecasts at long, medium

and short horizons−we can therefore identify the key sources of disagreement. Empirically, we find

that heterogeneity in information signals is not a major factor in explaining the cross-sectional

dispersion in forecasts of GDP growth and inflation: heterogeneity in priors or models is more

important.

Third, we develop an approach for comparing the observed dispersion in subjective beliefs to

that implied by a simple reduced-form model (whose moments are matched as closely as possible to

the survey data) for how uncertainty about macroeconomic variables evolves. Our analysis uncovers

evidence of “excess dispersion”in inflation forecasts at short horizons: at horizons of less than six

months the observed disagreement between agents’predictions of inflation is high relative to the

degree of uncertainty about inflation implied by our model. In contrast, the benchmark model does
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a good job at matching the empirically observed dispersion in views about GDP growth.

Fourth, we generalize our model to incorporate the effect of economic state variables on time-

variation in the (conditional) cross-sectional dispersion measured at different horizons. Theoretical

models such as van Nieuwerburgh and Veldkamp (2006) suggest that macroeconomic uncertainty

and dispersion in beliefs should be greater during recessions, where fewer information signals are

received, than during expansions. Consistent with this, we find empirically that differences in

opinion move counter-cyclically, with disagreements being larger in recessions than in expansions.

Our analysis suggests that greater differences in opinion are not due to increased heterogeneity in

information signals but may be related to a shift toward agents putting more weight on model-based

forecasts during recessions.

Fifth, our analysis offers a variety of methodological contributions. We develop a model that

incorporates heterogeneity in agents’prior beliefs and information sets while accounting for mea-

surement errors and the overlapping nature of the forecasts for various horizons. We employ

a simulation-based method of moments (SMM) framework for estimating the parameters of our

model in a way that accounts for how agents update their beliefs as new information arrives. We

view the shape of the cross-sectional dispersion in forecasts at different horizons as the object to be

fitted and use SMM estimation to account for the complex covariance patterns arising in forecasts

recorded at different (overlapping) horizons.

The plan of the paper is as follows. Section 2 takes a first look at the data. Section 3 presents

our framework for modelling the evolution in the cross-sectional dispersion among forecasters across

multiple forecast horizons in a way that allows for heterogeneity in agents’information and their

prior beliefs. Section 4 develops our econometric approach. Empirical findings on the cross-sectional

forecast dispersion are presented in Section 5 and Section 6 presents results for a model of time-

varying dispersion. Section 7 concludes. Additional details on the estimation of the model are

presented in a technical appendix.

2 A first look at the data

Before setting up a formal model, it is useful to take a first look at the data we will be analyzing. Our

data is taken from the Consensus Economics Inc. forecasts which comprise quantitative predictions

of private sector forecasters. Each month survey participants are asked for their forecasts of a
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range of macroeconomic and financial variables for the major economies. The number of survey

respondents for the variables we study varies between 15 and 33 during our sample, with an average

of 26 respondents. Our analysis focuses on US real GDP growth and CPI inflation for the current

and subsequent calendar year. This gives 24 monthly next-year and current-year forecasts over the

period 1991-2008 or a total of 24 × 18 = 432 monthly observations. We refer to t = 1991, ..., 2008

as the target date for the predicted variable and to h = 1, ..., 24 months as the forecast horizon.

To document how the spread in individual forecasters’views around the mean depends on the

forecast horizon, and to see how it evolves through time, Figures 1 and 2 plot for each year in our

sample the individual forecasts against the consensus (average) forecast at horizons of h = 1, 6, 12

and 24 months. Movements in mean forecasts from year to year tend to be very smooth at the

longest forecast horizon but are more volatile at shorter forecast horizons. Conversely, the cross-

sectional spread in forecasts is highest at the 24-month horizon and is sharply reduced as the

horizon shrinks, with the dispersion being particularly low at the one-month horizon. Since agents’

information signals can be expected to be of less value at the long horizons where disagreement

seems to be greatest, these plots provide an early indication that differences in opinion are not

primarily driven by differences in information.

In the heterogeneous information approach to macroeconomics differences in information are a

key to the formation of “average opinion”about macroeconomic conditions. It is therefore of inter-

est to see whether there is a relation between the mean forecast and the dispersion in beliefs. To this

end we compute, for each horizon, the correlation between the consensus forecast and the dispersion

in forecasts. Table 1 shows the results. For GDP growth we find a strong negative correlation−with

23 of 24 correlation estimates being negative and 14 significant at the 10% level−indicating higher

dispersion in beliefs during years with low economic growth, i.e. countercyclical movements in

disagreements about GDP growth. Conversely, for inflation we find a positive relation between the

dispersion in beliefs and the consensus view−with 22 of 24 correlation estimates being positive and

6 being significant at the 10% level−suggesting that dispersion grows with the average expected

inflation rate.

To gain further insight into the sources of differences in opinion, we study the extent to which

individual forecasters are regularly above or below the mean forecast. Differences in prior beliefs

might suggest persistent patterns in individual forecasters’‘optimism’or ‘pessimism’relative to

the average forecaster, whereas differences in private information are perhaps more suggestive of
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short-lived differences. As a first illustration, Figure 3 plots for all horizons the time-series average

of four individual forecasters’ positions in the cross-sectional distribution of forecasts (with 0.1

meaning that a forecaster is at the 10th percentile of this distribution; 0.5 means the forecaster

is at the median; 0.9 means the forecaster is at the 90th percentile, etc.) If differences in beliefs

across forecasters were short-lived, the percentiles of the individual forecasters should be tightly

clustered around the median. This is not what we find, particularly at the longest horizons where

some of the forecasters are consistently optimistic or pessimistic. However, as the forecast horizon

gets shorter, views tend to become more densely clustered around the median, particularly for the

inflation series.

To address persistence in (relative) views more systematically, we rank all individual forecasters

according to whether, in a given year, t, their forecast is in the bottom, middle or top tercile.

We repeat this exercise for all years in the sample and then compute transition probabilities to

see whether forecasters who were in, say, the top tercile (i.e., the most “optimistic” forecasters

in the case of GDP growth) in year t continue to be in the top tercile in year t + 1. Results

from this exercise, conducted separately at short, (1-12 months) and long (13-24 months) forecast

horizons are reported in Table 2. In the absence of persistence in the relative views of individual

forecasters, the entries in this table should all be approximately one-third (0.33). In contrast, if

differences in forecasters’views persist, terms on the diagonal should be significantly higher than

0.33 and off-diagonal terms smaller than 0.33. We find strong evidence that disagreements among

forecasters tend to persist: for GDP growth, at the short horizon, there is a 63% chance (nearly

twice what is expected under no persistence) that the most optimistic forecasters continue to be

relatively optimistic in the following period, while the most pessimistic forecasters repeat with

a 45% probability. At the long forecast horizons we find even greater persistence in the relative

ranking of forecasters by their degree of optimism/pessimism with repeat probabilities always above

50%. Similar conclusions hold for inflation. In all cases the estimated probabilities of remaining in

the same tercile are significantly greater than 33%.

Forecasters enter and exit from our sample, and variations in the length of time a forecaster

has been reporting to the survey may be a source of cross-sectional dispersion beyond the two

channels that we model in the next section (differences in signals and differences in models or

priors). However, this does not appear to be a main concern here: The probability of a forecaster

remaining in the sample conditional on having reported in the previous month is 95% (i.e., there is
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only a 5% probability of leaving the sample), while the probability of remaining out of the sample if

previously excluded is 0.90, so there is a 10% chance of re-entering the following month. Moreover,

the cross-sectional dispersion is very similar whether calculated with or without new entrants in

the sample.

To get an early indication of whether learning effects are important in the sample, we use the

number of reported forecasts as a crude indicator of ‘experience’. This is admittedly an imperfect

measure of experience since a forecaster may have produced predictions long before being included

in the Consensus Economics survey. At each point in time we sort our forecasters into two groups

according to whether the number of their reported forecasts is higher or lower than the median

number of reports filed up to that point. We then compute separate measures of cross-sectional

dispersion among the ‘most experienced’and ‘least experienced’forecasters. In unreported results

(available upon request) we find that the cross-sectional dispersion in the two groups is almost

identical, with only mild evidence of slightly higher dispersion among the ‘most experienced’group

of inflation forecasters.

We derive three conclusions from this brief look at the data. First, differences in opinions among

forecasters tend to be much greater at long forecast horizons than at short forecast horizons. Second,

there is a systematic relationship between the cross-sectional dispersion and “average”beliefs, with

differences in opinion about GDP growth varying countercyclically. Third, there is considerable

persistence through time in individual forecasters’views relative to that of the median forecaster

and persistence tends to be higher at the longer forecast horizons.

3 The Term Structure of Cross-sectional Dispersion

Survey data on economic forecasts has been the subject of a large literature−see Pesaran and Weale

(2006) for a recent review−and many studies have found this type of data to be of high quality,

e.g., Romer and Romer (2000) and Ang, Bekaert and Wei (2007). The focus of this literature has,

however, mainly been on measuring the precision of average survey expectations as opposed to

understanding why and by how much forecasters disagree.

Studying dispersion in beliefs at different forecast horizons turns out to provide important clues

on why forecasters disagree. In fact, the importance of heterogeneity in priors can be identified

primarily from the long end of the term structure of cross-sectional dispersion, while the importance
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of heterogeneity in signals is primarily identified from the short end of the term structure. Intuition

for this comes from considering a simple AR(1) example: in such a case, the h-period forecast is

simply the present state times the AR(1) coeffi cient raised to the appropriate power, φh. Using

parameter values similar to those obtained in our empirical analysis, less than one-third of the

current signal carries over after 24 months. Hence, any difference between agents’signals about the

current state is not going to be very important for the long-horizon forecasts, and so disagreement

in long-term forecasts must largely reflect different beliefs about the long-run mean. To formalize

this intuition in a more general setting, we next turn to our model.

3.1 A model for disagreement between forecasters

We are interested in how the disagreement among forecasters about an “event” measured at a

fixed time period, t, (e.g., GDP growth in 2011) changes as the forecast horizon, h, is reduced, a

so-called fixed-event forecast, see Nordhaus (1987) and Clements (1997). This setup with a time-

varying forecast horizon matches the focus in some theoretical models (e.g. Amador and Weill

(2009)), that study how heterogeneity among agents evolves leading up to the revelation of the

true value of a predicted variable.

We study how agents update their forecasts of some variable measured, e.g., at the annual

frequency, when they receive news on this variable more frequently, e.g., on a monthly basis. To

this end, let yt denote the single-period variable (e.g., monthly log-first differences of GDP or a price

index tracking inflation), while the rolling sum of the 12 most recent single-period observations of

y is denoted zt :

zt =

11∑
j=0

yt−j . (1)

That is, yt is the monthly variable (e.g., monthly GDP growth) and zt is the corresponding annual

variable. Our use of a variable tracking monthly changes in GDP (yt) is simply a modelling device:

US GDP figures are currently only available quarterly, but economic forecasters can be assumed

to employ higher frequency data when constructing their monthly forecasts of GDP. Giannone,

et al. (2008), for example, propose methods to incorporate into macroeconomic forecasts news

about the economy between formal announcement dates. When we take our model to data, we

focus, naturally, on those aspects of the model that have empirical counterparts. Since we shall

be concerned with flow variables that forecasters gradually learn about as new information arrives
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prior to and during the period of their measurement, the fact that part of the outcome may be

known prior to the end of the measurement period (the “event date”) means that the timing of the

forecasts has to be carefully considered.

We assume that agents choose their forecasts to minimize the expected value of the squared

forecast error, et|t−h ≡ zt− ẑt|t−h, where zt is the predicted variable, ẑt|t−h is the forecast computed

at time t− h, t is again the event date and h is the forecast horizon. Under this loss function, the

optimal h−period forecast is simply the conditional expectation of zt given information at time

t− h,Ft−h :

ẑ∗t|t−h = E[zt|Ft−h]. (2)

To track the evolution in the predicted variable, we follow Patton and Timmermann (2010) and use

a simple reduced-form model that, in common with popular macroeconomic models, decomposes

yt into a persistent first-order autoregressive component, xt, and a temporary component, ut:

yt = xt + ut (3)

xt = φxt−1 + εt, − 1 < φ < 1

ut ∼ iid (0, σ2u), εt ∼ iid (0, σ2ε), E[utεs] = 0 for all t, s.

Here φ measures the persistence of xt, while ut and εt are innovations that are both serially uncor-

related and mutually uncorrelated. Without loss of generality, we assume that the unconditional

mean of xt, and thus yt and zt, is zero.

The advantage of using this highly parsimonious model is that it picks up the stylized fact that

variables such as GDP growth and inflation clearly contain a persistent component. Unlike more

structural approaches, it avoids having to take a stand on which particular variables agents use

to compute their forecasts, a decision which in practice can be very complicated, see Stock and

Watson (2002, 2006). The model can easily be extended to account for higher order dynamics,

although given the relatively short time series we will consider, this is unlikely to be feasible in our

empirical application.2

The model in (3) represents the data generating process for the macroeconomic variable being

forecasted. To understand cross-sectional dispersion in beliefs, we next introduce heterogeneity

across forecasters. We shall model disagreement between forecasters as arising from two possible
2For similar reasons we also ignore heteroskedasticity in the underlying data generating process, although we do

not view this as being too important over the sample period studied here.
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sources: differences in information signals observed by individual forecasters, or differences in their

prior beliefs about, or econometric models for, long-run average levels. We define the cross-sectional

dispersion among forecasters as

d2t|t−h ≡
1

Nt−h

Nt−h∑
i=1

(
ẑi,t|t−h − z̄t|t−h

)2
, (4)

where z̄t|t−h ≡ (1/Nt−h)
∑Nt−h

i=1 ẑi,t|t−h is the consensus forecast of zt at time t − h, ẑi,t|t−h is

forecaster i’s prediction of zt at time t − h and Nt−h is the number of forecasters at time t − h.

Notice that d2t|t−h is a measure of subjective uncertainty reflected in agents’perceptions as distinct

from objective measures of risk derived, e.g., from structural or time-series forecasting models.

To capture heterogeneity in forecasters’information, we assume that each forecaster observes

a different signal of the current value of yt, denoted ỹi,t. This assumption replicates the fact that

different agents employ slightly different high-frequency variables for forming their forecast of GDP

growth and inflation. Of course, many of the variables they examine will be common to all forecast-

ers, such as government announcements of GDP growth, inflation and other key macroeconomic

series, and so the signals the forecasters observe will, potentially, be highly correlated. The structure

we assume is:

ỹi,t = yt + ηt + νi,t (5)

ηt ∼ iid
(
0, σ2η

)
∀ t

νi,t ∼ iid
(
0, σ2ν

)
∀ t, i

E [νi,tηs] = 0 for all t, s, i.

Individual forecasters’measurements of yt are contaminated with a common source of noise, denoted

ηt, representing factors such as measurement errors, and independent idiosyncratic noise, denoted

νi,t. Participants in the survey we use are not formally able to observe each others’forecasts for

the current period but they do observe previous survey forecasts.3 For this reason, we include a

second measurement variable, ỹt−1, which is the measured value of yt−1 contaminated with only

the common noise:

ỹt−1 = yt−1 + ηt−1. (6)

3As the participants in our survey are professional forecasters they may be able to observe each others’current

forecasts through published versions of their forecasts, for example investment bank newsletters or recommendations.

If this is possible, then we would expect to find σν close to zero.
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From this, the individual forecaster is able to compute an optimal forecast from the variables

observable to him:

ẑ∗i,t|t−h ≡ E
[
zt|Fi|t−h

]
, Fi|t−h = {ỹi|t−h−j , ỹt−h−1−j}t−hj=0. (7)

Differences in signals about the predicted variable alone are unlikely to explain the observed

degree of dispersion in the forecasts. The simplest way to verify this is to consider dispersion for

very long horizons: as h → ∞ the optimal forecasts converge towards the unconditional mean of

the predicted variable. Since we assume that all forecasters use the same (true) model to update

their expectations about z this implies that dispersion should asymptote to zero as h → ∞. As

Figures 1-2 reveal, this implication is in stark contrast with our data, which suggests instead that

the cross-sectional dispersion converges to a constant but non-zero level as the forecast horizon

grows. Thus there must be a second source of dispersion beyond differences in signals.4

We therefore consider a second source of dispersion by assuming that each forecaster comes

with prior beliefs about the unconditional mean of zt, denoted µi. We assume that forecaster

i shrinks the optimal forecast based on his information set Fi|t−h towards his prior belief about

the unconditional mean of zt. The degree of shrinkage is governed by a parameter κ2 ≥ 0, with

low values of κ2 implying a small weight on the data-based forecast ẑ∗i,t|t−h (i.e., a large degree of

shrinkage towards the prior belief) and large values of κ2 implying a high weight on ẑ∗i,t|t−h. As

κ2 → 0, the forecaster places all weight on his prior beliefs and none on the data; as κ2 → ∞ the

forecaster places no weight on his prior beliefs:

ẑi,t|t−h = ωhµi + (1− ωh)E
[
zt|Fi|t−h

]
, (8)

ωh =
E
[
e2i,t|t−h

]
κ2 + E

[
e2i,t|t−h

]
ei,t|t−h ≡ zt − E

[
zt|Fi|t−h

]
.

We allow the weights placed on the prior and the conditional expectation, E
[
zt|Fi|t−h

]
, to vary

across the forecast horizons in a manner consistent with standard forecast combinations: as ẑ∗i,t|t−h ≡

E
[
zt|Fi|t−h

]
becomes more accurate (i.e., as E

[
e2i,t|t−h

]
decreases) the weight attached to that fore-

cast increases. This weighting scheme lets agents put more weight on the more precise signals in

4While 24 months may not seem like a long forecast horizon, Lahiri and Sheng (2008b) report evidence that the

24-month and 10-year survey forecasts of real GDP growth and inflation are in fact very similar.
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their short-term forecasts and less weight on signals at longer horizons. As pointed out by Lahiri

and Sheng (2008a,b), the “anchoring”of long-run forecasts is a consequence of Bayesian updating.5

Also, note that

ωh →
V [zt]

κ2 + V [zt]
as h→∞.

Hence the weight on the prior in the long-run forecast can be quite large if κ2 is small relative to

V [zt]. For analytical tractability, and for better finite sample identification of κ2, we impose that

κ2 is the same across all forecasters.

Our analysis assumes that forecasters know both the form and the parameters of the data gen-

erating process for zt but do not observe this variable. Instead they only observe ỹit and ỹt−1 which

are noisy estimates of [yt, yt−1]
′. In common with many macroeconomic studies (e.g., Woodford

(2003)), we further assume that agents use the Kalman filter to optimally predict (forecast, “now-

cast”and “backcast”) the values of yt needed for the forecast of zt ≡ Σ11j=0yt−j .
6 Thus the learning

problem faced by forecasters in our model relates to the latent state of the economy (measured

by xt and yt), but not to the parameters of the model. This simplification is necessitated by our

relatively short time series of data. Details on the state-space representation of the model and the

forecasters’updating equations are provided in a technical appendix.

A possible interpretation of the heterogeneity in beliefs represented above by µi is that it

captures differences in econometric models for long-run growth or inflation (for example, models

with or without cointegrating relationships imposed), or it captures differences in sample periods

used for the computation of their forecasts (due to, for example, differences in beliefs about the

dates of structural breaks). Given the short time-series dimension of our data we are unable to

distinguish between these competing interpretations.

The shrinkage of agents’forecasts towards time-invariant long-run levels, µi, can alternatively

be motivated by uncertainty about the value of the information signals received by agents. If

agents know the interpretation of signals, under very mild conditions they will eventually hold

5We refrain from adopting a formal Bayesian framework for the individual forecasters since individual forecasters

frequently enter and exit during our sample. This makes it impossible to capture how a single forecaster updates

his/her views using Bayesian updating rules. The weighting scheme we employ has an intuitive Bayesian interpretation

as a combination of the prior and the data to obtain the posterior.
6The assumption that forecasters make effi cient use of the most recent information is most appropriate for profes-

sional forecasters such as those we consider in our empirical analysis, but is less likely to hold for households which

may only update their views infrequently, see Carroll (2003).
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identical beliefs. A standard Bayesian model would therefore require all disagreement to eventually

be driven by differences in private signals. However, as shown by Acemoglu et al. (2007), if agents

are uncertain about the interpretation of the signals, they need not agree even after observing an

infinite sequence of identical signals. This is important since Figures 1-3 show no evidence that

agents’beliefs converge even after 18 years of observations in our sample.7

4 Estimation of the Model

The cross-sectional dispersion implied by our model is defined by

δ2h ≡
1

N

N∑
i=1

E
[(
ẑi,t|t−h − z̄t|t−h

)2]
. (9)

We use the simulated method of moments (SMM), (Gourieroux and Monfort (1996a); Hall (2005)),

to match the cross-sectional dispersion implied by our model, δ2h, with its sample equivalent in the

data given in equation (4). Unfortunately, a closed-form expression for δ2h is not available and so

we resort to simulations to evaluate δ2h. In brief, we do this by simulating the state variables for

T observations, and then generating a different ỹit series for each of the N forecasters. For each

forecaster we obtain the optimal Kalman filter forecast and then combine this with the forecaster’s

prior to obtain the final forecast using equation (8). We then compute the cross-sectional variance

of the individual forecasts to obtain d2t|t−h and average these across time to obtain δ
2
h.

Our model also yields predictions for the root mean-squared error (RMSE) of the consensus

forecast, which we match to the data to pin down the parameters of the data generating process,(
σ2u, σ

2
ε, φ
)
. Details on these moments are presented in the technical appendix. Given our model for

the term structure of dispersion in beliefs and the RMSE of the consensus forecast, all that remains

is to specify a residual term for the model. Since the dispersion is measured by the cross-sectional

variance, it is sensible to allow the innovation term to be heteroskedastic, with variance related

to the level of the dispersion. This form of heteroskedasticity, where the cross-sectional dispersion

increases with the level of the predicted variable, has been documented empirically for inflation

7Agents’ beliefs may also fail to converge because of non-stationarities, cf. Kurz (1994). Another source of

dispersion in agents’beliefs which we do not consider here is differences in the forecasters’objectives (loss function).

Capistran and Timmermann (2009) consider this possibility to explain differences among agents’ forecasts of US

inflation measured at a given horizon and find that this can explain some of the dispersion in forecasts.

12



data by, e.g., Grier and Perry (1998) and Capistran and Timmermann (2009). We use the following

model:

d2t|t−h = δ2h · λt|t−h,

E
[
λt|t−h

]
= 1, V

[
λt|t−h

]
= σ2λ (10)

where d2t|t−h is the observed value of the cross-sectional dispersion. In particular, we assume

that the residual, λt|t−h, is log-normally distributed with unit mean:

λt|t−h ∼ iid logN

(
−1

2
σ2λ, σ

2
λ

)
.

In addition to the term structures of consensus MSE-values and cross-sectional dispersion (each

yielding up to 24 moment conditions) we also include moments implied by the term structure of

dispersion variances to help estimate σ2λ. The parameters of our model are obtained by solving the

following expression:

θ̂T ≡ arg min
θ

gT (θ)′ gT (θ) , (11)

where θ ≡
[
σ2u, σ

2
ε, φ, σ

2
η, σ

2
ν , κ

2, σ2µ, σ
2
λ

]′
, and, for h = 1, 2, ..., 24,

gT,h (θ) ≡ 1

T

T∑
t=1


e2t|t−h −MSEh (θ)

d2t|t−h − δ
2
h (θ)(

d2t|t−h − δ
2
h (θ)

)2
− δ4h (θ)

(
exp

(
σ2λ
)
− 1
)
 . (12)

In total our model generates 72 moment conditions and contains 8 unknown parameters. In

practice we use only six forecast horizons (h = 1, 3, 6, 12, 18, 24) in the estimation, rather than the

full set of 24, in response to studies of the finite-sample properties of GMM estimates (Tauchen,

(1986)) which find that using many more moment conditions than required for identification leads

to poor approximations from the asymptotic theory, particularly when the moments are highly

correlated, as in our application.8 We use the identity matrix as the weighting matrix in our initial

SMM estimation, and then use the effi cient weight matrix for the final parameter estimates and

tests.

To obtain the covariance matrix of the moments in (12), used to compute standard errors and

the test of over-identifying restrictions, we use the model-implied covariance matrix of the moments

8We have also estimated the models presented in this paper using the full set of 24 moment conditions and the

results were qualitatively similar.
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based on the estimated parameters. This matrix is not available in closed-form and so we simulate

50 non-overlapping years of data to estimate it, imposing that the innovations to these processes

are normally distributed, and using the expressions given in the Appendix to obtain the Kalman

filter forecasts.9 As noted above, a closed-form expression for δ2h is not available and so we use

simulations to obtain an estimate of it. For each evaluation of the objective function, we simulate

50 non-overlapping years of data for 30 forecasters to estimate δ2h.
10 The priors for each of the

30 forecasters, µi, are simulated as iid N
(
0, σ2µ

)
.11 We multiply the estimated δ2h series by λt|t−h,

defined in equation (10) and from this we obtain ‘measured’values of dispersion, d2t|t−h = δ2h ·λt|t−h,

and the squared dispersion residual, λ2t|t−h, which are used in the second and third set of moment

conditions in (12), respectively. From these, combined with the MSE-values, we compute the sample

covariance matrix of the moments.

5 Empirical Results on Forecast Disagreement

We next turn to our empirical results from the econometric analysis of the cross-sectional dispersion

in the survey forecasts of GDP growth and inflation. We use revised data to measure the realized

value of the target variable (GDP growth or inflation), but note that this is strongly correlated

(correlation of 0.90) with the first release of the real-time series, the data recommended by Corradi,

Fernandez and Swanson (2007). Our model in Section 3 assumed that the target variable is the

December-on-December change in real GDP or the consumer price index, which can conveniently

be written as the sum of the month-on-month changes in the log-levels of these series, as in equation

(1). The Consensus Economics survey formally defines the target variable slightly differently to this

but the impact of this difference on the model fit is negligible.12

9We examined the sensitivity of this estimate to changes in the size of the simulation and to re-simulating the

model, and found that when 50 non-overlapping years of data are used, changes in the estimated covariance matrix

are negligible.
10The actual number of forecasters in each survey exhibited some variation across t and h, but in the simulations

we set N = 30 for all t, h for simplicity. Simulation variability for this choice of N and T is small, particularly relative

to the values of the time-series variation in d2t|t−h that we observe in the data.
11As a normalization we assume that N−1

∑N
i=1 µi = 0 since we cannot separately identify N−1

∑N
i=1 µi and

σ2µ ≡ N−1
∑N
i=1 µ

2
i from our data on forecast dispersions. This normalization is reasonable if we think that the

number of “optimistic” forecasters is approximately equal to the number of “pessimistic” forecasters.
12Generalizing the model to accommodate the exact definition of the target variable in the Consensus Economics

survey involves lengthy algebra and complicates the description of the model, see Patton and Timmermann (2010)
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To gain intuition for how the parameters of our constant-dispersion model are identified, notice

that of those parameters, three
(
φ, σ2u, σ

2
ε

)
characterize the data generating process in (3). These

parameters are mostly, though not solely, identified by the moments pertaining to the RMSE-values

of the average forecast. In contrast, σ2η, σ
2
µ, σ

2
ν and κ

2 are primarily determined by the moments

capturing the term structure of cross-sectional dispersion. Figure 4 shows how the model-implied

cross-sectional dispersion in beliefs varies across different horizons as each of the four parameters

take on low, medium and high values.13 The plots suggest that the parameters have very different

effects on the term structure. Increases in σ2η increase the dispersion at short horizons, but have

little effect on long-horizon dispersion. Increases in σ2v have a smaller but similar effect. Variations

in σ2µ lead to big shifts in the long-run dispersion in beliefs, but have little effect on short-run

disagreements, while conversely variations in κ2 lead to small variations in the long-run dispersion

but imply large changes in the short-run dispersion. Thus the parameters generally have very

different effects on different portions of the term structure, which helps identify their values.

Figure 5 plots the term structure of cross-sectional dispersion for GDP growth and inflation,

i.e. the cross-sectional standard deviation of forecasts, averaged across the full sample, 1991-2008,

listed against the forecast horizon. The cross-sectional dispersion of output growth is only slowly

reduced for horizons in excess of 12 months, but declines rapidly for h < 12 months from 0.38 at

the 12-month horizon to 0.07 at the 1-month horizon. For inflation, again there is a systematic

reduction in the dispersion as the forecast horizon shrinks. The cross-sectional dispersion declines

from 0.44 at the 24-month horizon to 0.32 at the 12-month horizon and 0.08 at the 1-month horizon.

It is interesting to contrast the pattern in Figure 5 with the cross-sectional dispersion implied

by the analysis in Amador and Weill (2009). In their model, more precise public information leads

agents to rely less on private information and so slows down learning, crowding out valuable private

information. Provided that prior beliefs are suffi ciently dispersed, initially agents put increasingly

more weight on their private information, leading to a convex segment of the aggregate learning

curve. Subsequently, the learning curve becomes concave due to the fact that the true state is

eventually revealed. Hence information diffuses over time along an S-shaped curve, while the cross-

for details.
13The “medium”value of each of these parameters (except for σν) corresponds to the fitted value for GDP growth

(reported in Table 3 below), and the high/low values are the fitted values ±2 times the standard errors. The fitted

value for σν was very near zero, and so for that parameter we use that as the “low”value and obtain medium and

high values as the fitted value +2 and +4 standard errors.
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sectional dispersion in beliefs converges towards zero along a hump-shaped curve, i.e. it starts low,

then increases monotonically, reaches a peak before decreasing towards zero. While our data is

consistent with the reduced dispersion found at short forecast horizons, the very high dispersion

observed at the longest horizons is clearly at odds with this type of learning model.

5.1 Parameter estimates and hypothesis tests

Table 3 reports parameter estimates for the model based on the moments in (12). For both GDP

growth and inflation the estimates of σµ and κ suggest considerable heterogeneity across forecasters

in our panel. Conversely, the estimates of σν suggest that differences in individual signals may not be

important.14 Indeed, for GDP growth the test statistics for σν and σµ are 0 and 12.98, respectively,

while for inflation the test statistics are 0.001 and 2.97. Thus for both series we fail to reject the

null that σν = 0, while we are able to reject the null that σµ = 0 at the 5% level. Heterogeneity

in signals about GDP growth and inflation therefore does not appear to be a significant source of

disagreement among professional forecasters, whereas heterogeneity in beliefs about the long-run

levels of GDP growth and inflation is strongly significant.

Our tests of the over-identifying restrictions indicate that the model provides a good fit to

the GDP growth consensus forecast and forecast dispersion, with the J -test p-value being 0.77.

Moreover, the top panel of Figure 5 confirms that the model provides a close fit to the empirical

term structure of forecast dispersions. This panel also shows that the model with σν set to zero

provides an almost identical fit to the model with this parameter freely estimated, consistent with

the test results for this hypothesis. Thus differences in individual information about GDP growth,

modelled by νit, do not appear important for explaining forecast dispersion; the most important

features are the differences in prior beliefs about long-run GDP growth and the accuracy of Kalman

filter-based forecasts (as they affect the weight given to the prior relative to the Kalman filter

forecast).

In sharp contrast, the model for inflation forecasts and dispersions is rejected by the test of

14Testing the null that σν (or σµ) is zero against it being strictly positive is complicated by the fact that zero is

the boundary of the support for this parameter, which means that standard t-tests are not applicable. In such cases

the squared t-statistic no longer has an asymptotic χ21 distribution under the null, rather it will be distributed as

a mixture of a χ21 and a χ
2
0, see, e.g., Gourieroux and Monfort (1996b, Chapter 21), and the 90% and 95% critical

values for this distribution are 1.64 and 2.71.
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over-identifying restrictions (see the row labeled ‘J p-val’in Table 3). The model fits dispersion well

for horizons greater than 12 months, but for horizons less than 4 months the observed dispersion is

above what is predicted by our model. Given the functional form specified for the weight attached to

the prior belief about long-run inflation versus the Kalman filter-based forecast, the model predicts

that each forecaster will place 95.0% and 99.1% weight on the Kalman filter-based forecast for

horizons of h = 3 and h = 1 month, and since the Kalman filter forecasts are very similar across

forecasters at short horizons our model predicts that dispersion will be low.

Observed inflation forecast dispersion is high relative both to the predictions of our model, and

to observed forecast errors: observed dispersion (in standard deviations) for horizons h = 3 and

h = 1 are 0.11 and 0.07, compared with the RMSE of the consensus forecast at these horizons of

0.19 and 0.08. Contrast this with the corresponding figures for the GDP forecasts, with dispersions

of 0.13 and 0.07 and RMSE-values of 0.34 and 0.30. Thus, the dispersion of inflation forecasts is

around 69% as large as the RMSE of the consensus forecast for short horizons (1 ≤ h ≤ 6), whereas

the dispersion of GDP growth forecasts is around 35% as large as the RMSE of the consensus

forecast.

To further illustrate this point, Figure 6 plots the observed ratio of dispersion to RMSE, along

with the predicted ratios, for horizons ranging from 24 months to 1 month, for both GDP growth

and inflation. The upper panel of this plot reveals that our model is able to capture the basic

shape of this function for GDP growth, while the lower panel shows how this ratio diverges for

short horizons, especially the one-month horizon, and is not described well by our model. Patton

and Timmermann (2010) show that this model fits the RMSE term structure well, and so the

divergence of the observed data from our model is not due to a poor model for the RMSE. The

upward sloping function for the dispersion-to-RMSE ratio is diffi cult to explain within the confines

of our model, or indeed any model assuming a quadratic penalty for forecast errors and effi cient

use of information, and thus poses a puzzle.

6 Time-varying dispersion

There is a growing amount of theoretical and empirical work on the relationship between the

uncertainty facing economic agents and the economic environment. van Nieuwerburgh and Veld-

kamp (2006), Veldkamp (2006) and Veldkamp and Wolfers (2007) propose endogenous information
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models where agents’participation in economic activity leads to more precise information about

unobserved economic state variables such as (aggregate) technology shocks. In these models the

number of signals observed by agents is proportional to the economy’s activity level so more infor-

mation is gathered in a good state of the economy than in a bad state. Recessions are therefore

times of greater uncertainty which in turn means that dispersion among agents’forecasts can be

expected to be wider during such periods. Similarly, Mackowiak and Wiederholt (2009) show that

an increase in the variance of nominal aggregate demand leads firms to pay more attention to

aggregate activity and less to idiosyncratic conditions. This could lead to a decrease in the cross-

sectional dispersion in beliefs about the aggregate nominal demand. Thus, changing volatility in

the variance of nominal aggregate demand−e.g., around turning points of the business cycle−can

lead to time-varying cross-sectional dispersion.

To address such issues, we generalize our model to allow forecast dispersion to vary over the

business cycle. There are of course many variables that vary with the business cycle that we could

use in our empirical model for time-varying dispersion. We simply employ the default spread (the

difference in average yields of corporate bonds rated by Moody’s as BAA vs. AAA), which is known

to be strongly counter-cyclical, increasing during economic downturns. Over our sample period the

default spread ranges from 55 basis points in 1995, 1997 and 2000, to 338 basis points in December

2008.

6.1 Time-varying differences in beliefs

As a simple, robust way to explore the relation between disagreements among forecasters and the

state of the economy, we first estimate a pooled regression of the logarithm of the cross-sectional

dispersion on the logarithm of the default spread and separate horizon dummies, αh, i.e.,

log(d2t|t−h) = αh + βSPR log(St−h) + εt−h, t = 1, 2, ..., T ; h = 1, 2, ..., 24, (13)

where St−h is the default spread in month t− h. This approach is robust in the sense that it does

not impose our model, but conversely also does not reveal the source of any cyclical variations

in belief dispersion. Panel A in Table 4 reports the estimated coeffi cients. For GDP growth the

estimate of βSPR is 0.43 with a t-statistic around four. For inflation the estimate of βSPR is 0.78

and the t-statistic exceeds nine. Thus dispersion in output growth and inflation expectations is
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significantly higher during economic recessions than during upturns.15

We next explore how counter-cyclical movements in the cross-sectional dispersion can be intro-

duced in the context of our model. The most natural way to allow the default spread to influence

dispersion in our model is through the variance of the individual signals received by the forecasters,

σ2ν , or through κ
2 which determines how much weight forecasters put on their data-based forecast

relative to their long-run model forecast. Given that the former variable explained very little of the

(unconditional) dispersion term structure, we focus on the latter channel. We specify our model as

log(κ2t ) = βκ0 + βκ1 log(St). (14)

In this model, if βκ1 < 0, then increases in the default spread coincide with periods where forecasters

put less emphasis on their signals and more weight on their long-run models. Since we estimate the

main source of differences in beliefs to be attributable to differences in models or priors, a negative

value of βκ1 would indicate that periods with increased default spreads coincide with periods with

greater dispersion.

Leaving the rest of the model unchanged, the model with time-varying dispersion is estimated

in a similar way to the model with constant dispersion, with the following modifications. We use

the stationary bootstrap of Politis and Romano (1994), with average block length of 12 months,

to “stretch” the default spread time series, St, to be 50 years in length for the simulation. This

maintains, asymptotically, the properties of this process and allows us to simulate longer time series

than we have in our data set. Following this step the remainder of the simulation is the same as for

the constant dispersion case above, noting that the combination weights applied to the Kalman-

filter forecast and the “prior”are now time-varying as κ2t is time-varying. In the estimation stage

we need to compute the value of δ2h
(
κ2t
)
, so that we can compute the dispersion residual. In the

constant dispersion model, this is simply the mean of d2t|t−h, but in the time-varying dispersion

model this depends on κ2t . It is not computationally feasible to simulate δ
2
h

(
κ2t
)
for each unique

value of κ2t in our sample, and so we estimate it for κ
2
t equal to its sample minimum, maximum

and its [0.25, 0.5, 0.75] sample quantiles, and then use a cubic spline to interpolate this function,

obtaining δ̃
2
h

(
κ2t
)
. We check the accuracy of this approximation for values in between these nodes

and the errors are very small. We then use δ̃
2
h

(
κ2t
)
, and the data, to compute the dispersion

15These findings are consistent with the work of Döpke and Fritsche (2006) for a panel of forecasters for Germany

over a different sample period.
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residuals and use these in the SMM estimation of the parameters of the model.

Empirical results for this model are presented in Panel B of Table 4. Consistent with the work

of Veldkamp (2006) and van Nieuwerburgh and Veldkamp (2006), for GDP growth the negative

sign of β̂
κ

1 implies that when spreads are high, forecasters rely less on (common) information and

disagree more. Moreover, the estimate β̂
κ

1 is significant at the 10% level and, as indicated by the

last row, the model is not rejected. For inflation forecasts, in contrast, this parameter estimate is

positive but not significantly different from zero and the model is rejected.

To see the implications of our analysis for the time series of cross-sectional dispersion, Figure

7 plots the actual dispersion versus the fitted (model-implied) dispersion at horizons of h = 24

and 12 months. For GDP growth the model implies considerable variation in disagreement among

forecasters with dispersions increasing markedly during economic downturns as tracked by the

default spread. Moreover, the model nicely tracks time-variations in the cross-sectional dispersion

of GDP growth with large positive correlations between the model-implied and actual dispersion.

Unsurprisingly, given the poor fit of the inflation model, for the inflation series the model fails to

similarly match time-variations in the actual dispersion.

7 Conclusion

This paper analyzed the degree of heterogeneity in forecasters’opinions, the nature and source of

differences in opinions, and how such differences evolve over the economic cycle. We found that

differences in agents’forecasts of macroeconomic variables such as GDP growth and inflation tend

to be much greater at long forecast horizons up to two years compared with short horizons of a

few months. Moreover, such differences in opinion tend to persist through time. To understand

these patterns, we developed a simple, parsimonious model for the cross-sectional dispersion among

forecasters. Our analysis allows for heterogeneity in forecasters’ information signals and in their

prior beliefs or models.

Our analysis reveals several puzzling features that may be diffi cult to explain with simple and

popular forecasting models of the type used by macroeconomists. First, our empirical results

suggest that heterogeneity in forecasters’ information signals is not a major factor in explaining

the cross-sectional dispersion in forecasts of GDP growth and inflation: heterogeneity in priors or

models is more important. Second, the dispersion of forecasts does not appear to fall through time,
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suggesting that beliefs do not converge. Third, we find that forecasters’views of inflation at short

horizons display “excess dispersion”that cannot be matched by our model and seems far greater

than one would expect from differences in either prior beliefs or information signals. Fourth, and

finally, our analysis shows that differences in opinions about GDP growth or inflation move strongly

counter-cyclically, increasing during bad states of the world, although such variations again do not

appear to be driven by heterogeneity in signals.
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Technical Appendix
This appendix provides details of how we derive the moments used in the empirical estimation

in Section 3. We first introduce the state and measurement equations underlying the model from

Section 3 cast in state space form and then show how the forecasters’updating equations can be

solved.

A.1. State and Measurement Equations
Our model involves unobserved variables and so we cast it in state space form, using notation

similar to that in Hamilton (1994). To account for the way the target variable is constructed,

zt ≡ Σ11j=0yt−j , we augment the state equation with eleven lags of yt so the target variable can be

written as a linear combination of the state variable. The state equation is

xt

yt

yt−1
...

yt−11


=



φ 0 0 · · · 0

φ 0 0 · · · 0

0 1 0 · · · 0
...
. . . . . . . . .

...

0 0 0 · · · 0





xt−1

yt−1

yt−2
...

yt−12


+



εt

εt + ut

0
...

0


, (15)

which we write as

ξt = Fξt−1 + vt. (16)

The measurement equation involves two variables: the estimate of yt incorporating both common

and idiosyncratic measurement error, and the estimate of yt−1 incorporating just common mea-

surement error. In a minor abuse of notation relative to our discussion of this model in Section 3,

we will call the former ỹ∗it and the latter ỹc,t−1, so that we may stack them into a vector ỹit:

 ỹ∗it

ỹc,t−1

 =

 0 1 0 · · · 0

0 0 1 · · · 0




xt

yt

yt−1
...

yt−11


+

 ηt + νit

ϕt−1

 (17)

which we write as

ỹit = H′ξt + wit,
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We introduce the measurement error ϕt−1, distinct from ηt but with the same distribution, so that

the vector wit remains serially uncorrelated which simplifies the model.

The various shocks in the state and measurement equations are distributed as:

(ut, εt, ηt, ϕt, ν1t, ..., νNT )′ ∼ iid N
(
0, diag

{(
σ2u, σ

2
ε, σ

2
η, σ

2
η, σ

2
ν , ..., σ

2
ν

)})
where diag {a} is a square diagonal matrix with the vector a on the main diagonal. Then vt ∼

iid N (0,Q), with

Q =



σ2ε σ2ε 0 · · · 0

σ2ε σ2ε + σ2u 0 · · · 0

0 0 0 · · · 0
...

...
...
. . .

...

0 0 0 · · · 0


.

And finally wit ∼ iid N (0,R), with

R =

 σ2η + σ2ν 0

0 σ2η

 .
Notice that by extending the state variable to include lags of yt we do not need to treat forecasts,

nowcasts and backcasts separately; they can all be treated simultaneously as “forecasts” of the

state vector ξt. This simplifies the algebra considerably.

A.2. The Forecasters’Updating Process
Our empirical data provides us with estimates of forecast uncertainty at different forecast hori-

zons measured both in the form of the root mean squared forecast error (RMSE) of the “average”

or consensus forecast or in the form of the cross-sectional standard deviation of the forecasts (i.e.,

the dispersion). We next characterize how the forecasters update their beliefs and derive the

model-implied counterparts of these two measures of uncertainty and disagreement.

Let

Fi,t = σ
(
ỹit, ỹi,t−1, ..., ỹi,1

)
ξ̂i,t|t−h ≡ E

[
ξt|Fi|t−h

]
, h ≥ 0,

where the expectation is obtained using standard Kalman filtering methods.
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We assume that the forecasters have been using the Kalman filter long enough that all updating

matrices, defined below, are at their steady-state values. This is done simply to remove any “start

of sample”effects that may or may not be present in our actual data. Following Hamilton (1994):

Pi,t+1|t ≡ E

[(
ξt+1 − ξ̂i,t+1|t

)(
ξt+1 − ξ̂i,t+1|t

)′]
= (F−Ki,t) Pi,t|t−1

(
F′−K′i,t

)
+ Ki,tRK′i,t+Q

→ P∗1. (18)

Note that although the individual forecasters receive different signals, and thus generate different

forecasts ξ̂i,t+1|t, all signals have the same covariance structure and so will converge to the same

matrix, P∗1. Similarly,
16

Ki,t ≡ FPi,t|t−1
(
Pi,t|t−1+R

)−1 → K∗,

Pi,t|t ≡ E

[(
ξt−ξ̂i,t|t

)(
ξt−ξ̂i,t|t

)′]
= Pi,t|t−1−Pi,t|t−1

(
Pi,t|t−1+R

)−1
Pi,t|t−1

→ P∗1−P∗1 (P∗1+R)−1P∗1 ≡ P∗0. (19)

To estimate the matrices P∗1, P∗0, and K∗, we simulate 100 non-overlapping years of data and

update Pi,t|t−1, Pi,t|t and Ki,t using the above equations. We use these matrices at the end of the

100th year as estimates of P∗1, P∗0, and K∗. Multi-step prediction error uses

ξ̂i,t+h|t = Fhξ̂i,t|t,

so Pi,t+h|t ≡ E

[(
ξt+h−ξ̂i,t+h|t

)(
ξt+h−ξ̂i,t+h|t

)′]
(20)

= FhPi,t|t
(
F′
)h

+

h−1∑
j=0

FjQ
(
F′
)j → P∗h, for h ≥ 1.

The matrices P∗h for h = 1, 2, ..., 24 are suffi cient for us to obtain the term structure of RMSE,

(that is, the RMSE-values across different horizons, h = 1, ..,H), for an individual forecaster, but

the moments we include in the estimation are from the consensus forecasts, and so we need the

16The convergence of Pi,t|t−1, Pi,t|t and Ki,t to their steady-state values relies on |φ| < 1, see Hamilton (1994),

Proposition 13.1, and we impose this in the estimation.
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RMSE term structure for the consensus, which requires slightly more work.17 Let

ξ̄t|t−h ≡
1

N

N∑
i=1

ξ̂i,t|t−h (21)

be the consensus forecast of the state vector. We now derive the term structure of RMSE for this

forecast, but first it is useful to derive the RMSE of the consensus “nowcast”:

P̄∗0 ≡ V
[
ξt−ξ̄t|t

]
= V

[
1

N

N∑
i=1

(
ξt−ξ̂i,t|t

)]

=
1

N2

N∑
i=1

V
[
ξt−ξ̂i,t|t

]
+

2

N2

N−1∑
i=1

N∑
k=i+1

Cov
[
ξt−ξ̂i,t|t, ξt−ξ̂k,t|t

]
=

1

N
P∗0 +

N − 1

N
E

[(
ξt−ξ̂i,t|t

)(
ξt−ξ̂k,t|t

)′]
, (22)

using the assumption that all of our forecasters receive signals with identical distributions. It is

possible to show that the current nowcast error is the following function of the previous period’s

nowcast error and the intervening innovations:

ξt−ξ̂i,t|t =
(
I−P∗1H

(
H′P∗1H + R

)−1
H′
)

F
(
ξt−1−ξ̂i,t−1|t−1

)
+
(
I−P∗1H

(
H′P∗1H + R

)−1
H′
)

vt

−P∗1H
(
H′P∗1H + R

)−1
wit

≡ A
(
ξt−1−ξ̂i,t−1|t−1

)
+ Bvt+Cwit, (23)

where vt and wit are defined above. We use this result to derive the covariance between nowcast

errors across different forecasters:

P∗0ik ≡ E

[(
ξt−ξ̂i,t|t

)(
ξt−ξ̂k,t|t

)′]
(24)

= E

[(
A
(
ξt−1−ξ̂i,t−1|t−1

)
+ Bvt+Cwit

)(
A
(
ξt−1−ξ̂k,t−1|t−1

)
+ Bvt+Cwkt

)′]
= AE

[(
ξt−1−ξ̂i,t−1|t−1

)(
ξt−1−ξ̂k,t−1|t−1

)′]
A′+BQB′ + CE

[
witw

′
kt

]
C′,

with all other terms in the two nowcast errors having zero covariance. Letting

E
[
witw

′
kt

]
=

 σ2η 0

0 σ2η

 ≡ Rik,

17Patton and Timmermann (2010) also consider the behavior of the consensus forecast error but do not analyze

cross-sectional dispersion in forecasts.
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we then have

P∗0ik= AP∗0ikA
′+BQB′+CRikC

′,

which exploits the stationarity of this process, and yields an implicit solution for the covariance of

nowcast errors across forecasters, P∗0ik.
18 Thus the variance of the error of the consensus nowcast

of the state vector is:

P̄∗0 ≡ V
[
ξt−ξ̄t|t

]
=

1

N
P∗0 +

N − 1

N
P∗0ik. (25)

The variance of the consensus forecast of the state vector for h ≥ 1 can be similarly obtained.

Using the following expression for forecast errors as a function of a previous nowcast error and the

intervening innovations:

ξt−ξi,t|t−h = Fh
(
ξt−h−ξi,t−h|t−h

)
+

h−1∑
j=0

Fjvt−j , h ≥ 1, (26)

we obtain

P̄∗h ≡ V
[
ξt−ξ̄t|t−h

]
= V

[
1

N

N∑
i=1

(
ξt−ξ̂i,t|t−h

)]

=
1

N2

N∑
i=1

V
[
ξt−ξ̂i,t|t−h

]
+

2

N2

N−1∑
i=1

N∑
k=i+1

Cov
[
ξt−ξ̂i,t|t−h, ξt−ξ̂k,t|t−h

]
=

1

N
P∗h +

N − 1

N
E

[(
ξt−ξ̂i,t|t−h

)(
ξt−ξ̂k,t|t−h

)′]
(27)

To evaluate this expression requires knowledge of the covariance between the individual forecast

18Like other covariance matrices that appear in more standard Kalman filtering applications, see Hamilton (1994),

Proposition 13.1 for example, it is not possible to obtain an explicit expression for P∗0ik.
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errors measured at different horizons:

P∗hik ≡ E

[(
ξt−ξ̂i,t|t−h

)(
ξt−ξ̂k,t|t−h

)′]

= E

Fh
(
ξt−h−ξi,t−h|t−h

)
+
h−1∑
j=0

Fjvt−j

Fh
(
ξt−h−ξk,t−h|t−h

)
+
h−1∑
j=0

Fjvt−j

′
= FhE

[(
ξt−h−ξi,t−h|t−h

)(
ξt−h−ξk,t−h|t−h

)′](
Fh
)′

+E

h−1∑
j=0

Fjvt−j

h−1∑
j=0

Fjvt−j

′ (28)

= FhP∗0ik

(
Fh
)′

+
h−1∑
j=0

FjQ
(
Fj
)′
, h ≥ 1. (29)

With these moment matrices in place it is simple to obtain the term structure of MSE-values

for the consensus forecast of the target variable. Let ω ≡ [0, ι′12]
′, where ιk is a k×1 vector of ones,

then:

V
[
zt − z̄t|t−h

]
= V

[
ω′
(
ξt−ξ̄t|t−h

)]
= ω′P̄∗hω, for h ≥ 0. (30)

The above expression yields 24 moments (the mean squared errors for the 24 forecast horizons)

that can be used to estimate the parameters of the model that govern the dynamics of GDP growth

and inflation.
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Table 1: Summary statistics for the consensus forecast and the
dispersion of forecasts, across horizons

GDP growth Inflation

Forecast Mean Mean Mean Mean
Horizon Forecast Dispersion Correlation Forecast Dispersion Correlation

1 2.861 0.071 −0.602∗ 2.839 0.075 0.448
2 2.824 0.088 −0.414 2.865 0.083 0.454
3 2.788 0.127 −0.410∗ 2.890 0.108 0.257
4 2.810 0.140 −0.524∗ 2.907 0.125 0.359
5 2.785 0.153 −0.375∗ 2.909 0.147 0.383
6 2.824 0.197 −0.482∗ 2.888 0.177 0.264
7 2.827 0.222 −0.534∗ 2.881 0.198 0.176
8 2.817 0.252 −0.462∗ 2.814 0.212 −0.084
9 2.748 0.306 −0.694∗ 2.713 0.259 0.563∗

10 2.677 0.341 −0.640∗ 2.648 0.287 0.522∗

11 2.606 0.355 −0.799∗ 2.591 0.286 0.261
12 2.559 0.380 −0.688∗ 2.653 0.323 0.478∗

13 2.569 0.388 −0.646∗ 2.720 0.327 0.248
14 2.558 0.407 −0.698∗ 2.772 0.347 0.424∗

15 2.626 0.419 −0.516∗ 2.814 0.355 0.388
16 2.739 0.414 −0.231 2.855 0.369 0.294
17 2.806 0.391 0.066 2.841 0.385 0.034
18 2.848 0.374 −0.102 2.847 0.405 0.129
19 2.852 0.391 −0.120 2.870 0.433 0.512∗

20 2.856 0.387 −0.148 2.872 0.411 −0.020
21 2.849 0.396 −0.092 2.828 0.416 0.325
22 2.869 0.396 −0.297 2.825 0.435 0.228
23 2.865 0.400 −0.305 2.836 0.430 0.461∗

24 2.853 0.420 −0.300 2.865 0.436 0.386

Notes: This table presents the average consensus forecast, average cross-sectional dispersion
in forecasts, and the time-series correlation between the consensus forecast and the dispersion in
forecasts, for each horizon between 1 month and 24 months, computed across all years in the sample
period (1991-2008). Correlation coeffi cients that are significantly different from zero at the 10%
level (using Newey-West (1987) standard errors) are marked with an asterisk.

31



Table 2: Transition matrices for high/medium/low forecasters

GDP growth Inflation

Short-horizon forecasts

Low Mid High Low Mid High
Low 0.451∗ 0.323 0.225† Low 0.491∗ 0.290 0.218†

Mid 0.258† 0.433∗ 0.309 Mid 0.204† 0.415∗ 0.381∗

High 0.106† 0.266† 0.629∗ High 0.082† 0.246† 0.672∗

Long-horizon forecasts

Low Mid High Low Mid High
Low 0.583∗ 0.333 0.085† Low 0.603∗ 0.285† 0.112†

Mid 0.201† 0.519∗ 0.280† Mid 0.230† 0.554∗ 0.216†

High 0.073† 0.264† 0.663∗ High 0.091† 0.219† 0.700∗

Notes: This table presents the probability of a forecaster transitioning from a given tercile of the
cross-sectional distribution of forecasts (low, middle, and high) to another tercile in the following
year. The upper panel presents the average of these probabilities for all forecasts with horizon up
to 12 months (“short horizon”) and the lower panel presents the corresponding results for forecasts
with horizon greater than 12 months (‘long horizon”). Estimated probabilities that are significantly
greater (lower) than 0.33 at the 10% level are marked with an asterisk (dagger).
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Table 3: Parameter estimates of the joint consensus forecast and
constant dispersion model

GDP growth Inflation

σu 0.000
(– – )

0.074
(0.062)

σε 0.073
(0.040)

0.018
(0.013)

φ 0.890
(0.039)

0.981
(0.031)

ση 0.083
(0.069)

0.000
(– – )

σν 0.000
(2.287)

0.486
(14.264)

σµ 0.380
(0.081)

0.531
(0.260)

κ 0.552
(0.153)

0.593
(0.344)

J p-val 0.766 0.000
H0: σν = 0 0.000

(0.500)
0.001
(0.486)

H0: σµ = 0 12.982
(0.000)

2.970
(0.042)

Notes: This table reports simulated method of moments (SMM) parameter estimates of the
Kalman filter model of the consensus forecasts and forecast dispersions, with standard errors in
parentheses. The model is estimated using six moments each from the MSE term structure for
the consensus forecast and from the cross-sectional term structure of dispersion for each variable.
p-values from the test of over-identifying restrictions are given in the row titled “J p-val”. The final
two rows present the test statistics, with p-values in parentheses, of the tests for no heterogeneity
in signals (H0 : σν = 0) and no heterogeneity in beliefs (H0 : σµ = 0) .
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Table 4: Parameter estimates for two models of time-varying dispersion

GDP growth Inflation

PANEL A: OLS estimates of a panel model for dispersion

Fixed effects? Yes Yes
βSPR 0.425

(0.115)
0.779
(0.082)

PANEL B: SMM parameter estimates of a Kalman filter model

σu 0.000
(– – )

0.033
(0.054)

σε 0.042
(0.022)

0.023
(0.014)

φ 0.954
(0.026)

0.957
(0.038)

ση 0.073
(0.066)

0.000
(– – )

σν 0.046
(0.108)

0.486
(8.359)

σµ 0.682
(0.378)

0.530
(0.322)

βκ0 4.452
(1.819)

−2.179
(3.253)

βκ1 −4.451
(2.284)

1.190
(4.558)

J p-val 0.983 0.000

Notes: The first two rows of this table report the results from the estimation of a panel model
for log-dispersion, with horizon-specific fixed effects, as a function of the log default spread. In the
interests of brevity, the individual fixed effect parameters are not reported. The remainder of the
table reports simulated method of moments (SMM) parameter estimates of the Kalman filter model
of the consensus forecasts and forecast dispersions, with standard errors in parentheses. p-values
from the test of over-identifying restrictions are given in the row titled “J p-val”. The model is
estimated using six moments each from the MSE term structure for the consensus forecast and
from the cross-sectional term structure of dispersion for each variable.
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Figure 1: Consensus and individual forecasts for GDP growth over the period 1991-2008, for four
forecast horizons (24 months, 12 months, 6 months and 1 month).
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Figure 2: Consensus and individual forecasts for inflation over the period 1991-2008, for four
forecast horizons (24 months, 12 months, 6 months and 1 month).
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Figure 3: Average position in the cross-sectional distribution of forecasters of four selected forecast-
ers, for GDP growth and inflation, for each forecast horizon.
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Figure 4: Term structure of forecast dispersion when varying the variance of the common noise
component (sig2eta), the variance of the idiosyncratic noise (sig2nu), the variance of the differences
in prior beliefs, and the variance of perceived accuracy of prior beliefs (kappa2).
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Figure 5: Cross-sectional dispersion (standard deviation) of forecasts of GDP growth and Inflation
in the U.S.
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Figure 6: Ratio of cross-sectional dispersion to root mean squared forecast errors for US GDP
growth and Inflation as a function of the forecast horizon.
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Figure 7: Time series of observed cross-sectional dispersion of GDP growth and inflation forecasts,
and model-implied time series of forecast dispersions, for forecast horizons of 12 and 24 months.
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