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Abstract

This paper proposes a new forecast combination method that lets the com-
bination weights be driven by regime switching in a latent state variable.
An empirical application that combines forecasts from survey data and time
series models finds that the proposed regime switching combination scheme
performs well for a variety of macroeconomic variables. Monte Carlo simu-
lations shed light on the type of data generating processes for which the pro-
posed combination method can be expected to perform better than a range
of alternative combination schemes. Finally, we show how time-variations in
the combination weights arise when the target variable and the predictors

share a common factor structure driven by a hidden Markov process.
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1. Introduction

Forecast combinations have a proven track record.! There are good reasons why a
combination of forecasts often outperforms the best individual forecasting model.
Forecasting models provide simple approximations to data generating processes
that are likely to be far more complicated than assumed by the models. It is there-
fore unlikely that an individual model forecast encompasses all other models. Even
if a single model always generates a lower expected loss than all other forecasts, so
long as this model’s forecast errors are not perfectly correlated with the forecast
errors of competing models, diversification gains are possible from assigning some
weight to other forecasts that may, individually, be dominated by the best model.
Consistent with the notion that all forecasting models are likely to be misspec-
ified, the ranking of the forecasting performance of individual models has widely
been found to change over time, c.f. Stock and Watson (2003) and Aiolfi and Tim-
mermann (2004). Some forecasting models may be able to rapidly adapt to events
such as recessions and periods with high uncertainty about the economy’s outlook,
while others only adjust sluggishly. A rational decision maker would want to put
higher weight on the more adaptive forecasts during - or preferably prior to - such
events but would also prefer at other times to use forecasts from more stable models
with more precisely estimated parameters. Faced with such changes, it is natural
for a decision maker to consider time-varying forecast combination schemes.?
Time-varying combination schemes were first proposed in the context of variance-
covariance analysis by Granger and Newbold (1973) and in a regression framework
by Diebold and Pauly (1987). Some papers have found empirical evidence that
such schemes perform better than combinations that assume constant weights. For
example, in an inflation forecasting experiment, Deutsch, Granger and Terasvirta
(1994) consider switching regressions where the regime is determined by some func-
tion of the lagged forecast error from a monetarist and a mark-up pricing model.

Deutsch et. al. use rolling regressions to estimate the parameters underlying fore-

'Numerous studies have found that forecast combinations tend to perform better than indi-
vidual forecasts, c.f. the comprehensive surveys by Clemen (1989) and Diebold and Lopez (1996)
and the more recent work by Chen, Stock and Watson (1999), Dunis, Laws and Chauvin (2000)

and Stock and Watson (1998, 1999).
In a large study of structural instability, Stock and Watson (1996) report that a majority

of macroeconomic time series models undergo structural change, suggesting another reason why
relying on a single forecasting model is unlikely to be the best strategy.



cast combination equations and find that using time-varying combination weights
can lead to a substantial reduction in the mean squared forecast error.

This paper proposes a new forecast combination method that lets the combi-
nation weights be driven by regime switching in a latent state variable. We show
how time-variations in the combination weights arise when the series that is being
predicted and the predictors share a common factor structure driven by a hidden
Markov process. This model is consistent with and potentially explains empirical
findings of instability in the relative performance of different forecasting models.
Although the underlying state is allowed to be unobserved, state probabilities can
be filtered from the data and their updated values can be used to compute weighted
out-of-sample forecasts. This framework provides a convenient and analytically
tractable method for introducing dynamics in the combination weights.

Although there are often good reasons to let forecast combination weights be
time-varying, the specific form of time-variation is often unclear. We therefore
consider a variety of schemes, including regime-switching driven by an observable
state variable (as proposed by Deutsch, Granger and Terasvirta (1994)), rolling
window regression and a time-varying parameter model estimated by the Kalman
filter. In an empirical analysis of six popular macroeconomic variables we study
combination of forecasts from a simple autoregressive model with those from the
survey of professional forecasters. We find that the proposed regime switching
model generates the lowest out-of-sample mean squared forecast error for three
of six series while none of the other combination schemes produces particularly
promising results. In simulation experiments we further document the types of
underlying data generating processes for which forecast combinations based on the
regime switching estimation scheme provide more precise forecasts than alternative
methods.

The plan of the paper is as follows. Section 2 introduces the forecast combi-
nation methods studied in the paper and considers their performance for a range
of macroeconomic time series. Section 3 proposes a common factor model with
regime switching that gives rise to the regime switching model studied in Section
2. This section also conducts a Monte Carlo study of the performance of various
forecasting schemes under a range of alternative data generating processes. Section
4 concludes.



2. Forecast Combination Methods

Suppose that a decision maker is interested in predicting some univariate series,
Yi11, conditional on information at time ¢, Z;, which comprises a set of individual
forecasts y111 = (G141, -, Umes1)" in addition to current and past values of y, i.e.,
Ty = {¥++1, Y- }_;. One option for the decision maker is to simply put a weight
of unity on a particular model’s forecast and zero weights on all other forecasts.
This strategy could make sense if one of the forecasts always dominates the others
by some margin in the sense that it is expected to lead to much smaller forecast
errors.® In practice, forecasting models are likely to be misspecified so the situation
where a single model always dominates its alternatives is unlikely to arise very often.
Furthermore, even if a dominant model exists, it is far from sure that the forecaster
will be able to identify this model in small samples. In this situation, an attractive
option is to combine forecasts.

The vast majority of studies in the forecasting literature have considered linear

forecast combinations of the form

Yiy1 = Wo + W'Yt + €41, (1)

where wq is an intercept term and w is an m—vector of regression coefficients or
“weights”. An intercept term is included following the suggestion by Granger and
Ramanathan (1984) to ensure that the bias of the forecast is optimally determined.
Assuming that the regression coefficients in (1) are constant, the intercept and
weights (wp, w) can be estimated by OLS using an expanding window of the data,
Yl,t = (yh -'-'7Z/t)/ and Y1,t = (}A’l, '---,}A’t)/~

It is also common to use equal weights, i.e. w = ¢/m, where ¢ is an m-vector
of ones, in the construction of forecasts. Many empirical studies have found that
it is difficult to produce more precise forecasts than those generated by such equal
weighted combinations, c.f. Clemen (1989). Equal-weights can be viewed as a way
to deal with estimation error in the combination weights when only a relatively
short data sample is available. As we shall see, instability in the covariance be-
tween forecast errors from different models may be a further reason for using equal

weights.

3If the best model only dominates other models by a small margin, diversification gains from
combining its forecasts with those from other models could still be sufficiently large to justify

forecast combination.



2.1. Time-varying combination weights

There are often good reasons to expect that the optimal forecast combination
weights change over time. Individual forecasting models can be viewed as local
approximations to the true underlying data generating process and their ability to
approximate can be expected to change in the presence of structural breaks and
as a function of the state of the economy. This suggests extending (1) to consider

time-varying forecast combination weights:

Yir1 = Wor + WY1 + €41, (2)

where (wgt, w;) are adapted to the current information set, Z;. In the absence of
specific knowledge about the process giving rise to time-variations in the combi-
nation weights, it is natural to consider several combination methods. We discuss
such schemes in the following.

A commonly used method for dealing with slowly moving nonstationarities
in a regression context is to use a rolling estimation window. To estimate the
combination weights used to forecast y;,1, rolling window regressions make use of
the data Yy ci14 = (Y4—ct1, - Yr) and Yt,cﬂ,t = (Yt_ct1,----, ¥t)', where c is the
(fixed) window length. A problem with this approach is that it removes data in an
arbitrary fashion without basing this decision on tests for structural breaks or other
types of nonstationarity. Hence it is easy to construct examples where this scheme
does poorly, despite its prominent use, c.f. Pesaran and Timmermann (2003).

A second method that deals with instability in the combination weights assumes

that (2) takes the form of a time-varying parameter (TVP) model:

Y1 = BZi1 + i1, Eip1 ~ iid(0,02) (3)

/3:5 = 6;—1 TN Mg iid(oa 0'727)7 COU(€t+1:nt) =0.

Here 2,41 = (1y,,,)" and B; = (wo; w)’. This type of forecast combination scheme
has been considered by, e.g., Zellner, Hong and Min (1991).

A third combination method proposed by Deutsch, Granger and Terasvirta
(1994) (DGT in the sequel) lets the combination weights switch discretely through

time, driven by an observable state variable such as the current forecast error:

Yir1 = Le,ea(wor + W1 Fie1) + (1 = Ie,en) (woz + WhYit1) + €141 (4)



Here e; = ty; — ¥, is the vector of period-t forecast errors and I, is an indicator
function taking the value unity when e; € A and zero otherwise. For example, the
set A could be based on the sign of the first models’s forecast error, so that Io,ca
is unity if the forecast error is positive, zero otherwise. Hence the forecast errors,
e;, determine which of the two sets of combination weights - w; or ws - is used to
compute the forecast. As the set A is varied, different nonlinear forecasting models
are obtained. Note that Ie,c4 is known given 7;, so it can be conditioned upon

when forecasting ;1.

2.1.1. Regime switching weights

To be practically useful, time-varying optimal forecast combination weights must
possess several properties. First, since the relative ranking of different forecasting
models has been found to change over time, the bias and variance of the forecast
errors generated by the individual models should be allowed to be time-varying.
Furthermore, the correlation between the prediction errors should be allowed to
vary through time in a persistent manner, thus giving rise to persistent shifts
in the optimal combination weights. If changes in the relative performance and
correlations between forecast errors are not at least mildly persistent it will be
difficult to design a time-varying forecast combination method that can hope to
outperform combination methods based on constant weights. Finally it is also
important to account for the possibility of non-Gaussian forecast errors since this
is again a standard feature of many time-series that economists are interested in.

Here we propose a simple regime switching combination scheme that captures
these features. Suppose that the joint distribution of the target variable and the
vector of forecasts is driven by a latent state variable, S;.;, which assumes one
of k possible values, i.e. Sy € (1,...,k). Siy1 is not assumed to be known, so
Siv1 ¢ Z;. However, conditional on Z; and the underlying state, S;;1 = s;11, we

assume that the joint distribution of y;.; and y;,; is Gaussian

2 /
ag g ~
gt—&—l ~ N :uyst_H ’ YSt41 YYSt41 . (5)
Yit+1 Vst i1 ay§8t+1 2§5t+1

Following Hamilton (1989), we further assume that the states are generated by



a first-order Markov chain with transition probability matrix

P11 P12 Pik
P P :
P(syls) = | 0 7 (6)
Pk—1k
Pk1 - Pkk-1  DPkk

Conditional on Sy, 1 = s;41, the expectation of y;,; is linear in the prediction signals
and thus takes the form of state-dependent intercept and combination weights:

1 ~

Elyi1|Zs, se1] = Hys,,, T+ U;ystﬂz%tﬂ(}’tﬂ - :U?stﬂ)a (7)
where we recall that y;,; € Z;. Hence, if the future value of the state variable,
Si11, was known, the population value of the optimal combination weights under

mean squared forecast error (MSFE) loss would be

_ P, -1 N
Wosgp1 = Hysip ayy8t+1 Ysep1 D Yse4a
_ -1 N
w8t+1 - 2§5t+1ayyst+1' (8)

In practice, the underlying state is likely to be unobservable, so the decision maker
is interested in minimizing the MSFE conditional only on the current information,
Ti:
k
E [e?+1|-’[t} - Z Tspq1,t {MgsHl + O-gStJrl} ) (9)
sty1=1

where e;11 = yr11 — Y1 i the scalar forecast error from the combination (g1 =
Wot + @yYi11), Toppat = Pr(Si1 = si1|Zy) is the (filtered) probability of being in
state s;y1 in period ¢t + 1 conditional on current information, Z;, and, assuming a

linear forecast combination in the general class (2),

Mest+1 = E[et‘i’l’z-t’ St+1] - /’LyStJrl - th - w;l’l’?s“rl? (]‘0)

2 _ _ 2 / /
Oesiin = Var(ei1)|Zs, S141) = Oysrss T Wi wy — 2wio

YSt41 y§5t+1 '

Differentiating (9) with respect to wp, and w, and solving the first order conditions,

we get the following combination weights, wg,, wy :

k k
wiy = Y. w (> 7 S )wi = iy, + po,w
ot St+17t:uyst+1 3t+1,tl’l'y5t+1 t = Myt l’l'yt ts
st1=1 St1=1
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k -1
% R A N T~ T
Wy = Z Tsyy1,t (”y8t+1l’tyst+1 + Z)y8t-~-1) l'l‘ytl'l'yt

sep1=1

k
X ( Z 17T8t+1,t(ﬂy5t+1“§8t+1 + ay§5t+1) - 'uytﬁ%) ’ (11)
St+1=

where i, = th+1:1 Tsiyr,thys,,, and fg, = th+1:1 Tsip1,thys, .- Lhis generalizes
the standard least squares formula for optimal forecast combination weights derived
in a regression context by Granger and Ramanathan (1984) which of course is
obtained when k£ = 1. It is clear from (11) that the optimal combination weights
will, in general, be state dependent in this setting with weights that vary over time
as the state probabilities are updated.* Consistent estimates of the combination
weights for each state can readily be computed by estimating the model

Yr = wos, + Wl ¥+, e~ N(0,0%, ), T=1,..t (12)

EST

to get parameter estimates (wos,,w,,) and state probabilities, 7, ; = Pr(S; =
s¢t|Z;). One-step-ahead state probabilities 711, = Pr(Si41 = s441]Z¢) can be com-
puted from the filtered state probabilities m,; = Pr(S; = s;|Z;) using the transition
probabilities p,, ,,,, (c.f. Hamilton (1994), page 694-95). The (conditionally) opti-

mal forecast of ;.1 is then obtained as

k
ElyilT] = Y T Elye|Ti, si)- (13)

stp1=1

2.2. Empirical Evidence

To find out how well the combination schemes described so far work in practice, we
consider predictions of six popular macroeconomic variables, namely the nominal
Gross Domestic Product (GNP before 1992), inflation as measured through the
GDP chain-weighted price index (GDPPI), corporate profits after taxes (CPAT),
the civilian unemployment rate (CUR) computed as a three-month average, the
industrial production index (IPI) and private housing starts (HS) measured in mil-

lions and computed as a three-month average. For all series except for the unem-

4As pointed out by a referee, this assumes, however, that the rank of the transition probability
matrix, P, exceeds one. If this condition is not satisfied, the weights need not vary even if the

number of states, k, is greater than one.



ployment rate we study the rate of change in next quarter’s value over the current
value, calculated as first-differences in logs. All series are seasonally adjusted.

We combine forecasts from survey data with forecasts from simple time-series
regressions. To the extent that rises and falls in economic activity are not equally
well predicted by means of leading indicators available to the survey participants
(but not used in the autoregressive models), one would expect that the relative
weights on the two forecasts should vary over time. Time-series forecasts could
also be affected more by structural breaks in the data generating process than
survey forecasts provided that the forecasters are aware of and account for the
presence of such breaks.

Survey forecasts were obtained from the Survey of Professional Forecasters
(SPF, formerly known as the ASA/NBER survey) and are available from the
Philadelphia Fed’s web site. Forecasts were based on the mean across survey par-
ticipants, computed again as growth rates (i.e., first differences in the logarithm of
the one-quarter ahead forecast relative to the current value) except for the unem-
ployment rate which was not transformed. By design, these are real-time forecasts.
Forecasts from time-series regressions were computed from simple autoregressive
(AR) models with lag length selected according to the Schwarz information criterion
(SIC). Pseudo real-time one-step-ahead forecasts, gjt‘ﬁ, were computed using pa-
rameters estimated from the autoregressive model at time ¢. The relative squared
forecast error values of the time-series and survey forecasts are positively corre-
lated for most of the variables under consideration. Since both types of forecasts
are affected by the same unpredictable shocks to the target variables, this is not
surprising.

The sample covers the period from the fourth quarter of 1968 to the first quarter
of 2003. To make sure that we have enough data points to estimate the parame-
ters reasonably precisely, we reserve the last 40 data points for the out-of-sample
experiment. This gives us about one hundred initial observations to estimate the
combination weights.

We compare the performance of nine different forecasting schemes, namely (i)
forecasts from the time-series model; (ii) SPF forecasts; (iii) combined forecasts
with weights estimated using an expanding window of the data; (iv) combined
forecasts with weights estimated using a rolling window with 40 observations or

ten years of data; (v) combined forecasts based on Markov switching weights; (vi)



combined forecasts that use equal weights; (vii) combined forecasts with weights
based on the DGT model driven by the sign of the lagged forecast errors from the
time-series model; (viii) combined forecasts with weights based on the DGT model
driven by the sign of the lagged forecast errors from the SPF data; (ix) combined
forecasts with weights based on the TVP model estimated from the Kalman filter.

An important issue that arises when forecasting with the regime switching
model is how many states (k) to use. To answer this question, we experimented
with both two state and three state models. There are good a priori grounds for
preferring the two-state model in our application. The single state (linear) model
is already included in the comparisons. Furthermore, given the short sample it is
difficult to estimate the parameters of a three state model sufficiently precisely to
produce good out-of-sample forecasts. In fact, the two-state forecast combination
model requires the estimation of ten parameters while the three-state specification
requires estimation of 18 parameters.®

To explore whether benefits can be gained in real time from identifying two
economic states and dynamically combining the autoregressive and survey forecasts
using the estimated state probabilities as weights, we conduct an out-of-sample
forecasting exercise which estimates at each point in time the probability of the
current state, s;, as well as the parameters, @St = {©0s;, W1s,, Was; s Osyy Dsys, § and
use these to compute one-step-ahead forecasts through (13).

Table 1 reports the out-of-sample forecasting performance produced by the
different forecasting schemes. For three of the six series - the unemployment rate,
inflation and GDP growth - the two-state regime switching combination scheme
produces the lowest MSFE values. The survey forecasts generate the lowest MSFE
values for two series, namely housing starts and corporate profits, while the time-
series forecasts are best for industrial production.

Compared to the other time-varying forecast combination methods the regime
switching method produces a lower MSFE in four (against the rolling window and
Kalman filter forecasts) or five (against the DGT forecasts) out of six cases. This
provides fairly compelling evidence in support of the proposed two-state regime

switching scheme. It further suggests that the best forecast combination method

5We also compared the value of information criteria for the single, two-state and three-state
models. For all six series the Schwarz information criterion selected a two-state model. The Akaike

information criterion also supported a two-state specification for the majority of the series.



allows the combination weights to vary over time but in a mean-reverting manner.
Unsurprisingly, allowing for three states leads to worse forecasting performance for
four of the six variables under consideration.

Plots of the filtered state probabilities for the forecast combination regression
that assumes two states are shown in Figure 1, ordered so that state 1 is the state
where the weight on the time-series forecast is high relative to its value in state
2. For housing starts, the unemployment rate and growth in industrial production
the time series indicate multiple switches back and forth between the two regimes,
although there is evidence of a more permanent break towards the end of the sam-
ple for housing starts and industrial production. For the remaining three variables
the evidence supports a single structural break interpretation. Due to such struc-
tural breaks, it is unsurprising that the correlations between the NBER recession
indicator and these state probabilities plotted in Figure 1 tend to be very weak
and below 0.10. Many of the state probabilities are, however, strongly correlated:
for example, for housing starts and industrial production or housing starts and
producer price changes, pair-wise correlations are close to 0.60.

The plots in Figure 1 do not reveal the extent of time-variation in combination
weights which depends, of course, on the difference between the coefficient esti-
mates w,, across the two states. To gain insights into such variations, Figure 2
plots the combination weights associated with the time-series and survey forecasts.
Many interesting observations emerge from these plots. Notice the strong negative
correlation between pairs of combination weights for all series except for housing
starts. As the weight on one forecast goes up, the weight on the other one declines.
This is to be expected from the strong positive correlation between the two sets of
forecasts.

For housing starts the weight on the survey forecast is relatively stable and large
(around one), while the weight on the time-series forecast is small and declining. A
very different pattern is observed for the industrial production variable where the
weight on the time-series forecast increases over time, while conversely the weight
on the survey forecast declines. For the three variables most strongly affected by a
single structural break we observe similar patterns: in the case of corporate profits
both combination weights stabilize at about 0.3 after the break around 1982; for
the producer price series the survey weight stabilizes around 0.6 while the time-

series weight stabilize around 0.4; finally for the nominal GDP series the time series
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weight stabilizes around 0.6 survey weight stabilizing around 0.3 after the break
around 1985.

The finding of a structural break in the combination weights of many of our
series could well be related to the structural decline in the volatility of real US
GDP growth identified in the first quarter of 1984 by McConnell and Perez-Quiros
(2000). This is close to the time where the combination weights shift systematically

for the industrial production, corporate profits and nominal GDP series.

2.3. Forecast Evaluation

To assist in evaluating the forecasting performance of the Markov switching com-
bination model against that of the alternative forecasting schemes, we compute
Diebold-Mariano (1995) statistics based on the sequence of recursive one-step-
ahead out-of-sample forecast errors. The values of this test statistic should be
interpreted with caution and are best viewed mostly as a diagnostic since the
asymptotic distribution of the test statistic depends on the sampling experiment
that the researcher has in mind and the test also ignores parameter estimation
uncertainty. Assuming nested models, Corradi and Swanson (2002) show that,
provided the same loss function is used in the in-sample and out-of-sample esti-
mation, parameter estimation error will vanish asymptotically. Here we assume
that the benchmark or null model in the tests is the regime switching model. This
means that the alternative models do not nest the null model, as is appropriate
when using the Diebold-Mariano test.

Results are provided in panel B of table 1. The majority of test statistics are
not statistically significant even under conventional critical values which there may
be good reasons not to rely on. Such a finding is unsurprising in the light of the
relative short out-of-sample period and the poor small-sample properties of out-
of-sample tests for predictive ability documented in Chao, Corradi and Swanson
(2001). Even so, it is clear that the regime switching forecasts generally do quite
well against the other forecasting methods particularly for producer price inflation
and nominal GDP growth.

To account for the effect of estimation uncertainty on forecasting performance
and to have a method that applies both to nested and non-nested models, we next
computed the test statistic proposed in Corollary 2 in Giacomini and White (2004).

This is based on the uncentered squared multiple correlation coefficient from a
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regression of loss differentials on a vector of instruments. We used a constant as
our only instrument so this test statistic is asymptotically distributed as a chi-
squared variable with one degree of freedom. Results are reported in panel C
and are consistent with the Diebold-Mariano test statistics, indicating that the
two-state model does well for the combined forecasts of the unemployment rate,
inflation and nominal GDP growth.

3. A Markov Switching Common Factor Model

Although dynamic - or time-varying - forecast combination weights have been pro-
posed in the literature as early as Bates and Granger (1969) and have further been
advanced in textbooks on forecasting such as Diebold (2001), they have not proved
to be of much practical use so far. One reason is that only little work has been
undertaken on understanding which mechanism gives rise to time-variation in the
optimal combination weights. In this section we therefore propose a simple factor
model that generates regime switching in the optimal combination weights. Do-
ing so leads to a theoretically reasonable model which generates time-variations in
the forecast combination weights. The model also makes it easier to interpret and
choose the parameters in simulation experiments, a feature we exploit in Section
3.2. Although, to our knowledge, this type of model has not previously been con-
sidered in the context of forecast combination, we will see that it is ideally suited

for this purpose.®

3.1. The Model

Suppose that ;.1 is a linear function of an n x 1 vector of unobserved factors, F; 1,

with loading coefficients, (3 that depend on some underlying state process,

Yse+1?
St+1 € {1, ,k‘} :
Y+1 = /'Ly5t+1 + /3;3t+1Ft+1 + Et+1, (]‘4)
eipr ~ N(0,02,,,).

The mean of y.1 is controlled by the state-dependent scalar intercept, p,,, .

and ;41 1s also affected by an unpredictable innovation term, €;,1, whose state-

6Deutsch et. al. (1994) consider a range of nonlinear models but do not study latent Markov
models of the type analyzed here.
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2

dependent variance is oz, .

The n x n variance-covariance matrix of Fy i1 (¥p,,, )

and the n x 1 vector of factor loadings (3 can also vary across states. F;; is

)
St+1
a vector of ‘common factors’ that are a,ssuZI/n;d to be correlated with the prediction
signals and are Gaussian conditional on S;;;.

Conditional on a given state (Syy1 = Siv1) Yey1 is therefore Gaussian, but the
states are assumed to be unobserved so that ;.1 can be strongly non-Gaussian
conditional only on Z;. While S;,; and F;,; are assumed to be unknown at the
time when the prediction is computed, the forecaster is again assumed to observe
m prediction signals, {741}, each of which reflects the true factors (F;y;) and

: .7
noise, Git41:

:/y\it+1 = Mist+1+/3;3t+1Ft+1+§it+1; izla"'ama
Cit+1 ™~ N(OaUQ )- (15)

iS¢ 41

The noise terms, ¢;,1, are assumed to be mutually uncorrelated and uncorrelated
both with €,,7 and F;,; and are thus uncorrelated with the innovation in y;1:

Eleri16iv1] = FElSji16iu+1] =0 for all ¢ and all i # j,
E[F11641] = 0, for all ¢ and all j. (16)

We also assume that the noise terms {&;11,S1+1, -, Sme+1} are serially uncorre-
lated. This condition can be relaxed at the cost of introducing extra terms in the
conditional mean of ;1 and ;1.

This model is quite general. The individual forecasts can be biased, condition-
ally as well as unconditionally, which happens when u;, ..~ # p,,,,, for at least
one value of s € (1,...,k). The mean parameters control the centering of the
distribution of the forecasts and of the target variable, y;.1. Even the best forecast
is never perfectly correlated with the realization provided that o.,,,, # 0. The
variance of this ‘noisy’, unpredictable part of y is allowed to vary across states.
The forecasts are also contaminated by noise, possibly due to their inclusion of
irrelevant variables reflected in ¢;;1 1. Again this source of noise is state dependent

and can thus vary over time.

"Provided that the correlation between the factors and the target variable is time-varying
(which is ensured if 8,

dependent irrespective of whether the factor loadings of the forecasts depend on the underlying

is state-dependent), the optimal combination weights will be state-

state variable.

13



For a given state, a good individual forecasting model has factor loadings

(Bis,,,) that are similar to those of the predicted variable (3

2
18¢41 "

can thus change across different states in a way that gives rise to time-variation

ys..,) and also has

a low variance of the noise component, o The ranking of different forecasts
in the optimal forecast combination weights. To see this, suppose that there are
two states (k = 2) and that the loading of y on factor 1 is high in state 1 and
low in state 2, while the loading of y on factor 2 is high in state 2 and low in
state 1. Further suppose that the first prediction model has a high value of the
first element of By, , and a low value of o15,,, when s;41 = 1, while conversely
the elements of 8y,, , are low and o5,,, is high when s;; = 2. If the opposite
conditions hold for the second prediction model, then a higher combination weight
should be put on the first prediction model whenever the probability of state 1 is
high, while the second prediction model should get a higher weight when state 2
has a high probability.

The dynamics of the optimal forecast combination weights are controlled by the
state transition probability matrix, P. This means our model can flexibly capture
the idea that the identity of the best forecasting model can change over time in a
manner that is likely to be persistent but ultimately mean-reverts to weights that
reflect the steady state probabilities.

In this model the conditional expectation of ;.1 given s;y; is linear in the
prediction signals and thus takes the form of a state-dependent intercept and vector

of combination weights:
-1 N
E[ytJrl ‘Ita 3t+1] = Hysyy +B;st+1 ZF5t+1B/St+1 <B5t+1ZF5t+1B/St+1 + E§5t+1) (Yt+1_/1'

J— /! _ / . .

Where l’L.StJ,_l - (M15t+17 /’L2St+17 e lu“mSt.i,_l) Y 2§St+1 - E[§t+1§t+1 |8t+1] Isa dla"gonal CO-
. . _ / / _

variance matrix of ;11 = (141, «+or, Smer1)” and Bst+1 = (/Blst+17/328t+1, oo BmStH)

is an n x m matrix of loading factors for the m forecasts on the n underlying factors
in state s;,1. This is similar to (7). In reality the true underlying state is likely to
be unobserved so the combined forecast has to be computed using state probability

weights and (wo; w¢) gets based on the equivalent to (13):

.St+1)'

k
-1
- / / /
Wot = § : Tspqr,t <:U“yst+1 - 13y8t+1 EFSt+1Bst+1 (B5t+1 EFSt+1Bst+1 + E§5t+1) :u’.st+1> 5
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k
-1
r / I !
o= Y T <5y8t+1zpst+lBst+I (BSMEFSMBW+§3§8t+1) )

st41=1

14

(17)



where again 7, = Pr(Siy1 = s¢41]Zy) is the future state probability obtained
from the transition probabilities and the (optimally) filtered state probabilities.
This means that the conditional distribution of ¥;,, given y;;; becomes a time-
varying mixture of normals which can approximate a large class of densities, c.f.,
Marron and Wand (1992) and Timmermann (2000).

3.2. Monte Carlo Simulations

Armed with the factor model, we can study the comparative performance of the
forecasting schemes introduced in Section 2 under a variety of data generating
processes. The data generating processes that we study are special cases of the
factor model with two factors (n = 2), two states (k = 2) and two prediction
signals (m = 2). We simply assume that the factor loading coefficients are of
identical magnitude but change their signs between the two states and choose our
parameter values so that they do not appear to be too ‘extreme’ compared to the
differences in parameter values across regimes observed for the time-series in the
empirical section. Unconditionally, both predictions are unbiased observations of
the respective factors but have an added noise component. The parameter values

shared across the simulation experiment are as follows:

3 -3
ﬁylz (_3)7ﬁy2:<3>7

O:1 = 3;0-82 = 57

10
B, = By— ,
- B, (0 1)
0
/“l’y:/“l’.lzy’.QZ 0 9

10
Yp = EF2:E§2:Z§2:(O 1)-

Dynamics is already present in the model through the regime switching variable,
Si11. However, we can also allow for serial correlation through the factor dynamics,

e.g. by generating factor realizations from an AR(1) model:
Fi=TF;_; + uy,
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where u; is serially uncorrelated and independent of all other innovation terms.® In
the main experiments we assume that I' is a diagonal matrix with 0.5 on the diag-
onal while u; continues to be normally distributed with identity covariance matrix.
We also considered scenarios with more or less persistence in the factor dynamics
and found results very similar to those reported below. Forecast combinations con-
ditional only on the concurrent forecast, y;,1, are optimal either in the absence of
such dynamics or - in the presence of first-order serial correlation in the factors -
if the forecasts span the underlying factors. In the presence of more complicated
factor dynamics, further lags of the forecasts can be included in the combination
or serial correlation can be modeled explicitly in the regression residuals.

To study the performance of the various forecasting schemes, we consider six
scenarios representing a variety of data generating processes. The first experiment
assumes that the process always stays in state 2, so there is no regime switching.
Experiments two and three assume that there is regime switching in the combina-
tion weights with frequent shifts (experiment two which sets p;; = py = 0.7) or
more persistent states with infrequent shifts (experiment three which sets p;; =
poa = 0.95). The fourth experiment maintains the persistent regimes from ex-
periment three but considers the effect of fat tails on the results, assuming that
the innovations {&;41, S¢+1, Ugy1} are drawn from a fat-tailed student-¢ distribution
with five degrees of freedom.

To explore the possibility of non-recurring structural breaks, the fifth exper-
iment assumes a single structural break occurring halfway through the sample,
leading to a permanent shift from the first to the second state. Such structural
breaks are of interest for many economic time-series and are particularly relevant
given the evidence of breaks found in the empirical analysis in Section 2. Finally,
the sixth experiment assumes that the true loading factors follow a time-varying

parameter process, B,, = B,, | + €p;, with Vaar(eg;) = 0.11, where I is a 2 x 2

8 Alternatively, we could model regime switching in the dynamics of the factors, but assume
that the factor loadings for the target variable were not regime dependent. This is the approach
taken by Chauvet (1998).
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identity matrix. The experimental setup is summarized below

Single break half-way through sample
B, follows TVP

1. No regime switching (state 2 only) (p11,p22) = (0,1)

2. Frequent regime switching (p11,p22) = (0.7,0.7)
3. Highly persistent states (p11, p22) = (0.95,0.95)
4. Fat-tailed innovations (p11, p22) = (0.95,0.95)
d.

6.

We consider three sample sizes. First, we assume a short sample with 100 obser-
vations used to estimate the forecast combination weights. Parameter estimation
errors are likely to be particularly important in such a small sample. We further
study how fast the effect of estimation errors dies out in samples with 200 and 500
observations. To make sure that our results are comparable to those reported in
the literature, we compute the one-step-ahead MSFE performance based on 5,000
simulations. MSFE results are reported as ratios relative to the MSFE produced
by the forecast that uses combination weights estimated from an expanding win-
dow. This is a natural benchmark since it represents the standard way to obtain
forecast combination weights. A value below one indicates superior performance of
an alternative forecasting scheme relative to this benchmark.

Results from the simulations are reported in Table 3. In a stationary environ-
ment with no parameter instability (experiment 1), the expanding window OLS
combination method produces the most accurate forecasts as evidenced by the fact
that the other forecasting schemes all produce relative performance values above
one. The regime switching combination method does quite well with a relative
performance ratio below 1.03 that shrinks further towards one as the sample size
is increased and parameter estimation error gets reduced.

Next consider the experiment with frequent regime switching (experiment 2). In
the smallest sample (7" = 100) the best forecasts are produced by the simple aver-
age combination, followed closely by the first (individual) forecast. In the smallest
samples, the worst forecasts in this setting are produced by the TVP model. This
is likely a result of the heteroskedasticity and non-normal shocks induced by the
frequent regime shifts. The TVP algorithm is not designed to deal with such ef-
fects. For the smallest sample sizes the regime switching combination scheme does

not produce the best forecasts in this experiment despite the fact that it assumes
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the correct data generating process. This can be explained by parameter estima-
tion error since the sample is so small that the combination weights are imprecisely
estimated which leads to a poor out-of-sample forecasting performance. Indeed,
when the sample size is increased to 500 observations, the relative forecasting per-
formance of the regime switching combination method improves and it dominates
the other methods.

When regimes are more persistent with an average duration of 20 periods (ex-
periment 3), the regime switching combination scheme performs far better than the
other forecasting methods irrespective of sample size. This reflects more precise
estimates of the underlying parameters. The two nonlinear forecasting schemes
and the TVP model also perform better - relative to the expanding window OLS
method - in this setting than under more frequent regime switches. As expected, the
performance of the time-varying (nonlinear) combination methods also improves
when the sample size is increased.

Interestingly, in this experiment the MSFE performance of the regime switching
combination model is even better around turning points than its average perfor-
mance reveals. For example, when the sample size is 200, the relative MSFE value
conditional on a sizable change in the estimated probability of the underlying state
(defined as one that exceeds 0.25) declines from 0.86 to 0.76. A similar improve-
ment did not occur in the model with very frequent regime shifts since the turning
points were too poorly identified in this model.

These findings are not overturned when the innovations are drawn from a fat-
tailed ¢-distribution (experiment 4), although there is a slight deterioration in the
performance of most of the more complicated forecast combination methods in the
smallest samples. This is to be expected since their parameter estimates can be
more sensitive to deviations from normality - particularly the parameters of the
regime switching model which assumes Gaussian innovations conditional on the
state.

Turning to the experiment with a single structural break occurring halfway
through the sample (experiment 5), the best forecasts are produced by the rolling
window method. This finding is unsurprising for the sample with 100 observations
since the break occurred 50 periods from the forecasting date. This is also the
length of the rolling window which is thus optimal under this scenario. Both the

regime switching and the TVP forecast combination methods also perform very
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well under a structural break, suggesting that these methods adapt well even if
they ultimately use misspecified models. Interestingly, the rolling window method
continues to produce the best forecasts when the sample size is raised to 200 obser-
vations, followed closely again by the TVP and regime switching forecast combi-
nation schemes. The other forecasting methods perform significantly worse under
this data generating process.

Finally, when the factor exposures of the target variable follow a TVP process
(experiment 6), the best forecasts are produced by the TVP combination scheme,
particularly for the largest sample of 500 observations. The rolling window also
produces good forecasts under this setting as does the regime switching combination
method.

3.2.1. Estimated versus equal weights

A key question in the forecast combination literature is whether combination
weights should be estimated - typically by using OLS estimation (c.f., Granger
and Ramanathan (1984) and Diebold and Pauly (1987)) - or whether simple aver-
ages should be used. A number of studies have found that forecast combinations
with estimated weights perform worse than combinations based on simple averages.
For example, Kang (1986) concludes that “However genuine and sanguine the ar-
gument of the combination of forecasts using variance and covariance structures is
in theory, it is not so in practice. A simple average should be used when underly-
ing models are not known as in a survey....” (p. 695). Kang attributes the poor
performance of forecasts based on estimated combination weights to estimation
uncertainty.

Ultimately the performance of the combined forecasts based on estimated versus
equal-weighted averages depends on a number of factors - not least of which is the
proximity of the population weights to equal weights: the closer the true population
weights are to equal weights, the smaller the potential gains from using estimated
combination weights.

Our simulations allow us to explore an alternative explanation, namely that
the joint distribution of the predicted variable and the predictions is subject to
instabilities induced by regime switching. This could make estimation of the com-
bination weights more difficult than in the absence of regime switches. In the first

Monte Carlo experiment, the combined forecast based on the equal-weighted aver-
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age performs very poorly - generating MSFE-values almost 40% higher than those
based on the estimated forecast combination weights. Interestingly, however, once
regime switching is introduced in the data generating process, the simple average
performs better than the forecasts based on estimated weights, irrespectively of
whether the regime shifts occur very frequently (as in the second experiment) or
infrequently (as in the third experiment).

In fact, if the main explanation of the poor performance of forecast combi-
nations with estimated weights relative to the performance of the simple average
forecast reflected parameter estimation error, then the regime switching combina-
tion model should perform even worse since it introduces additional parameters
and solves a more complicated, nonlinear estimation problem. On the other hand,
if the poor performance of the least-squares combination weights was due to pa-
rameter instability, then regime switching could well improve on the forecasting
performance of a combination scheme that assumes constant weights. Our empir-
ical results and Monte Carlo simulations suggest that, for a number of plausible
data generating processes, parameter instability is the more likely explanation of

the poor performance of forecast combinations based on least-squares weights.

4. Conclusion

This paper proposed a new approach to forecast combination that lets the combi-
nation weights depend on a regime switching process driven by a latent variable.
This approach is theoretically appealing in the presence of instability of unknown
form in the forecasting performance of individual models. Indeed, several mecha-
nisms could give rise to time-variations in the combination weights, such as changes
between recession and expansion periods, institutional shifts or even differences in
the learning speed of individual forecasting models representing varying degrees
of complexity. Under any of these scenarios, a forecasting strategy of keeping the
combination weights constant through time is unlikely to be the best available
option to a decision maker.

Monte Carlo simulations suggested that forecasts based on regime switching
combination weights perform quite well for a range of data generating processes,
including those with persistent regimes as well as settings where the weights are
subject to a single structural break or subject to a time-varying parameter pro-

cess. Our simulations also provided an example where using estimated combination
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weights leads to a lower MSFE than simply averaging the forecasts provided that
there is no regime switching. Once regime switching is present, however, the aver-
aged combination outperformed the estimated weights in an MSFE sense. These
results thus offer a new explanation - namely parameter instability - for why simple
averaging generally works so well in practice.

Earlier papers have handled potential instabilities in combination weights by
using rolling windows of the data for parameter estimation (Deutsch, Granger and
Terasvirta (1994)) or by using time-varying parameter models (Zellner, Hong and
Min (1991)). Although such strategies are commonly used, it can be difficult to
characterize the underlying data generating process that gives rise to such estima-
tion strategies, particularly in the case of the rolling window method.

Regime switching combination weights can be viewed as a natural intermediary
between using fixed (estimated) weights and simple averaging. Forecasts from
the regime switching model are formed as a weighted average of forecasts from
each regime, with weights that reflect the individual state probabilities. Compared
to the type of parameter variation accounted for by the time-varying parameter
model, regime switching models represent the opposite end of the spectrum. The
time-varying parameter model has weights that change every period and move
farther away on average from where they started, inducing unit-root like behaviour,
whereas the regime switching model assumes a stable, mean-reverting process for
the weights and also can handle cases with structural breaks.

Our approach can be extended in several interesting directions. One possibility
is to consider density forecasting based on regime switching combination models,
using the methods for predictive density evaluation developed by Diebold et. al.
(1998) and Berkowitz (2001). Another interesting question is related to the per-

formance of different combination methods in multi-step forecasts.
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Table 1. Empirical Out-of-sample forecasting performance

Housing
Starts

A. Root Mean Squared Forecast Errors

Expanding window weights
Markov switching (2 states)
Markov switching (3 states)

AR forecasts
SPF
Equal weights

Rolling window weights

DGT-1
DGT-2
TVP

B. Diebold-Mariano statistics: Two
VS.
Vs.
VS.
Vs.
VS.
VS.
VS.
VS.

C. Giacomini-White statistics: Two-state Markov Switching versus alternative models
Vs.
VS.
VS.
VS.
VS.
vs.
vs.
VS.

expanding window
AR forecasts

SPF

equal weights
rolling window
DGT-1

DGT-2

TVP

expanding window
AR forecasts

SPF

equal weights
rolling window
DGT-1

DGT-2

TVP

4.703
4.815
4.714
4.860
4.163
4.385
4.391
4.968
4.701
4.351

Industrial
Production

0.873
0.864
0.805
0.732
0.955
0.825
0.811
0.802
0.803
0.780

Unemployment
Rate

0.209
0.201
0.209
0.232
0.226
0.221
0.226
0.211
0.204
0.205

Corporate GDP Producer

Profits

4.548
4.572
4.600
4.607
4.452
4.482
4.872
4.769
4.638
4.591

-state Markov Switching versus alternative models

-0.66

0.12
-2.37
-1.48
-1.42

0.89
-0.55
-1.65

0.44
0.01
5.04
2.14
1.96
0.80
0.30
2.59

0.24
-2.41

1.43
-0.80
-0.95
-1.10
-1.12
-1.95

0.06
5.20
2.00
0.64
0.90
121
1.25
3.56

0.51
1.96
1.69
141
1.28
0.45
0.22
0.25

0.27
3.57
2.72
1.95
1.62
0.20
0.05
0.06

-1.14
0.32
-0.82
-1.13
1.64
1.06
0.42
0.32

1.29
0.10
0.68
1.28
2.58
1.13
0.18
0.11

Price Index

0.187
0.172
0.176
0.222
0.198
0.196
0.180
0.186
0.195
0.186

1.94
2.68
2.16
1.88
1.28
2.61
2.59
1.13

3.53
6.22
4.28
3.34
1.62
5.93
5.86
1.27

Nominal
GDP

0.523
0.493
0.507
0.635
0.515
0.518
0.520
0.501
0.538
0.502

131
2.39
1.00
0.82
1.38
0.40
1.48
0.70

1.69
5.13
1.01
0.68
1.86
0.16
2.14
0.50

Note: Details of the forecasting methods are explained in the text. AR represent forecasts from autoregressive

models, SPF are forecasts from the Survey of Professional Forecasters. The rolling window assumes a

window length of 40 observations. DGT-1 and DGT-2 assume a nonlinear forecast combination model with
weights based on the sign of the AR or SPF forecast errors. TVP weights are estimated using the Kalman
filter. DM test statistics are asymptotically distributed as a standard normal random variable with positive values
indicating that the two-state regime switching model performs better than the alternative model. The Giacomini-
White test statistic is asymptotically distributed as a chi-squared random variable with one degree of freedom.



Table 2. Monte Carlo Simulation Results

Panel A: Sample size of 100 observations

Experiment # regime

switching
1: Stationary process 1.023
2: Frequent regime changes 1.007
3. Persistent regimes 0.915
4. Persistent regimes (t-distn.) 0.943
5. Single structural break 0.833
6. TVP process 1.025

Panel B: Sample size of 200 observations

1: Stationary process 1.014
2: Frequent regime changes 0.994
3. Persistent regimes 0.859
4. Persistent regimes (t-distn.) 0.865
5. Single structural break 0.831
6. TVP process 0.991

Panel C: Sample size of 500 observations

1: Stationary process 1.013
2: Frequent regime changes 0.980
3. Persistent regimes 0.879
4. Persistent regimes (t-distn.) 0.857
5. Single structural break 0.795
6. TVP process 0.969

first
forecast
1.649
1.019
1.014
1.022
1.197
1.294

1.642
1.042
1.051
1.077
1.204
1.347

1.659
1.036
1.050
1.030
1.207
1.392

second
forecast
1.201
1.026
1.015
1.036
0.867
1.267

1.203
1.040
1.049
1.052
0.882
1.319

1.213
1.038
1.030
1.014
0.864
1.369

simple
average
1.393
0.993
0.986
1.001
1.007
1.172

1.390
1.013
1.022
1.038
1.019
1.241

1.404
1.010
1.012
0.995
1.011
1.300

rolling
window
1.036
1.035
1.013
0.999
0.752
1.002

1.042
1.066
1.020
1.011
0.771
0.969

1.063
1.082
1.019
1.045
0.744
0.955

DGT-l

1.035
1.030
0.994
0.991
0.984
1.029

0.999
1.000
0.979
0.971
0.976
1.007

1.003
1.000
0.968
0.968
0.956
1.001

DGT-II

1.036
1.030
0.985
0.993
0.993
1.030

1.005
1.000
0.978
0.978
0.977
1.007

1.005
1.008
0.971
0.975
0.963
0.993

TVP

1.046
1.067
0.972
0.955
0.819
1.025

1.021
1.050
0.938
0.937
0.807
0.961

1.018
1.040
0.953
0.978
0.748
0.935

Note: performance is based on the MSFE of the one-step-ahead forecast measured relative to the MSFE performance
of a combination method with estimated weights that uses an expanding data window. Values above one hence indicate
relatively poor performance, while values below one indicate good performance. Results are averaged across 5,000

Monte Carlo experiments.



