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ABSTRACT

We estimate and compare a variety of continuous-time models of the short-term
riskless rate using the Generalized Method of Moments. We find that the most
successful models in capturing the dynamics of the short-term interest rate are
those that allow the volatility of interest rate changes to be highly sensitive to the
level of the riskless rate. A number of well-known models perform poorly in the
comparisons because of their implicit restrictions on term structure volatility. We
show that these results have important implications for the use of different term
structure models in valuing interest rate contingent claims and in hedging interest
rate risk.

THE SHORT-TERM RISKLESS interest rate is one of the most fundamental and
important prices determined in financial markets. More models have been
put forward to explain its behavior than for any other issue in finance. Many
of the more popular models currently used by academic researchers and
practitioners have been developed in a continuous-time setting, which pro-
vides a rich framework for specifying the dynamic behavior of the short-term
riskless rate. A partial listing of these interest rate models includes those by
Merton (1973), Brennan and Schwartz (1977, 1979, 1980), Vasicek (1977),
Dothan (1978), Cox, Ingersoll, and Ross (1980, 1985), Constantinides and
Ingersoll (1984), Schaefer and Schwartz (1984), Sundaresan (1984), Feldman
(1989), Longstaff (1989a), Hull and White (1990), Black and Karasinski
(1991), and Longstaff and Schwartz (1992).

Despite a bewildering array of models, relatively little is known about how
these models compare in terms of their ability to capture the actual behavior
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at the Commodity Futures Trading Commission, the University of Iowa, the Kansallis Research
Foundation, The Ohio State University, Purdue University, and participants at the 1991
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of the short-term riskless rate. The primary reason for this has probably been
the lack of a common framework in which different models could be nested
and their performance benchmarked. Without a common framework, it is
difficult to evaluate relative performance in a consistent way.! The issue of
how these models compare with each other is particularly important, how-
ever, since each model differs fundamentally in its implications for valuing
contingent claims and hedging interest rate risk.

This paper uses a simple econometric framework to compare the perfor—
mance of a wide variety of well-known models in capturing the stochastic
behavior of the short-term rate. Our approach exploits the fact that many
term structure models—both single-factor and multifactor—imply dynamics
for the short-term riskless rate r that can be nested within the following
stochastic differential equation:

dr = (a+ Br)dt + or’dZ. (1)

These dynamics imply that the conditional mean and variance of changes in
the short-term rate depend on the level of . We estimate the parameters of
this process in discrete time using the Generalized Method of Moments
technique of Hansen (1982). As in Marsh and Rosenfeld (1983), we test the
restrictions imposed by the alternative short-term interest rate models nested
within equation (1). In addition, we compare the ability of each model to
capture the volatility of the term structure. This property is of primary
importance since the volatility of the riskless rate is a key variable governing
the value of contingent claims such as interest rate options. In addition,
optimal hedging strategies for risk-averse investors depend critically on the
level of term structure volatility.

The empirical analysis provides a number of important results. Using
one-month Treasury bill yields, we find that the value of y is the most
important feature differentiating interest rate models. In particular, we show
that models which allow y > 1 capture the dynamics of the short-term
interest rate better than those which require y < 1. This is because the
volatility of the process is highly sensitive to the level of r; the unconstrained
estimate of y is 1.50. We also show that the models differ significantly in
their ability to capture the volatility of the short-term interest rate. We find
no evidence of a structural shift in the interest rate process in October 1979
for the models that allow y > 1.

We show that these interest rate models differ significantly in their impli-
cations for valuing interest-rate-contingent securities. Using the estimated
parameters for these models from the 1964 to 1989 sample period, we employ
numerical procedures to value call options on long-term coupon bonds under

! Because of this problem, empirical work in this area has tended to focus on specific models
instead of comparisons across models. See, for example, Brennan and Schwartz (1982), Brown
and Dybvig (1986), Gibbons and Ramaswamy (1986), Pearson and Sun (1989) and Barone,
Cuoco, and Zautzik (1991).
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different economic conditions. Our findings demonstrate that the range of
possible call values varies significantly across the various models.

The remainder of the paper is organized as follows. Section I describes the
short-term interest rate models examined in the paper. Section II discusses
the econometric approach. Section III describes the data. Section IV presents
the empirical results from comparing the models. Section V contrasts the
models’ implications for valuing options on long-term bonds. Section VI
summarizes the paper and makes concluding remarks.

I. The Interest Rate Models

The stochastic differential equation given in (1) defines a broad class of
interest rate processes which includes many well-known interest rate models.
These models can be obtained from (1) by simply placing the appropriate
restrictions on the four parameters «, 8, o, and vy. In this paper, we focus on
eight different specifications of the dynamics of the short-term riskless rate
that have appeared in the literature. These specifications are listed below
and the corresponding parameter restrictions are summarized in Table I:

1. Merton dr = adt + odZ

2. Vasicek dr =(a + Br)dt + odZ

3. CIR SR dr =(a + Br)dt + or/2dZ
4. Dothan dr = ordZ

5. GBM dr = Brdt + ordZ

6. Brennan-Schwartz dr =(a+ Br)dt + ordZ

7. CIR VR dr = or3?dZ

8. CEV dr = Brdt + or’dZ

Model 1 is used in Merton (1973), footnote 34, to derive a model of discount
bond prices. This stochastic process for the riskless rate is simply a Brownian
motion with drift. Model 2 is the Ornstein-Uhlenbeck process used by Vasicek
(1977) in deriving an equilibrium model of discount bond prices. This Gauss-
ian process has been used extensively by others in valuing bond options,
futures, futures options, and other types of contingent claims. Examples
include Jamshidian (1989) and Gibson and Schwartz (1990). The Merton
model can be nested within the Vasicek model by the parameter restriction
B = 0. Both of these models imply that the conditional volatility of changes in
the riskless rate is constant.

Model 3 is the square root (SR) process which appears in the Cox, Ingersoll,
and Ross (CIR) (1985) single-factor general-equilibrium term structure model.
This model has also been used extensively in developing valuation models for
interest-rate-sensitive contingent claims. Examples include the mortgage-
backed security valuation model in Dunn and McConnell (1981), the discount
bond option model in CIR (1985), the futures and futures option pricing
models in Ramaswamy and Sundaresan (1986), the swap pricing model in
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Table I

Parameter Restrictions Imposed
by Alternative Models of
Short-Term Interest Rate

Alternative models of the short-term riskless
rate of interest r can be nested with appropriate
parameter restrictions within the unrestricted

model
dr=(a+ Br)dt + or'dZ

Model a B o v
Merton 0 0
Vasicek 0
CIR SR Y,
Dothan 0 0 1
GBM 0 1
Brennan-Schwartz 1
CIR VR 0 0 %,
CEV 0

Sundaresan (1989), and the yield option valuation model in Longstaff (1990b).
The CIR SR model implies that the conditional volatility of changes in r is
proportional to r.

Model 4 is used by Dothan (1978) in valuing discount bonds and has also
been used by Brennan and Schwartz (1977) in developing numerical models
of savings, retractable, and callable bonds. Model 5 is the familiar geometric
Brownian motion (GBM) process of Black and Scholes (1973). Geometric
Brownian motion is also one of the interest rate models considered by Marsh
and Rosenfeld (1983). Model 6 is used by Brennan and Schwartz (1980) in
deriving a numerical model for convertible bond prices. This process is also
used by Courtadon (1982) in developing a model of discount bond option
prices. The GBM model is nested within the Brennan-Schwartz model by the
parameter restriction @ = 0. In turn, the Dothan model is nested within the
GBM model by the parameter restriction 8 = 0. All three of these models
imply that the conditional volatility of changes in the riskless rate is propor-
tional to r2.

Model 7 is introduced by CIR (1980) in their study of variable-rate (VR)
securities. A similar model is also used by Constantinides and Ingersoll
(1984) to value bonds in the presence of taxes. Finally, Model 8 is the
constant elasticity of variance (CEV) process introduced by Cox (1975) and by
Cox and Ross (1976). The application of this process to interest rates is
discussed in Marsh and Rosenfeld (1983), footnote 4. Table I shows that the
CEV model nests the Dothan, Brennan-Schwartz, and CIR VR models.

Although the majority of these interest rate processes were introduced in
the context of a single-factor model of the term structure, it is important to
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note that our analysis is not limited to single-factor term structure models.
By comparing different models of the short-term interest rate, our analysis
provides insights into the properties of any economic model in which assump-
tions about interest rate dynamics are made. For example, our results are
applicable to any multifactor term structure model in which assumptions
about the dynamic behavior of r are embedded.

Finally, we note that our framework has some features in common with
Marsh and Rosenfeld (1983), Fischer and Zechner (1984), and Melino and
Turnbull (1986). For example, Marsh and Rosenfeld use a general stochastic
process similar to (1) in estimating the parameters of several continuous-time
interest rate models. Their framework, however, nests only three interest
rate processes. A comparison of their model with (1) shows that two of these
three interest rate processes are nested within (1). These nested models
correspond to the CIR SR and GBM models in our framework.

II. The Econometric Approach

In this section, we describe the econometric approach used in estimating
the parameters of the interest rate models and in examining their explana-
tory power for the dynamic behavior of short-term interest rates. To illustrate
the approach clearly, we focus first on the unrestricted process given in
equation (1). The same approach can then be used for the nested models after
imposing the appropriate parameter restrictions.

Following Brennan and Schwartz (1982), Dietrich-Campbell and Schwartz
(1986), Sanders and Unal (1988), and others, we estimate the parameters of
the continuous-time model using a discrete-time econometric specification

rygp—re=a+tpr,t e, (2)
E[ €t+1] =0, E[8t2+1] = U2rt2y~ (3)

This discrete-time model has the advantage of allowing the variance of
interest rate changes to depend directly on the level of the interest rate in a
way consistent with the continuous-time model.

It is important to acknowledge that the discretized process in (2) and (3) is
only an approximation of the continuous-time specification. The reason for
this is that in measuring changes in r over discrete intervals of time,
integrals appear on the right side of (1). This is the temporal aggregation
issue described by Grossman, Melino, and Shiller (1987), Breeden, Gibbons,
and Litzenberger (1989), and Longstaff (1989b, 1990a). Given the continuity
of the interest rate process, however, the amount of approximation error
introduced can be shown to be of second-order importance if changes in r are
measured over short periods of time.?

% See also Campbell (1986).
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Our econometric approach is to test (2) and (3) as a set of overidentifying
restrictions on a system of moment equations using the Generalized Method
of Moments (GMM) of Hansen (1982). This technique has a number of
important advantages that make it an intuitive and logical choice for the
estimation of the continuous-time interest rate processes. First, the GMM
approach does not require that the distribution of interest rate changes be
normal; the asymptotic justification for the GMM procedure requires only
that the distribution of interest rate changes be stationary and ergodic and
that the relevant expectations exist. This is of particular importance in
testing the continuous-time term structure models since each implies a
different distribution for changes in r. For example, the Vasicek and Merton
models assume that interest rate changes are normal, whereas CIR SR
assumes that they are proportional to a noncentral y? variate. Second, the
GMM estimators and their standard errors are consistent even if the disturb-
ances, g, ;, are conditionally heteroskedastic. Since the temporal aggregation
problem that arises from estimation of a continuous-time process with dis-
crete-time data is likely to influence the distribution of the disturbances, the
GMM approach should further alleviate the impact of this approximation
error on the parameter estimates. For example, even though the CIR SR
continuous-time model assumes that changes in r are distributed as a
random variable proportional to a noncentral x2, the discrete-time version of
the model may not. Finally, the GMM technique has also been used in other
empirical tests of interest rate models by Gibbons and Ramaswamy (1986),
Harvey (1988), and Longstaff (1989a).

Define 6 to be the parameter vector with elements «, 8, o
&41 ="y — T — a— Br,, let the vector £,(6) be

2 and v. Given

€41
€1y

ft(e) = 8t2+1 — O.Z,.[Zy . (4)

(8t2+1 - 0_2rt2y)rt

Under the null hypothesis that the restrictions implied by (2) and (3) are
true, E[f,(#)] = 0. The GMM procedure consists of replacing E[ f,(6)] with
its sample counterpart, g,(6), using the T observations where

1
gr(0) = 7 X\ f.0), (5)
and then choosing parameter estimates that minimize the quadratic form,
Jr(0) =87 (0)Wr(6)gr(0), (6)

where W,(6) is a positive-definite symmetric weighting matrix. Matrix differ-
entiation shows that minimizing J;(6) with respect to 6 is equivalent to
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solving the homogeneous system of equations (orthogonality conditions),
D'(6)Wr(0)gr(0) =0, (7

where D(0) is the Jacobian matrix of g,(6) with respect to 6.

For the unrestricted model, the parameters are just identified and J,(6)
attains zero for all choices of W;(6). For the nested interest rate models, the
GMM estimates of the overidentified parameter subvector of 6§ do depend on
the choice of W,. Hansen (1982) shows that choosing W,(8) = S~'(6), where

S(0) = E[f(6)/(0)], (8)

results in the GMM estimator of # with the smallest asymptotic covariance
matrix. Designating an estimator of this covariance matrix as Sy(0), the
asymptotic covariance matrix for the GMM estimate of 6 is

1 -1
7(D5(0)Sy(8)Do(0)) €)

where D (0) is the Jacobian evaluated at the estimated parameters.
This covariance matrix is used to test the significance of the individual
parameters.

The minimized value of the quadratic form in (6) is distributed y? under
the null hypothesis that the model is true with degrees of freedom equal to
the number of orthogonality conditions net of the number of parameters to be
estimated. This y? measure provides a goodness-of-fit test for the model. A
high value of this statistic means that the model is misspecified.?

We also use the hypothesis-testing methods developed by Newey and West
(1987) in order to evaluate the restrictions imposed by the various models on
the unrestricted model. They show that for a general null hypothesis of the
form, H,:a(f) = 0, where a(6) is a vector of order k, each element repre-
senting a model restriction, the test statistic,

R =T|[Jp(0) — Jr(6)], (10)

is asymptotically distributed y? with % degrees of freedom. This test statistic
is the normalized difference of the restricted (J;(6)) and unrestricted (J,(6))
objective functions for the efficient GMM estimator (both using the same
weighting matrix from the unrestricted model) and is analogous to the
likelihood ratio test. We employ these tests for a number of the pairwise
comparisons of performance among the various models.

In addition to these statistical tests, we also examine the economic impor-
tance of differences between the interest rate models. In doing this, our
metric is the ability of the model to capture the volatility of changes in the
riskless rate. We focus on volatility since it plays a central role in two of the
most important applications of term structure models: valuing contingent

3 Newey (1985) examines the asymptotic power properties of such tests against general model
misspecification.
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Table I1

Summary Statistics
Means, standard deviations, and autocorrelations of monthly Treasury bill yields and yield
changes are computed from June 1964 through December 1989. The variable r, denotes the yield
on Treasury bills maturing in one month and r,, ; — r, is the associated monthly yield change. p,
denotes the autocorrelation coefficient of order j. N represents the number of observations used.

Standard
Variables N Mean  Deviation p1 P2 Ps P4 Ps Ps
r, 307 0.06715 0.02675 0.95 091 0.86 0.82 0.80 0.78
r..1—r. 306 0.00009 0.00821 -0.08 007 -0.12 -0.14 -0.03 -0.04

claims and hedging interest rate risk. For example, the volatility of interest
rates is a fundamental determinant of the value of interest rate options. In
addition, optimal hedging strategies for risk-averse investors can be very
sensitive to changes in expected interest rate volatility. The ability of a term
structure model to capture interest rate volatility is a direct measure of its
hedging usefulness.

ITII. The Data

The Treasury bill yield data for our study were obtained from the data set
originally constructed by Fama (1984) and subsequently updated by the
Center for Research in Security Prices (CRSP). The one-month yields are
based on the average of bid and ask prices for Treasury bills and are
normalized to reflect a standard month of 30.4 days. The data are monthly
and cover the period from June 1964 to December 1989, providing 307
observations in total. All yields are expressed in annualized form.

Table IT shows the means, standard deviations, and first six autocorrela-
tions of the one-month yield and the monthly changes in the one-month yield.
The unconditional average level of the one-month yield is 6.715% with a
standard deviation of 2.675%. Although the autocorrelations in the interest
rate levels decay slowly, those of the month-to-month changes are generally
small and are not consistently positive or negative. This offers some evidence
that interest rates are stationary.

IV. The Empirical Results

In this section, we present our empirical results. We begin by estimating
the unrestricted and the eight restricted interest rate processes. We compare
the explanatory power of the nested models with that of the unrestricted
model and the nested models with each other using the methods of Newey
and West (1987) outlined in Section II. We also compare the models in terms
of their explanatory power for an ex post measure of interest rate volatility.
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Finally, we test whether the change in monetary policy in October 1979
resulted in a structural break in the individual models.

A. Estimation Results and Model Comparisons

Table III reports the parameter estimates, asymptotic ¢-statistics, and
GMM minimized criterion ( y2) values for the unrestricted model and for
each of the eight nested models. As shown, the models vary in their explana-
tory power for interest rate changes. The y2 tests for goodness-of-fit suggest
that the Merton, Vasicek, and CIR SR models are misspecified. All three
models have y? values in excess of 6 and can be rejected at the 95%
confidence level.* These are followed by the Dothan, GBM, Brennan-Schwartz,
CIR VR, and CEV models, all of which have low y? values. Except for the
CEV model, these latter models cannot be rejected at even the 90% confi-
dence level.

An important property of this ranking is that it can be basically classified
by vy values, that is, those models which assume y < 1 are rejected and those
which assume y > 1 are not rejected. Furthermore, differences in the mini-
mized GMM criterion values between models with the same value of y are
generally much smaller than differences in models with different values of y.
These results suggest that the relation between interest rate volatility and
the level of r is the most-important feature of any dynamic model of the
short-term riskless rate. This is significant since much of the debate about
the relative merits of the various models has focused on other issues. For
example, the Vasicek and Merton models are often criticized for allowing
negative interest rates. Our results indicate that a far more serious draw-
back of these models is their implication that interest rate changes are
homoskedastic.

The estimates of the unrestricted model provide a number of interesting
insights about the dynamics of the short-term interest rate. First, there
appears to be only weak evidence of mean reversion in the short-term rate;
the parameter 3 is insignificant in the unrestricted model.® This is important
since it is the mean reversion feature which makes many term structure
models so complex; the additional generality obtained by allowing the short-
term interest rate process to be mean reverting may not justify the additional
complexity. We also find that the conditional volatility of the process is highly
sensitive to the level of the short-term yield; the unconstrained estimate of y
is 1.499. This result is important since this is much higher than the values
used in most of the models.® In particular, six of the eight nested models

* Recall that since the unrestricted model represents an exactly identified system, the mini-
mized GMM criterion value is exactly zero.

® Note that by using a longer sample period or a more powerful test methodology (Dickey and
Fuller (1979) and (1981), for example), it may be possible to reject the hypothesis that 8 equals
zero for the unrestricted model.

® Similar results are reported in Melino and Turnbull (1986) for LIBOR rates and by Chan,
Karolyi, Longstaff, and Sanders (1992) for the Japanese Gensaki interest rate.
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